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ABSTRACT

Music can induce different emotions in people. We propose
a system that can identify music segments which induce spe-
cific emotions from the listener. The work involves building
a knowledge base with mappings between affective states
(happiness, sadness, etc.) and music features (rhythm, chord
progression, etc.). Building this knowledge base requires
background knowledge from music and emotions psychol-
ogy. Psychophysiological responses of a user, particularly,
the blood volume pulse, are taken while he listens to music.
These signals are analyzed and mapped to various musical
features of the songs he listened to. A motif discovery al-
gorithm used in data mining is adapted to analyze signals
of physiological data. Motif discovery finds patterns in the
data that indicate points of interest in the music. The differ-
ent motifs are stored in a library of patterns and used to iden-
tify other songs that have similar musical content. Results
show that motifs selected have similar chord progressions.
Some of which include frequently used chords in western
pop music.

1. INTRODUCTION

Music has become a ubiquitous form of entertainment. Peo-
ple listen to music in various situations: while travelling,
doing sports, studying, or relaxing. Music structure and fea-
tures can be used to select music appropriate to the emo-
tional interest of its listeners. This has been researched in
various fields like music and emotion psychology, music in-
formation retrieval, and more recently affective computing.

Automatically detecting the emotion or mood content of
music is still in its early stages. Some of the work involve
manually annotating songs with emotion tags by individual
human annotators [16], social tagging [13], and even using
games to make the task more interesting for annotators [10].
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Human assessment of music emotion or mood is based
from what is heard. As such, a lot of work is devoted to un-
derstanding how various music features and music structure
play a role in inducing emotion. A detailed review of these
works can be found in [4,8,11].

The work of Livingstone, et al. [11] also demonstrates
that by changing specific music elements, the emotion per-
ceived by the listener also changes. A similar research is
also done in [14] but instead of relying on verbal reports of
feelings, emotion data is derived from analyzing change in
activity in the autonomic nervous system.

Another approach to identifying emotion is using psy-
chophysiological data. Researchers observed that changes
in musical features lead to a change in physchophysiologi-
cal response. For example, change in tempo lead to changes
in respiration rate [3,7]. Krumhansl [9] also noted increases
in heart rate variability during sad, fearful and happy music.
The use of physiological response also reflect an unbiased,
objective emotional response to music listening as compared
to self-reporting of emotions.

In this paper, we propose an approach for identifying
music features that affect emotion. We identify patterns in
psychophysiological data using a motif discovery algorithm
and analyze the music elements used at the time the patterns
were discovered.

We begin by defining some concepts and notations im-
portant for understanding the approach used. In section 3
and 4, we describe the framework used for the research. In
section 5, we describe details of data collection and imple-
mentation of the algorithms presented. Next, results of our
experiments are discussed together with observations made.
Final section includes the conclusion and future work.

2. TIME SERIES MOTIFS

For clarity, first we define concepts and terminology needed
to understand our work. These definitions are taken from
[2]. The physiological signals are a continuous stream of
real-valued data measured at a constant sampling rate. In
data mining, this can be considered atime series. A time
seriesT is defined as an ordered set of real-valued variables.

A motif is described as a pair of subsequences from the
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Figure 1. Architectural framework

time series that are found to be similar. Asubsequence C is
a sampling of lengthn of contiguous positions inT .

Similarity between two subsequences is measured using
a distance metricD(Ci, Ck). It is possible to find many
motifs in one time series, the most significant of these is
referred to as1-motif. To ensure that the1-motif does not
share elements with other motifs, a rangeR is defined such
thatD(Ci, Ck) > 2R, for all 1 ≤ i < k.

3. ARCHITECTURAL FRAMEWORK

The proposed framework of our system is shown in Figure 1.
Our approach requires collecting psychophysiological data
from a subject while he listens to music. We consider an-
alyzing data from : blood volume pulse (BVP), respiration
(RR), and skin conductance (SC). These are then passed on
to a motif discovery module that attempts to discover pat-
terns in the time series data. Details of this module are dis-
cussed in the next section.

A music feature extraction module is also included to de-
termine various information from the music (i.e., beat oc-
currences, tempo, chords used, etc.). These are used by the
motif discovery module to annotate discovered motifs.

Each motif is analyzed and annotated with music features
that were present when the signal occurred. A library of
different motifs is built and the data contained within is used
by a music recommendation system that will generate a play
list of songs that have similar music features. Intuitively, we
expect that the subject will enjoy listening to music similar
to that he has experienced.

This paper discusses the work done upto the motif dis-
covery module using BVP data. The music recommendation
system is currently being developed and will be described in
future publications.

4. MOTIF DISCOVERY

The process of motif discovery is illustrated in Figure 2.
This algorithm is adapted from the work in [2] where they
used a projection algorithm by Buhler and Tompa [15]. The

Figure 2. Data flow diagram for motif discovery

objective of the algorithm is to find signals that are very sim-
ilar to each other. Physiological signals that keep on recur-
ring would indicate that music passages heard at these points
are interesting to the listener (i.e., it makes him relaxed,or
he enjoys the music segment).

The motif discovery algorithm can be separated into 3
main parts: data preparation, conversion of the data to sym-
bolic form using the Symbolic Aggregate ApproXimation
(SAX) representation, and motif discovery using the pro-
jection algorithm. Each part is described in the following
subsections.

4.1 Data preparation

Prior to motif discovery, the physiological data undergoes
offset and amplitude scaling transformations using (1) and
(2), respectively [1,6,17,18].

Qoffset = Q−

∑n

i=1 qi
n

, (1)

whereQ is defined as a time series withn length and
Qoffset is the time series after offset transformation.

Qscaled =
Qoffset

σ
, (2)

whereσ is the standard deviation of the data andQscaled is
the time series after amplitude scaling transformation.

In order to reduce further problems when comparing dif-
ferent subsequences, all data is normalized to the range [0,1]
using (3).

Q =
Q−min(Q)

max(Q)−min(Q)
(3)

4.2 SAX representation

The Symbolic Aggregate ApproXimation (SAX) represen-
tation is used to convert any time series into a string of sym-
bols. By using SAX, powerful algorithms on string pat-
tern analysis developed in other fields can be used. The
first step is to convert the time seriesC of lengthn to a
w-dimensional space by a vector̄C = c̄1, ..., c̄w. The ith
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H
H
H
H
H

βi

a
3 4 5 6

β1 −0.43 −0.67 −0.84 −0.97
β2 0.43 0 −0.25 −0.43
β3 0.67 0.25 0
β4 0.84 0.43
β5 0.97

Table 1. A lookup table containing breakpoints that divides
a Gaussian distribution in an arbitrary number (from 3 to 6)
of equiprobable regions

Figure 3. The physiological signal (thin smooth line) is dis-
cretized by first obtaining a PAA approximation and then
using predetermined breakpoints to map the PAA coeffi-
cients into symbols (bold letters). In the example above,
with n = 190, w = 12 anda = 4, the time series is mapped
to the wordacdddcbbacdd

element ofC̄ is calculated by the equation:

c̄i =
w

n

n

w
i

∑

j= n

w
(i−1)+1

cj (4)

Using this equation, the time series is divided intow
equal sized frames. The average values of data in each
frame is calculated and a dimensionality-reduced represen-
tation known as the Piecewise Aggregate Approximation
(PAA) [5] is produced.

After transforming the time series into PAA represen-
tation, another transformation is applied to obtain the dis-
crete representation. Assuming that the subsequences have
a Gaussian distribution, we determine “breakpoints” that
will produce equal-sized areas under the Gaussian curve.
A breakpoint is a sorted list of numbersB = β1, ...βa−1

such that the area under aN(0, 1) Gaussian curve fromβi

to βi+1 = 1/a (β0 andβa are defined as -∞ and∞, respec-
tively). a refers to the alphabet size used for SAX.

The breakpoints are stored in a look-up table similar to
Table 1. Using the breakpoints, the time series can be dis-
cretized by going through each PAA coefficients. All coeffi-
cients below the smallest breakpoint are mapped to the sym-
bol “a”, all coefficients greater than or equal to the smallest
breakpoint and less than the second smallest breakpoint are
mapped to the symbol “b”, etc. Figure 3 illustrates the idea.

The concatenation of symbols of the subsequence that is

a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

Table 2. A lookup table for MINDIST function. This table
is for a SAX representation havinga = 4. The distance can
be obtained by matching the row and column. For example
dist(a,b)= 0 anddist(a,c)= 0.67

formed is defined as aword. Each PAA approximation is
mapped to a symbol using Equation (5).ai denotes theith

element of the alphabet, i.e.a1 = a, a2 = b, etc.

ĉi = ai iff βj−1 ≤ c̄i < βj (5)

The distance between two words can be measured by us-
ing aMINDIST function that returns the minimum distance
between the original time series of the two words:

MINDIST (Q̂, M̂) ≡

√

n

w

√

√

√

√

w
∑

i=1

(dist(q̂i, m̂i))2 (6)

This function resembles the original Euclidean distance
(7) used for comparing the distance between two time se-
riesQ andM . The functionMINDIST uses a subfunction
dist(), which can be implemented using a table lookup as il-
lustrated in Table 2. The value in cell (r, c) for any lookup
table can be calculated by the expression in (8).

D(Q,M) ≡

√

√

√

√

n
∑

i=1

(qi −mi)2 (7)

cellr,c =

{

0, if |r − c| ≤ 1
βmax(r,c)−1 − βmin(r,c), otherwise

(8)

4.3 Projection algorithm

The motif discovery algorithm proceeds by extracting sub-
sequences from the SAX representation. Each subsequence
of lengthw is placed into a matrix̂S. Once the matrix has
been constructed, we proceed to random projection. We ran-
domly selectw2 columns ofŜ to act as a mask. For example,
givenw = 4, columns{1,3} can be chosen to act as mask.
Afterwards, allwords in theŜ matrix are hashed into buck-
ets based only on their values in the1st and3rd columns. If
two words corresponding to subsequencesi andj are hashed
to the same bucket, we increase the count of cell(i, j) in a
collision matrix.

This hashing process is repeatedk times, with new, ran-
domly chosen masks every iteration. Once completed, the
highest value stored in the collision matrix correspond to
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the candidate motif. For example, if the largest value in the
collision matrix is at cell(2, 43) thenC2 andC43 are the
subsequences of the candidate motif. We confirm this by
comparing the original time series data and using Euclidean
distance to compute the distance.

At this point, it is possible to find other members of the
motif. To find other members, we consider the other values
of the collision matrix at(i, 2) and (i, 43). Once all the
matching subsequences withinR of C2 andC43 have been
found, results are reported to the user.

5. METHODOLOGY

5.1 Data Collection

For this research, we concentrate on analysing data from one
subject (a 22-year male graduate student). The songs he lis-
tened to are part of the music dataset described in [12]. The
collection includes 301 songs from various artists as well as
annotations for song key, chords, beat and metric position,
and segmentation (i.e. intro, verse, chorus, etc.). Songs for
the experiments were selected based on three constraints.
First, the song should not have any key and tempo changes.
Second, the song should have complete chord and beat an-
notations. Last, the song is in a major key. Using this cri-
teria, 83 songs were selected which include 77 songs from
The Beatles, four Queen songs, and two Carole King songs.

Our subject listened to songs via audio-technica closed
headphones (ATH-T400) connected to a computer in a con-
trolled experiment room. Using the BioGraph Infinity Sys-
tem1 , the BVP was recorded. The sensor is attached to the
subject as shown in the experiment setup in Figure 4.

Several sessions were needed for the subject to listen to
all the songs without making him feel stressed. Each session
took approximately 20 minutes, which allowed the subject
to listen to seven to nine songs per session. One week was
needed to complete the data collection. Sessions were held
at the same time of the day throughout the week.

Before each session ended, the subject also self-reported
the mood he had while listening to the songs. A scale of one
to five was used to describe how happy and how exciting the
song made him feel.

Although 83 songs were used for the data collection, only
data from 64 songs are included for analysis for this exper-
iment. Only songs that made the subject happy (i.e. songs
rated three and above) and have a tempo between 76 – 168
beats per minute (bpm) are included. The tempo and key
information of the music data set is shown in Table 3.

1 About BioGraph Infinity System. Thought Technology Ltd. 14 May
2011. http://www.thoughttechnology.com

Figure 4. Data collection setup: BVP sensor worn on right
index finger while listening to music via closed headphones

Key
Tempo

Total
Andante Moderato Allegro

C 1 1 3 5
D 1 1 7 9
E 3 3 8 14
F 2 1 2 5
F] 0 0 1 1
G 5 2 3 10
A[ 1 0 0 1
A 5 4 5 14
B[ 1 0 1 2
B 1 1 1 3

Total 20 13 31 64

Andante : 76–108bpm Allegro : 120-168bpm
Moderato : 108–120bpm

Table 3. Summary of music included for motif discovery

5.2 Music feature extraction

Since the isophonics dataset already includes chord, beat,
key and segment annotations for the different songs, only a
simple text parser to read the different file annotations was
needed. These annotations were manually done by music
experts and students [12].

For the motif discovery, the physiological data is mapped
to the chord information to determine what chord is being
heard at that instance. The music features and the motif
subsequences are stored in a file for cross-reference after
motif discovery.

5.3 Motif discovery

All the 64 physiological readings were analyzed using three
sets of parameters. Each set has varying sizes for motif
length (n) and word size (w). However, all sets used an
alphabet size ofa = 4 and a rangeR = 1.0. The parame-
ters used for each set are shown in Table 4. The motif length
values were set as such to vary the chord progression length
that was associated to a motif. The word size was adjusted
to maintain a compression ratio ofn

w
= 8.

756



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

Set No. n w Sequence length

1 1024 128 8 seconds
2 768 96 6 seconds
3 512 64 4 seconds

Table 4. Parameters used for the different sets

Figure 5. (top) The BVP signal of subject listening to
Please Mister Postman from the Beatles has a motif of
length 512 found as subsequenceC518 andC2264. (bottom)
By overlaying the two motifs, we see the similarity of the
two signals to each other.

6. RESULTS

Using the motif discovery algorithm, the most significant
motif (1-motif ) were obtained from the dataset. Figure 5
illustrates an example of a motif discovered.

We observe that the motif length is inversely proportional
to the number of motifs found. Using set number 1 (n =
1024), for example, only the songWith A Little Help From
My Friends was identified to have a motif (see Figure 6).
Analyzing the music features of the1-motif pair show that
these have similar chord progressions :C764 has the chord
progression F] - B - E - B - F]m, andC1618 has B - F]m - B -
E - D - A. This suggests that using the chord progression will
produce a similar physiological response. This phenomena
can also be observed in most motif pairs taken from other
physiological data. Table 5 shows the amount of motifs that
were discovered to have similar chord progressions.

From the results of the motif discovery, on average, a mo-
tif length that will give four to six seconds of chord progres-
sion is desirable. The complexity of the chord progression
will depend on the length of motif. Since the exact length of
the motif is not known, an algorithm that does not use motif
length as a parameter should be used instead.

Other chord progressions identified by motif discovery
using parameter set 3 are found in Table 6. The chord pro-
gressions I-IV, I-IV-V and I-IV-V-I from the songPlease
Please Me are mapped to the1-motif for that song. These
chords sound similar and possibly invoke the same emo-
tional response for that song. Some motifs will have similar

Figure 6. The motif discovered for the songWith A Little
Help From My Friends with n = 1024 occurring at subse-
quenceC764 andC1618.

Set No. motif count
motifs with similar
chord progressions

1 1 (1/64 = 1.5%) 1 (1/1 = 100.0%)
2 25 (25/64 = 39.0%) 17 (17/25 = 68.0%)
3 61 (61/64 = 95.3%) 39 (39/61 = 63.9%)

Table 5. Number of motifs discovered for each parameter
set and statistics for motifs with similar chord progressions

chord progressions but not in all cases. There are also mo-
tifs that have different chord progressions mapped to it, i.e.
chords found inGood Day Sunshine.

Using motif discovery, we are able to discover chord pro-
gressions that are commonly used in western pop music.
Given enough data, the library of motif could be used to
identify the most frequently used chord progressions that
invoke an emotional response by clustering similar psycho-
physiological motifs. This can be used in composing or rec-
ommending music with a desired emotion or mood.

7. CONCLUSION AND FUTURE WORK

In this work, psychophysiological readings from a subject
listening to music was collected. A motif discovery algo-
rithm was used to discover motifs from the BVP data. We
observe that parts of music where the motif occur, have sim-
ilar chord progressions and possibly other music features as
well. By improving the algorithms used in this work, a li-
brary of different motifs can be built.

Future work includes additional analysis on the motifs to
include other music features. Improving the motif discovery
algorithm to dynamically identify motif length is also de-
sired in order to have a more accurate account of the chord
progressions that are important. Another round of data col-
lection will also be done using a different set of participants.
Analysis of other physiological data, (i.e. respiration rate
and skin conductance) is also planned. A music recommen-
dation system is also being designed that will use the infor-
mation from motifs to generate a play list of songs that have
similar emotion content.
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Song Key Chord progression

Act Naturally G G-D-G I-V-I
G-D I-V

Dizzy Miss Lizzy A D-A IV-I
A-D I-IV
E-D-A V-IV-I

For You Blue D D-A-D I-V-I
D-A I-V
D-A-G7 I-V-IV

Good Day Sunshine A B7-E7-A ii-V-I
F]-B-F] vi-ii-vi

Please Please Me E E-A I-IV
E-A-B I-IV-V
E-A-B-E I-IV-V-I

With A Little Help E B-E-B V-I-V
From My Friends F]m-B-E ii-V-I

Yesterday F B[/7-Gm-C-F IV-ii-V-I
Gm-C-F-F7 ii-V-I-I

Table 6. Subset of results using parameter set 3
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