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ABSTRACT 

Music audio structure segmentation has been a task in the 

Music Information Retrieval Evaluation eXchange 

(MIREX) since 2009. In 2010, five algorithms were eva-

luated against two datasets (297 and 100 songs) with an al-

most exclusive focus on western popular music. A new an-

notated dataset significantly larger in size and with a more 

diverse range of musical styles became available in 2011. 

This new dataset comprises over 1,300 songs spanning pop, 

jazz, classical, and world music styles. The algorithms from 

the 2010 iteration of MIREX are re-evaluated against this 

new dataset. This paper presents a detailed analysis of these 

evaluation results in order to gain a better understanding of 

the current state-of-the-art in automatic structure segmenta-

tion. These expanded analyses focus on the interaction of 

algorithm performance and rankings with datasets, musical 

styles, and annotation level. Because the new dataset con-

tains multiple annotations for each song, we also introduce 

a baseline for expected human performance for this task.   

1. INTRODUCTION 

The structural, or formal, analysis of music is one of the 

most fundamental of analyses performed by musicologists. 

Very simply, the main goal of structural analysis is to seg-

ment music into sections that share similar characteristics, 

and apply labels to these sections. These segmentations 

take forms such as AABB, or ABAC, etc. With further 

analysis, certain descriptors can also be applied to these 

sections, such as verse, chorus, and so on [3]. 

In recent years, there has been increasing interest in de-

veloping methods for performing structural analyses auto-

matically. For a good overview on the state of automatic 

music audio structural segmentation we refer the reader to 

[10]. The growing interest in structural segmentation algo-

rithms is evidenced by the establishment of the structural 

segmentation task of the Music Information Retrieval Eval-

uation eXchange (MIREX) campaign [2]. Evaluations of 

structural segmentation algorithms were performed in 2009 

and 2010. These evaluations were performed over collec-

tions with a strong bias towards western, popular music. 

To perform a novel and potentially more thorough eval-

uation of the performance of structural segmentation algo-

rithms, the set of algorithms submitted to MIREX 2010 in 

July 2010 was re-evaluated in May 2011 using a newly 

constructed dataset. For the purposes of this paper, we are 

calling this new test collection the MIREX 2010 Version 2 

(MRX10V2) dataset. MRX10V2 is much larger in size than 

the datasets used in earlier MIREX evaluations. It also con-

tains a much broader range of music styles. Moreover, the 

MRX10V2 database contains multiple annotations per 

piece. Having multiple annotations per song allows us, for 

the first time, to explore how well algorithms perform this 

task relative to human experts.  

The main motivation for this work stems from an ongo-

ing project called the Structural Analysis of Large Amounts 

of Music Information (SALAMI) [3]. The SALAMI project 

is an endeavor to use music structure algorithms to annotate 

and segment a large corpus of music (on the order of 

300,000 songs). Its main goal is to test the feasibility and 

usefulness of current music information retrieval algorithms 

on a larger scale than has commonly been performed. As a 

pilot to the SALAMI project, the work presented in this pa-

per aims to further our understanding of how current state-

of-the-art algorithms perform at music segmentation. 

The rest of this paper is formatted as follows. Section 2 

gives a description of the dataset used in this mid-cycle 

MIREX evaluation. Section 3 briefly describes the algo-

rithms. Section 4 presents the evaluation results. Section 5 

offers some conclusions and suggests future work.  
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2. DATASETS: OLD AND NEW 

The evaluation of structure segmentation algorithms on a 

large dataset requires the creation of a suitable ground 

truth. As in virtually all cases of MIREX-style evaluations, 

ground truth creation is carried out by human annotators. 

The use of human annotators brings up two significant 

challenges. First, there is a large labor cost involved in ma-

nually annotating music pieces. Second, and perhaps more 

importantly, is the notion that it is difficult to truly assert 

that any subjective interpretation of something as complex 

as musical form is “truth.” Many considerations must be 

taken into account regarding such annotations. Both [1] 

and [11] lay out methodologies for annotating musical 

structure. In this work, the dataset, and subsequent annota-

tion methodologies described in [14] are used.  

The MIREX 2009 and the MIREX 2010 iterations of the 

MIREX structural segmentation task had an over bias to-

ward popular music. The dataset known as MIREX 2009 

contains 297 popular song annotations donated by Tampere 

University of Technology, Vienna University of Technolo-

gy and Queen Mary, University of London. Music of The 

Beatles makes up a significant proportion of the MIREX 

2009 dataset. The MIREX 2010 dataset consists of an anno-

tated version of the RWC [4] database's popular music col-

lection. Note that the published results to the MIREX 2010 

dataset are evaluated against a ground truth donated by 

members of the QUAERO Project.1 However, these annota-

tions consist of only segment boundary annotations with no 

labeling. Hereafter, results pertaining to the MIREX 2010 

dataset are evaluated against the original, labeled structural 

annotations as distributed with the RWC collection. 

In order to compensate for the popular music bias exhi-

bited by the older datasets, the new MRX10V2 dataset was 

deliberately created to include a much wider variety of 

musical styles. In addition to popular music, the new data-

set contains classical, jazz, live, and world music. Table 1 

presents the distribution of styles across the MRX10V2 da-

taset. While “live” may not truly be considered a musical 

style, live pieces are separated as they raise unique con-

cerns such as applause sections, etc. 

    The “Double-keyed” pieces noted in Table 1 are those 

that have been annotated by two separate individuals. As 

Table 1 shows, the majority of pieces (1048 of 1383) have 

been annotated by two annotators. In addition, each annota-

tion of a piece contains two levels of structural hierarchy. 

There is a fine-grained annotation and a coarse grained an-

notation, with each coarse-grained segment comprising one 

or more fine-grained segments. Therefore, a “fine” annota-

tion may have form abaabacdaba, with equivalent “coarse” 

annotation of AABA where A represents an aba  

                                                           
1 See http://www.quaero.org.  

Table 1. Breakdown of the MRX10V2 structure segmenta-

tion dataset by musical style. 

sequence and B represents a cd sequence. The new dataset 

contains 1,383 pieces which is over 4 times larger than ear-

lier datasets used for evaluation. 

3. ALGORITHMS 

The algorithms used in this off-cycle MIREX evaluation 

are the same as the ones submitted to MIREX 2010. Five 

unique algorithms, including one with two distinct parame-

ter settings (resulting in six overall algorithms), were run 

against the new 1,383 song dataset and evaluated. The algo-

rithms are referred to in this paper using the code names 

assigned to them during MIREX 2010.2   

Each of the algorithms under evaluation is composed of 

a unique combination of extracted features, segmentation 

methods, and labeling/grouping techniques. BV1-2 [13] 

uses beats, Mel Frequency Cepstral Coefficients (MFCCs) 

and chroma vectors as features, segments the song based on 

generalized likelihoods of three different criteria and gath-

ers the segments using agglomerative hierarchical cluster-

ing. GP7 [12] uses MFCC, chroma vectors, spectral flatness 

and valley factors as features, calculates a weighted sum of 

4 different distance matrices that is used to segment the 

signal. The segments are merged using hierarchical agglo-

merative clustering. MHRAF2 [8] uses chroma features and 

employs string matching techniques to identify strong har-

monic redundancies using an iterative detection of major 

repetitions. MND1 [9] uses chroma vectors and calculates a 

similarity matrix using Pearson's correlation coefficient. 

MND1 searches the diagonals for repeated sequences and 

uses a greedy algorithm to decide on the segments. WB1 

[16] uses beat synchronous chromagrams decomposed into 

basis patterns by shift-invariant probabilistic latent compo-

nent analysis as features. Songs are segmented by compu-

ting the path of the basis patterns through a likelihood func-

tion that represents the structure of the song using the Vi-

terbi algorithm.   

                                                           
2 See http://nema/mirex/wiki/2010:MIREX2010 

Style Double-

keyed 

Single-

keyed 

Total Percentage 

Classical 159 66 225 16% 

Jazz 225 12 237 17% 

Popular 205 117 322 23% 

World 186 31 217 16% 

Live 273 109 382 28% 

Total 1048 335 1383 100% 
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On average, the runtimes for the algorithms is approx-

imately two to six minutes per file. Table 2 presents the av-

erage runtimes per-file for each algorithm. We can see that 

most algorithms run roughly real-time. Therefore, any very 

large-scale effort to automatically segment music audio will 

require significant computational resources.  

 

Algorithms Average processing time 

(min. / piece) 

WB1 [16] 2.28 

GP7 [12] 2.64 

BV1 & BV2 [13] 2.94 

MND1 [9] 5.60 

MHRAF2 [8] 6.38 

 

  

4. EVALUATION AND RESULTS 

4.1 Evaluation Methods 

The same evaluation methods and metrics used in previous 

structural segmentation MIREX evaluations were used to 

evaluate the algorithms. The boundary retrieval metrics of 

[15] evaluate how close segment boundaries between algo-

rithm results and ground truth are in time. This metric is 

label-agnostic and simply measures the segmentation of the 

piece and not whether similar sections are similarly labeled. 

The “hit rate” of the boundary retrieval measures if a re-

turned segment boundary is within T seconds of a ground 

truth boundary. The hit rate is measured at two time-

thresholds: T = 0.5 s and T = 3.0 s. The segment boundary 

hit rate measures encompass an F-measure (SBR-F), as well 

as a precision (SBR-P) and recall (SBR-R) measure. In addi-

tion, the median deviation, in seconds, between detected 

and ground truth boundaries is measured. AB-2-RB meas-

ures the median time difference between an annotated 

boundary and the nearest result boundary. Similarly, RB-2-

AB measures the median time difference between a result 

boundary and the nearest annotated boundary. 

Frame-pair clustering, as introduced in [6], divides the 

results and ground truth into short time frames (e.g. 100 

ms). This metric then considers every possible pair of 

frames and their corresponding labels. Denoting the set of 

all frame-pairs that share the same label (i.e., same cluster) 

in the result as PE, and likewise the set of all frame-pairs 

sharing the same label in the ground truth as PA, we can de-

fine the pairwise precision, P, pairwise recall, R, and pair-

wise F-measure, F as 

  
       

    
          

       

    
          

   

   
                                                       

The frame-pair clustering F-measure, precision, and recall 

are to as FPC-F, FPC-P, and FPC-R, respectively. 

The normalized conditional entropies introduced in [7] 

also represent structural annotations as sequences of short 

frames, similar to the frame-pair clustering metrics. Condi-

tional entropies are calculated and normalized to yield a 

measure in [0, 1], the details of which are beyond the scope 

of this paper and can be found in the reference. The norma-

lized conditional entropy measures are a dual measure with  

over-segmentation (NCE-OSS) and under-segmentation 

scores (NCE-USS). Because structure annotation can exist 

at multiple levels of granularity (as it does in the new 

ground truth), the two metrics will indicate if an algorithm 

tended to be too coarse (low under-segmentation score) or 

too fine (low over-segmentation scores). Finally, a random 

clustering index (RCI) measure is also calculated [5]. 

Table 2. Algorithm names, corresponding references, 

and runtimes. 

(a) 

Algorithm 

NCE-

OSS 

NCE-

USS 

FPC-

F 

FPC-

P 

FPC-

R 

RCI SBR-

F@0.5s 

SBR-

P@0.5s 

SBR-

R@0.5s 

SBR-

F@3s 

SBR-

P@3s 

SBR-

R@3s 

AB-2-

RB 

RB-2-

AB 

BV1 0.605 0.441 0.520 0.513 0.669 0.549 0.190 0.151 0.289 0.450 0.361 0.669 1.797 7.554 

BV2 0.454 0.715 0.427 0.678 0.350 0.638 0.189 0.150 0.286 0.449 0.361 0.666 1.812 7.552 

GP7 0.499 0.683 0.485 0.675 0.424 0.654 0.188 0.146 0.306 0.440 0.346 0.695 2.073 6.634 

MHRAF2 0.546 0.591 0.559 0.617 0.583 0.659 0.195 0.218 0.197 0.435 0.485 0.440 7.262 5.338 

MND1 0.624 0.625 0.556 0.649 0.586 0.662 0.291 0.302 0.326 0.470 0.479 0.534 8.565 5.389 

WB1 0.609 0.540 0.546 0.583 0.608 0.630 0.237 0.240 0.272 0.393 0.395 0.446 10.780 3.881 

(b) 

Algorithm 

NCE-

OSS 

NCE-

USS 

FPC-

F 

FPC-

P 

FPC-

R 

RCI SBR-

F@0.5s 

SBR-

P@0.5s 

SBR-

R@0.5s 

SBR-

F@3s 

SBR-

P@3s 

SBR-

R@3s 

AB-2-

RB 

RB-2-

AB 

BV1 0.643 0.323 0.384 0.321 0.680 0.505 0.179 0.236 0.159 0.567 0.744 0.499 2.905 2.007 

BV2 0.521 0.567 0.373 0.452 0.386 0.712 0.177 0.234 0.157 0.565 0.741 0.497 2.937 1.980 

GP7 0.584 0.557 0.432 0.467 0.482 0.720 0.163 0.208 0.153 0.472 0.605 0.436 4.946 2.300 

MHRAF2 0.599 0.442 0.440 0.395 0.615 0.655 0.124 0.276 0.087 0.356 0.776 0.253 11.311 1.885 

MND1 0.666 0.478 0.435 0.426 0.609 0.635 0.200 0.376 0.150 0.415 0.749 0.314 13.944 1.835 

WB1 0.675 0.420 0.442 0.382 0.653 0.632 0.148 0.277 0.112 0.317 0.588 0.239 16.031 1.975 

Table 3. Evaluations against coarse (a) and fine (b) ground truth annotations. 
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5.  RESULTS & DISCUSSION 

The evaluation results of the six algorithms using the new 

MRX10V2 dataset can be seen in Tables 3a (coarse-

grained) and 3b (fine-grained). The figures in the tables 

represent weighted averages over the dataset, where the av-

eraging was carried out as follows. All algorithms were 

evaluated over a single ground truth for the entire annotated 

dataset (~1300 pieces). Those pieces that were double-

keyed were then used as a second ground truth and sepa-

rately evaluated. These two separate evaluations were then 

weighted by the number of pieces in each set and averaged 

to produce the final results.  

We take immediate note that the algorithms tend to per-

form better when evaluated using the coarser of the two 

human annotations (mostly evidenced by the FPC-F meas-

ure and low NCE-USS scores in Table 3b). With regard to 

the FPC-F data, the average performance for all algorithms 

using the coarse-grained ground truth is 0.520 versus 0.423 

for the fine-grained. A Friedman's ANOVA test1  run using 

the FPC-F measure data confirms that there exists a statis-

tically significant difference in performance between the 

coarse and fine result sets (p=0.01). This result is not sur-

prising, as the algorithms are designed for coarse annota-

tion. We will talk about the relative performances of algo-

rithms using only the coarse FPC-F scores later. 

In comparing the MRX10V2 results with the previous 

MIREX datasets, we see that the evaluation results for all 

algorithms seem to be in the same general range. Using 

FPC-F-measure for comparison (as it provides a good bal-

ance between segmentation and labeling accuracy), Table 4 

contains algorithm performances on the new dataset, the 

MIREX 2009 dataset, and the MIREX 2010 dataset. In 

general, average performance seems to be slightly worse on 

the new MRX10V2 dataset. Some algorithms seem to have 

been more strongly affected, with significant performance 

drops (e.g. BV2 and GP7). Some algorithms, however, also 

improved slightly on the MRX10V2 dataset over the 

MIREX 2009 dataset (e.g. MND1 and WB1). The smallest 

dataset, RWC, appears to generate the best performances. A 

Friedman's ANOVA test run against the Table 4 data indi-

cated a statistically significant difference in performance 

among the three datasets (p=0.02). A subsequent Tukey-

Kramer Honestly Significant Difference (TKHSD) test tells 

us that the MIREX 2010 collection results are significantly 

different than the other two collections. The same TKHSD 

also shows that MIREX 2009 and MRX10V2 are not dif-

ferent from each other. We suspect that the MIREX 2010 

results are significantly better than the other two datasets 

                                                           
1 See [2] for an in-depth discussion of the applications of 

Friedman's ANOVA and the Tukey-Kramer Honestly Sig-

nificant Difference (TKHSD) tests used in MIREX. 

because the RWC popular music database which makes up 

the MIREX 2010 set was artificially composed and per-

formed to represent generic popular music and to overcome 

copyright problems. 

 

Table 4. Comparison of algorithms over datasets 

Recall that the earlier MIREX datasets have a strong bias 

toward western popular music. As mentioned in Section 2, 

MRX10V2 dataset was deliberately created to represent a 

wider range of musical styles to evaluate algorithmic per-

formance across different genres. Table 5 presents a break-

down of algorithm performance across musical styles. 

Again, the FPC-F measure is used as a summary measure 

for comparison, and only the coarse annotations are consi-

dered. A Friedman's ANOVA test run against the Table 5 

data indicates that there is no statistically significant differ-

ences in performance across musical styles (p=0.90). This 

is a promising result because it suggests that although, to 

date, most algorithms have been evaluated on popular mu-

sic, they do seem to perform reasonably well on other 

styles. Such a claim is not meant to imply that individual 

algorithms do not perform significantly better on some 

musical styles than others. Rather, when all algorithms are 

looked at as a whole, musical style does not seem to have a 

large effect (i.e., individual idiosyncrasies average out). 

 

Table 5. Results by musical style considering only coarse 

annotations. 

 

 

Algorithm MIREX09 MIREX10 MRX10V2 Ave. 

BV1 0.502 0.520 0.520 0.514 

BV2 0.493 0.531 0.427 0.484 

GP7 0.536 0.592 0.485 0.538 

MHRAF2 0.555 0.600 0.559 0.571 

MND1 0.613 0.625 0.556 0.598 

WB1 0.544 0.602 0.546 0.564 

Ave. 0.541 0.578 0.516 0.545 

Algorithm Live Classical Jazz Popular World Ave. 

BV1 0.504 0.513 0.544 0.519 0.521 0.520 

BV2 0.432 0.426 0.398 0.451 0.439 0.429 

GP7 0.510 0.427 0.475 0.513 0.484 0.482 

MND1 0.532 0.564 0.574 0.574 0.545 0.558 

MHRAF2 0.557 0.590 0.556 0.543 0.555 0.560 

WB1 0.560 0.524 0.547 0.548 0.537 0.543 

Ave. 0.516 0.507 0.516 0.525 0.514 0.515 
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Table 6. Fined-grained vs. coarse-grained FPC-F results. 

5.1 Best Performances: Algorithms vs. Humans 

In order to gain some general idea on how a human might 

perform relative to another human using the standard  

evaluation measures, the ground truths of all double-keyed 

files were compared. We performed the human-to-human 

comparison on both the coarse and fine-grained annotations. 

The double-keyed subset allows us to evaluate the human-

generated annotations in the same manner as the algo-

rithms. The Human results line in Table 6 was generated by 

declaring one human annotation set to be an “algorithm” 

while the other played the role of “ground truth.” The 

algorithms were evaluated on only this subset of the data to 

allow for direct comparison of the results on the 794 

double-keyed pieces that have both fine and coarse 

annotations. 

Table 6 shows that structural annotation by music 

experts seems to be itself somewhat subjective. For 

example the average coarse-grained FPC-F score is 0.721. 

This indicates that some disagreement does exist amongst 

human experts. A higher degree of disagreement exists for 

the fine-grained annotations.  

While algorithmic segmentations seem to perform 

similarly to each other, automatic segmentation has not 

reached human performance. We performed Friedman's 

ANOVA on the coarse-grained FPC-F scores for the 

algorithmic  and  human annotations across 794 tracks. At 

p<0.01, the Friedman's test indicates a statistically 

significant difference in performance among the annotation 

sources. The subsequent TKHSD multiple comparison tests 

show a set of four distinct performance groupings with each 

group being significantly different from the other groups 

(with no significant differences with each grouping). Figure 

1 presents the results of the TKHSD test.  

In the first performance group, we find, by itself, the 

results for the human annotations. These are noticeably 

better than any of the algorithmic results. This is to be 

expected given the relatively few years the community has 

be working on the structural segmentation problem. The 

second grouping (highlighted by an oval in Figure 1) 

consists of MHRAF2, MND1, and WB1. These three 

algorithms are not significantly different. BV1, GP7, and 

BV2 all have statistically significant performance 

differences. These results remind us of two important facts. 

First, the top performing algorithms are not significantly 

different in the MIREX 2010 Version 2 evaluations. We 

need to look at the stronger algorithms as a group to see 

what factors can be merged to build an improved 

segementation system. Second, notwithstanding human 

variations in strucutural annotations, we as a community 

still have a great way to go before our structural 

segmentation algorithms can be said to be acheiving 

human-like performances. 

  

  

Figure 1. Tukey-Kramer HSD comparison plots of 

the human and algorithm mean performance ranks 

across 794 double-keyed tracks 

6. CONCLUSIONS AND FUTURE WORK 

In this paper we reported upon the most extensive 

evaluation of music structure segmentation algorithms to 

date. Our evaluation was performed on a new dataset 

spanning multiple musical styles. Top-ranked techniques 

for the automatic segmentation of music quantitatively 

perform similarly. Musical style does not seem to have an 

adverse affect on general performance, but individual 

algorithms have a nonuniform performances across styles. 

We can also conclude that the state of automatic 

segmentation is relatively immature. Even though we 

assert that structural or formal analysis is in itself a 

subjective endeavor, the comparison of two human 

annotators to one another far outperforms current 

algorithms. In summary, we have no current single 

technique that is clearly better than the others and none 

approach the capabilities of a music expert in this task. 

The evidence that there is still a large room for 

improvement of current segmentation algorithms does not 

preclude them from being useful in their present form. Even 

Human MHRAF2 MND1 WB1 BV1 GP7 BV2
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Algorithm Fine Coarse 

BV1 0.392 0.525 

BV2 0.371 0.434 

GP7 0.433 0.485 

MHRAF2 0.448 0.565 

MND1 0.442 0.559 

WB1 0.449 0.552 

Human 0.629 0.721 
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though it is understood that the algorithms have not yet met 

the sort of baseline that most researchers set for themselves 

(i.e., approaching human performance) it is important to 

note that these goals are far from being met in many facets 

of music information retrieval (MIR), be it chord 

estimation, multipitch detection, and so forth. The primary 

goal of the SALAMI project, and much of the future work 

that will stem from the evaluation performed here, is to 

assess just how useful current MIR algorithms can be.  

For future work, we see the need to increase the size of 

our test collections. We would like to gather more 

annotations per song to augment our ability to explore the 

similarities and differences in human segmenting 

perceptions. We would also like to expand the number of 

styles and time periods represented in our test collections. 

Finally, we would like to perform a set of failure analyses 

on those songs that consistently scored poorly in order to 

discern what musical traits might be proving difficult for 

the annotators, both human and algorithmic, to process.  
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