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ABSTRACT 

This paper investigates perceptual relationships between 
art in the auditory and visual domains. First, we conduct-
ed a behavioral experiment asking subjects to assess simi-
larity between 10 musical recordings and 10 works of 
abstract art. We found a significant degree of agreement 
across subjects as to which images correspond to which 
audio, even though neither the audio nor the images pos-
sessed semantic content. Secondly, we sought to find the 
relationship between audio and images within a defined 
feature space that correlated with the subjective similarity 
judgments. We trained two regression models using 
leave- one-subject-out and leave-one-audio-out cross-
validation respectively, and exhaustively evaluated each 
model's ability to predict features of subject-ranked simi-
lar images using only a given audio clip's features. A re-
trieval task used the predicted image features to retrieve 
likely related images from the data set. The task was 
evaluated using the ground truth of subjects' actual simi-
larity judgments. Our results show a mean cross-validated 
prediction accuracy of 0.61 with p<0.0001 for the first 
model, and a mean prediction accuracy of 0.51 with  
p<0.03 for the second model. 

1. INTRODUCTION 

Art, in any of its modes, affects us. Whether an acrylic or 
symphonic masterpiece, art has the tendency to attract our 
attention and stir our sentiments, sometimes in ways that 
are quite similar across modalities. An attempt to define 
what a work of art is or to identifying exactly why art 
affects us the way it does are both ambitious and elusive 
questions in the field of aesthetics. Yet, these seem to be 
some of the more progressive objectives of music infor-
mation retrieval. Once we have diluted a sensuous experi-
ence such as listening to a symphony into a concrete 
string of numbers, the source of our pleasure becomes 
slightly more objective (though our experience of it may 
remain quite ineffable). This objectivity has allowed us to 
examine correlations between sets of songs based on mu-
sical features. Perhaps, then, feature extraction could also 
enlighten us to correlations across domains of art. For 
example, what features contribute to the phenomenon of a 

particular painting evoke the same feeling as a particular 
work of music? 
     This study attempts to bridge artistic domains from the 
perspective of feature extraction. If works of art that are 
emotionally ambiguous and culturally unrelated could still 
be considered similar, it is very possible that there is ob-
jectivity in the similarity that lies at the feature level. This 
opens up an entirely new question in terms of cross- mod-
al analysis: which auditory features and which visual fea-
tures are important when considering crossmodal similari-
ties? To simplify the plethora of possibilities, the study 
focuses on a few standard low-level features: course con-
stant-Q spectrograms of the audio and eight band HSV 
histograms of the images. 

2. RELATED WORK 

     Congruency across sensory modalities is a subject 
matter that has been discussed in the field of psychology 
since the seventies [1]. Cross-modal congruencies have 
been empirically shown to exist across the auditory and 
visual domains. This is not to be confused with cross- 
modal confusion, which is what occurs in individuals 
suffering from synesthesia. Typical audio-visual cross- 
modal congruency examples are sounds high in frequen-
cy being associated with objects high in space and ob-
jects small in volume, or vice versa: sounds low in fre-
quency are associated with objects low in space or ob-
jects large in volume. Studies in cross-modal congruen-
cies support the hypothesis that art across different do-
mains may affect us in similar ways. 
     Translations between visual and auditory art have 
been attempted in both directions. These attempts are 
known as music visualization when translating from au-
ditory to visual, and image sonification when translating 
from visual to auditory. Traditional music player soft-
ware generally come suited with some means of visualiz-
ing the music. Researchers have also devised creative 
means of attempting the audio to visual translation, in-
cluding the use of affective photos [2] and self-similarity 
[3]. Mardirossian and Chew also presented a way to visu-
alize music in two dimensions based on the tonal pro-
gressions [4]. The translation in the opposite direction, 
from images to music, has been investigated using the 
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geometric characteristics of images to create a time-based 
sequence that could be translated by musical instruments 
[5]. 
     Although there has never been an explicit attempt to 
classify images with audio data (as in the current study), 
one recent study was able to classify music genre by ana-
lyzing the promotional images of the artist [6]. This study 
used image histograms across three color spaces: RGB, 
HSV, and LAB to cluster image data into classes of mu-
sical genre. All of the above mentioned related worksug-
gests that there are some consistent perceptual relation-
ships between the auditory and visual domains. 

3. BEHAVIORAL STUDY 

3.1 Data Collection 
The first step in finding similarities across modalities was 
to find pairs of images and audio that were thought to be 
similar by a group of subjects. This was done via the be-
havioral experiment described in this section. 
 
3.1.1 Stimuli 
Ten abstract art images by the following artists were cho-
sen for this experiment: Betsy Eby, Gerhard Richter, 
Giles Hayter, Stephanie Willis, Ian Camleod, Madison 
Moore, Anne Kavanagh, Ernie Gerzabek, Paul Pulszartti, 
and Jason Stephen. Figure 1 shows "Blueprint I" by 
Stephanie Willis. All of the images were constructed ei-
ther in the late twentieth century or early twenty-first cen-
tury and all artists are Western, to avoid extreme cultural 
differences. The images were chosen selectively by the 
authors to encapsulate a range of colors and symmetries 
and to avoid any conceptual objects (e.g., figures that 
resemble a tree or a face). All of the image and audio 
stimuli used in this experiment can be viewed at: 
http://alisonmattek.wordpress.com/projects/academic/cros
smodal/. 
     Ten ten-second solo piano clips by the following com-
posers were chosen for this experiment: Handel, Mozart, 
Liszt, Debussy, Hindemith, Barber, Ligeti, Phillip Glass, 
Bill Evans, and David Lanz. This list represents Western 
composers across several centuries. The clips were chosen 
selectively by the author to encapsulate a range of tempos, 
pitches, and performers, but the timbre was kept relatively 
consistent, as all of the clips contained only the piano in 
the instrumentation. 
 

 
Figure 1. “Blueprint I” by Stephanie Willis 
 
predominantly modern works.  In the music selection, had 
solo piano works been chosen from only the twentieth 
century as well, there would have been a bias of chromat-
icism in the harmonic quality of all of the works.  In order 
to achieve more variability in the harmonic structure (that 
is, to include extremely tonal music), we chose music 
from previous eras as well.  However, the cultural era in 
which a work was produced is likely a relevant variable, 
and should be considered in future investigations. 
 
3.1.2 Listening Test 
Subjects between the ages of nineteen and thirty years (N 
= 16, 6 = female, 10 = male) completed a listening test in 
which they rated the similarities between all pairs of 
stimuli. Figure 2 shows the graphic user interface for the 
listening test. Some of the subjects had previous musical 
training (N = 10, 4 = female, 6 = male). The pairs were 
presented in a different random order for each subject. 
The first ten trials of the test were "practice" trials; the 
subjects were told they could adjust their strategy for 
choosing a similarity rating during the practice trials. Af-
ter this, the subjects completed one hundred trials, one for 
every possible pair of the ten audio clips and ten images. 
The subjects rated the similarity between each pair on a 
scale of 1 - 30. 1 - 10 implied "very dissimilar", 11 - 20 
implied "average similarity", and 21 - 30 implied "very 
similar". This 30-point scale was taken from Grey’s 
methodology for multidimensional scaling of musical 
timbre [7]. The subjects’ responses were stored into a ten 
by ten similarity matrix. 
 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page.  
© 2011 International Society for Music Information Retrieval  

586



12th International Society for Music Information Retrieval Conference (ISMIR 2011)  
 

 

 
Figure 2.  Listening Test GUI 
 

3.2 Data 

The results showed correlation across subjects on certain 
pairs of the audio and images. Figure 3 shows the mean, 
z-scored similarity matrix across all subjects. High values 
indicate a pair that was rated as very similar across sub-
jects and low values indicate a pair that was rated as very 
dissimilar across subjects. 

 
Figure 3.  Mean Similarity Matrix for All Subjects 
 
     The data was analyzed with plots, covariance matrices, 
and distance matrices of the z-scored subject responses. 
Figure 4 shows an analysis of the sixth audio clip, which 
was an excerpt from Samuel Barber's Excursion No. 1 for 
solo piano. The plot shows the z- scored subject responses 
to audio 6 when paired with each of the images, as indi-
cated on the x-axis. What stands out on this plot is that the 
similarity ratings decrease when audio 6 is compared to 
image 7, increase when audio 6 is compared to image 8, 
and decrease again when audio 6 is compared to image 9. 
In other words, audio 6 was considered to be very similar 
to image 8, but very dissimilar to image 7 and image 9, 
with much agreement across subjects. 
     From this type of analysis on all of the data, the fol-
lowing pairs of images and audio were thought to be simi-

lar across subjects: audio 1 and audio 8 were similar to 
image 6; audio 2 and audio 10 were similar to image 7; 
audio 3 and audio 7 were similar to image 1, image 4, and 
image 9; audio 4 and audio 5 were similar to image 3; 
audio 6 was similar to image 8; and audio 9 was similar to 
image 10. Images 2 and 5 were not consistently rated as 
similar to any audio examples. Figure 5 shows image 5, 
which was not consistently rated as similar or dissimilar 
to any audio across subjects. 

 
Figure 4.  Analysis of Audio 6 
  

 
Figure 5.  “Composition 114-B” by Ian Comleod was not con-
sistently rated as similar to any of the audio examples. 

4. IMAGE PREDICTION 

Given the subjective cross-modal similarity evaluation, 
we sought to determine whether there were correspond-
ences in common between the underlying audio and im-
age features spaces. To this end, from the 10 audio clips 
we extracted average power with a band rate of two con-
stant- Q bands per octave [9]. From the images we ex-
tracted eight-band HSV histograms. The HSV representa-
tion was chosen over RGB because, like the choice of 
logarithmic frequency spectrum, the HSV color scale cor-
responds more closely with human perception than the 
RGB scale [10]. The HSV values were binned into 3 
groups of 8 scalars forming a 24 dimensional vector. The 
16 audio bands and 24 image values were independently 
dimension reduced using a singular value decomposition 
(SVD) keeping those coefficients corresponding to the 
first 95% of the total variance in each modality. 
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4.1 Multivariate Multiple regression 

To test the predictability of image features given audio 
features for an unseen music clip, we performed a retriev-
al experiment using a cross-validated multivariate multi-
ple regression model [11]. Regression is an optimization 
method that minimizes the response error for a training 
set of predictor/response vector pairs (in our case audio 
features / image features) using a linear model of the 
form: y=WTx+b, with weight matrix, W , predictor varia-
bles, x, biases b, and response variables y. Our models 
consisted of multiple independent variables (audio-feature 
predictors), and multivariate dependent variables (image-
feature responses). Such multivariate multiple regression 
has previously been applied, in a cross-modal context, to 
predicting fMRI images corresponding to concrete nouns; 
where the predictor variables were intermediate vector 
representations of single words and the response variables 
were fMRI image voxels [12]. 
     Figure 6 illustrates the method of predicting image 
features from a regression model trained on audio feature 
/ image feature pairs. Figure 7 shows an example of audio 
features, a weight matrix, and the predicted response, ac-
tual response, and residual images. 

 
Figure 6.  Schematic diagram showing how regression is used 
to predict response variables from predictor variables. In this 
paper, the predictor variables are audio features, and the re-
sponse variables are image features. 

 
Figure 7.  Example of audio features (upper left), trained regres-
sion model weights (upper right), predicted image (lower left), 
and actual image (lower right), for a leave-one-audio-out regres-
sion model. 

4.2 Training 

We trained the regression models using the mvregress 
function from the Statistics Toolbox of the MATLAB 
numerical scientific package. The training data consisted 
of the dimension-reduced features of the audio clips as 
predictor variables and the dimension-reduced image fea-
tures for each subject’s highest-rated image (i.e., the most 
similar image as determined by the similarity judgments) 
as the response variables. We trained two models: Model 
1 was trained using subjects' image response ratings for 
each audio clip, leaving out one subject's data in each run; 
Model 2 was trained using all subjects' image response 
ratings, leaving out one of the audio clips in each run.    

4.3 Ground Truth 

The data from the behavioral study— i.e. per subject 
similarity ratings between each audio clip and each im-
age— yielded per subject 10x10 similarity matrices where 
each row consisted of the image rankings to one audio 
clip with integer values in the range of 1 to 30. Each sub-
ject utilized the scale to a different extent; with some us-
ing the full range and others using only part of the availa-
ble range. To align the different ranges onto a common 
scale, each row was normalized to the range of 0 to 1. The 
individual normalized similarity matrices were then aver-
aged yielding a cross-subject mean similarity matrix. 
From this matrix, a ground truth of relevant images was 
determined individually for each audio clip, but across 
subjects, by selecting all images with an average similari-
ty greater than, or equal to, the mean plus one standard 
deviation of the normalized similarity ratings for that au-
dio clip. This yielded a different number of relevant im-
ages for each audio clip ranging from one to three rele-
vant images. These were used as the target images for 
each audio clip in the retrieval experiments.  Note that for 
Model 1, the ground truth consisted of a mean similarity 
matrix that excluded the held-out subject; i.e. the test sub-
ject's data. 
 
4.4 Prediction 
One of the main utilities of regression is that responses 
can be computed for novel data— such that the response 
variables interpolate between the training data for previ-
ously unseen data. Thus, the trained regression models 
were used to predict the response variables (image feature 
vector) for each test feature vector (held-out audio feature 
vector). A successful interpolation would indicate gener-
ality of the model; specifically, the generalization of the 
subjective cross-modal feature-space mappings, such that 
the model could be used to predict the human subjective 
image response to unseen music audio data. 
 
4.5 Evaluation 
To evaluate the degree of success of the models' predic-
tions, the set of ground truth images per audio clip was 
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used in a retrieval task. The two models performed slight-
ly different retrieval tasks: Model 1 left a different sub-
ject’s predictor/response feature data out per run, for a 
total of 16 subjects. Here the goal was to was to assess the 
degree to which an individual subject's responses affect 
the image prediction result. The model was trained and 
tested repeatedly, omitting a single subject’s data each 
time, on the set of features corresponding to closest audio-
image pairs from the remaining subjects’ similarity 
scores. To test, a response image feature was predicted for 
each audio feature using the regression weights. The co-
sine distance was computed between the predicted image 
feature vector and the set of 10 feature vectors for the 10 
images that the test subject ranked in the behavioral ex-
periment. The distances were sorted such that those imag-
es whose features were most similar to the predicted fea-
tures were ranked more highly in the list of retrieved im-
ages. Precision and recall values were computed by com-
paring each ranked image with the relevant image set 
(ground truth). The recall level was also calculated; i.e. 
the proportion of ground truth images retrieved for each 
position in the retrieved image list. The mean precision 
was calculated by summing over all precision values and 
dividing by the total number of relevant items across all 
trials. Additionally, an f-score was computed using the 
2P.R/(P+R) statistic and the mean f-score computed in a 
similar manner as the mean precision. Empirical p-values 
were computed using the distribution of mean precisions 
for 10,000 trials of randomly ordered image draws versus 
image draws ordered by similarity to the regression mod-
el's predicted images. The resulting probability is inter-
preted as the empirical probability that retrieval using 
randomly permuted image draws performed at least as 
well as retrieval using regression.  
     Model 2 was evaluated to test the generality of the 
model for unseen audio data. For this model, a leave-one-
audio-out cross validation paradigm was used. Here, each 
training iteration omitted the audio / image feature pairs 
corresponding to one of the audio clips for all subjects. 
Testing consisted of predicting response image features 
for each held-out audio feature. As in Model 1, the cosine 
distance between each predicted image feature vector and 
the set of ground-truth images for the held-out audio clip 
yielded a ranked retrieval list of images that was used to 
calculate precision, recall, f-measure, and p-values, as 
discussed above. 
     By leaving one example out for testing, the models 
used 16-fold and 10-fold cross-validation respectively, a 
commonly used statistical technique for estimating the 
generalization power of a given model.  Furthermore, 10-
fold cross-validation has been shown to be one of the best 
methods to use for model selection [13]. 

5. RESULTS 

The results of both image prediction experiments are 
shown in Table 1. We performed a sensitivity analysis by 
systematically selecting subsets of features from the pre-
dictor and response variables used for the regression and 
retrieval. In Table 1, results are shown both for the full 
ensemble and the best performing subsets of audio and 
image features. For the best-performing subset of fea-
tures, 3 audio dimensions were left out and 2 image di-
mensions. The p-values for the average precision were 
p<0.0001 for Model 1 and p<0.03 for Model 2. Figures 8 
and 9 show the precision-recall curves for the two models 
for 1/10th percentile standardized recall levels. 

Model # trials avg. pre-
cision 

avg.              
f-score 

p-value 

1 (full) 160 0.498 0.311 p<0.0001 

2 (full) 18 0.299 0.248 0.867 

1 (subset) 160 0.605 0.366 p<0.0001 

2 (subset) 18 0.511 0.321 0.028 

Table 1.  Cross-validation results for regression model audio-
image feature prediction of 16 human subjects’ image response 
data to music stimuli. The subset model used four of seven audio 
features, and five of seven image features. 

Both versions of Model 1 perform significantly better 
than chance, with the per-subject-validation yielding a 
significance score of p<0.0001 (p=0 for 10,000 trials). 
However, only the feature subset version of Model 2 
performed significantly above chance with p<0.03. The 
difference in performance between the two experiments is 
not wholly surprising. In the first experiment, the 
predictor/response data for a single subject is left out, but 
there are still 15 complete sets of audio-image data on 
which to train the regression model. Figure 8 illustrates 
the degree to which individual subjects’ data influences 
the overall result. The spread of the mean precision across 
individual runs is limited. Hence, we conclude that no one 
subject is contributing significantly more to the result than 
any other.  

Figure 9 illustrates that the spread of results for the 
held-out audio-image data, across all subjects, varies 
significantly. This indicates unequal contributions to the 
model from different audio predictors and their 
corresponding cross- subject image responses. 

6. CONCLUSIONS 

The results of this study show that it is possible to predict 
the relationship between artistic examples from both the 
audio and visual domains using feature extraction. Our 
perceptions of art are complex and multidimensional, 
even within a single domain, so multiple features from 
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each domain are likely contributing to the similarities 
perceived across domains. This makes the investigation of 
cross-modal congruencies within feature spaces particu-
larly challenging. 

 

Figure 8. Retrieval performance for Model 1 showing the mean 
precision of individual runs (dashed lines) and the mean 
precision taken over all runs (solid line). 

 

Figure 9.  Retrieval performance for Model 2 showing the mean 
precision of individual runs (dashed lines) and the mean 
precision taken over all runs (solid line). Here, the model is 
trained on all subjects’ most similar audio-image feature pairs 
for left-in audio.  
     Further research can investigate the correlations be-
tween multiple features of audio and images. The choice 
of features in this study was somewhat arbitrary, but 
seemed like an intuitive place to start.  The techniques 
used here demonstrated the use of low-level features. 
However, the complexity of the problem suggests that 
many more features are contributing to the relationship 
between domains. 
     A primary limitation of the results of this study is a 
possible lack of generalizability due to the small size of 
the data set.  The data set was kept small out of considera-
tion for the behavioral experiment design.  The subjects 
had to give similarity ratings for all possible combinations 
of visual and auditory art, which amounted to 100 trials 
total.  With this amount of stimuli, the behavioral test 
took 30-40 minutes.  Adding more stimuli would cause 

the behavioral test to increase in length exponentially.  
Considering the attention span of subjects is important in 
this regard, because an experiment that was much longer 
could have compromised the integrity of the responses. 
     Research in the area of cross-modal congruencies pro-
vides a step towards understanding the perceptual pro-
cesses related to cross-modal binding. Our minds our con-
stantly receiving input streams from various senses and 
must use them to create the continuous and whole experi-
ence of consciousness. Identifying how modality- specific 
features relate and integrate across domains is a funda-
mental part of the discovery of our constant reality, e plu-
ribus unum. 
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