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ABSTRACT

In this paper, we present a set of simple and efficient regu-
larized logistic regression algorithms to predict tags of mu-
sic. We first vector-quantize the delta MFCC features us-
ing k-means and construct “bag-of-words” representation
for each song. We then learn the parameters of these logis-
tic regression algorithms from the “bag-of-words” vectors
and ground truth labels in the training set. At test time, the
prediction confidence by the linear classifiers can be used
to rank the songs for music annotation and retrieval tasks.
Thanks to the convex property of the objective functions, we
adopt an efficient and scalable generalized gradient method
to learn the parameters, with global optimum guaranteed.
And we show that these efficient algorithms achieve state-
of-the-art performance in annotation and retrieval tasks eval-
uated on CAL-500.

1. INTRODUCTION

Automatic tagging of music is a popular topic in recent years,
with applications in music information retrieval, description
of music, etc. The task is to associate a song with a few rel-
evant labels (or tags), e.g. pop, male vocal and happy. We
want to predict confidence values that accurately estimate
the strength of the association between the labels and audio
contents. Given a song, these confidence values can be used
to rank the tags by relevance, and this is the music anno-
tation task. In the music retrieval task, we rank the songs
according to their relevance to a specific query tag.

The challenge mainly lies in two parts. One is how to
represent a song or a song segment that best summarizes
its content. The most popular audio feature is the Mel-
Frequency Cepstral Coefficient (MFCC) that only describes
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a 23ms time window. While these very short “frames” can-
not be used directly as features for songs, they make up
the building blocks for more advanced features. [7] sum-
marized the frame-level features over a segment by means
and covariances and other features were combined by Ad-
aBoost. Spectral covariances over a segment were also pro-
posed and achieved better results than means and covari-
ances of MFCC [6]. Other methods tried to estimate the
probability distribution of the MFCC feature space and use
this as song-level features [1, 3]. At the same time, time se-
ries model [5] attempted to incorporate the temporal infor-
mation but the complex structures in music are difficult to
capture because of the rich patterns of multiple time scales.

The other difficulty is the multitude of the labels. The
large number of tags and relatively few tags per song result
in severe label imbalance, presenting a challenging prob-
lem for most discriminative methods such SVM and Ad-
aBoost [7, 13]. These methods tend to score high in classi-
fication by predicting most new test songs as negative sam-
ples. However, we found, with empirical evaluation, that
logistic regression appears to be more robust in such situa-
tions in that it tries to maximize the conditional probability
rather than to minimize the classification error directly.

Currently, most state-of-the-art methods are probabilis-
tic models. Gaussian Mixture Models (GMM) [3] approxi-
mate the probability distribution of features conditionedon
each tag with a mixture of Gaussian distributions. Then the
Bayesian rule is applied to calculate the posterior probabil-
ity of a tag given a new song. One shortcoming of the gen-
erative model is that it does not fully utilize the label infor-
mation compared with discriminative methods. Recently, a
more “discriminative-flavored” probabilistic model, Code-
word Bernoulli Average (CBA) [1], was proposed and it
achieved state-of-the-art performance on annotation and re-
trieval tasks. Although CBA is efficient and effective, the
EM algorithm used in estimating its parameters only con-
verges to a local optimum and as a result the learnt parame-
ters will depend on different initializations.

We propose to use regularized logistic regression to ad-
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dress the music tagging problem. First, song-level statistics
are summarized in the “bag-of-words” of quantized delta
MFCC features. Then, we apply logistic regression to learn
the correlations of tags and music content by exploiting the
label information. Different regularization terms are incor-
porated in logistic regression to reduce overfitting and im-
prove generalization. Our approach enjoys the benefit of
convex optimization with global optimum guarantee. Also,
by using first-order methods, the proposed model can be
learnt in a short time and it scales linearly to large dataset.
Moreover, experiments demonstrate that our regularized lo-
gistic regression can achieve state-of-the-art performance in
CAL-500 dataset [2].

2. SONG-LEVEL FEATURE REPRESENTATION

We choose a simple “bag-of-words” representation, the same
as in [1,11] and many other image classification algorithms
[10], as our song-level feature. This simple representation
facilitates efficient and scalable prediction of music tagsfor
a large set of data.

Our primary features are the 39 dimension delta MFCC
features over 23ms time-window. Each delta MFCC feature
is concatenated from one MFCC feature, its first derivative
and its second derivative. As a preprocessing step, we first
normalize all the delta MFCC features to have zero mean
and unit variance in each dimension. We then apply k-
means to learnK cluster centroids as “audio dictionary”
D = [d1,d2, · · · ,dK ] ∈ R

p×K in thep dimensional fea-
ture space, wherep = 39. The centroids act as “representa-
tives” of typical audio frames.

Let {vi,1,vi,2, · · · ,vi,Ni
} denote the set of delta MFCC

vectors for songi. We count the number of feature vectors
for songi that are nearest to dictionary itemdj in Euclidean
distance

ni,j =

∣∣∣∣

{
k : j = arg min

t

‖vi,k − dt‖
2
2

}∣∣∣∣ . (1)

The countsni,j can be considered as a discrete approx-
imation to the probability distribution on the feature space.
Compared with the parametric model [3], our non-parametric
representation is more flexible and easier to implement.

We then normalize the counts to cancel out the effect
of varying song lengths. The frequency of thej-th “audio
word” in thei-th song is calculated as

ri,j =
ni,j∑K

k=1 ni,k

. (2)

Finally, the i-th song is represented asx(i) whosej-th
element isx(i)

j = ri,j .
The most time consuming part of song-level feature rep-

resentation is k-means clustering. However, this is done off-
line and can be speeded up by using a subset of samples or

using hierarchical clustering. When a new song arrives, we
just need to assign each of its delta MFCC features to one of
the centroids and construct the histogram, whose time com-
plexity is linear in the number of delta MFCC features.

3. LOGISTIC REGRESSION WITH
REGULARIZATION

Given the “bag-of-words” representation of each song, we
train a linear classifier to predict the labels. We choose lo-
gistic regression because its loss function is less sensitive
to noise and label imbalance compared with others, such as
hinge loss in SVM or exponential loss in AdaBoost.

3.1 Multi-label Logistic Regression

In the automatic music tagging problem, there arem la-
bels/tags, and we want to learn a vector-valued prediction
function f(x) = [f1(x), f2(x), · · · , fm(x)]

T
: X 7→ Y,

where the input spaceX is theK dimensional vector space
of “bag-of-words” and the label spaceY is {1,−1}m. Here,
we are interested in the family of linear classifiers andf(x)
can be written as

f(x) = sgn(Bx + c), (3)

whereB = [b1,b2, · · · ,bm]T ∈ R
m×K is the coefficient

matrix for the prediction function andc ∈ R
m is the bias

vector. Note that rowl, bT
l , is the classifier coefficients for

thel-th label.
With logistic regression model, the conditional likelihood

Pr(yl|x;bl, cl) is give by

Pr (yl|x;B, c) =
1

1 + exp
(
−yl

(
bT

l x + cl

)) . (4)

And the learning of optimal parameters(B∗, c∗) based on a
training datasetD = {(x(i),y(i)|i = 1, 2, · · · , n)} can be
performed by minimizing the negative log likelihood plus a
regularization termR(B),

(B∗, c∗) = arg min
B,c

−
1

n

n∑

i=1

m∑

l=1

log Pr
(
y
(i)
l |x(i);B, c

)

+ λR(B),
(5)

whereλ is a weighting parameter for the regularization.
To predict the labels of a new sonĝx, we compute the

conditional likelihoodPr (yl|x̂;B∗, c∗) with Eq. 4, which
shows the confidence of the labelyl.

3.2 Different Regularizations

Regularization plays an important role in incorporating prior
information and reducing model complexity to avoid over-
fitting. Adopting different regularization terms will leadto
models with different interpretations and performance.
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A common choice is thel2 term that contains model com-
plexity, i.e.

R(B) = ‖B‖2
2 =

K∑

j=1

m∑

i=1

B2
ij . (6)

Recently, sparsity inducing norms are very popular and
have wide applications in machine learning and music in-
formation retrieval [8, 14]. So, we also considerl1 norm
regularization that encourages sparsity of model parameters.
Technically, the regularizer is

R(B) = ‖B‖1 =
K∑

j=1

m∑

i=1

|Bij |. (7)

4. FIRST-ORDER OPTIMIZATION METHOD

We adopt efficient first-order methods to learn the parame-
ters. Thanks to convexity, the convergence of our algorithm
to a global minimum is guaranteed.

4.1 Gradient Descent for l2

Since the original objective function withl2 regularization
is smooth, we can update the parameter by gradient descent

Bt+1 = Bt − η (∇Ln(Bt) + 2λBt) , (8)

ct+1 = ct − η∇Ln(ct), (9)

where∇Ln(·) is the derivative of the loss function andη is
the step size.

4.2 Generalized Gradient Descent for l1

Due to the non-smoothness ofl1 norm, at iteration stept,
we updateB by

Bt+1 = arg min
Z

〈∇Ln(Bt),Z−Bt〉

+
1

2η
‖Z−Bt‖

2 + λ‖Z‖1, (10)

whereη > 0 and1/η is set larger than the Lipschitz constant
of ∇Ln [9]. Here we omitc because it is not in thel1 norm
and can be solved by standard gradient descent (Eq. 9).

The above procedure is the generalized gradient descent
scheme because whenλ = 0, it is easy to see Eq. 10 reduces
to Bt+1 = Bt − η∇Ln(Bt).

DenoteBt+1 = [b∗1,b
∗

2, · · · ,b∗p], Bt = [b1,b2, · · · ,bp]
and∇Ln(Bt) = [h1,h2, · · · ,hp] and Eq. 10 can be solved
by p separate sub-problems. According to [9], each sub-
problem is solved by

b∗j = Tλη (bj − ηhj) , (11)

whereTα(·) is the soft thresholding operator. And it is de-
fined by

Tα(x)i = (|xi| − α)+ sgn(xi), (12)

where(x)+ = x if x > 0 and(x)+ = 0 otherwise.
The detailed procedure of generalized gradient descent is

illustrated in Alg. 1.

Algorithm 1 Generalized Gradient Descent Algorithm

Input: Training setD = {(x(i),y(i)|i = 1, 2, · · · , n)}
Output: Model parametersB∗ ∈ R

m×p, c∗ ∈ R
m

Initialize t = 0,η,B0,c0

Repeat until convergence:

1. Compute the partial gradient∇BLn(Bt, ct).

2. Forj = 1 to p

2.1 Calculatew = bj − ηhj .

2.2 Calculate thej-th column ofBt+1 by Tλη(w).

3. Compute the partial gradient∇cLn(Bt, ct).

4. Updatect+1 = ct − η∇cLn(Bt, ct).

5. EXPERIMENTS ON ANNOTATION AND
RETRIEVAL

We evaluated our three versions of logistic regression on two
tasks: music annotation and retrieval. Compared with bi-
nary classification tasks, these two tasks are more closely
related with real scenarios.

The music data comes from CAL-500 Dataset [2]. There
are 500 Western polyphonic songs and the annotations were
collected from more than three human subjects per song.
When training the classifier, we only use the binary anno-
tations with{0, 1} (transformed to{−1, 1} for learning) to
indicate whether the tag is relevant to the song.

We are more interested in predicting more “useful” tags
rather than very obscure ones. Following the same setting
in [4, 5], we only evaluate on the 78 tags that have at least
50 examples and 97 top popular tags.

5.1 Annotation and Retrieval

Using similar experimental setting as in [4, 5], we used 5-
fold cross validation. In each round, we first learned our
model parametersB∗, c∗ with the 400-song training set and
predicted confidence ratings on the remaining 100-song test
set. The conditional probability (confidence rating) of a tag
being assigned to a song was then calculated using Eq. 4.
To compensate for non-uniform label prior, we adopted the
same heuristic used in [1] by introducing a “diversity factor”
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Model Precision Recall F-score P3 P5 P10 MAP AROC

CBA 0.361 0.212 0.267 0.463 0.458 0.440 0.425 0.691
GMM 0.405 0.202 0.269 0.456 0.455 0.441 0.433 0.698
Context-SVM 0.380 0.230 0.286 0.512 0.487 0.449 0.434 0.687
DirMix 0.441 0.232 0.303 0.519 0.501 0.470 0.443 0.697

LogRegr 0.396 0.196 0.262 0.407 0.428 0.424 0.404 0.671
l1 LogRegr 0.416 0.202 0.272 0.414 0.413 0.417 0.411 0.673
l2 LogRegr 0.446 0.227 0.301 0.515 0.512 0.485 0.459 0.719

Table 1. Experimental results for top 97 popular tags. The results of Codeword Bernoulli Average (CBA), Gaussian Mixture
Models (GMM), Context-SVM and Dirichlet Mixture (DirMix) are reported in [4]. Our results are non-regularized (LogRegr),
l1 regularized (l1 LogRegr) andl2 regularized (l2 LogRegr) logistic regressions, respectively.

Model P R F-score AROC MAP P10

CBA 0.41 0.24 0.29 0.69 0.47 0.49
HEM-GMM 0.49 0.23 0.26 0.66 0.45 0.47
HEM-DTM 0.47 0.25 0.30 0.69 0.48 0.53

LogRegr 0.44 0.23 0.30 0.67 0.45 0.48
l1 LogRegr 0.46 0.23 0.31 0.68 0.46 0.49
l2 LogRegr 0.48 0.26 0.34 0.72 0.50 0.54

Table 2. Experimental results for top 78 popular tags. The
results of Codeword Bernoulli Average (CBA), hierarchical
EM Gaussian Mixture Models (HEM-GMM) and hierarchi-
cal EM Dynamic Texture Model (HEM-DTM) are reported
in [5]. Our results are non-regularized (LogRegr),l1 regu-
larized (l1 LogRegr) andl2 regularized (l2 LogRegr) logistic
regressions, respectively.

d = 1.25. For each predicted confidence rating, we sub-
tractedd times the mean confidence for that tag. We then
assigned each song with the top 10 most confident tags.

Annotation was evaluated by mean precision and recall
over the tags. Given the 10 annotations per song in the test
set, we calculated precision and recall for each tag and then
averaged across all considered tags. The final result was
averaged over 5 rounds of cross validation. In addition, F-
score, the harmonic mean of precision and recall, was com-
puted to summarize the two aspects of precision and recall.

For retrieval, we first ranked the songs in the descend-
ing order according to confidence ratings for a specific tag.
Better retrieval result corresponds to cases that more rele-
vant songs appear at the top of the ranking list. Then, we
calculated precision at every position down the ranking list
via dividing the number of true positives found so far by
the total number of songs so far. Evaluation was conducted
through averaged precision andprecision at k (k = 3, 5, 10)
as in [4]. Averaged precision was computed by taking the
average of all the positions down the ranking list where new
true positives were found. Precision atk wask-th precision

that we calculated on the ranking list.

5.2 Experiment Results and Dicussions

5.2.1 Comparison with State-of-the-art

We compare our results with state-of-the-art performance on
the CAL-500 dataset. For the 97 tags setting, we compare
with CBA [1], GMM [3], Context-SVM [12] and Dirich-
let Mixtures (DirMix) [4]. Their results were originally re-
ported in [4] and are copied in Table 1 for more convenient
comparison. For the 78 tags setting, CBA, HEM-GMM (the
same as GMM) and HEM-DTM [5] were compared. Their
original results reported in [5] and copied in Table 2.

The results of our three variants of logistic regression un-
der the 97 tags setting are also reported in Table 1. All our
methods were based onK = 2000 dictionary size “bag-
of-words” representation, with the cluster centroids trained
on a random subset of 100,000 samples from all the delta
MFCC features provided in the dataset. Non-regularized lo-
gistic regression was equivalent to settingλ = 0. The pa-
rameterλ in the two regularized algorithms were set to the
optimum. Forl1 logistic regression, it was set to 0.001 and
for l2 logistic regression, it was set to 0.01.

From Table 1, we can see that non-regularized logistic
regression performed the worst but still had reasonable re-
sults.l1 regularization improved the performance by 0.01 or
0.02 for some measures.l2 regularization introduced greater
improvement over thel1 regularized variant, achieving best
performance in retrieval even than the state-of-the-art. And
it was comparable with the Dirichlet Mixture model in anno-
tation task. Note that the Dirichlet Mixture model exploited
the label correlations explicitly while our method incorpo-
rated no such schemes to utilize context information.

For the 78 tags case illustrated in Table 2, the simple lo-
gistic regression performed better than CBA in the annota-
tion task. l1 regularization consistently improved the per-
formance by 0.01 for most measures. Again,l2 regular-
ized logistic regression outperformed other approaches in
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all measures except for precision. However, by comparing
the F-score which summarizes the overall annotation score,
all three variants performed better than or on par with the
state-of-the-art. Considering the fact that HEM-DTM bene-
fited from information over the 23ms time window, our al-
gorithms’ performance are even more encouraging.

The performance of non-regularized logistic regression
was limited because of the overfitting effect.l1 regulariza-
tion slightly improved the situation by constraining the com-
plexity of the parameters. However, it appears that the “bag-
of-words” representation does not have the hidden sparse
structure whichl1 norm regularization can help reveal. Rather,
the classifier coefficients should be dense to fully take into
account all the details in the distribution. Thel2 norm was
thus suitable for such situation where it constrained the model
complexity in general and produced non-zero coefficients.

5.2.2 Effect of Changing Dictionary Size K

We also explored the effect of different dictionary sizesK.
In the experiments, we ranl2 regularized logistic regression
with λ set to 0.01 and under differentK (10, 20, 50, 100,
200, 500, 800, 1000, 2000 and 5000). Fig. 1 illustrates the
performance on the two tag number settings for annotation
and retrieval tasks.

From Fig. 1, we can see that asK increases, the algo-
rithm benefits from more accurate approximation to the dis-
tribution and achieves better performance. The biggest im-
provement occurs from 10 to 100 dictionary sizes. It ap-
pears that whenK increases over this range, the major struc-
ture in the distribution has been captured by the “bag-of-
words” representation. As we go on to model the finer scales
with even largerK, the performance continues to climb up
until it gradually levels off whenK exceeds 2000. From
K = 2000 to K = 5000, the improvement is less than 0.01
for retrieval while the computational cost is multiplied by
2.5 times. Therefore, we chooseK = 2000 as our optimal
dictionary size in the CAL-500 dataset.

5.2.3 Effect of Different Regularization Parameter λ

The regularization parameterλ affects the performance by
balancing the loss function and the regularization. Smaller
λ leads to more focus on the empirical error while largerλ
places more priority on keeping the model complexity low.

We variedλ from 10−5 to 10 with equal stepsize in loga-
rithm scale forl2 regularized logistic regression underK =
2000. The effect is demonstrated in Fig. 2. Forl2 regular-
ized logistic regression, the optimalλ is 0.01. And we can
see that the algorithm is relatively robust to the parameter
change from10−4 to 10−1. Note that since the values in the
original normalized “bag-of-words” representation are too
small, making them badly scaled compared with the bias,
we multiply the “bag-of-words” by 100 and the parameterλ
is reported after such preprocessing.
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Figure 1. Effect of varying dictionary sizeK. The perfor-
mance is evaluated onl2 LogRegr with optimal parameter
setting. (a) Annotation performance: precision; (b) Annota-
tion performance: recall; (c) Retrieval performance: mean
averaged precision; (d) Retrieval performance: area under
the receiver operating characteristic curve.

6. CONCLUSIONS

We proposed to use regularized logistic regression algorithms
to automatically tag music. Our approach enjoys convex for-
mulations and can be solved efficiently by first-order meth-
ods. The convergence of our algorithm is guaranteed and it
is scalable to large dataset. Empirical evaluation for music
annotation and retrieval on the CAL-500 dataset has shown
that l2 regularized version with “bag-of-words” representa-
tion of quantized delta MFCC features achieves state-of-the-
art performance.

Currently, no label correlations are considered in our frame-
work and learning is done independently for each label. In
future work, we are interested in modeling such correla-
tions by using structure inducing norms for regularization.
Also, instead of k-means clustering, dictionary learning ap-
proaches are promising in that more adaptive “audio words”
can be learnt from data.
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