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ABSTRACT

This paper investigates techniques for predicting sequences
of continuous-valued feature vectors extracted from musi-
cal audio. In particular, we consider prediction of beat-
synchronous Mel-frequency cepstral coefficients and chroma
features in a causal setting, where features are predicted as
they unfold in time. The methods studied comprise autore-
gressive models, N-gram models incorporating a smoothing
scheme, and a novel technique based on repetition detec-
tion using a self-distance matrix. Furthermore, we propose
a method for combining predictors, which relies on a run-
ning estimate of the error variance of the predictors to in-
form a linear weighting of the predictor outputs. Results in-
dicate that incorporating information on long-term structure
improves the prediction performance for continuous-valued,
sequential musical data. For the Beatles data set, combining
the proposed self-distance based predictor with both N-gram
and autoregressive methods results in an average of 13% im-
provement compared to a linear predictive baseline.

1. INTRODUCTION

Our goal is to devise methods for predicting music in a
causal setting. Given a stream of observed music feature
vectors extracted from an audio signal, we seek to predict
future values of feature vectors. Furthermore, we seek to
incorporate domain knowledge about the underlying music
signal into the prediction process: Across musical genres,
music exhibits hierarchical temporal structure, arising cen-
trally from the identity relations between structural elements
[11]. In Western music, elementary events are typically
rhythmic, melodic or harmonic and give rise to long-term
structure characteristic of a piece’s musical form, through
application of variation and repetition. Conversely, identify-
ing parallelism in music — the occurrence of variation and
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repetition — is agreed to bear great importance in music-
theoretical analysis [2].

This view may be considered to encompass cognitive pro-
cesses involved in music listening. Here, music consists of
a stream of events unfolding in time and experienced by a
listener [9]. The listening process is associated with predic-
tions of future events, which depend on the listener’s evolv-
ing internal model of musical structure generated by previ-
ously observed events in the stream of music. This work
is based on this causal prediction setting, where at a given
point in time only events in the past inform predictions.

Accurate prediction of spectro-temporal features, such
as Mel-frequency cepstral coefficients (MFCCs), chroma or
rhythmograms [15], is motivated by a number of applica-
tions. Firstly, audio visualisation tasks might benefit from
prediction, since live performance environments typically
constrain the permissible amount of latency introduced in
the audio processing chain [6]. Similarly, it is of interest to
investigate robust real-time audio streaming applications for
live music performance [10]. In the latter case, employing
prediction techniques might allow the effect of network la-
tency to be offset. Further applications of audio based pre-
diction are automated musical accompaniment [8, 20] and
audio feature models for automated music transcription.

In addition, prediction accuracy can be related to the as-
sumed model of the underlying distribution of observations.
In terms of inductive inference [19], accurate prediction re-
lates to effective data compression of observations. This re-
lationship might be exploited in online music content analy-
sis applications. Existing work has examined the problem of
offline music content analysis, where compressibility is used
to evaluate structural similarity between pieces of music [1].
A related application is information-dynamic modelling of
musical audio [4].

In this work, we evaluate several prediction methods, in-
cluding autoregressive models, N-gram models, and a novel
technique based on utilising the long-term structure of mu-
sic signals. In addition, we propose a method for combining
predictors by estimating predictors’ error variance. We con-
sider chroma and MFCC features, which describe harmonic
and timbral information in musical audio signals [15]. Re-
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sults indicate that combining the self-distance approach with
autoregressive or N-gram models substantially improves the
accuracy of predicting continuous-valued music features.

1.1 Causal music feature prediction

Suppose we have a sequence of vectors vy, ..., vy, corre-
sponding to 7" feature observations made at times 71, . . . , 7.
Each vector occupies k-dimensional feature space, v € R*,
according to an unknown probability distribution. Causal
prediction involves approximating the unknown conditional
probability distribution p(v; | v1,...,v;_1). The predicted
feature at time T is then obtained by computing the expecta-
tion E[v|vy, ..., vy_1]. The prediction task is causal, since
observations vy, ..., v;_1 inform predictions v;. Succes-
sive predictions are formed by increasing ¢, so that the ob-
servation history accumulates over time.

Causal predictive models have been applied to music in
symbolic formats [16]. In the audio domain, the concern of
our presented work, [8] proposes an approach for prediction
driven musical expectation modelling. In [3] prediction is
examined in the context of planning, as a means of creating
anticipatory music systems. In [20] a method is proposed
for automatic harmonic accompaniment based on repetition
detection.

2. PREDICTION TECHNIQUES

We investigate prediction techniques for beat-synchronous
chroma and MFCC features, as described in the following.

2.1 Autoregressive models

In a multivariate autoregressive (MAR) model [12], pre-
dicted feature vectors v; are computed as linear combina-
tions of N preceding feature vectors’ components. Correla-
tion between separate components is taken into account, so
that

ey

where matrices A,, incorporate information on correlations
between between components of v;_,, and v;. Vector ry
is an independent and identically distributed Gaussian noise
term.

Let us use v;, to denote the uth component of vector
v;. A special case of the MAR model arises when indepen-
dence between feature components is assumed. In that case,
matrices A, are diagonal, so that

N
u = § Gn,uVt—n,u + Tt,u

n=1

(@)

with 1 < u < k. Coefficients 7, , are described by k uni-
variate Gaussian noise processes with finite mean and vari-
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ance. The model in Equation 2 is equivalent to a component-
wise linear predictive coding (LPC) model, with each LPC
model defined by index u.

2.2 N-gram prediction

N-gram models have been used to model symbolic music
[16]. In this model, observations are quantised. Let e; de-
note a quantised observation symbol. Symbols are members
of a specified alphabet .A. For convenience, we use e._ !
to denote the sequence of symbols e;_,, €;—py1,.--,€6—1.
The conditional probability of predicted event e;, given the
history of observations is assumed to obey the Markov prop-
erty. That is, p(es|el™") = p(es|el=L), where n is the or-
der of the Markov model. An estimator for this conditional
probability is

(et‘et n)

Yecaclele; =)

where c(e;|e!”]) denotes the number of times symbol e,
has been observed following context e!~1 computed over
the entire observation sequence el ~1. To estimate the prob-
ability of unobserved events, we incorporate a smoothing

approach [14], so that recursively,

3

pledlei=y) =

for c(es|el=1) >0
otherwise.

(€f|€t n)
etle =
PAki=) = et plelet L)
“
In Equation 4, «(:|-) is defined as follows. It is used as
long as the sequence e!_,, has previously been observed at
least once. Alternatively, the conditional probability is re-
cursively evaluated using a function (-) and a lower order
estimation p(e;|ef” ), ;).
As employed in [8], «(+|-) and ~y(-) are defined as

d(ei—)
Yecaclele;=y) +d(e; =)

=1y _ (et‘et n)
(etler—p) ZeGA 0(6‘6 )+d(et n)

where d(e!~1) denotes the number of distinct symbols ob-
served as continuations of context ¢/~ . Intuitively, as d(-)
increases, more emphasis is placed on shorter contexts when
estimating unobserved symbol probabilities.

Since the N-gram model is based on an alphabet of dis-
crete symbols, we quantise our continuous-valued feature
vectors prior to learning this model. This is achieved using
online k-means clustering, described in Section 3.2.

v(ei~y) = Q)

Q)

2.3 Repetition detection

We propose the use of a repetition detection algorithm to in-
form predictions in conjunction with autoregressive and N-
gram approaches. To incorporate information on long-term
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structure as described in Section 1, the similarity between
feature vector sequences is computed during the prediction
process. As incorporated in [20], the approach uses a self-
distance matrix (SDM). Given observations vi,...,V;_1,
the SDM D is defined as [D]; ; = d(v;,v;), with1 < 4,5 <
t. As proposed in [7], for the distance function d(-, -) we use
the cosine distance,

_ ViV )
villllvill /-

Assume a predefined sequence comparison length L. We
use the SDM to consider all alignments between past se-
quences Vg_g,, ..., Vs_1 and the most recently observed fea-
ture vectors vy_r,...,Vvi—1, with L, < s < t. Comparing
vector-wise with the most recently observed feature vectors,
the past sequence with minimal average distance is selected
as the conjectured repeated sequence. This sequence is used
for prediction, assuming that v, vs. With L <t < T,
the tth prediction w; is obtained using index p of past vector
vp, with

d(vi,v;) = 0.5 (1 ™

~
~

p = argmin {d,(s,t)}, )

L<s<t
where d,,(s,t) denotes the average distance between two
subsequences of length L,

1 L
du(s.t) = 7 > [Dle-tir- Q)

(=1

Computing the entire sequence of predictions has poly-
nomial time complexity against the total sequence length 7',
since each prediction at step ¢ requires O(T’) operations. We
observe that using beat-synchronous features results in an
average sequence length of approximately 650, for the data
set of popular music chosen for evaluation. Therefore scal-
ability is not thought to restrict the algorithm’s utility, for
music signals with similar duration to those in the data set.
Furthermore, it is possible to deal with longer music sig-
nals by imposing a maximum size on the SDM, discarding
observations which fall outside a specified history limit.

2.4 Combining multiple predictors

To combine the predictions generated by the SDM and N-
gram approaches, we propose a linear weighting scheme
based on estimated variance of error ! . For a set of M pre-
dictors, define the tth prediction by each predictor v{, with
1 <¢ < M. Define the true value of the ¢th vector to be v;.
We assume an observation model where predictions v are
the sum of observations v; and an error term €.,

7 ok 7
Utu - vt,u + et,u

(10)

where indices u denote vector components, with 1 < u < k.
We assume components €; ,, to be normally distributed, with

I The method is similar in spirit to aggregation methods reviewed in
[21].
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variance o2 . Using H predictions as samples, the variance
of the error o7, can be estimated as

1 L )
G = -1 ;12::1 (0 hw — Vi) (11)

Because the error is assumed to be normal, we have p(v , [v} ) =

N(vf,,07,). Using Bayes’ theorem, we have
. L PV} ulvr ) P(V )

, = ’ . ’ 12

p(vt,u|vt,u) p(v]au) ( )

If we assume the ratio of p(vf,) and p(vf,,) is non-
informative, we then have p(v; v} ,) = p(v},|vi,). We
further assume independence between predictors and denote
Biw = 1/02,, for notational convenience. Then, the distri-
bution of vz‘u can be expressed as

M 1
1 M I I A
p(U;‘,u|vt,u7 e 7Ut,u) = N (U;u; vlzf,u’ >
i—1 57?,u

L Bi 1
—N<v:;u; i e )
Zj:l Biu 2i=1 Biu
13)

Given all predictions, the expected value of v}, E[v} ] is
then the weighted sum

M ;
- Zi:l ﬂi,u U;u
M :
Z j=1 Bju
Equation 14 describes the weighting scheme used to com-
bine multiple predictions. Note that values /3; ,, describe the

precision of prediction method i, estimated over prediction
history of length H.

(14)

3. METHOD

The data set used for evaluation consists of 180 mono audio
tracks of songs by The Beatles, with each track sampled at
44.1kHz [13].

3.1 Feature extraction

We extract beat-synchronous chroma features using the ap-
proach and implementation described in [5]. These chroma
features are based on the mapping of FFT bins to twelve
pitch class components, using phase derivatives to reduce
the influence of non-tonal components present in the spec-
trum. Chroma frames are based on an FFT window size
of 2048 with 75% overlap. This approach compensates for
mistuning by computing the optimal alignment between fre-
quency peaks and chroma bins over the entire signal.
Furthermore, we extract beat-synchronous MFCCs, us-
ing the approach and implementation described in [18]. The
MEFCCs are based on an FFT window size of 512 with 50%
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overlap. The filter bank consists of 13 linearly spaced fil-
ters and 27 log spaced filters. We extract the 12 first cepstal
coefficients, omitting the d.c. coefficient. Beat-synchronous
MFCCs are then obtained by computing mean feature val-
ues within each beat onset interval, applying the same onset
intervals used for chroma feature extraction.

The beat onset times are estimated using the code and
approach described in [5]. In terms of the causal predic-
tion problem which this work addresses, we note that the

method’s application of dynamic programming is non-causal.

In this work, we treat the beat tracking routines as an oracle
for obtaining beat onset times.

3.2 Online clustering

To obtain discrete symbols for the N-gram predictor, we
quantise observed feature vectors using online k-means clus-
tering. As described in [8], an initial codebook of K cen-
troids p1, . . ., px 1s constructed according to the first () ob-
served symbols. Thereafter, upon observing feature vy, the
closest centroid

as)

pe = argmin {[|vi — ux* }
1<k<K
is updated according to

pe = g+ (Vi — ). (16)

In our evaluation, we set Q = K. A hold-out set of 60 ran-
dom songs is formed. A learning factor of n = 0.4 is deter-
mined, based on MFCC and chroma prediction performance
and using the described data set with a fixed codebook size
of K = 64. For fixed n = 0.1, alternative strategies for
codebook construction were evaluated, involving initialisa-
tion to held out data. However, these revealed no compelling
improvement over the aforementioned method, in terms of
N-gram prediction performance.

For the N-gram predictor, prediction proceeds causally,
so that after the ¢th prediction, N-gram probabilities are up-
dated to include the actually observed symbol e} and its con-
text eij}l. The N-gram predictor is learned using only ob-
servations from the target song. Given the average length of
650 symbols per song, we estimate the required codebook
size to be in the order of v/650 ~ 25 symbols. Consider-
ing that the N-gram model incorporates a smoothing scheme
(cf. Equation 4), we set the Markov order to constant n = 5,
observing similar prediction performance for n = 2. Using
the held-out data set of 60 songs, we set respective SDM
prediction lengths L = 22, L. = 36, which maximise pre-
diction performance for chroma and MFCCs.

3.3 Performance statistics

The statistics used for evaluation are the sum of squares er-
ror (SSE), the Jensen-Shannon divergence (JSD) and the
absolute deviation (AD). The SSE for the tth prediction is
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computed as
SSE(v¢, vi) = ||ve — vi | a7
The JSD is a symmetrised version of the Kullback-Leibler
divergence. It is computed as
1 1
JSD(thV;‘):§KL(vt,F)+§KL(V;‘7F) (18)

where K L(-||-) denotes the Kullback-Leibler divergence and

F' is defined as
1

F:§(Vt+vz)- (19)
Finally, the absolute deviation is computed as
AD(vy,vi) = ||lve — Vil (20)
where || - ||; denotes the £*-norm.

We compute the statistics for all predictions and average
over predictions in the entire data set. For example, the av-
erage sum of squares error SSE,is computed as

SSE,,

2y

T

= % > SSE(ve, ).

t=1
Average prediction results therefore describe vector-wise pre-
diction error and do not account for variability in song du-
ration. We compute 99% confidence intervals on average
performance data. Relative to LPC prediction performance,
confidence intervals do not exceed 3.4%, 1.8%, 0.2%, in
terms of average SSE, JSD and AD, respectively.

4. RESULTS

We evaluate autoregressive, N-gram and SDM predictors.
Designating the LPC predictor as a baseline, Figurel illus-
trates prediction performance relative to the LPC baseline,
in terms of average SSE, JSD, AD. Performance values are
expressed as the quotient S/ B, where S is the average pre-
diction error of the sample and B is the average prediction
error of the LPC baseline.

4.1 Single predictor performance

We first consider the accuracy of individual predictors, with
no method of combining them applied. On the left hand
side of Figure 1 (a), (b), we include results for four predic-
tion techniques. Based on the assumption of local station-
arity, the predictor termed ‘Copy’ estimates the ¢th predic-
tion as vy v;_;. The predictor termed ‘LPC’ applies
the linear predictor described in Equation 2. The predic-
tor termed ‘MAR’ performs multivariate autoregression ac-
cording to Equation 1. The predictor termed ‘SDM’ corre-
sponds to repetition detection using a self-distance matrix,
as described in Section 2.3. For both LPC and MAR pre-
dictors, all observations v7,...,v;_; are incorporated into
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a least-squares regression [12]. Results are reported for sec-
ond order LPC models (chroma), third order LPC models
(MFCC) and first order MAR models (chroma and MFCC),
with orders selected to maximise held-out data performance.

Considering chroma feature prediction in Figure 1 (a),

we observe that Copy prediction is significantly outperformed

by all remaining predictors, for all evaluated statistics. Ob-
serving that the MAR model is outperformed by LPC based
prediction, it appears that for the given sequence lengths and
the chosen features, it is preferable to assume independence
between feature components.

For the considered codebook sizes, the N-gram model is
almost consistently outperformed by the LPC predictor. To
reduce the error that is due to quantisation alone, we weight
predicted feature vectors using the linear combination (1 —
v)v™ + v v€, where v" is the discrete N-gram prediction.
Parameter v is varied within the unit interval, in steps of
0.1. Based on 10 x 2 cross-validation on the remaining 120
songs, results are reported for v = 0.4, which maximises
SSE performance for both chroma and MFCC features. In
Figure 1, this predictor is termed ‘Weighted’.

Considering MFCC feature prediction in Figure 1 (b),
we observe that SDM prediction offers less advantage over
Copy prediction, compared to chroma prediction.

Turning to the effect of increasing codebook size, we
observe that SSE performance improves for chroma pre-
dictions. Surprisingly, for MFCC prediction increasing the
codebook size adversely affects SSE performance. In both
cases, JSD and AD performance degrades when increasing
codebook size.

4.2 Combined predictor performance

Results for combinations of predictors are shown on the
right hand side of Figure 1 (a), (b). To restrict the param-
eter space, the evaluation is based on the aforementioned
baseline results. Thus, the linear chroma weighting factor is
set to v = 0.4. Based on Equation 14, a running estimate of
precision values 3; is formed using min{ H, t—1} preceding
predictions.

Results for chroma and MFCC feature prediction reveal
that combining SDM with weighted N-gram approaches re-
sults in substantial improvement over single predictor per-
formance. The result is largely consistent across the evalu-
ated SSE, JSD and AD statistics. We observe a similar re-
sult when combining LPC and SDM predictors. Compared
to the latter result, combining LPC, SDM and weighted N-
gram predictors further improves performance.

For comparison, a linear and constant weighting scheme
was evaluated. As reported in Figure 1 (‘constant’), no im-
provement over history based weighting is obtained using
this approach.
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(a) Chroma feature prediction
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Figure 1. Performance results for chroma and MFCC fea-
ture prediction. Parameter K denotes codebook size. Pa-
rameter H denotes amount of prediction history used to in-
form predictor combination. See main text for a descrip-
tion of predictor labels. Absolute chroma performance val-
ues for the LPC baseline are 0.0568 (SSE) 0.0882 (JSD)
0.453 (AD). Absolute MFCC performance values for the
LPC baseline are 0.893 (SSE) 0.406 (JSD) 2.282 (AD).
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Weighted+LPC+SDM, H

—

Weighted+LPC+SDM, H
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Approach Chroma MFCC  Average
N-gram (weighted) 5% 5% 5%
LPC + SDM 14% 6% 10%
N-gram (weighted) + SDM 15% ™% 11%
N-gram (weighted) + SDM + LPC 16% 10% 13%

Table 1. Summary of average chroma and MFCC prediction
performance. Scores are gains relative to the LPC baseline.

4.3 Summary of results

Table 1 summarises the obtained results. For each statistic,
we describe performance gains relative to the LPC baseline,
averaged across SSE, JSD and AD statistics.

We observe that using the weighted N-gram approach
yields minor improvement over the baseline LPC method.
This result is consistent for both chroma and MFCC predic-
tion tasks. A further result concerns the inclusion of the
SDM approach: In combination with either weighted N-
gram or LPC approaches, we observe average performance
gains in excess of 6%. Average chroma prediction perfor-
mance improves by at least 14%. Furthermore, combin-
ing N-gram and SDM predictors yields minor improvement
over the analogous LPC and SDM combination.

5. CONCLUSIONS AND FURTHER WORK

In this work, we have considered the problem of causal mu-
sic prediction using MFCC and chroma features. We have
comparatively evaluated the performance of predictors for
series of continuous-valued and quantised feature vectors.
We have considered how musical parallelism might be har-
nessed for causal prediction of spectro-temporal features.
The prediction approach proposed in this work is based on
repetition detection using a self-distance matrix.

For the evaluated statistics, combining the SDM predic-
tor with LPC or N-gram approaches allows substantial im-
provements in prediction accuracy to be made, compared
to the baseline. This suggests that incorporating informa-
tion on long-term musical structure might have utility for
the causal prediction of spectro-temporal features.

Considering the obtained results, we plan investigations
to determine the effectiveness of online quantisation, the
prerequisite for applying discrete-event models such as the
N-gram model used in this work. Furthermore, we aim
to perform an evaluation of hierarchical language models
based on the N-gram model used in this work. Finally, we
aim to consider music prediction from a perceptual perspec-
tive, to identify correlates between perceived musical simi-
larity and prediction accuracy.
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