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ABSTRACT

To automatically annotate songs with descriptive keywords,
a variety of content-based auto-tagging strategies have been
proposed in recent years. Different approaches may capture
different aspects of a song’s musical content, such as tim-
bre, temporal dynamics, rhythmic qualities, etc. As a result,
some auto-taggers may be better suited to model the acous-
tic characteristics commonly associated with one set of tags,
while being less predictive for other tags. This paper pro-
poses decision-fusion, a principled approach to combining
the predictions of a diverse collection of content-based auto-
taggers that focus on various aspects of the musical signal.
By modeling the correlations between tag predictions of dif-
ferent auto-taggers, decision-fusion leverages the benefits of
each of the original auto-taggers, and achieves superior an-
notation and retrieval performance.

1. INTRODUCTION

The recent age of music proliferation has raised the need
for automatic algorithms to efficiently search and discover
music. Many successful recommendation systems rely on
textual metadata provided by expert musicologists or social
services in the form of semantic tags — keywords or short
phrases that capture relevant characteristics of music pieces,
ranging from genre and instrumentation, to mood and usage.
By bridging the gap between music and human semantics,
tags allow semantic retrieval based on transparent textual
descriptions, or query-by-example recommendation based
on semantic similarity (as opposed to acoustic similarity) to
a query song.

Meta-data-based methods work well in practice, provided
that enough annotations are available. However, the cold
start problem and the prohibitive cost of manual labour limit
their applicability to large-scale applications. Therefore, the
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deployment of modern music recommendation systems can
benefit from the development of auto-taggers, i.e., machine-
learning algorithms that automatically analyze and index mu-
sic with semantic tags, which can then be used to improve
the search experience and speed up the discovery of desired
content.

1.1 Previous work

Most auto-taggers are based on music content analysis and
are trained from a database of annotated songs (e.g., see [8,
10, 12,20]). After extracting a set of acoustic features from
each training song, a series of statistical models are esti-
mated, each of which capturing the characteristic acoustic
patterns in the songs that are associated with one of the tags
from a given vocabulary. When analyzing a new song, the
auto-tagger processes the time series of acoustic features of
the song and outputs a vector of tag-affinities. The affinity-
vector can then be transformed into a semantic multinomial
(SMN), i.e., a probability distribution characterizing the rel-
evance of each tag to a song. A song is then annotated
by selecting the top-ranking tags in its SMN, or the SMN
itself can be used as a high-level descriptor, e.g., for re-
trieving songs based on semantic similarity. A number of
discriminative (e.g., see [3, 8,9, 12, 18, 23]) and generative
(e.g., see [10,17,20,21]) machine learning algorithms have
been proposed to model predictive acoustic patterns in au-
dio content based on a bag-of-features (BoF) representation,
which treats audio features independently and ignores their
temporal order. Recently, Coviello et al. [6] proposed to
leverage dynamic texture mixture (DTM) models for auto-
tagging purposes. More precisely, DTM-based auto-taggers
model audio fragments (i.e., time series of audio features
extracted from a few seconds of musical signal) as the out-
put of linear dynamical systems. This approach explicitly
captures temporal structures in the musical signal, whereas
a BoF representation discards such dynamics.

At a higher level of abstraction, contextual approaches
have focused on modeling the semantic context that drives
the correlation between different tags (e.g., a song tagged
with “drums” is more likely to also be tagged with “electric
guitar” than “violin”). While content-based models oper-
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ate on low-level acoustic features to predict semantic multi-
nomials, contextual models are designed to capture mean-
ingful tag correlations in these SMNs, to reinforce accu-
rate tag predictions while suppressing spurious ones. So,
a contextual model naturally complements a content-based
model, which usually treats tags independently. Combin-
ing them has been shown to improve performance. State-
of-the-art solutions are based on discriminative approaches
(e.g., support vector machines [14], boosting [1], ordinal re-
gression [24]) as well as generative models (e.g., Dirichlet
mixture models (DMM) [13]).

1.2 Original contribution

The main contribution of this paper is to propose decision-
fusion, which uses semantic context modeling to simultane-
ously leverage the benefits of different content-based auto-
taggers. Using two or more content-based auto-taggers that
emphasize diverse aspects of the musical signal (e.g., only
timbre vs. temporal dynamics), we collect alternative opin-
ions on each song-tag association. We expect that, besides
modeling the context between tags predicted from the same
auto-tagger, context modeling can capture the correlations
that arise between tag predictions based on different auto-
taggers, leading to a more sophisticated system.

This offers a solution to the problem of selecting or com-
bining alternative annotation models that previous work has
pointed out. Coviello et al. [6], for example, noted that
even though their DTM-based auto-tagger generally outper-
formed a BoF approach based on Gaussian mixture models
(GMM), the improvements were most significant on tags
with clear temporal characteristics; for some tags, in fact,
the GMM-based model was still favorable (i.e., tags where
“timbre says it all”).

Experimental results show that decision-fusion leads to
improved annotation and retrieval performance compared
to i) each individual auto-tagger, ii) each individual auto-
tagger in tandem with a contextual model (the “traditional”
context-based approach) and iii) various other approaches
to combining multiple content-based auto-taggers, such as
fixed-combination rules and the regression-based combina-
tion algorithms proposed by Tomasik et al. [19]. We note
that the focus of the latter was slightly different from our
work, since it investigates the combination of tags predicted
from different information sources (i.e., content-based auto-
tags, social tags, collaborative-filtering-based tags), rather
than from different content-based auto-taggers only. In ad-
dition, as semantic context modeling is naturally comple-
mentary to any content-based auto-tagger, we corroborate
the intuition that there is a benefit in combining DTM-based
temporal modeling and semantic context modeling, which
has not been shown before.

The remainder of this paper is organized as follows. A
brief review of the automatic music tagging problem and the
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models used in this work are presented in Section 2. Sec-
tion 3 discusses decision-fusion. Lastly, the experimental
setup and results are reported in Sections 4 and 5, respec-
tively.

2. AUTOMATIC MUSIC TAGGING

The automatic task of music tagging is widely tackled as
a supervised multi-class labeling problem [2], where each
class corresponds to a tag w; of a semantic vocabulary V
(e.g., “rock”, “drum”, “tender”, “mellow’). The music con-
tent of a song is represented as a time series of low-level
acoustic features Y = {yy,...,yr}, where each feature
is extracted from a short snippet of the audio signal and
T depends on the length of the song. The semantic con-
tent with respect to V is represented as an annotation vector
c = (c1,...,¢y)), where ¢; > 0 only if there is a posi-
tive association between a song and the tag w;. The goal
of an auto-tagging system is to infer the relevant semantic
annotations of unseen songs.

At this aim, a set of statistical models is trained to capture
the patterns in the audio feature space associated with each
tag in V, from a database D = {(Vy, cd)}‘dZ‘1 of annotated
songs. Based on the learned tag models, the auto-tagger can
process the acoustic features extracted from a novel song
Y and produce a vector of tag-affinities, which is mapped
into a semantic multinomial # = (7, ..., 7)y|) lying on a
semantic space (i.e., Zi m; = 1 with m; > 0), where 7; =
P(w;|Y) represents the probability that the i*" tag applies
to song ).

In order to leverage high level relationships that arise in
the tag predictions of content-based auto-taggers, contex-
tual approaches additionally introduce a second modeling
layer to capture meaningful tag correlations in the SMNs.
In particular, a content-based auto-tagger is used to produce
a SMN 7, for each song ), in D, while a second layer of
statistical models is trained onto { (7, cd)}lgl, to capture
which patterns in the SMNs are predictive for each tag. For
a novel song ), the contextual tag models can therefore be
used to refine the semantic multinomial 7 produced by the
content-based auto-tagger.

Music annotation involves finding the tags that best de-
scribe a song; this is achieved by selecting the subset of tags
that peak in its semantic multinomial. Retrieval given a one-
tag query, requires ranking all songs in a database based on
their relevance to the query, e.g., the corresponding entry in
the semantic multinomials [20].

In the following we review a variety of content-based
auto-tagging strategies, where low-level acoustic content is
represented either as a bag-of-features (Sections 2.1.1 and
2.1.2) or as a time series of features (Section 2.1.3). Ad-
ditionally, Section 2.2 introduces a contextual approach for
modeling tag correlations as well.
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2.1 Content modeling

Content-based auto-taggers have been designed to model
the acoustic content associated with tags and represented as
a bag-of-features using both generative and discriminative
models, as in Sections 2.1.1 and 2.1.2, respectively; con-
versely, the use of time series of audio features for music
tagging has been considered in the generative approach of
Section 2.1.3 only.

2.1.1 The Gaussian mixture model (GMM)

Turnbull et al. [20], proposed to capture the most prominent
acoustic textures associated to each tag w; in V with a prob-
ability distribution p(y|w;) over the space of audio features
y, which is a Gaussian mixture model (GMM):

R
pylw) = 3 e Nyl 50, ()
r=1

where R is the number of mixture components, NV (-|u, 3) a
multivariate Gaussian distribution with mean g and covari-
ance matrix X, and a“’f’ the mixing weights. The parame-
ters {a¥i, p¥i, X0}t of each tag model p(y|w;) are es-
timated from the bag of-features extracted from the songs
in D that are positively associated with w;, using the hierar-
chical expectation-maximization (EM) algorithm [22].

Given the audio content of a new song YV = {yy, ..., Yy},
the relevance of each tag w; is computed using the Bayes
rule:

p(Y|wi) P(w;)
p(y)

where P(w;) is the tag prior (assumed to be uniform) and
p(Y) the song prior, ie., p(V) = SV p(V]w;)P(w)).
The likelihood term in (2) is computed as the geometric av-
erage of the individual sequence likelihoods, i.e., p(Y|w;) =

T 1
[T p(ylwi) ™

i = P(w|Y) = @)

2.1.2 Boosting (BST)

The boosting approach proposed by Eck et al. [8] is a super-
vised discriminative algorithm that learns a binary classifier
for each tag w; in the vocabulary V), from both the posi-
tive and the negative training examples for that tag. More
specifically, it constructs a strong classifier which combines
a set of simpler classifiers, called weak learners, in an itera-
tive way. As weak learners, according to [1], we use single
stumps (i.e., binary thresholding on one low-level acoustic
feature).

A novel song ) is classified by each of the binary clas-
sifiers and Platt scaling is applied to produce a probability
estimate m; = P(w;|)) for each tag w;. We will refer to
this approach as BST.
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2.1.3 Temporal modeling (DTM)

Coviello et al. [6] proposed a novel auto-tagger built upon
the DTM model, which explicitly captures both the timbral
and the temporal structures of music that are most predic-
tive for each tag. Specifically, the dynamic texture (DT)
model [7] treats an audio fragment vy, . as output of a linear
dynamical system. The model consists of a double embed-
ded stochastic process, in which a lower dimensional Gauss-
Markov process x; encodes the dynamics (evolution) of the
acoustic component y, over time

Each tag distribution is modeled with a dynamic texture
mixture (DTM) [4] probability density over sequences of
audio feature vectors:

R
p(Yr-lws) =Y alp(y,..[6©0")) (3)
r=1

where R is the number of mixtures and G)(wi is the 7"
DT component. The parameters {aiw"’), e, wi) I, are es-
timated based on the audio fragments extracted from the
songs in D positively associated with the tag w;, using an ef-
ficient hierarchical EM algorithm for DTM (HEM-DTM) [5].
Given the audio fragments extracted from a new song
Y ={yl.., ..., y¥ .}, where F depends on the length of
the song, the relevance of tag w; is computed using Bayes’
rule (2), with the likelihood computed as the geometric aver-
age of the individual sequence likelihoods smoothed by the

sequence length 7, i.e., p(V|w;) = [T1—; p(y., |w;) 7=.

2.2 Context modeling (DMM)

As mentioned in Section 1.1, different approaches have been
proposed to model contextual relationships in SMNss; in this
work, we use the DMM [13]. The DMM is a generative
model that assumes the SMNs 7 of the songs positively as-
sociated to a tag w; are distributed accordingly to a mixture
of Dirichlet distributions over the semantic space defined by
V:
R

3" ¥ Dir(rrlal) .

r=1

p(m|wi; ) = Q)
where R is the number of mixtures, ﬁ;: are the mixing
weights, and Dir(+|av) is a Dirichelet distribution of param-
eters & = (i, ..., ay|). The parameters of the DMM for
each tag w; in V are estimated from the semantic multino-
mials extracted from the songs in D positively associated
with the tag, via the generalized EM algorithm [16].

Hence, given a new song described by the SMN
m = (m1,...,my|), the relevance of a tag w; is computed
using Bayes’ rule to get the tag posterior probabilities in the
context space:

p(|wi) P(w;)

b p(m)

&)

= P(wi|r) =
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All the tag posterior probabilities form the contextual multi-
nomial distribution of the song, i.e., 8 = (01, ...,0)y)),
which can then be used for semantic annotation and retrieval.

3. DECISION-FUSION

Each content-based auto-tagger generally emphasizes par-
ticular aspects of the musical signal. Despite some auto-
taggers could be preferred over others based on average per-
formances (Table 1, part (a)), the spread in performances
registered on specific tags (e.g., see Figure 1) makes unclear
if any auto-tagger may be the best. This leaves open the
problem of choosing the most appropriate method for each
tag, or, indeed, the one of combining different auto-taggers.

In this paper we argue that semantic context modeling
can also be used as a strategy to combine different content-
based auto-taggers, which we name decision-fusion. Indeed,
by modeling the patterns that arise from the tag predictions
generated by different content-based auto-taggers, decision-
fusion combines all the different opinions into a single pre-
diction and leverages the benefits of each of the acoustic
characteristics emphasized by the original auto-taggers.

Formally, let us assume a group A of different content-
based auto-tagging algorithms is available. For each song
d in the database D, semantic multinomials 7§ for a =
1,...,|A| are computed (i.e., one for each auto-tagger in
A) and pooled together into the aggregated semantic multi-
nomial:

A
ﬂ'd'A:(ﬂ(li,...,Tl'ld ‘),

(6)

which is intended to be normalized to sum to 1. In practice,
it is as we are now working with a new semantic vocabulary
VA = Y x ... x VM of size | A| - |V|, where each tag
is replicated |.4| times, one for each auto-tagger. Decision-
fusion consists in training a set of semantic context models,
i.e., p(mA|w;) for w; = 1,...,|V|, over the aggregated se-
mantic multinomials {(77', cd)}liz ll to capture both intra-
and inter-auto-taggers tag correlations. Note that traditional
context modeling acts on the SMNs of a single auto-tagger,
thus capturing only intra-auto-tagger correlations.
Decision-fusion can be implemented through a variety of
context-modeling algorithms. In particular, in this work we
tested the DMM presented in Section 2.2. Therefore, the ag-
gregated SMNs 74 of songs positively associated with tag
w; are assumed to be distributed accordingly to a mixture of
Dirichlet distributions over the semantic space VA:

R

> B Dir(m o) |

r=1

p(mA|w;) = 7

where o = (al, ceny a\A|~|v|)'
An unseen song ) is first processed by each of the content-

based auto-taggers available to produce the semantic multi-
nomials 7% fora = 1, ..., |.A|, which are then aggregated in
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7. Finally, Bayes’ rule as in Equation 5 is applied to com-
pute the posteriors 07 = p(w;|m*) for each tag w;, and to
form a decision-fusing multinomial 0 = (84, . . ., Qﬁ‘,l).

4. EXPERIMENTAL SETUP
4.1 Dataset

In our experiments, we used the CAL500 dataset [20], which
consists of 502 popular Western songs by as many different
artists. The CAL500 dataset provides binary annotations,
which are 1 when a tag applies to the song and 0 otherwise,
based on the opinions of human annotators. To accurately fit
the experimental models, we restrict ourselves to the subset
of 97 tags that have at least 30 songs positively associated
with them (11 genre, 14 instrument, 25 acoustic quality, 6
vocal characteristics, 35 emotion and 6 usage tags).

4.2 Audio features

The acoustic content of each song in the collection is repre-
sented by computing a time series of 34-bin Mel-frequency
spectral features [15], extracted over half-overlapping win-
dows of 92 ms of audio signal. For the auto-tagger based on
the DTM, Mel-frequency spectral features are grouped into
fragments of approximately 6 s. (with 80% overlap), which
corresponds to 7 = 125 consecutive feature vectors. For the
auto-tagger based on the GMM, the Mel-frequency spectral
features are decorrelated using the DCT, and the resulting
first 13 Mel-frequency cepstral coefficients are augmented
with first and second derivatives (MFCC-deltas). Lastly, for
the auto-tagger based on boosting, first and second order
statistics of the MFCC deltas are computed every 5 s., in
order to reduce the computational burden [8] .

4.3 Evaluation

In our experiments, we consider the models reviewed in Sec-
tion 2.1, which are the content-based auto-taggers referred
as GMM, BST, and DTM, and the semantic context mod-
eling based on the DMM. We obtained the authors’ code
to run each algorithm. We study model combination via
decision-fusion using the DMM and investigate all the pos-
sible combinations among the content-based auto-taggers
considered. For instance, when combining all the three auto-
taggers (i.e., when A = {GMM, BST,DTM}) Equation 7
acts on the aggregated semantic multinomials defined as:

A

7o GMM BST DTM) .

= (mg ", ™g, ™q (8)

To investigate the advantages of model combination via
decision-fusion, we compared its performances to a variety
of combination techniques, such as fixed-combination rules
[11] and trained-combiners based on regression [19], all of



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

which are applied on the outputs of the different content-
based auto-taggers (i.e., GMM, BST, DTM). We tested dif-
ferent fixed-combination rules (i.e., sum, product, arithmetic
average, minimum and maximum rule) in preliminary ex-
periments, with the sum rule (3 rule) being the best. So,
for example, when Y rule combines GMM, BST and DTM
summing the corresponding SMNSs, the final semantic multi-
nomial of each song s is:

SUM _

GMM
s +

DTM
s s

T T TFEST + , ©)]
which is intended to be normalized to 1.

Additionally, we implemented the trained-combiner based
on linear regression (LinReg), which Tomasik et. al [19]
showed to outperform alternative regression techniques. In
particular, we use LinReg to learn, on a tag-by-tag bases,
the optimal coefficients to combining different auto-taggers
to predict a ground truth of annotated songs. We refer the
reader to Section 3.3 of [19] for more details on this strategy.

Annotation and retrieval performances are measured fol-
lowing [20]. Test set songs are annotated with the 10 most
likely tags in their SMINs, and annotation accuracy is re-
ported by computing precision, recall and F-score for each
tag. Retrieval performance are evaluated with respect to
each one-tag query in our vocabulary; we report mean av-
erage precision (MAP), area under the receiver operating
characteristic curve (AROC) and top-10 precision (P10). All
metrics are averaged over all tags and are intended to be re-
sult of 5 fold cross validation, where each song appeared in
the test set exactly once.

5. RESULTS

Annotation and retrieval results are presented in Table 1.
Results for (a) individual auto-taggers are in the first block
of the table, results for (b) standard contextual approaches
are in the second block, and results for (c) content-based
auto-tagger combination are in the last four blocks.

First, we notice that for each combination of the content-
based auto-taggers considered, decision-fusion outperforms
all the other combination techniques, except in recall, where
LinReg is generally the best one. Second, differently from
> rule and LinReg, decision-fusion always improves with
respect to the original content-based auto-taggers combined.

Decision-fusion performs better by capturing the corre-
lations that arise between tag predictions based on differ-
ent auto-taggers and, consequently, by indirectly leveraging
various aspects of the musical signal emphasized by each
of those auto-taggers. Indeed, decision-fusion of BoF auto-
taggers with the DTM has major benefits, as it takes advan-
tage of predictions that are based on different fundamentals,
i.e., timbre and temporal dynamics vs. only timbre. On the
other hand, decision-fusion of GMM and BST, which both
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retrieval annotation

Model MAP  AROC P10 P R F-score
GMM 0.417 0.686 0425 0374 0.205 0.213
BST 0.432 0.701 0453 0334 0.144 0.170
DTM 0.446  0.708 0460 0.446 0.217 0.264

(a) content-based auto-taggers
GMM 0.447 0.711 0465 0.436 0.238 0.253
BST 0.457 0.711 0476 0424 0.201 0.241
DTM 0464  0.723 0480 0.461 0.236 0.275
(b) context-modeling with DMM
two BoF models A = (GMM, BST)
> rule 0.440  0.709 0463 0369 0.153 0.185
LinReg [19] 0.444 0.708 0459 0371  0.239 0.226
context fusion  0.460  0.719 0475 0425 0224 0.255
a BoF and a time-series model A = (BST, DTM)
> rule 0.454 0.721 0475 0385 0.156 0.189
LinReg [19] 0.445 0.711 0457 0388  0.237 0.228
context fusion  0.475 0.729 0.495 0434 0.221 0.265
a BoF and a time-series model A = (GMM, DTM)

> rule 0.461 0.726 0474 0445 0.229 0.267
LinReg [19] 0.456 0.722 0460 0.360 0.248 0.222
context fusion  0.470  0.730 0487 0.484 0.230 0.291

two BoF and a time-series model A = (GMM, BST, DTM)

> rule 0457 0725 0478 039  0.163 0.202
LinReg [19] 0452 0715 0465 0.384 0.242 0.232
context fusion  0.475 0.731 0.496 0456 0217 0.270

(c) auto-tagger combination

Table 1. Annotation and retrieval for the different models
on the CALS500 dataset. The best results for each scenario
are indicated in bold.

model only the timbre, does not achieve comparable im-
provements over the corresponding standard context-models.
In addition, the combination of all three auto-taggers with
decision-fusion leads to the best retrieval performance; yet
the modest improvements over the combination of BST and
DTM in retrieval are compensated by improvements in pre-
cision and F-score over the same method.

Figure 1 depicts the MAP score achieved by a subset of
tags, for the content-based auto-taggers (i.e., GMM, BST,
DTM) and for decision-fusion using GMM, BST and DTM.
Even if DTM could be preferred over both GMM and BST
based on the average performances reported in Table 1, the
Sfluctuation in performance on specific tags shown in Fig-
ure 1 suggests that each content-based auto-tagger may be
better suited for a subset of the tags than the others. How-
ever, leveraging a rich contextual information that benefits
from various acoustic characteristics of the musical signal,
decision-fusion using GMM, BST and DTM performs best
on the majority of all the tags reported.

Finally, part (b) of Table 1 also reports that standard con-
text modeling always improves over the individual perfor-
mance of the original content-based auto-taggers. While
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Figure 1. Retrieval performance (MAP) for a subset of the
CALS500 vocabulary for GMM, BST, DTM, and decision-
fusion of GMM, BST and DTM. Among the content-based
auto-tagger, each one appears to be best on a subset of tags.
However, decision-fusion is superior on the majority of tags.

Miotto et al. [13] already showed this for the BoF models
(i.e., GMM and BST), we have demonstrated that it holds
true for the DTM as well.

6. CONCLUSION

In this paper we have proposed decision-fusion as a strat-
egy for combining different content-based auto-taggers. It
uses semantic context modeling to simultaneously leverage
the benefits of different content-based auto-taggers. Experi-
mental results demonstrate especially that it achieves better
annotation and retrieval performance than individual auto-
taggers and various other techniques to combining multiple
content-based auto-taggers.
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