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ABSTRACT

Existing audio-score alignment methods assume that the au-
dio performance is faithful to a fully-notated MIDI score.
For semi-improvised music (e.g. jazz), this assumption is
strongly violated. In this paper, we address the problem
of aligning semi-improvised music audio with a lead sheet.
Our approach does not require prior training on performances
of the lead sheet to be aligned. We start by analyzing the
problem and propose to represent the lead sheet as a MIDI
file together with a structural information file. Then we
propose a dynamic-programming-based system to align the
chromagram representations of the audio performance and
the MIDI score. Techniques are proposed to address the
chromagram scaling, key transposition and structural change
(e.g. a performer unexpectedly repeats a section) problems.
We test our system on 3 jazz lead sheets. For each sheet
we align a set of solo piano performances and a set of full-
band commercial recordings with different instrumentation
and styles. Results show that our system achieves promising
results on some highly improvised music.

1. INTRODUCTION

In this work we investigate the problem of aligning an audio
recording of semi-improvised music to a lead sheet. This
problem belongs to a more general research problem called
score alignment, i.e. finding the time mapping between a
musical performance and its score. The fulfillment of this
task would be very useful for a number of applications like
synchronizing multiple sources (video, audio, score, etc.) of
music in a digital library and automatically accompanying a
musical performance.

In the last two decades, many methods have been pro-
posed for score alignment in different problem settings: MIDI
to MIDI, audio to MIDI, monophonic or polyphonic audio
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performances, online or offline, etc. [4]. However, most
methods assume faithful performances to a fully-notated score,
with at most a tempo change and key transposition.

We call modern jazz semi-improvised, because many sig-
nificant elements of the music are improvised but deeper-
level structural aspects remain relatively fixed. The score for
semi-improvised music is called a lead sheet. A lead sheet
specifies only essential elements like a basic melody, har-
mony, lyric and a basic musical form. A performer typically
improvises all the notes in a solo, changes in tempo, ac-
companiment figuration and even some structural elements
of a piece (e.g. repeating a chorus). The nature of semi-
improvised music makes the alignment to a lead sheet very
challenging. Even for an educated musician it is sometimes
difficult to align an improvisation to the lead sheet when the
improvisation has high degree of freedom.

For aligning such performances, a few methods have been
proposed. Dannenberg and Mont-Reynaud [5] aligned a
jazz solo performance with the chord progression on the
score. Pardo and Birmingham [10] aligned a polyphonic
semi-improvised MIDI performance with its lead sheet. They
also proposed a method [11] to follow a performance with
possible structural variations, i.e., deviating from the ex-
pected path written on the score by skipping or repeating
a section. The above-mentioned methods have loosened the
faithful performance assumption, however, they are either
limited to deal with MIDI performances [10,11], or can only
follow a solo performance under a 12-bars blues form [5].
Arzt and Widmer [1] also proposed an alignment system
to handle structural variations, but only for non-improvised
(classical) music. To our knowledge, there is no existing
methods that align a semi-improvised (polyphonic) audio
performance under an arbitrary form with its lead sheet.

This problem is in some ways similar to Cover Song
Identification (CSI), i.e. identifying different performances
(usually by different artists) of the same song [7]. How-
ever, variations of these performances are generally much
less than those in what we called semi-improvised music
such as modern jazz. In addition, the alignment methods
used in CSI only serve as an intermediate step for similarity
calculation, and no precise time mappings are required.

In this paper, we attempt to address the semi-improvised
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music audio-score alignment problem, without prior train-
ing on example performances of the lead sheet to be aligned.
We first analyze the problem’s unique properties in Section
2, then propose an alignment system regarding these prop-
erties in Section 3. In Section 4 we describe experiments to
test the system on real performances of solo piano and jazz
combo. Section 5 concludes this paper.

2. PROBLEM ANALYSIS

2.1 Basic Properties

The problem considered in this paper is aligning an audio
recording of a semi-improvised music performance to its
lead sheet. A lead sheet usually only specifies a basic melody,
harmony, lyric and a basic musical form (structure). Take
Figure 1(a) as an example. The melody is indicated by note
heads. Harmony is indicated by chord symbols above the
staff. Lyrics are indicated as text below the staff. The text
“A” with a square indicates the start of Section A, and the
repeat sign besides it suggests that this section is often re-
peated in a performance. We can translate this lead sheet
into a MIDI file by setting a tempo (e.g. 120BPM), render-
ing harmony as block chords with root notes in the C2-C3
octave and discarding the lyric and music structure informa-
tion. The piano-roll representation of this MIDI is shown in
Figure 1(b). We mark measures with vertical dash lines.

(a) Lead sheet
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(b) Lead sheet converted to MIDI
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(c) First improvised performance

0 1.828 3.627 5.479 7.376
C2

C3

C4

C5

Time (seconds)

P
itc

h

(d) Second improvised performance

Figure 1. Four measures of the lead sheet for Dindi by An-
tionio Carlos Jobim, and its two semi-improvised piano per-
formances.

In semi-improvised performances, the performer views
the lead sheet as a reference and continuously creates new
musical elements that are not on the score. Figures 1(c) and
1(d) show the piano-rolls of two semi-improvised piano per-
formances by two different pianists of the lead sheet, with
measure times marked by vertical dash lines. We can see
that the two performances have different tempi from the lead
sheet. Also, harmony is rendered in free rhythmic patterns.
We also notice that the melody contour of the lead sheet re-
mains in the first performance, while is significantly altered
in the second performance.

2.2 Representing Harmonic Content

Harmonic content is the most similar feature that an semi-
improvised performance and its lead sheet shares. We need
to find a representation of harmonic content, robust to vari-
ations among different performances, on which to do the
alignment. The chromagram is a good representation which
has been used in many audio-score alignment methods [4].
In these methods, chroma features are usually calculated for
every short time frame (e.g. 46 ms), so that the alignment
can be precise at the millisecond level. However, this choice
is not suitable in our problem, as we can see in Figure 1 that
performed notes can be significantly different from the notes
written on the lead sheet at any one 46 ms frame. In fact,
chord labels on the lead sheet are more like sets of high-
likelihood notes to be played over given time periods (e.g.
two beats of D minor 7), and aggregating performed notes
across larger time spans (e.g. two beats) makes for a clearer
correspondence to the score. Therefore we choose to calcu-
late chroma features in this scale.

2.3 Utilizing Structural Information

Structural information on the lead sheet is also important
for an alignment system. Performers often modify the ba-
sic musical form, but not arbitrarily. For example, the basic
form of Dindi is “Intro-[A-A-B-C]”, where the bracket rep-
resents a repeat sign. Performers may skip the Intro section
at the beginning but play it at the end. They may change the
repeat bracket by including the Intro section or excluding
the A sections. Basically, they view musical sections as toy
bricks, selecting and shuffling them during a performance.
However, it is not common to make other structural changes
such as making a jump at the middle of a section.

However, structural information on the lead sheet is not
encoded in the MIDI representation shown in Figure 1(b).
Therefore, we encode it in an additional file, as shown in
Table 1. Basically, this file stores two kinds of information:
1) musical section definitions and boundaries; 2) possible
jumps that an semi-improvised performance might make.
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Sections from to Jumps from to
Intro 1 16 48 1
A 17 24 48 17
A 25 32 48 33
B 33 40
C (A) 41 48

Table 1. Structural information extracted from the lead
sheet for Dindi. Section C is very similar to Section A.

3. PROPOSED SYSTEM

Based on the above analysis, we design our system as shown
in Figure 2. We represent both the audio and MIDI with a
chromagram where chroma vectors are extracted at the 2-
beats scale, then use a modified string alignment algorithm
that can handle structural changes to align the chromagrams.

Figure 2. Overview of the proposed system.

3.1 Audio Beat Tracking

In order to extract chroma features from audio at the 2-beat
scale, we need audio beat times of the performance. We
use the original implementation of the beat tracking algo-
rithm proposed by Ellis [6]. While this is a high-quality beat
tracker, the estimated tempo often has halfing/doubling er-
rors, as described in [6]. In addition, when the performance

has an unstable tempo, the algorithm may find extra beats or
miss some beats.

3.2 Audio Chroma Feature Extraction

We first chop the audio signal into 46 ms long time frames
with a 23 ms hop size and calculate a chroma vector for
each frame. The frame-level chroma vector is 12-d, and is
calculated by “folding” the local maxima of the hamming-
windowed Short Time Fourier Transform (STFT) spectrum
to the 12-pitch classes. This tends to suppress the non-
harmonic part of the spectrum.

As discussed in Section 2.2, the ideal analysis unit is not
the 46 ms frame, but something on the order of 2 musi-
cal beats. We therefore average the chroma vectors of the
frames into segments of length l and a hop size h, where
these values are measured in beats. The resulting chroma-
gram is a sequence of the segment-level chroma vectors. In
our experiments, we set l and h to 2 beats and 1

4 beats, re-
spectively. A segment size of two beats worked well for the
harmonic rhythm of the music analyzed, with the shortest
duration chords typically being 2 beats. For the hop size h,
theoretically a smaller h leads to a more precise alignment.
However, the computational complexity increases quickly
as h shrinks (O(1/h2)). We investigate the influence of dif-
ferent parameters on the alignment result in Section 4.

3.3 MIDI Chroma Feature Extraction

As with the audio chromagram, we segment the MIDI repre-
sentation of the lead sheet into segments of length l and hop
size h, and calculate a chroma vector for each segment. We
simply sum up the lengths of notes in each segment to their
corresponding pitch-class bins. We generate 12 transposed
MIDI chromagrams to cope with the possible key transposi-
tion of the audio performance.

3.4 Chromagram Scaling Problem

In Section 3.1, we note that the estimated tempo of the au-
dio might be half or twice the true tempo. Therefore the au-
dio and MIDI chromagrams might be on temporal different
scales, which will strongly influence the alignment result.

To address this problem, we also segment the MIDI file
and calculate the chromagram in three ways, with segment
length and hop size of (l, h), (2l, 2h) and ( 1

2 l, 1
2h), respec-

tively. Therefore, for each audio-MIDI pair, we have 1 audio
chromagram and 36 MIDI chromagrams, corresponding to
3 scales and 12 key transpositions. It is noted that the idea
of time scaling and key transposition has been used in other
music information retrieval systems such as [3].

3.5 Aligning Chromagrams

Let A = (a1,a2, · · · ,am) be the audio chromagram, S =
(s1, s2, · · · , sn) be the score chromagram, where ai is the
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chroma vector of the i-th audio segment and sj is the chroma
vector of the j-th score segment. We describe a dynamic-
programming algorithm to align them. Unlike standard string
alignment algorithms, this algorithm utilizes structural in-
formation provided by the lead sheet (as shown in Table 1)
to handle possible structural changes in the semi-improvised
performance. To do so, we define a parent-index set P(j)
for each score segment index j. Each element k of P(j) is a
score segment index, from which a semi-improvised perfor-
mance might transition to j. This transition can be a smooth
progression i.e. k = j − 1, or a forward/backward jump. In
the latter case, the pair (k, j) is a possible jump listed in the
structural information file as Table 1.

Now we recursively define a (m + 1) × (n + 1) align-
ment cost matrix C, where the value C(i, j) is the lowest
cost of the alignment between the initial sub-chromagrams
(a1, · · · ,ai) and (s1, · · · , sj). For all i = 1, · · · ,m and
j = 1, · · · , n, C(i, j) are calculated as follows:

C(0, 0) = 0,C(i, 0) = i · c1,C(0, j) = 0 (1)

C(i, j) = min


C(i, j − 1) + c1

C(i− 1, j) + c2

mink∈P(j) C(i− 1, k) + d(ai, sj)
(2)

where c1 and c2 are constants specifying the costs of skip-
ping one segment of audio and score in the alignment, re-
spectively. d(ai, sj) specifies the cost of mismatching the
i-th audio segment with the j-th score segment.

Note that Eq. (1) is not symmetric, i.e. C(i, 0) is set to
i · c1, but C(0, j) is set to 0 instead of j · c2. This means
that we penalize skipping audio segments at the beginning
but do not penalize skipping score segments, i.e. we as-
sume that the performance can start anywhere but must be
on the lead sheet. Although sometimes performers play sev-
eral measures that are unrelated to the lead sheet at the be-
ginning, this is short compared to the whole performance
and we ignore this case. In addition, the third line in Eq.(2)
is calculated from C(i − 1, k) for all possible parents k of
the j-th score segment, while in an standard string alignment
algorithm it is only calculated from C(i−1, j−1). This al-
lows the performance to play to the j-th score segment in all
possible ways, either progress smoothly from the previous
segment j − 1 or jumping from other segments.

The mismatch cost function d(ai, sj) is defined as:

d(ai, sj) = arccos

(
aT

i sj

∥ai∥∥sj∥

)
(3)

We use cosine angle distance instead of Euclidean distance
to make it loudness insensitive. This is because the loudness
of the audio may vary from the loudness calculated from the
score differently in different performances. Since angle dis-
tance between an arbitrary audio-score chroma vector pair is
around 1, we set c1 = c2 = 1 to match the three penalties.

While calculating C, we fill another m × n matrix P,
where P(i, j) stores the index pair (i′, j′) from which C(i, j)
is calculated in Eq. (2). When the calculation of C is fin-
ished, the final alignment cost is calculated as minj C(m, j).
Let j1 = arg minj C(m, j). We than trace back from the in-
dex pair (m, j1) through P to some index pair (1, j2). The
sequence of index pairs (1, j2), · · · , (m, j1) give the align-
ment between A and B. Note that the last pair is (m, j1)
instead of (m,n). This allows the audio performance to end
at any position of the score.

If we view each score segment as a state, each audio seg-
ment as an observation, then the proposed algorithm is es-
sentially equivalent to the forward-backward algorithm for a
Hidden Markov Model (HMM) [12]. The transition matrix
T has a positive value t1 on the diagonal, corresponding to
the penalty of skipping an audio segment c1. It also has a
positive value t2 on the superdiagonal (elements (j − 1, j))
and elements (k, j) for all k ∈ P(j), corresponding to the
penalty of skipping a score segment c2 by smooth progres-
sions and jumps, respectively. If c1 = c2, then t1 = t2. We
also notice that this algorithm is equivalent to the one pro-
posed by Fremerey et al. [8], which also handles jumps and
repeats in synchronizing a score with a performance.

Finally, for each audio-MIDI pair, we do the alignment
36 times corresponding to the 36 MIDI chromagrams. The
alignment that achieves the lowest final alignment cost is
selected as the output of the system.

4. EXPERIMENT

4.1 Dataset

Our dataset consists of 36 semi-improvised performances of
3 jazz lead sheets: Dindi by Antonio Carlos Jobim, Nicas’s
Dream by Horace Silver and Without A Song by Vincent
Youmans, selected from commonly used jazz fake books.
For each song, the performances consist of two subsets. The
first subset contains MIDI recordings performed by profes-
sional Chicago jazz pianists obtained from [9]. In [9], four
pianists each gave three different performances scaled to
three subjective levels of difficulty, ranging from a perfor-
mance closely adhering to the given lead sheet to a more
“free” interpretation. After recording, these pianists also
annotated their own performances with beat, measure and
structural branch point information, encoded as MIDI data.
We include the two less difficult levels into our dataset (de-
noted as easy and medium), totalling 8 jazz piano perfor-
mances for each song. We render these MIDI performances
into audio recordings with the Logic Audio software using
Grand Piano sound samples. We use the pianists’ annota-
tions to generate the ground-truth audio-score alignment.

The second subset contains 4 commercially released record-
ings for each lead sheet. Table 2 shows basic information for
them. To generate the ground-truth audio-score alignment,
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two musicians listened to these recordings, marked beat and
measure time points and identified the score position (score
measure number) of each measure of the audio. Audio mea-
sures that are unrelated to the lead sheet (e.g. an improvised
cadenza) were labeled score measure number 0.

ID Performer(s) Instruments

D
in

di

1 Astrud Gilberto female, violin, guitar
2 Charlie Byrd guitar, saxophone
3 Ohta San guitar
4 Sadao Watanabe string, saxophone

N
ic

a’
s.

.. 1 Art Farmer trumpet, trombone, brass
2 Benjamin Koppel Quintet saxophone, piano, conga
3 Cal Tjader vibraphone, piano
4 The Hot Club violin, guitar

W
ith

ou
t..

. 1 Diane Schuur female, piano, bass
2 Joe Henderson saxophone, brass, piano
3 Oscar Peterson piano, brass
4 Sonny Rollins saxophone, brass, guitar

Table 2. Improvised performances played by jazz bands.

For each improvised performance, we use two experi-
mental settings. In the first setting, we align the whole per-
formance with the lead sheet. This is to observe our sys-
tem’s behavior on a larger time scale (usually several min-
utes). In the second setting, we randomly select 10 excerpts
of the performance and align them with the lead sheet. The
length of each excerpt ranges from 16 measures to 48 mea-
sure. This is to observe our system’s behavior on a smaller
scale (usually 30 seconds to 2 minutes) and would be repre-
sentative of the task of selecting a portion of audio in a mu-
sic player and asking to be shown the corresponding place
on the lead sheet. The second setting is in general more
challenging, as there is less context information.

4.2 Evaluation Measures

A commonly used measure for audio-score alignment is Align
Rate (AR) as proposed in [2]. It is defined as the percent-
age of correctly aligned notes in the score, where “correct”
means that the note onset is aligned to an audio time which
deviates less than a short time (e.g. 250 ms) from the ground-
truth audio time. In our problem, however, there is no bijec-
tive correspondence between score notes and audio notes,
hence it is very hard to define the ground-truth audio time
for each score note and AR is not suitable.

We formulate our problem as a classification problem,
by assigning to each audio frame a score measure number.
Given this, we simply use Accuracy as our measure. It is
calculated as the proportion of audio frames which are cor-
rectly assigned score measure numbers as the ground-truth.
We exclude those audio frames where the performance is
unrelated to the score. This measure ranges from 0 to 1.

4.3 Results

Figure 3 shows overall results of aligning whole performances.
Among the 36 performances, 11 have accuracies higher than
75%, 13 between 50% and 75%, while 6 lower than 10%.
Their average is 54.8%. It is noted that a random guess
alignment would get an accuracy as the reciprocal of the
number of measures on the lead sheet, about 2%.

D N W D N W D N W
0

0.2

0.4

0.6

0.8

1

Easy piano    Medium piano   Jazz combo

A
cc

ur
ac

y
Figure 3. Alignment accuracies of all the 36 whole perfor-
mances. ’D’, ’N’ and ’W’ represents the lead sheet names
Dindi, Nica’s Dream and Without A Song, respectively.

We show three examples with different alignment accu-
racies in Figure 4. In the upper panel, the system’s output
alignment matches with the ground-truth perfectly except
in two parts (51-58 seconds, 193 seconds - end). In both
parts the performance is unrelated to the lead sheet. It is
noted that the accuracy measures always underestimate the
performance of the system, because the audio beat bound-
aries estimated by the beat tracking module are not perfectly
aligned with the ground-truth beat boundaries, hence the as-
signed score measure numbers of the audio frames that are
close to these boundaries are often off for ±1 measures.

In the middle panel, the performance sometimes repeats
from the Intro section and sometimes from Section A. Our
system handles this uncertain structural change well. How-
ever, it incorrectly identifies the two B sections around 150
seconds (also the two B sections around 250 seconds) as
only one B section with about half the tempo. Interestingly,
it comes back to the right position after this error. In addi-
tion, after incorrectly identifying Section A (175-192 sec-
onds) as C and B, the system identifies another A section
(192-210 seconds) as Section C. Since Section A and C are
almost the same on the lead sheet, this error is reasonable.
Excluding this error causes accuracy to increase to 65.8%.

In the bottom panel, our system fails totally. Audio frames
are constantly skipped after about 16 seconds. This exam-
ple played by Diane Schuur, however, is very difficult. First,
there are four parts (0-12, 91-97, 162-165 seconds and 179
seconds - end) that the performance is unrelated to the lead
sheet. Second, the performance plays at half the tempo
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in Section C (142-162 seconds). Third, the performance
switches to a new key at 165 seconds till the end. The au-
dio, MIDI and alignment results of these and other examples
can be accessed at http://www.cs.northwestern.
edu/˜zdu459/ismir2011/examples.

Intro

A

A

B

C(A) Acc: 87.9%
Dindi
Medium piano

0 50 100 150 200
1

17

25

33

41

48

Intro

A

B

C(A)
Acc: 57.4%
Nica’s Dream
Easy piano)

0 50 100 150 200 250
2

10

27

37

52

A

B(A)

C

D(A)
Acc:2.6%
Without A Song
Jazz combo

0 50 100 150
1

18

34
42

57

Figure 4. Three alignment examples. The horizontal axis
is audio time in seconds. The left vertical axis shows sec-
tion names of the lead sheet. The right vertical axis and the
horizontal dash lines show the boundaries of the sections in
measure numbers. Red solid lines show the system’s align-
ments. Blue dash lines show the ground-truth alignments.

Figure 5 shows the average alignment accuracies over all
360 performance excerpts with different chroma length l and
hop size h settings. Our choice of l = 2, h = 1/4 achieves
an accuracy of 49.3%, which is one of the highest among
all the parameter settings. This is in accordance to the anal-
ysis in Section 2.2. This result shows that with much less
contextual information, our system still works well on some
highly improvised audio excerpts.

5. CONCLUSION

In this paper, we attempted to align semi-improvised mu-
sic audio with its lead sheet. We proposed a simple sys-
tem to align chromagram representations of audio and score
based on a modified string alignment algorithm, which uti-
lizes structural information of the lead sheet. Experiments

1/8 1/4 1/2 1 2 4
0.2

0.3

0.4

0.5

0.6

Chroma length/hop size (Beat)

A
cc

ur
ac

y

 

 

length varies
hop size varies

Figure 5. Average accuracies over all 360 excerpt perfor-
mances, versus chroma length (fix hop size = 1/4) or hop
size (fix chroma length = 2).

on 36 audio performances and their 360 excerpts of 3 lead
sheets showed promising results. This work is supported by
NSF grant IIS-0643752.
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