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ABSTRACT

Music information retrieval, especially the audio-to-score
alignment problem, often involves a matching problem be-
tween the audio and symbolic representations. We must
cope with uncertainty in the audio signal generated from the
score in a symbolic representation such as the variation in
the timbre or temporal fluctuations. Existing audio-to-score
alignment methods are sometimes vulnerable to the uncer-
tainty in which multiple notes are simultaneously played
with a variety of timbres because these methods rely on
static observation models. For example, a chroma vector
or a fixed harmonic structure template is used under the as-
sumption that musical notes in a chord are all in the same
volume and timbre. This paper presents a particle filter-
based audio-to-score alignment method with a flexible ob-
servation model based on latent harmonic allocation. Our
method adapts to the harmonic structure for the audio-to-
score matching based on the observation of the audio signal
through Bayesian inference. Experimental results with 20
polyphonic songs reveal that our method is effective when
more number of instruments are involved in the ensemble.

1. INTRODUCTION
Music information retrieval tasks require a robust inference
under the uncertainty in musical audio signals. For example,
a polyphonic or multi-instrument aspect encumbers the fun-
damental frequency estimation [10, 15] or instrument iden-
tification [9]. Overcoming the uncertainty in musical audio
signals is a key factor in the machine comprehension of mu-
sical information. The audio-to-score alignment technology
shares this uncertainty problem in that an audio signal per-
formed by human musicians has a wide range of varieties
given a symbolic score due to the musicians’ expressive-
ness. For example, the type of instruments and the temporal
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Audio:
1. various harmonic structures
2. unknown mixture ratio

Mismatch!

Score:
1. fixed harmonic structures
2. equal mixture ratio

Figure 1. The issue: uncertainty in the audio and fixed har-
monic templates from the score

or pitch fluctuations affect the resulting audio signals.
Incremental audio-to-score alignment, also known as score

following, methods are essential to automatic accompani-
ment systems [5], intelligent score viewers [2], and robot
musicians [13] because the alignment synchronizes these
systems with human performances. We need a probabilis-
tic framework for the audio-to-score alignment problem in
order to cope with the uncertainty in the audio signal gener-
ated from the score in a symbolic representation.

Existing methods tend to fail the alignment when mul-
tiple musical notes are played by multiple musical instru-
ments. That is, the audio signal contains various timbres and
the volume ratio of each musical note is unsure. Figure 1
illustrates this issue. The observed pitched audio signal in-
cludes equally-spaced peaks in frequency domain called a
harmonic structure. The observed audio is matched with
harmonic structure templates generated from the score. Mu-
sical notes written in the score is played with arbitrary musi-
cal instruments. The resulting audio harmonic structures can
vary from instrument to instrument whereas the templates of
the score have been set in advance using some heuristics or
a parameter learning [4]. In Figure 1, harmonic structures
of a guitar and a violin is shown in blue and red lines, re-
spectively. Furthermore, the mixture ratio of each note in
the audio is unknown until the observation while the ratio in
the template is fixed, typically equal.

Thus, the variety of the audio signal causes a mismatch
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between the observed harmonic structure and the fixed one
generated from the score. We need a flexible harmonic struc-
ture model to robustly match the audio and score since the
audio signal is almost unknown until we observe it.

Our idea is to employ a Bayesian harmonic structure model
called latent harmonic allocation (LHA) [15]. This model
allows us to form harmonic structure templates reflecting
the observed audio with the prior knowledge written in the
score, e.g., fundamental frequencies of musical notes.

1.1 Related work

Two important aspects reside in modeling audio-to-score
alignment: (1) a temporal model of musical notes and (2)
an observation model of the input audio signal from the
corresponding score. Although improvements are made re-
peatedly for the temporal model, misalignments are often
caused by static and fixed audio observation models. The
audio observation model used in the methods introduced in
this section uses static features such as chroma vectors or
fixed harmonic structure templates based on Gaussian mix-
ture model (GMM). These features are often heuristically
designed and therefore lose robustness against uncertain sit-
uations in which many instruments are involved and the au-
dio is polyphonic.

Most audio-to-score alignment methods employ dynamic
time warping (DTW) [2,6], hidden Markov models (HMM) [4,
12], or particle filters [7, 11, 13]. DTW or HMM-based
methods sometimes fails the alignment since the length of
musical notes is less constrained in the decoding.

The note length corresponds to the length of a state se-
quence in the HMM. Cont’s method [3] uses a hidden semi-
Markov model (HSMM) to control state lengths. The HSMM
restricts the duration of a stay at one state so that the state
length is limited. While the model refrains from delayed
state transitions, this has no restriction on fast transitions.
As a result, the HSMM tends to estimate the audio signal
faster than it is.

Some methods estimate not only the score position but
also the tempo, i.e., the speed of the music for the tempo-
ral accuracy. Raphael’s method includes the tempo of the
music as a state [14] to accurately decode the note lengths.
Otsuka et al. [13] propose a particle filter-based method for
their simultaneous estimation. While Raphael’s method ob-
serves only harmonic structures as pitch information, Ot-
suka et al.’s method observes the periodicity of the onsets to
directly estimate the tempo.

2. AUDIO OBSERVATION MODEL

This Section describes how the audio is generated in terms
of LHA. We focus on harmonic structures to associate an
audio signal with a symbolic score. The LHA model flexibly
fits the shape of harmonic structures given an audio signal
observation using variational Bayes inference.

The harmonic peaks are often modeled as a Gaussian
mixture model (GMM) by regarding each peak as a sin-
gle Gaussian [3, 13, 14]. The black lines in Figure 1 are
the GMM curves. These methods use Kullback-Leibler di-
vergence (KL-div) as a matching function between the au-
dio harmonics and the GMM template harmonics generated
from the score by regarding the harmonic structure as a prob-
ability distribution. The mean value of each Gaussian peak
is determined by a pitch specified in the score.

LHA [15] is a generative model for harmonic structures
of pitched sounds. A graphical model for LHA is depicted
in Figure 3. In the LHA model, the amplitude of audio har-
monics is regarded as a histogram over the frequency bins.

Figures 2 and 3 explain how a mixture of harmonic struc-
tures is generated. Variables in a circle are random variables
while those without a circle are parameters. Double circled
xn means an observed variable. For each segment d, Nd ,
frequencies xn are observed. The audio spectrogram is seg-
mented into d by chords, which are sets of musical notes. To
sample each xn, a LdM-dimensional multinomial latent vari-
able zn is sampled as follows. A harmonic structure GMM l
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Figure 5. Three steps in particle filtering for the audio-to-score alignment

is selected with probability πdl , where ∑Ld
l=1 πdl = 1. Among

M Gaussian peaks, m is selected to sample xn with probabil-
ity θlm, where ∑M

m=1 θlm = 1. Finally, xn is sampled from
the Gaussian distribution of which mean and precision are
mµl and Λl , respectively. The definitions of each variable in
LHA in Figure 3 are summarized below:

p(X|Z,µ,Λ) = ∏
dnlm

N (xdn|m×µl ,Λl), (1)

p(Z|π,θ) = ∏
dnlm

(πdlθlm)zdnlm , (2)

p(π) = ∏
d

Dir(πd |α0), p(θ) = ∏
l

Dir(θl |β0),and (3)

p(Λ) = ∏
l

Gam(Λl |a0,b0), (4)

where N (·), Dir(·), Gam(·) denote the density functions of
Gaussian, Dirichlet, and gamma distribution, respectively.
The latent variable zdn = [zdnlm] is LdM-dimensional with
one element being 1 and the other being 0. Variables π and
θ are conjugate priors for Z, and the precision of Gaussian
harmonicsΛ is a conjugate prior for X. Here, α0, β0, a0, and
b0 are hyperparameters for each distribution. α0 = [α0l ]

Ld
l=1

is set as α0l = 1, and β0 = [β0m]Mm=1 is set as β0m = 1 be-
cause the mixture ratio of each musical note and the height
of each harmonic are unknown. A “flat” prior knowledge
about these parameters is preferred to reflect our ignorance.
The hyperparameters of the gamma distribution are empir-
ically set as a0 = 1 and b0 = 2.4 by considering the width
of harmonics determined by the window function of a short-
time Fourier transform (STFT).

The LHA is originally designed for multi-pitch analy-
sis [15], and therefore the fundamental frequency µl is a
random variable. However, in our audio-to-score alignment
framework, µl is treated as a parameter because fundamen-
tal frequencies are given by the score as musical notes. This
is why µl is not in a circle in Figure 3.

In general, too flexible model can cause an over-fitting
problem. LHA is flexible in terms of the mixture ratio π and
harmonic heights θ. To limit the model complexity, we fix
the harmonic heights θ and only consider the mixture ratio
π as in Figure 4. We refer to the former model in Figure 3
as full LHA, and the latter in Figure 4 as mixture LHA.

3. AUDIO-TO-SCORE ALIGNMENT USING
PARTICLE FILTER

This section presents the problem setting and procedures of
our method. The problem is specified as follows:� �

Inputs: incremental audio signal and the correspond-
ing whole score
Outputs: the current score position and tempo
Assumptions: (1) The score includes musical notes
and the approximate tempos of the music. (2) Musical
notes are pairs of their pitch and length, e.g., a quar-
ter note, (3) Approximate tempos are specified as the
range of a tempo, e.g., 90–110 beats per minute (bpm).� �

No prior knowledge about musical instruments is assumed.

3.1 Method overview

Let k be the index of filtering steps and At, f be the ampli-
tude of the input audio signal in the time-frequency domain.
Here, t and f denote the time (sec) and the frequency (Hz),
respectively. Our system is implemented at a sampling rate
of 44100 (Hz), a window length of 2048 (pt), and a hop size
of 441 (pt). Āt, f denotes a quantized integer amplitude given
by Āt, f = bAt, f /∆Ac, where ∆A is the quantization factor,
and b·c is the flooring function. ∆A = 3.0 in our implemen-
tation. This value should be so small that the shape of the
spectrum is preserved after the quantization and that suffi-
cient observations are provided for the Bayesian inference
in the LHA. Let p (beat) be the score position. The score is
divided into frames whose lengths are equal to 1/12 of one
beat, namely, a quarter note1 . Musical notes are denoted by
µp = [µ1

p...µ
Lp
p ]T , where Lp is the number of notes at p, and

µ is the fundamental frequency of the note.
Figure 5 illustrates the procedures. At every ∆T (sec), the

particle filtering [1] proceeds as: (a) move particles in accor-
dance with elapsed ∆T (sec) by drawing particles from the
proposal distribution, (b) calculate the weight of each parti-
cle, (c) report the point estimation of the score position and
beat interval, and resample the particles. Each particle has

1 p is discretized at 1/12 interval in (beat).
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the following information as a hypothesis: the score posi-
tion pi

k, beat interval (sec/beat), i.e., the inverse tempo, bi
k,

and the weight wi
k as a fitness to the model.

In the kth filtering step, the particle filter estimates the
posterior distribution of the score position pk and beat in-
terval bk given the latest audio spectrogram Ak = [Aτ, f ],
where τ ∈ Tk, Tk = {t|k∆T −W < t ≤ k∆T}, and W is
the window length for the audio spectrogram. The poste-
rior distribution is approximated using many particles as in
p(sk|Ak) = ∑I

i=1 wi
kδ (si

k− sk), where I is the number of par-
ticles, and si

k = [pi
k,b

i
k] denotes the state of the ith particle.2

The weight of each particle wi
k is calculated as:

wi
k ∝

p(si
k|si

k−1)p(Ak|si
k)

q(si
k|si

k−1,Ak)
, (5)

where p(si
k|si

k−1) and p(Ak|si
k) in the numerator are the state

transition model and observation model, respectively. New
score position and beat interval values are drawn at each step
from the proposal distribution q(si

k|si
k−1,Ak).

3.2 Drawing particles from the proposal distribution
Particles are drawn from the proposal distribution in Eq. (6).
First, a new beat interval bi

k is drawn, then a new score po-
sition pi

k is drawn depending on the drawn bi
k. The proposal

is designed to draw (1) a beat interval that lies in the tempo
range provided by the score and that matches the intervals
among audio onsets and (2) a score position that matches the
increase of the audio amplitude with the score onset frame.

si
k ∼ q(b, p|si

k−1,Ak)
∝ R(b;Ak)Ψ(b; b̃)×Q(p;b,Ak,si

k−1). (6)
R(b;Ak) and Ψ(b; b̃) denote the normalized cross correla-
tion of the audio signal and the window function that limits
the range of the beat interval, respectively. Q(p;b,Ak,si

k−1)
denotes the onset matching function.Detailed equations are
explained in [13].

The onset matching function Q(p;b,Ak,si
k−1) in Eq. (6)

represents how well the audio and score are aligned in terms
of the onsets. Figure 6 explains the design. The top case in

2 δ (x) = 1 iff x = 0, otherwise δ (x) = 0.

which audio frames with a peak power is aligned with score
onsets results in the larger Q, where as the bottom case Q is
a small value since the onsets are misaligned. The detailed
mathematical expressions are presented in [13].

3.3 Weight calculation
The weight for each particle is calculated with the sampled
value si

k in Eq. (5) by using the state transition model,
p(si

k|si
k−1) = N (pi

k|p̂i
k,σ

2
p)×N (bi

k|bi
k−1,σ

2
b ), (7)

and the observation model,
p(Ak|si

k) ∝ p(Ak|pi
k)×R(bi

k;Ak). (8)
The score position transition conforms to a linear Gaussian
model with the transition p̂i

k = pi
k−1+∆T/bi

k−1 and the vari-
ance σ2

p (beat2). The beat interval transition is a random
walk model with the variance σ2

b (sec2/beat2). The variances
are empirically set as σ2

p = 0.25 and σ2
b = 0.1, respectively.

For the observation of the beat interval, the normalized
cross-correlation of the audio spectrogram, R(bi

k;Ak), is again
used in Eq. (8). The other factor p(Ak|pi

k) is the likeli-
hood corresponding to the pitch information. As explained
in Section 2, the GMM-based harmonic structures are used
to match the audio and score. First, the matching with KL-
div is presented as a baseline where all the GMM parame-
ters, the chord mixture ratio π or harmonic heights θ, and
the Gaussian width λ, are fixed. Then, we explain two types
of LHA-based audio-to-score matchings, the full LHA and
mixture LHA, where the GMM parameters are probability
variables that flexibly adapt to the observed audio harmonic
structure. Full LHA adapts all π, θ, and λ whereas mixture
LHA adapts only π and λ to the audio. Further discussion
of the difference is in Section 4.

The KL-div matching uses a normalized amplitude spec-
trogram Ák while the LHA models use the quantized spec-
trogram Āk. To match the buffered audio, the audio spectro-
gram Ak or Āk is aligned with the score shown as Figure 7.
As the time k∆T is assigned to pi

k with the beat interval bi
k,

the audio frame τ is linearly assigned to the score frame as
given by

p̃(τ) = pi
k − (k∆T − τ)/bi

k. (9)
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3.3.1 Harmonic structure observation based on KL-div
For each score frame p, the GMM template of the harmonic
structure is generated from the musical notes µp as:

Âp, f =
Lp

∑
l=1

M

∑
m=1

CharmπlθmN ( f |gµ l
p,σ2

KL)+Cfloor,(10)

where Lp is the number of notes at p and the number of har-
monic structures M is 10. The ratio of each note is equally
set as πl = 1/Lp. The height of the mth harmonic is set
as θm = 0.2m−1. The variance is set as σ2

KL = 2.4, derived
from the window function used in STFT. Cfloor is a floor-
ing constant to ensure Âp, f > 0 and avoid zero-divides in
Eq. (11). Charm = 0.95 and Cfloor is set such that the har-
monic structure template is normalized as Âp,· = 1. The
subscript · means a summation over the replaced index.

Here, the audio likelihood using KL-div is defined as

log p(Ak|si
k) = − ∑

τ∈Tk

∑
f

Áτ, f log
Áτ, f

Âp̃(τ), f
, (11)

where Áτ, f = Aτ, f /Aτ,· is the normalized amplitude. The
right-hand side of Eq. (11) is a negative KL-div between the
audio harmonic structure and the GMM harmonic template.

3.3.2 LHA-based likelihood calculation
We first explain how LHA is used as the likelihood, then
show the iterations for both full and mixture LHA infer-
ences. The quantized amplitudes Āk are regarded as a his-
togram of amplitudes over frequency bins X illustrated as
gray bars in Figure 2. The rigorous likelihood in Eq. (5) is

p(X|si
k) = ∑

Z

∫∫∫
p(X,Z,π,θ ,Λ|pi

k,µ)dπdθdΛ. (12)

Since this analytical summation over Z is intractable 3 , we
infer the latent variables Z,π,θ, and Λ by variational Bayes
(VB) method under the factorization assumption q(Z,π,θ,Λ)=
q(Z)q(π,θ,Λ). We use the variational lower bound for the
weight calculation as an approximate observation model in-
stead of Eq. (12),

log p(X|si
k)≈ L(q) = EZ,π,θ,Λ

[
log

p(X,Z,π,θ,Λ|pi
k,µ)

q(Z,π,θ ,Λ)

]
, (13)

where EZ,π,θ,Λ[·] denotes an expectation over q(Z,π,θ,Λ).
For the inference of LHA, the audio is segmented by the
chord in the score as shown in Figure 8. This segmentation
d is made on the basis of the alignment by Eq. (9).

The variational lower bound in Eq. (13) is maximized
with the following variational posteriors:

q(Z) = ∏
dnlm

γzdnlm
dnlm , q(π) = ∏

d
Dir(πd |αd),

q(θ) = ∏
l

Dir(θl |βl), q(Λ) = ∏
l

Gam(Λl |al ,bl),

the parameters of which are updated as
γdnlm = ρdnlm/ρdn··, (14)

logρdnlm=ψ(αdl)−ψ(αd·)+ψ(βlm)−ψ(βl·)

+ψ(al)/2−(logbl)/2− (xn−mµl)
2al/2bl ,

(15)

3 The integration over π, θ, and Λ is tractable thanks to their conjugacy.

αdl =α0l + γd·l·, βlm = β0m + γ··lm,

al = a0 +
γ··l·
2

, bl = b0+
∑dnm γdnlm(xdn−mµl)

2

2
,

(16)

where ψ(·) in Eq. (15) denotes the digamma function. Eqs. (14,15)
and Eqs. (16) are iteratively calculated until the lower bound
in Eq. (13) converges. Note that Eq. (14) is the normaliza-
tion of ρ over indices l and m.

Mixture LHA update: In the update for the mixture LHA
model, the harmonic height parameter is set as θlm = 0.2m−1.
Thus, the update equations are modified as:

logρdnlm=ψ(αdl)−ψ(αd·)+ logθlm

ψ(al)/2−(logbl)/2− (xn−mµl)
2al/2bl ,

(17)

αdl =α0l + γd·l·,

al = a0 +
γ··l·
2

, bl = b0+
∑dnm γdnlm(xdn−mµl)

2

2
.

(18)

Relationship with the KL-div likelihood: Remember the
negative KL-div is used as the log-likelihood in Eq. (11).
The following equation always holds during the iterations:

L(q)+KL(q||p) = log p(X|si
k) (const wrt. q).

The KL-div is defined between the approximate distribu-
tion q(Z,π,θ,Λ) and the true posterior p(Z,π,θ,Λ|X, pi

k,µ).
Note that maximizing L(q) is equivalent to minimizing KL-
div, namely, maximizing the negative KL-div due to the
equation above. Thus, the LHA-based likelihood is inter-
preted as an extension of Eq. (11) in that the harmonic tem-
plates adapt to the audio observation to minimize the KL-div
and maximize the log-likelihood.

3.4 Point estimation and efficient computing
After the weights of all particles are calculated, the point
estimation is reported as ŝk = ∑I

i=1 wi
ksi

k

/
∑I

i=1 wi
k. Particles

are resampled after the point estimation procedure to elimi-
nate zero-weight particles. The resampling probability is in
proportion to the weight of each particle [1].

4. EXPERIMENTAL RESULTS
This section presents the alignment error of three observa-
tion models; conventional KL-div [13], full LHA, and mix-
ture LHA. Twenty songs from RWC Jazz music database [8]
is used for this experiment. This test set includes various
compositions of musical instruments from solo performance
to big band ensembles. Our system is implemented on Linux
OS and a 2.4 (GHz) processor. Experiments are carried out
with the following parameter settings; the filtering interval
∆T = 0.5 (sec), the window length for the audio processing
W = 1.5 (sec), and the number of particles I = 300.

Figure 9 shows the error percentiles of 20 songs for three
methods. Black, red, and blue bars represent the percentiles
of KL-div, full LHA, and mixture LHA, respectively. The
darkest bars are the 50% percentiles, middle bars are the
75%, and the lightest segments are the 100% percentiles.
The less values indicate the better performance. Songs with
a larger ID tend to involve more instruments. Both of the
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Figure 9. Error percentiles for 20 songs

LHA-based methods outperform the KL-div for 10 songs,
and either full or mixture LHA shows less errors than KL-
div for 3 songs. In particular, LHA-based methods tend to
report less errors when the song consists of a larger number
of instruments (larger ID songs). This is what we expect
from the LHA models.

Two major reasons are given why LHA-based observa-
tion models still accumulate the alignment error. First, LHA
is vulnerable to rest notes where no musical note is speci-
fied. This is because the LHA model penalizes unspecified
harmonic peaks. When the score provides a rest, LHA pe-
nalizes any audio observation. The error caused by these rest
notes is seen in songs 2, 5, 8, and 9, where we have more
chances to have rest notes because the number of musical
instruments is relatively small. The second reason is the
non-harmonic feature of percussions and drums. Because
drum sounds are loud and outstanding in the ensemble, these
sounds interfere the harmonic structures of pitched sounds
assumed by LHA. This case applies in songs 11, 16, and 17
where drums are included in the ensemble.

Here we discuss the difference between the full and mix-
ture LHAs. Since mixture LHA has less variables to in-
fer, we can expect more accurate inference as long as the
fixed parameters θ fit the observation. The fixed θ declines
as the frequency becomes larger. This descending height is
well observed in stringed instruments such as guitar or piano
dominantly used in songs 1-6; whereas wind instruments
such as saxophone or flute or bowed instruments such as vi-
olin show rather different peaks. When these instruments
are dominant in a song, e.g., songs 16 and 17 which are in a
big band style, the full LHA will be the better choice.

5. CONCLUSION AND FUTURE WORKS

The experiment has shown that LHA is especially effec-
tive in a large-ensemble situation where more musical notes
are simultaneously performed. However, LHA-based audio
observation models is disturbed by (1) rest notes and (2)
drum sounds. To make the best use of the LHA model, one
promising solution is to examine the musical score in ad-
vance of the alignment whether the expecting audio signal
is suitable for LHA. The development of this top-level deci-

sion making process will be one of the future works.
Another future work includes an accelerated calculation

of LHA iterations for such real-time applications as auto-
matic accompaniment systems. Current implementation re-
quires approximately 10 seconds to process one-second au-
dio data.
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