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ABSTRACT

An unsupervised approach for automatic music structure anal-
ysis is proposed resorting to the following assumption: If
the feature vectors extracted from a specific music segment
are drawn from a single subspace, then the sequence of fea-
ture vectors extracted from a music recording will lie in a
union of as many subspaces as the music segments in this
recording are. It is well known that each feature vector stem-
ming from a union of independent linear subspaces admits
a sparse representation with respect to a dictionary formed
by all other feature vectors with nonzero coefficients associ-
ated only to feature vectors that stem from its own subspace.
Such sparse representation reveals the relationships among
the feature vectors and it is used to construct a similarity
graph, the so-called ℓ1-graph. Accordingly, the segmenta-
tion of audio features is obtained by applying spectral clus-
tering to the ℓ1-graph. The performance of the just described
approach is assessed by conducting experiments on the Pop-
Music and the UPF Beatles benchmark datasets. Promising
results are reported.

1. INTRODUCTION

A music signal carries a highly structured information at
several levels. At the lowest level, a structure is defined
by the individual notes, their timbral characteristics, as well
as their pitch and time intervals. At an intermediate level,
the notes build relatively longer structures, such as melodic
phrases, chords, and chord progressions. At the highest
level, the structural description of an entire music recording
(i.e., its musical form) emerges at the time scale of music
sections, such as intro, verse, chorus, bridge, and outro [16,
17].
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The musical form of a recording is a high-level informa-
tion that can be exploited in several music information re-
trieval (MIR) tasks, including music thumbnailing and sum-
marization [3], chord transcription [12], music semantics
learning and music annotation [1], song segment retrieval
[1], and remixing [9]. Consequently, the interest in the au-
tomatic music form extraction or structure analysis has in-
creased as is manifested by the considerably amount of re-
search that has been done so far [1,9,10,16,19]. For a com-
prehensive review the interested reader is referred to [6, 17]
(and the references therein). The majority of methods tested
for automatic music structure analysis applies a signal pro-
cessing stage followed by a representation stage. In the first
stage, low-level feature sequences are extracted from the au-
dio signal in order to model its timbral, melodic, and rhyth-
mic content [17]. This is consistent with the findings of
Bruderer et al., who state that the perception of structural
boundaries in popular music is mainly influenced by the
combination of changes in timbre, tonality, and rhythm over
the music piece [2]. At the representation stage, a recur-
rence plot or a similarity matrix is analyzed in order to iden-
tify repetitive patterns in the feature sequences by employ-
ing hidden Markov models, clustering methods, etc. [6, 17].

In this paper, an unsupervised approach for automatic
music structure analysis is proposed. To begin with, each
audio recording is represented by a sequence of audio fea-
tures capturing the variations between the different music
segments. Since the music structure is strongly determined
by repetition, a similarity matrix should be constructed, that
will be analyzed next. Here, the similarity matrix is built
by adopting an one-to-all sparse reconstruction rather than
one-to-one (i.e., pairwise) comparisons. To this end, the
ℓ1-graph [5] is constructed in order to capture relationships
among the feature vectors. The segmentation of audio fea-
tures is obtained by applying spectral clustering to the ℓ1-
graph. Apart from the conventional mel-frequency cepstral
coefficients and chroma features, frequently employed in mu-
sic structure analysis, the auditory temporal modulations
are also tested here. The performance of the proposed ap-
proach is assessed by conducting experiments on two man-
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ually annotated benchmark datasets, namely the PopMu-
sic [10] and the UPF Beatles. The experimental results val-
idate the effectiveness of the proposed approach in music
structure analysis reaching the performance of the state-of-
the-art music structure analysis methods.

The remainder of the paper is as follows. In Section 2,
the audio features employed are briefly described. The ℓ1-
graph based music structural analysis framework is detailed
in Section 3. Datasets, evaluation metrics, and experimental
results are presented in Section 4. Conclusions are drawn
and future research directions are indicated in Section 5.

2. AUDIO FEATURE REPRESENTATION

Each 22.050-Hz sampled monaural waveform is parameter-
ized by employing three audio features in order to capture
the variations between different music segments. The fea-
ture set includes the auditory temporal modulations (ATMs),
the mel-frequency cepstral coefficients (MFCCs), and the
chroma features.

1) Auditory temporal modulations: ATMs are obtained
by modeling the path of human auditory processing. They
carry important time-varying information of the music sig-
nal [15]. First, by modeling the early auditory system, the
acoustic signal is converted into a time-frequency distribu-
tion along a logarithmic frequency axis, the so-called au-
ditory spectrogram. In this paper, the early auditory sys-
tem is modeled by employing the Lyons’ passive ear model
[11]. The derived auditory spectrogram consists of 96 fre-
quency channels ranging from 62 Hz to 11 kHz. The audi-
tory spectrogram is then downsampled along the time axis
by a factor of 150 ms, which allows to focus on a more
meaningful time-scale for music structural analysis. The
underlying temporal modulations of the music signal are de-
rived by applying a wavelet filter along each temporal row
of the auditory spectrogram for a set of 8 discrete rates r
∈ {2, 4, 8, 16, 32, 64, 128, 256} Hz ranging from slow to
fast temporal rates [15]. Consequently, the entire auditory
spectrogram is modeled by a three-dimensional representa-
tion of frequency, rate, and time, which is then unfolded
along the time-mode in order to obtain a sequence of two-
dimensional ATM features.

2) Mel-frequency cepstral coefficients: MFCCs param-
eterize the rough shape of spectral envelope [13] and thus
encode the timbral properties of the music signal, which
are closely related to the perception of music structure [2].
Following [16], the MFCCs calculation employs frames of
duration 92.9 ms with a hope size of 46.45 ms, and a 42-
band filter bank. The correlation between frequency bands
is reduced by applying the discrete cosine transform along
the log-energies of the bands. The lowest coefficient (i.e.,
zero-th order) is discarded and the subsequent 12 coeffi-
cients form the feature vector that undergoes a zero-mean

normalization.
3) Chroma: Chroma features are adept in characteriz-

ing the harmonic content of the music signal by projecting
the entire spectrum onto 12 bins representing the 12 distinct
semitones (or chroma) of a musical octave [13]. They are
calculated using 92.9 ms frames with a hope size of 23.22
ms as follows. First, the salience for different fundamental
frequencies in the range 80− 640 Hz is calculated. The lin-
ear frequency scale is transformed into a musical one by se-
lecting the maximum salience value in each frequency range
corresponding to one semitone. Finally, the octave equiva-
lence classes are summed over the whole pitch range to yield
a 12-dimensional chroma vector.

All the aforementioned features are averaged over the
beat (i.e., the basic unit of time in music) frames by em-
ploying the beat tracking algorithm described in [8]. Thus a
sequence of beat-synchronous feature vectors is obtained.

3. MUSIC STRUCTURE SEGMENTATION BASED
ON THE ℓ1-GRAPH

Since repetition governs the music structure, a common strat-
egy employed is to compare each feature vector of the music
recording with all other vectors in order to detect similari-
ties. Let a given audio recording be represented by a feature
sequence of N beat frames, i.e., {x1,x2, . . . ,xN}. The
similarity between the feature vectors is frequently mea-
sured by constructing the self-similarity matrix (SDM) D ∈
RN×N with elements dij = d(xi,xj), i, j ∈ {i, 2, . . . , N},
where d(·, ·) is a suitable distance metric [9, 16, 17]. Com-
mon distance metrics are the Euclidean, dE(xi,xj) = ∥xi−
xj∥2 and the cosine distance, dC(xi,xj) = 0.5(1− xT

i xj

∥xi∥2∥xj∥2
,

where ∥.∥2 denotes the ℓ2 vector norm. However, the afore-
mentioned approach suffers from two drawbacks: 1) It is
very sensitive to noise, since the employed distance metrics
are not robust to noise. 2) The resulting SDM is dense and
thus it cannot provide the locality information (i.e., to re-
veal the relationships among neighbor feature vectors that
belong to the same segment class), which is valuable in the
problem under study.

In order to alleviate the aforementioned drawbacks, we
propose to measure the similarities between the feature vec-
tors in an one-to-all sparse reconstruction manner rather
than to employ the conventional one-to-one distance appro-
ach by exploiting recent findings in sparse subspace cluster-
ing [7].

Formally, let a given audio recording of K music seg-
ments be represented by a sequence of N audio feature vec-
tors of size M , i.e., X = [x1|x2| . . . |xN ] ∈ RM×N . By
assuming that the feature vectors belonging to the same mu-
sic segment lie into the same subspace, the columns of X
are drawn from a union of K independent linear subspaces
of unknown dimensions. It has been proved that if a feature
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vector stems from a union of independent linear subspaces,
it admits a sparse representation with respect to a dictio-
nary formed by all other feature vectors with the nonzero
coefficients associated to vectors drawn from its own sub-
space [7]. Therefore, by seeking the sparsest linear combi-
nation, the relationship with the other vectors lying in the
same subspace is revealed automatically. A similarity graph
built from this sparse representation, the so-called ℓ1-graph
[5] is used then in order to segment the columns of X into
K clusters by applying spectral clustering.

Let Xi = [x1|x2| . . . |xi−1|xi+1| . . . |xN ] ∈ RM×(N−1).
The sparsest solution of xi = Xic can be found by solving
the optimization problem:

argmin
c

∥c∥0 subject to xi = Xic, (1)

where ∥.∥0 is the ℓ0 quasi-norm returning the number of the
non-zero entries of a vector. Finding the solution to the opti-
mization problem (1) is NP-hard due to the nature of the un-
derlying combinational optimization. An approximate solu-
tion to the problem (1) can be obtained by replacing the ℓ0
norm with the ℓ1 norm as follows:

argmin
c

∥c∥1 subject to xi = Xic, (2)

where ∥.∥1 denotes the ℓ1 norm of a vector. It is well known
that if the solution is sparse enough and M << (N −
1), then the solution of (1) is equivalent to the solution of
(2). The optimization problem (2) can be solved in poly-
nomial time by standard linear programming methods [4].
The well-posedness of (2) relies on the condition M <<
(N − 1), i.e., the sample size must be much larger than the
feature dimension. If the ATMs are used to represent au-
dio, the sample size (i.e., the number of beats) is not much
larger than the feature vector dimension and thus the just-
mentioned condition is violated, because M = 768 and
N ≈ 500 on average in the experiments conducted. Ac-
cordingly, c is no longer sparse. To alleviate this problem,
it has been proposed to augment Xi by an M ×M identity
matrix and to solve:

argmin
c

∥c∥1 subject to xi = Bc, (3)

instead of (2), where B = [Xi | I] ∈ RM×((N−1)+M) [20].
Since the sparse coefficient vector c reveals the relation-

ships among xi and the feature vectors in Xi, the overall
sparse representation of the whole feature sequence X can
be summarized by constructing the weight matrix W using
Algorithm 1. W can be used to define the so-called ℓ1-graph
[5]. The ℓ1-graph is a directed graph G = (V,E), where
the vertices of graph V are the N audio feature vectors and
an edge (ui, uj) ∈ E exists, whenever xj participates in
the sparse representation of xi. Accordingly, the adjacency

Algorithm 1 ℓ1-Graph Construction [5].
Input: Audio feature sequence X ∈ RM×N .
Output: Weight matrix W ∈ RN×N .

1: for i = 1 → N do
2: B = [Xi | I].
3: argminc ∥c∥1 subject to xi = Bc.
4: for j = 1 → N do
5: if j < i then
6: wij = cj .
7: else
8: wij = cj−1.
9: end if

10: end for
11: end for

matrix of G is W. Unlike the conventional SDM, the adja-
cency matrix W is robust to noise. The ℓ1-graph G is an un-
balanced digraph. A balanced graph Ĝ can be built with ad-
jacency matrix Ŵ with elements ŵij = 0.5 (|wij |+ |wji|),
where |.| denotes the absolute value. Ŵ is still a valid rep-
resentation of the similarity between the features vectors,
since if xi can be expressed as a compact linear combina-
tion of some feature vectors including xj (all from the same
subspace or music segment here), then xj can also be ex-
pressed as a compact linear combination of feature vectors
in the same subspace including xi [7]. In Figure 1, the Ŵ is
depicted for the three features tested. It can be seen that Ŵ
has a block structure for the ATMs, while it is unstructured
and more dense for the MFCCs and the Chroma features.
This observation validates that the main assumptions made
in the paper hold here for the ATMs, but not for the MFCCs
and the Chroma features.

The segmentation of the audio feature vectors can be ob-
tained by spectral clustering algorithms, such as the normal-
ized cuts [18] as illustrated in Algorithm 2.

Algorithm 2 Music Segmentation via ℓ1-Graph.
Inputs: Audio feature sequence X ∈ RM×N and number
of segments K.
Output: Audio feature sequence segmentation.

1: Obtain the adjacency matrix W of ℓ1-graph by
Algorithm 1.

2: Build the symmetric adjacency matrix of the ℓ1-graph
Ĝ: Ŵ = 0.5 · (|W|+ |WT |).

3: Employ normalized cuts [18] to segment the vertices of
Ĝ into K clusters.
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Figure 1. The adjacency matrix Ŵ of the ℓ1-graph for the song “I saw her standing there” by The Beatles for (a) the ATMs,
(b) the MFCCs, and (c) the Chroma features.

4. EXPERIMENTAL EVALUATION

The performance of the proposed music structure analysis
approach is assessed by conducting experiments on two man-
ually annotated datasets of Western popular music pieces.
Several evaluation metrics are employed to assess system
performance from different points of view.

4.1 Datasets

PopMusic dataset [10]: The dataset consists of 60 music
recordings of rock, pop, hip-hop, and jazz. Half of the
recordings originate from a variety of well-known artists
appeared the past 40 years, including Britney Spears, Em-
inem, Madonna, Nirvana, etc. This subset is abbreviated as
Recent hereafter. The remaining 30 music recordings are by
The Beatles. The ground-truth segmentation of each song
contains between 2 and 15 different segments classes. The
number of classes is 6, while each recording is found to con-
tain 11 segments on average [1,10]. The subset contains the
Beatles recordings is referred ta as Beatles.

UPF Beatles dataset: 1 The dataset consists of 174
songs by The Beatles that are annotated by the musicolo-
gist Alan W. Pollack. Segmentation time stamps were in-
serted at Universitat Pompeu Fabra (UPF) as well. Each
music recording contains on average 10 segments from 5
unique classes [19]. Since all the recordings are from the
same band, there is less variation in the music style and the
timbral characteristics than the other datasets.

4.2 Evaluation Metrics

Following [1,9, 10,16,19], the segment labels are evaluated
by employing the pairwise F -measure, which is one of the
standard metrics of clustering quality. It compares pairs of

1 http://www.dtic.upf.edu/ perfe/annotations/sections/license.html

beats, which are assigned to the same cluster by music struc-
ture analysis against the reference segmentation. Let FA be
the set of similarly labeled pairs of beats in a recording ac-
cording to the music structure analysis algorithm and FH be
the set of similarly labeled pairs in the human reference seg-
mentation. The pairwise precision, Ppairwise, the pairwise
recall, Rpairwise, and the pairwise F -measure, Fpairwise,
are defined as follows: Ppairwise = |FA∩FH |

|FA| , Rpairwise =
|FA∩FH |
|FH | , and Fpairwise = 2 · Ppairwise·Rpairwise

Ppairwise+Rpairwise
, where |.|

denotes the set cardinality. The average number of segments
per song in each dataset is reported as well.

The segment boundary detection is evaluated separately
by employing the standard precision, recall, and F -measure.
Following [1, 10, 16], a boundary detected by the proposed
approach is considered correct, if it falls within some fixed
small distance δ away from the reference boundary. Each
reference boundary can be retrieved by at most one out-
put boundary. Let BA and BH denote the sets of segment
boundaries according to the music structure analysis algo-
rithm and the human reference, respectively. Then, P =
|BA∩BH |
|BA| , R = |BA∩BH |

|BH | , and F = 2 · P ·R
P+R . The parameter δ

is set to 3 s in our experiments as was also done in [1,10,16].

4.3 Experimental Results

The structural segmentation is obtained by applying the pro-
posed approach to various feature sequences. Following the
experimental setup employed in [1,9,10,16,19], the number
of clusters K was set to 6 for the PopMusic dataset, while
K = 4 for the UPF Beatles dataset. For comparison pur-
poses, experiments are conducted by applying the normal-
ized cuts [18] apart from the ℓ1-graph and the SDM with the
Euclidean distance computed for the three audio features.
The segment-type labeling performance for the PopMusic
and the UPF Beatles datasets is summarized in Table 1 and
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Table 2, respectively.

Method/Reference Dataset Fpairwise Av. Number of Segments
Beatles 0.6140 8.8333

ATM + ℓ1-graph Recent 0.5885 12.6087
based segmentation PopMusic 0.5912 11.8679

Beatles 0.4029 199.3667
MFCCs + ℓ1-graph Recent 0.3884 248.2826
based segmentation PopMusic 0.3966 239.6316

Beatles 0.4191 153.7667
Chroma + ℓ1-graph Recent 0.3520 260.3043
based segmentation PopMusic 0.3900 200

Beatles 0.4243 145.7000
ATM + SDM Recent 0.3975 141.3913
based segmentation PopMusic 0.4027 125.5283

Beatles 0.3664 226.3667
MFCCs + SMD Recent 0.3663 305.9130
based segmentation PopMusic 0.3664 260.8868

Beatles 0.3499 220.4333
Chroma + SDM Recent 0.3312 276.1739
based segmentation PopMusic 0.3418 244.6226
MFCCs unconstrained [1] PopMusic 0.577 17.9
MFCCs constrained [1] PopMusic 0.620 10.7
Chroma constrained [1] PopMusic 0.51 12

Beatles 0.425 N/A
K-means Recent 0.457 N/A
clustering [10] PopMusic 0.441 N/A

Beatles 0.538 N/A
Mean-field Recent 0.560 N/A
clustering [10] PopMusic 0.549 N/A

Beatles 0.604 N/A
Constrained Recent 0.605 N/A
clustering [10] PopMusic 0.603 N/A

Table 1. Segment-type labeling performance on the Pop-
Music dataset.

By inspecting Tables 1 and 2, it is clear that the ℓ1-graph
based segmentation outperforms the SDM based segmenta-
tion in terms of pairwise F -measure for all the audio fea-
tures employed in both datasets. Moreover, the ATMs offer
a parsimonious representation for the task of music struc-
ture analysis, especially when employed in the construction
of the ℓ1-graph.

The best results reported for segment-type labeling on
the PopMusic dataset are obtained here, when the ATMs are
employed for audio representation and the segmentation is
performed on the ℓ1-graph defined by them. These results
are comparable to the best reported results by Levy and San-
dler [10], while inferior to those reported by Barrington et
al. [1]. It is worth noting that the clustering is performed
without any constraints in the proposed approach, which is
not the case for the best results reported in [1, 10]. In an
unconstrained clustering setting, the proposed system out-

Method/Reference Fpairwise Av. Number of Segments
ATM + ℓ1-graph based segmentation 0.5938 8.5215
MFCCs + ℓ1-graph based segmentation 0.4664 181.9950
Chroma + ℓ1-graph based segmentation 0.4563 116.2989
ATM + SDM based segmentation 0.4711 81.0376
MFCCs + SDM based segmentation 0.3985 190.5489
Chroma + SDM based segmentation 0.4066 167.9239
Method in [10] as evaluated in [16] 0.584 N/A
[16] 0.599 N/A
[19] 0.600 N/A
[9] 0.621 N/A

Table 2. Segment-type labeling performance on the UPF
Beatles dataset.

Method/Reference Dataset F P R

ATM + ℓ1-graph based segmentation PopMusic 0.5227 0.4737 0.6274
MFCCs constrained [1] PopMusic 0.610 0.620 0.650
Chroma constrained [1] PopMusic 0.420 0.410 0.460
EchoNest reported in [1] PopMusic 0.450 0.410 0.560
K-means clustering [10] PopMuic 0.437 0.809 0.311
Mean-field clustering [10] PopMusic 0.448 0.366 0.665
Constrained clustering [10] PopMusic 0.590 0.648 0.567
ATM + ℓ1-graph based segmentation UPF Beatles 0.5304 0.5338 0.5670
Method in [10] as evaluated in [16] UPF Beatles 0.612 0.600 0.646
[16] UPF Beatles 0.55 0.521 0.612
Timbre [9] UPF Beatles 0.586 0.581 0.619
Chroma [9] UPF Beatles 0.500 0.465 0.522
Timbre & Chroma [9] UPF Beatles 0.536 0.49 0.55

Table 3. Boundary detection performance on the PopMusic
and the UPF Beatles dataset.

performs the systems discussed in [1, 10].
In the UPF Beatles dataset, the best results for segment-

type labeling are obtained again when the ATMs are em-
ployed for audio representation and the segmentation is per-
form on the ℓ1-graph constructed using Ŵ. The reported
results are comparable to those obtained by the state-of-the-
art music structure analysis on this dataset [16, 19]. The
proposed approach is not directly comparable to that in [9]
due to the use of slightly different reference segmentations.

The average number of segments detected by our ap-
proach is 11.86 and 8.52, when according to the ground-
truth the actual average number of segments is 11 and 10
for the PopMusic and the UPF Beatles dataset, respectively.
This result is worth noting since no constraints have been
enforced during clustering.

The performance of the proposed approach deteriorates
when either the MFCCs or the chroma features are employed
for music representation. The low pairwise F -measure and
the over-segmentation can be be attributed to the fact that
the underlying assumptions set in Section 3 do not hold for
such representations.

Since the performance of our approach is clearly inferior
when MFCCs or chroma features are used for music rep-
resentation, only the ATMs are employed in the segment-
boundary detection task. The boundary detection results are
summarized in Table 3 for both the PopMusic and the UPF
Beatles datasets. EchoNest refers to the commercial online
music boundary detection service provided by The Echon-
est and evaluated in [1]. By inspecting Table 3 the pro-
posed approach is clearly inferior to the system proposed
by Levy and Sandler [10] for music boundary detection on
both datasets. The success of the latter approach can be at-
tributed to the constraints imposed during clustering. Con-
sequently, the results obtained by the proposed approach in
music boundary detection could be considered as accept-
able, since the performance of our system is rated above
that reported for many other state-of-the-art systems with or
without constraints (e.g., the EchoNest online service). It
is worth mentioning that neither of the methods appearing
in Table 3 reaches the accuracy of the specialized bound-
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ary detection methods (e.g., that in [14]) which achieves a
boundary F -measure of 0.75 on a test set similar to the Bea-
tles subset of the PopMusic dataset. However, such bound-
ary detection methods, do not model the music structure
and provide no characterization of the segments between the
boundaries as the proposed approach as well as the methods
in [1, 9, 10, 16, 19] do.

5. CONCLUSIONS

A novel unsupervised music structure analysis approach has
been proposed. This framework resorts to ATMs for mu-
sic representation, while the segmentation is performed by
applying spectral clustering on the ℓ1-graph. The perfor-
mance of the proposed approach is assessed by conducting
experiments on two benchmark datasets. The experimental
results on music structure analysis are comparable to those
reported by other state-of-the-art music structure analysis
systems. Moreover, promising results on music boundary
detection are reported. It is believed that by imposing con-
straints during clustering in the proposed approach both the
music structure analysis and the music boundary detection
will be considerably improved. This point will be investi-
gated in the future. Another future research direction is to
automatically detect the number of music segments.

Acknowledgements

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Heraclitus II. Invest-
ing in Knowledge Society through the European Social Fund.

6. REFERENCES

[1] L. Barrington, A. Chan, and G. Lanckriet. Modeling music as
a dynamic texture. IEEE Trans. Audio, Speech, and Language
Processing, 18(3):602–612, 2010.

[2] M. Bruderer, M. McKinney, and A. Kohlrausch. Structural
boundary perception in popular music. In Proc. 7th Int. Sym-
posium Music Information Retrieval, pages 198–201, Victoria,
Canada, 2006.

[3] W. Chai and B. Vercoe. Structural analysis of musical signals
for indexing and thumbnailing. In Proc. ACM/IEEE Joint Conf.
Digital Libraries, pages 27–34, 2003.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decom-
position by basis pursuit. SIAM J. Sci. Comput., 20(1):33–61,
1998.

[5] B. Cheng, J. Yang, S. Yan, Y. Fu, and T. Huang. Learning with
l1-graph for image analysis. IEEE Trans. Image Processing,
19(4):858–866, 2010.

[6] R. B. Dannenberg and M. Goto. Music structure analysis
from acoustic signals. In D. Havelock, S. Kuwano, and
M. Vorländer, editors, Handbook of Signal Processing in
Acoustics, pages 305–331. Springer, New York, N.Y., USA,
2008.

[7] E. Elhamifar and R. Vidal. Sparse subspace clustering. In IEEE
Int. Conf. Computer Vision and Pattern Recognition, pages
2790–2797, Miami, FL, USA, 2009.

[8] D. Ellis. Beat tracking by dynamic programming. J. New Music
Research, 36(1):51–60, 2007.

[9] F. Kaiser and T. Sikora. Music structure discovery in popular
music using non-negative matrix factorization. In Proc. 11th
Int. Symposium Music Information Retrieval, pages 429–434,
Utrecht, Netherlands, 2010.

[10] M. Levy and M. Sandler. Structural segmentation of musical
audio by constrained clustering. IEEE Trans. Audio, Speech,
and Language Processing, 16(2):318–326, 2008.

[11] R. Lyon. A computational model of filtering, detection, and
compression in the cochlea. In IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, pages 1282–1285, Paris,
France, 1982.

[12] M. Mauch, K. Noland, and S. Dixon. Using musical struc-
ture to enhance automatic chord transcription. In Proc. 10th
Int. Symposium Music Information Retrieval, pages 231–236,
Kobe, Japan, 2009.

[13] M. Müller, D. Ellis, A. Klapuri, and G. Richard. Signal pro-
cessing for music analysis. IEEE J. Sel. Topics in Signal Pro-
cessing (accepted for publication), 2011.

[14] B. Ong and P. Herrera. Semantic segmentation of music audio
contents. In Proc. Int. Computer Music Conference, Barcelona,
Spain, 2005.

[15] Y. Panagakis, C. Kotropoulos, and G. R. Arce. Non-negative
multilinear principal component analysis of auditory temporal
modulations for music genre classification. IEEE Trans. Audio,
Speech, and Language Technology, 18(3):576–588, 2010.

[16] J. Paulus and A. Klapuri. Music structure analysis using a prob-
abilistic fitness measure and a greedy search algorithm. IEEE
Trans. Audio, Speech, and Language Processing, 17(6):1159–
1170, 2009.

[17] J. Paulus, M. Müller, and A. Klapuri. Audio-based music struc-
ture analysis. In Proc. 11th Int. Symposium Music Information
Retrieval, pages 625–636, Utrecht, Netherlands, 2010.

[18] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Trans. Pattern Analysis and Machine Intelligence,
22(8):888–905, 2000.

[19] R. Weiss and J. Bello. Identifying repeated patterns in music
using sparse convolutive non-negative matrix factorization. In
Proc. 11th Int. Symposium Music Information Retrieval, pages
123–128, Utrecht, Netherlands, 2010.

[20] J. Wright and Y. Ma. Dense error correction via l1-
minimization. IEEE Trans. Information Theory, 56(7):3540–
3560, 2010.

500


