12th International Society for Music Information Retrieval Conference (ISMIR 2011)

SEMANTIC ANNOTATION AND RETRIEVAL OF MUSIC USING A BAG OF
SYSTEMS REPRESENTATION

Katherine Ellis Emanuele Coviello Gert R.G. Lanckriet
University of California, University of California, University of California,
San Diego San Diego San Diego
kellis@ucsd.edu ecoviell@ucsd.edu gertl@ece.ucsd.edu
ABSTRACT capture the typical characteristics of musical audio signals.

We present a content-based auto-tagger that leverages a
rich dictionary of musical codewords, where each codeword
is a generative model that captures timbral and temporal
characteristics of music. This leads to a higher-level, con-
cise “Bag of Systems” (BoS) representation of the charac-
teristics of a musical piece. Once songs are represented as a
BoS histogram over codewords, traditional algorithms for
text document retrieval can be leveraged for music auto-
tagging. Compared to estimating a single generative model
to directly capture the musical characteristics of songs as-
sociated with a tag, the BoS approach offers the flexibility
to combine different classes of generative models at vari-
ous time resolutions through the selection of the BoS code-
words. Experiments show that this enriches the audio repre-
sentation and leads to superior auto-tagging performance.

1. INTRODUCTION

Given a vast and constantly growing collection of online
songs, music search and recommendation systems increas-
ingly rely on automated algorithms to analyze and index
music content. In this work, we investigate a novel ap-
proach for automated content-based tagging of music with
semantically meaningful tags (e.g., genres, emotions, instru-
ments, usages, etc.). Most previously proposed auto-taggers
rely either on discriminative algorithms [2,7, 11-13], or on
generative probabilistic models, including Gaussian mixture
models (GMMs) [19, 20], hidden Markov models (HMMs)
[13, 15], hierarchical Dirichlet processes (HDPs) [9], code-
word Bernoulli average models (CBA) [10], and dynamic
texture mixture models (DTMs) [5].

Most generative approaches first propose a general prob-
abilistic model — the base model — that can adequately

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

© 2011 International Society for Music Information Retrieval.

723

Then, for each tag in a given vocabulary, an instance of this
base model is fine-tuned to directly model the audio pat-
terns that are specific and typical for songs associated with
that tag. For example, Turnbull et. al. [19] propose Gaus-
sian mixture models (GMMs) over a “bag of features” (BoF)
representation, where each acoustic feature represents the
timbre of a short snippet of audio. Coviello et. al. [5]
use dynamic texture mixture models (DTMs) over a “bag
of fragments” representation, where each fragment is a se-
quence of acoustic features extracted from a few seconds of
audio. DTMs capture information about the temporal dy-
namics (e.g. rhythm, beat, tempo) of an audio fragment, as
well as instantaneous timbral content.

Such direct generative approaches may suffer from two
inherent limitations. First, their flexibility is determined by
the choice of the base model. Since different base models
may capture complementary characteristics of a musical sig-
nal, selecting a single base model may restrict the modeling
power a priori. For example, Coviello et al. [5] reported that
DTMs are particularly suitable to model tags with signifi-
cant temporal characteristics, while GMMs are favorable for
some tags for which “timbre says it all”. Moreover, speci-
fying a base model implies setting its time scale parameters.
This limits direct generative approaches to detecting musi-
cal characteristics (timbre, temporal dynamics, etc.) at one
fixed time resolution, for each tag in the vocabulary. This is
suboptimal, since the acoustic patterns that characterize dif-
ferent tags may occur at different time resolutions. Second,
estimating tag models may require tuning a large number of
parameters, depending on the complexity of the base model.
For tags with relatively few observations (i.e., songs associ-
ated with the tag), this may be prone to overfitting.

To address these limitations, we propose to use genera-
tive models to indirectly represent tag-specific musical char-
acteristics, by leveraging them to extract a high-level song
representation. In particular, we propose to model a song
using a “bag of systems” (BoS) representation for music.
The BoS representation is analogous to the “bag of words”
(BoW) framework employed in text retrieval [1], which rep-
resents documents by a histogram of word counts from a

Poster Session 6

given dictionary. In the BoS approach, each word is a gen-
erative model with fixed parameters. Given a rich dictio-
nary of such “musical codewords”, a song is represented
by “counting” the of occurrences of each codeword in the
song — by assigning song segments to the codeword with
largest likelihood. Finally, BoS histograms can be modeled
by appealing to standard text mining methods (e.g., logis-
tic regression, topic models, etc.), to obtain tag-level mod-
els for automatic annotation and retrieval. A BoS approach
has been used for the classification of videos [4, 14], and a
similar idea has inspired the anchor modeling for speaker
identification [16].

By leveraging the complementary modeling power of var-
ious classes of generative models, the BoS approach is more
flexible than direct generative approaches. In this work, we
demonstrate how combining Gaussian and dynamic texture
codewords with different time resolutions enriches the rep-
resentation of a song’s acoustic content and improves per-
formance. A second advantage of the BoS approach is that
it decouples modeling music from modeling tags. This al-
lows us to leverage sophisticated generative models for the
former, while avoiding overfitting by resorting to relatively
simpler BoW models for the latter. More precisely, in a first
step, a dictionary of sophisticated codewords may be esti-
mated from any large collection of representative audio data,
which need not be annotated. This allows to learn a general,
rich BoS representation of music robustly. Next, tag mod-
els are estimated to capture the typical codeword patterns in
the BoS histograms of songs associated with each tag. As
each tag model already leverages the descriptive power of a
sophisticated codebook representation, relatively simple tag
models (with fewer tunable parameters) may be estimated
reliably, even from small sets of tag-specific training songs.

In summary, we present a new approach to auto-tagging
that constructs a rich dictionary of musically meaningful
words and represents each song as a histogram over these
words. This simple, compact representation of the musical
content of a song is computationally efficient once learned
and expected to be more robust than a single low-level audio
representation. It can benefit from the modeling capabilities
of several classes of generative models, and exploit infor-
mation at multiple time scales.

2. THE BAG OF SYSTEMS REPRESENTATION OF
MUSIC

Analogous to the BoW representation of text documents, the
BoS approach represents songs with respect to a codebook,
in which generative models are used in lieu of words. These
generative models compactly characterize typical audio fea-
tures, musical dynamics or other acoustic patterns in songs.

We discuss codebook generation in Section 2.1, the gen-
erative models used as codewords in Section 2.2, and the

724

representation of songs using the codebook in Section 2.3.

2.1 Codebook generation

To build a codebook, we first choose M classes of base
models (each with a certain allocation of time scale param-
eters). From each model we derive a set of representative
codewords, i.e., instances of that model class that capture
meaningful musical patterns. We do this first by defining a
representative collection of songs, i.e., a codebook set, X,
and then modeling each song in & as a mixture of K¢ mod-
els from each model class. After parameter estimation, the
mixture components provide us with characteristic instances
of that model class and become codewords. Finally, we ag-
gregate all codewords to form the BoS codebook, 1, which
contains |V| = M K,|X,| codewords.

Each codeword in the BoS codebook can be seen as char-
acterizing a prototypical audio pattern or texture, and code-
words from different classes of generative models capture
different types of musical information. If the codebook set,
X, is sufficiently diverse, the estimated codebook will be
rich enough to represent songs well.

2.2 The codewords

To obtain a diverse codebook, we consider Gaussian mod-
els (to characterize timbre) and dynamic texture (DT) mod-
els [6] (to capture temporal dynamics) at various time res-
olutions. First, a time resolution is chosen by representing
songs as a sequence of feature vectors, Y = {y1,...,yr},
extracted from half-overlapping time windows of length 7.
The sampling rate and the length n of the windows deter-
mines the time resolution of the generative models. Second,
a generative model (Gaussian or DT) is chosen, and mixture
models are estimated for all songs in the codebook set, X.

2.2.1 Gaussian codewords

To learn Gaussian codewords, we fit a Gaussian mixture
model (GMM) to each song in X, to capture the most promi-
nent audio textures it exhibits. More specifically, for each
song in X,, we treat the sequence of its feature vectors,),
as an unordered bag of features, and use the EM algorithm
to estimate the parameters of a GMM from these features.
Finally, each mixture component is considered as a code-
word, characterized by parameters ©; = {u;, X;}, where
w; and X; are the mean and covariance of the it mixture
component of the GMM, respectively.

2.2.2 Dynamic Texture codewords

Dynamic texture (DT) codewords are learned by modeling
each song in X, as a mixture of DTs, and considering each
individual DT as a codeword.

DTs explicitly model the temporal dynamics of audio by
modeling ordered sequences of audio features rather than in-

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

dividual features. From the sequence of feature vectors ex-
tracted from a song,), we sample subsequences, i.e., frag-
ments, y1.., of length 7 every v seconds. We then repre-
sent the song by an unordered bag of these audio fragments,
Y=A{ylrs s ¥l

A DT treats an audio fragment y;., as the output of a
linear dynamical system (LDS):

Az 1 + vy,
Cxy +wy + 9,

ey
@

Tt

Yt

where the random variable y; € R™ encodes the timbral
content (audio feature vector) at time ¢, and a lower dimen-
sional hidden variable x; € R™ encodes the dynamics of the
observations over time. The model is specified by param-
eters © = {A4,Q,C, R, i, S, 7}, where the state transition
matrix A € R™*™ encodes the evolution of the hidden state
x; over time, v; ~ N (0, Q) is the driving noise process, the
observation matrix C' € R"*" encodes the basis functions
for representing the observations y,,, ¥ is the mean of the
observation vectors, and w; ~ N(0, R) is the observation
noise. The initial condition is distributed as 1 ~ N (s, .5).

We model a song by a dynamic texture mixture (DTM)
that summarizes the dominant temporal dynamics, where an
assignment variable z € {1,2, ..., K} selects which of K
DTs is generating an audio fragment. For a given a song,
the DTM parameters are estimated via the EM algorithm [3]
and, once again each mixture component ©; is a codeword.

2.3 Representing songs with the codebook

Once a codebook is available, a song is represented by a
codebook multinomial (CBM) b € R/VI that reports how
often each codeword appears in that song, where b[¢] is the
weight of codeword ¢ in the song.

To build the CBM for a given song, we count the number
of occurrences of each codeword in the song by computing
its likelihood at various points in the song (e.g., every v sec-
onds) and comparing it to the likelihood of other codewords
derived from the same base model class (since likelihoods
are only comparable between similar models with the same
time resolution). To compute the likelihood of a given code-
word at a certain point in the song, we extract a fragment of
audio information 3 depending on the time scale and model
class of the codeword in question. I.e., for GMM code-
words, y' is a single audio feature vector, extracted from
a window of width 7, while for DTM codewords, ¢ is a se-
quence of 7 such feature vectors. We count an occurrence of
the codeword under attention if it has the highest likelihood
of all the codewords in that class.

We construct the histogram b for song) by counting the
frequency with which each codeword ©; € V is chosen to

725

represent a fragment:

1

)= S

Z 1[©; = argmax P(y"|0)]
yt EVm OVm

3

where V,,, C V is the subset of codewords derived from the
model class m which codeword ©; is derived. Normalizing
by the number of fragments |),,| (according to class m) in
the song and the number of model classes M leads to a valid
multinomial distribution.

We find that the codeword assignment procedure out-
lined above tends to assign only a few different codewords
to each song. In order to diversify the CBMs, we general-
ize equation 3 to support the assignment of multiple code-
words at each point in the song. Hence, for a threshold
k€ {1,2,...,|Vn]|}. we assign the k most likely code-
words (again comparing only within a model class) to each
fragment. The softened histogram is then constructed as:

! Z %]1[@1- = argmax "P(y'|©)] (4)

bli] =
Ml /5, OEVm
where the additional normalization factor of 1/k ensures
that b is still a valid multinomial for £ > 1.

3. MUSIC ANNOTATION AND RETRIEVAL USING
THE BAG-OF-SYSTEMS REPRESENTATION

Once a BoS codebook V has been generated and songs are
represented by codebook histograms (i.e., CBMs), a content-
based auto-tagger may be obtained based on this represen-
tation — by modeling the characteristic codeword patterns
in the CBMs of songs associated with each tag in a given
vocabulary. In this section, we formulate annotation and
retrieval as a multiclass multi-label classification of CBMs
and discuss the algorithms used to learn tag models.

3.1 Annotation and retrieval with BoS histograms

Formally, assume we are given a training dataset X, i.e., a
collection of songs annotated with semantic tags from a vo-
cabulary 7. Each song s in X} is associated with a CBM
b, which describes the song’s acoustic content with respect
to the BoS codebook V. The song s is also associated with
an annotation vector ¢, = (c1, ..., ¢j7|) which express the
song’s semantic content with respect to 7, where ¢; = 1
if s has been annotated with tag w; € 7, and ¢; = 0 oth-
erwise. A dataset is a collection of CBM-annotation pairs
X = {(waS)}Litll-

Given a training set X}, standard-text mining algorithms
are used to learn tag-level models to capture which patterns
in the CBMs are predictive for each tag in 7. Given the
CBM representation of a novel song, b, we can then resort to
the previously trained tag-models to compute how relevant

Poster Session 6

each tag in 7 is to the song. In this work, we consider algo-
rithms that have a probabilistic interpretation, for which it is
natural to define probabilities p(w;|b), fori = 1,...,|T],
which we rescale and aggregate to form a semantic multino-
mial (SMN) p = (p1, ..., p|7]). Where p; o< p(w;|b) and
> El p; = 1. Hence we define the relevance of a tag to the
song as the corresponding entry in the SMN.

Annotation involves selecting the most representative tags
for a new song, and hence reduces to selecting the tags with
highest entries in p. Retrieval consists of rank ordering a set
of songs S = {s1,$2 ... sg} according to their relevance
to a query. When the query is a single tag w; from 7, we
define the relevance of a song to the tag by p(w;|b), and
therefore we rank the songs in the database based on the i*"
entry in their SMN.

3.2 Learning tag-models from CBMs

The CBM representation of songs is amenable to a variety of
annotation and retrieval algorithms. In this work, we investi-
gate one generative algorithm, Codeword Bernoulli Average
modeling (CBA), and one discriminative algorithm, multi-
class kernel logistic regression (LR).

3.2.1 Codeword Bernoulli Average

The CBA model proposed by Hoffman et. al. [10] is a gener-
ative process that models the conditional probability of a tag
word appearing in a song. Hoffman et al. define CBA based
on a vector quantized codebook representation of songs. For
our work, we adapt the CBA model to use a BoS codebook.

For each song, CBA defines a collection of binary ran-
dom variables y,, € {0, 1}, which determine whether or not
tag w applies to the song. These variables are generated in
two steps. First, given the song’s CBM b, a codeword z,, is
chosen according to the CBM, i.e., z,, ~ Multinomial(bq, . . .
bjy|). Then a value for y,, is chosen from a Bernoulli distri-
bution with parameter ., ,

p(yw = 1|Zwaﬁ) = 5zww)
p(yw = 0|Zw;5) =1- ﬂzwur (6)

We use the author’s code [10] to fit the CBA model. To
build the SMN of a novel song we compute the posterior
probabilities p(y,,, = 1|b,3) = p; under the estimated
CBA model, and normalize p = (p1, - .-, pv))-

3.2.2 Multiclass Logistic Regression

Logistic regression defines a linear classifier with a prob-
abilistic interpretation by fitting a logistic function to all

CBMs associated to each tag:
P(w;[b, ;) o exp 5 b)

Kernel logistic regression finds a linear classifier after ap-
plying a non-linear transformation to the data, ¢ : RY —

726

R? . The feature mapping ¢ is indirectly defined via a ker-
nel function K(a,b) = (p(a), (b)), where a and b are
CBM:s.

In our experiments we use the histogram intersection ker-
nel [17], which is defined by the kernel function: K (a,b) =
>_;min(a;,b;). In our implementation we use the software
package Liblinear [8] and learn an Ls-regularized logistic
regression model for each tag using the “one-vs-the rest”
approach. As with CBA, we collect the posterior probabili-
ties p(w;|b) and normalize to build the SMN.

4. EXPERIMENTAL SETUP
4.1 Music Datasets

The CALS500 [19] dataset consists of 502 Western popular
songs from 502 different artists. Each song-tag association
has been evaluated by at least 3 humans, using a vocabulary
of 149 tags. CAL500 provides binary annotations, i.e., ¢;
1 when a tag ¢ applies to the song and 0 when the tag does
not apply. We restrict our experiments to the 97 tags with
at least 30 example songs and use 5-fold cross-validation,
where each song appears in the test set exactly once.

The CAL10Kk dataset [18] is a collection of over ten thou-
sand songs from 4,597 different artists, weakly labeled from
a vocabulary of over 500 tags. The song-tag associations are
mined from Pandora’s website. We restrict our experiments
to the 55 tags in common with CAL500.

4.2 Codebook parameters

For our experiments, we build codebooks using three classes
of generative models: one class of GMMs and two classes
of DTMs at different time resolutions. To learn DTM code-
words, we use feature vectors consisting of 34 Mel-frequency
bins. The feature vectors used to learn GMM codewords are
Mel-frequency cepstral coefficients appended with first and
second derivatives (MFCC-delta). Window and fragment
length for each class of codewords are specified in Table 1.

Model Class Window length () Fragment length Fragment step (v)

BoS-DTM; 12 ms 726 ms 145 ms
BoS-DTM, 93 ms 58s 1.16 s
BoS-GMM; 46 ms 46 ms 23 ms

Table 1. Time resolutions of model classes

4.3 Experiments

Our first experiment is cross-validation on CAL500, using
the training set &} as the codebook set &, and re-training
the codebook for each split. We learn K = 4 codewords of
each model class per song. We build 5 codebooks: one for
each of the 3 classes of codewords, one combining the two

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

classes of DTM codewords (BoS-DTM ») and one combin-
ing all three classes of codewords (BoS-DTM; >,-GMM)).
These results are discussed in Section 5.1.

A second experiment investigates using a codebook set
X, that is disjoint from any of the training sets X;. By
sampling X, as a subset of the CAL10k dataset, we illus-
trate how a codebook may be learned from any collection
of songs (whether annotated or not). Training and testing
of tag models is still performed as five-fold cross-validation
on CAL500. We perform one experiment with |X.| = 400,
K, = 4, to obtain a codebook of the same size as those
learned on the CAL500 training set. Another experiment
uses |X.| = 4,597, for which one song was chosen from
each artist in CAL10k, and K, = 2. The results are dis-
cussed in Section 5.2.

Finally, we conduct an experiment learning codebooks
and training tag models on the CAL10k dataset and testing
these models on CAL500, in order to determine how well
the BoS approach adapts to training on a separate, weakly
labeled dataset. We use the same codebook learned from
one song from each artist in CAL10k as above, with |X,.| =
4,597, and K; = 2 codewords per song for each model
class. Now our training set X is the entire CAL10k dataset.
We train tag models with the settings (regularization of LR,
etc.) found through cross-validation on CAL500, in order
to avoid overfitting, and test these models on the CAL500
songs. These results are discussed in Section 5.3.

4.4 Annotation and retrieval

We annotate each test song CBM with 10 tags, as described
in Section 3. Annotation performance is measured using
mean per-tag precision, recall and F-score. Retrieval per-
formance is measured using area under the receiver oper-
ating characteristic curve (AROC), mean average precision
(MAP), and precision at 10 (P10) [19].

5. EXPERIMENTAL RESULTS
5.1 Results on CAL500

Results on the CAL500 dataset are shown in Table 2. In gen-
eral, we achieve the best results with the softened histogram
CBM representation (see Section 2.3), using a threshold of
k = 10 for CBA and k = 5 for LR. For comparison we also
show results using the hierarchical EM algorithm (HEM) to
directly build GMM tag models (HEM-GMM) [19] and to
directly build DTM tag models (HEM-DTM) [5]. These ap-
proaches are state of the art auto-tagging algorithms that use
the same generative models we use to build BoS codebooks,
in a more traditional framework. The HEM-GMM experi-
ments use GMM tag models consisting of 4 mixture com-
ponents, with the same audio features as the BoS-GMM;
experiments. The HEM-DTM experiments use DTM tag

727

Annotation Retrieval
|Precision Recall F-Score AROC MAP P10
HEM-GMM 0374 0205 0213 0.686 0417 0.425
HEM-DTM 0.446 0217 0264 0708 0.446 0.460
CBA| 0369 0251 0237 0.722 0465 0.482
BoS-DTM, LR| 0416 0257 0270 0730 0471 0.483
CBA| 0382 0241 0233 0717 0457 0.471
BoS-DTM; LR| 0404 0251 0260 0725 0466 0.480
CBA| 0359 0243 0227 0714 0450 0.463
BoS-GMM; LR| 0396 0251 0257 0724 0464 0479
BoS.DTM CBA| 0375 0254 0240 0.729 0473 0495
0oS-DTM;2 LR| 0413 0264 0274 0738 0.480 0.496
CBA| 0378 0262 0248 0.738 0.482 0.505
BoS-DTM2-GMM; “yR| 0434 0272 0281 0.748 0.493 0.508

Table 2. BoS codebook performance on CAL500, com-
pared to Gaussian tag modeling (HEM-GMM) and DTM
tag modeling (HEM-DTM).

70

—‘——BOSLDTM2 ‘

60 ——-BoS-DTM, -GMM,

Increase in MAP (%)

w - o

Q Q [=]

T T T

- ~

S

I}
I

L L L

N
=]
T
-

-
o
T

~——

<o

0 Zb 4b Gb Bb 160 1éO
Maximum Cardinality
Figure 1. Retrieval performance of the BoS approach with

LR, relative to HEM-DTM, as a function of the maximum
cardinality of tag-specific training examples.

models consisting of 16 mixture components with the same
features and time scale parameters as the BoS-DTM, exper-
iments. The BoS approach outperforms the direct tag mod-
eling approach for all metrics except precision, where HEM-
DTM is still best. Additionally, the greatest improvements
are seen with codebooks that combine the richest variety of
codewords. These codebooks capture the most information
from the audio features, which leads to more descriptive tag
models and increases the quality of the tag estimation.
Since the classification algorithms we use to model tags
have fewer parameters than direct tag modeling approaches,
the BoS approach is more robust for tags with fewer exam-
ple songs. We demonstrate this in Figure 1, which plots the
improvement in MAP over HEM-DTM as a function of the
tag’s training set cardinality. The BoS approach shows the
greatest improvement for tags with few training examples.

5.2 Results learning codebook from unlabeled songs

Table 3 shows results using BoS codebooks learned from
unlabeled songs. These results are roughly equivalent to us-
ing codebooks learned from CALS500, and in fact outper-

Poster Session 6

IIS-1054960, and the UCSD FWGrid Project, NSF Research

Annotation Retrieval
| Xe| | Precision Recall F-score AROC MAP P10
CBA| 0378 0262 0248 0738 0.482 0.505
CALS00 400 7R 0434 0272 0281 0748 0493 0.508
CBA| 0355 0263 0244 0741 0.484 0.505
CALI0K LR | 0429 0269 0277 0749 0492 0.498 (1
sg7 CBA| 0377 0263 0249 0744 0489 0.505
, LR | 0434 0273 0.282 0751 0.497 0.517 [2]

Table 3. Results using codebooks learned from unlabeled
data (CAL10k), compared with codebooks from CALS500,
with codewords from model classes BoS-DTM; ,-GMM,,
where | X,| is the cardinality of the codebook training set.

(4]

[3]

(6]

Annotation Retrieval
\Precision Recall F-Score AROC MAP P10
HEM-GMM 0297 0404 0264 0714 0350 0315
HEM-DTM 0289 0391 0259 0702 0.354 0314
CBA| 0310 0495 0295 0.756 0.414 0.361
BoS-DTM;2-GMM1 "Rl 0336 0493 0319 0757 0.414 0353

Table 4. Summary of results training on CAL10k.

form the CALS500 codebooks with a larger codebook set.
This shows that a dictionary of musically meaningful code-
words may be estimated from any large collection of songs,
which need not be labeled, and that a performance gain can
be achieved by adding unlabeled songs to the codebook set.

5.3 Results training on CAL10k

Results training codebooks and tag models on the CAL10k
dataset, in Table 4, show that the BoS approach still outper-
forms the direct tag modeling approaches when trained on a
separate dataset. We also see that the generative CBA model
catches up to the discriminative LR model in some perfor-
mance metrics, which is expected, since generative models
tend to be more robust on weakly labeled datasets.

6. CONCLUSION

We have presented a semantic auto-tagger that leverages a
rich “bag of systems” representation of music. The latter
can be learned from any representative set of songs, which
need not be annotated, and allows to integrate the descrip-
tive quality of various generative models of musical content,
with different time resolutions. This approach improves per-
formance over directly modeling tags with a single type of
generative model. It also proves significantly more robust
for tags with few training examples.

7. ACKNOWLEDGMENTS

The authors thank L. Barrington and M. Hoffman for pro-
viding the code of [19] and [10] respectively, and acknowl-
edge support from Qualcomm, Inc., Yahoo! Inc., the Hell-
man Fellowship Program, NSF Grants CCF-0830535 and

(71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

728

Infrastructure Grant Number EIA-0303622.

8. REFERENCES
D. Aldous. Exchangeability and related topics. 1985.

Michael Casey, Christophe Rhodes, and Malcolm Slaney. Analysis of
minimum distances in high-dimensional musical spaces. IEEE Trans-
actions on Audio, Speech and Language Processing, 16(5):1015-1028,
2008.

A. B. Chan and N. Vasconcelos. Modeling, clustering, and segmenting
video with mixtures of dynamic textures. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(5):909-926, 2008.

A.B. Chan, E. Coviello, and G. Lanckriet. Clustering dynamic textures
with the hierarchical EM algorithm. In Proc. IEEE CVPR, 2010.

E. Coviello, A. Chan, and G. Lanckriet. Time Series Models for Se-
mantic Music Annotation. Audio, Speech, and Language Processing,
IEEE Transactions on, 19(5):1343-1359, July 2011.

G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dynamic textures. Intl.
J. Computer Vision, 51(2):91-109, 2003.

D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green. Automatic gener-
ation of social tags for music recommendation. In Advances in Neural
Information Processing Systems, 2007.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. Liblinear: A library for large linear classification. Jour-
nal of Machine Learning Research, 9:1871-1874, 2008.

M. Hoffman, D. Blei, and P. Cook. Content-based musical similarity
computation using the hierarchical Dirichlet process. In Proc. ISMIR,
pages 349-354, 2008.

M. Hoffman, D. Blei, and P. Cook. Easy as CBA: A simple probabilis-
tic model for tagging music. In Proc. ISMIR, pages 369-374, 2009.

M.I. Mandel and D.P.W. Ellis. Multiple-instance learning for music in-
formation retrieval. In Proc. ISMIR, pages 577-582, 2008.

S.R. Ness, A. Theocharis, G. Tzanetakis, and L.G. Martins. Improving
automatic music tag annotation using stacked generalization of prob-
abilistic svm outputs. In Proc. ACM MULTIMEDIA, pages 705-708,
20009.

E. Pampalk, A. Flexer, and G. Widmer. Improvements of audio-based
music similarity and genre classification. In Proc. ISMIR, pages 628—
633, 2005.

A. Ravichandran, R. Chaudhry, and R. Vidal. View-invariant dynamic
texture recognition using a bag of dynamical systems. In CVPR, 2009.

J. Reed and C.H. Lee. A study on music genre classification based on
universal acoustic models. In Proc. ISMIR, pages 89-94, 2006.

D.E. Sturim, DA Reynolds, E. Singer, and JP Campbell. Speaker in-
dexing in large audio databases using anchor models. In icassp, pages
429-432. IEEE, 2001.

M.J. Swain and D.H. Ballard. Color indexing. International Journal of
Computer Vision, 7(1):11-32, 1991.

Derek Tingle, Youngmoo E. Kim, and Douglas Turnbull. Exploring
automatic music annotation with “acoustically-objective” tags. In Proc.
MIR, pages 55-62, New York, NY, USA, 2010. ACM.

D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Semantic an-
notation and retrieval of music and sound effects. IEEE Transactions
on Audio, Speech and Language Processing, 16(2):467-476, February
2008.

G. Tzanetakis and P. Cook. Musical genre classification of audio sig-
nals. IEEE Transactions on speech and audio processing, 10(5):293—
302, 2002.

