

NEON.JS: NEUME EDITOR ONLINE

Gregory Burlet, Alastair Porter, Andrew Hankinson, Ichiro Fujinaga
Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT)

McGill University, Montréal, Québec, Canada
{gregory.burlet,alastair.porter,andrew.hankinson}@mail.mcgill.ca, ich@music.mcgill.ca

ABSTRACT

This paper introduces Neon.js, a browser-based music
notation editor written in JavaScript. The editor can be
used to manipulate digitally encoded musical scores in
square-note notation. This type of notation presents
certain challenges to a music notation editor, since many
neumes (groups of pitches) are ligatures—continuous
graphical symbols that represent multiple notes. Neon.js
will serve as a component within an online optical music
recognition framework. The primary purpose of the editor
is to provide a readily accessible interface to easily
correct errors made in the process of optical music
recognition. In this context, we envision an environment
that promotes crowdsourcing to further the creation of
editable and searchable online symbolic music collections
and for generating and editing ground-truth data to train
optical music recognition algorithms.

1. INTRODUCTION

Music notation editors allow users to manipulate the
arrangement of symbols within a digitally encoded
musical score. Given the complexity of some musical
works, the arrangement of symbols may have intricate
relationships. Consequently, a music notation editor must
have knowledge of these symbols and their relationships
in a musical context to ensure that transformations to the
symbols in the editor yield a music score that is
syntactically correct. For example, the editor should
ensure that notes are placed correctly on the staff and that
musical properties are not violated.

There are three main issues that a music notation editor
must address: the notation encoding schema, the
rendering of symbols, and the relationship between the
notation encoding and the graphical representation. First,
the digital representation of symbols in the music
notation system must be systematically defined so that it
represents the desired musical structures and hierarchies.
Second, each symbol must be graphically rendered as
glyphs on the screen. Finally, changes made by the user
in the graphical interface must be translated accurately
and completely to the underlying encoding—a non-trivial
task since there may be cascading effects on other

symbols in the encoded document.
This paper introduces Neon.js, a music notation editor

for an early notation system known as square-note
notation, which originated in the 13th century. In this
system of notation, individual notes may be grouped into
larger structures called neumes, which represent the
pitches of a vocal phrase spanning a single syllable.
Neumes have different names that are determined by the
pitch contour of the individual notes making up the
neume. Most neumes are ligatures—symbols that
represent multiple connected notes. Square-note notation
editors must be able to correctly render these ligatures,
while still allowing access to individual notes in the
neume. An overview of this notation system and example
scores can be found in the Liber Usualis, a compilation of
plainchant used by the Roman Catholic Church [3].

Neon.js is a web application. It displays square-note
notation in the web browser and accepts user input to
modify the underlying digital representation of the score.
Neon.js can be used to create new musical scores, or to
correct errors from automated transcriptions in an optical
music recognition (OMR) workflow.

By making the editor easily accessible online, OMR
error correction tasks can be distributed amongst many
people, potentially accelerating the creation of ground-
truth training data and errorless symbolic music
collections. The process of outsourcing a simple, defined
task to the general population is known as
crowdsourcing. We predict that by providing tools to
enable crowdsourcing of the correction of OMR
transcription errors, early music researchers will be able
to obtain transcriptions more quickly in order to perform
computer-assisted analyses of these works.

We begin with a review of music notation editors and
online crowdsourcing systems. Next, we discuss the
benefits of a browser-based editor, the requirements for a
musical document-encoding scheme, and available
techniques for drawing in a web browser. Finally, the
software architecture of Neon.js is introduced and the
main functions of the editor are described, with a focus
on functionality that is unique to square-note notation.

2. RELATED WORK

2.1 Music Notation Editors

An editor for square-note notation contains some
functionality that is similar to editors of common music

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
© 2012 International Society for Music Information Retrieval

notation. The core functionality required of a notation
editor is to allow the user to insert, delete, and change
symbols in a piece of notated music. Well-known music
notation editors such as Finale1, Sibelius2, MuseScore3,
and NoteFlight4 provide these basic functions and more.
Of these, NoteFlight is the only known example of a
web-based editor for common music notation. All of
these editors allow the user to save files containing the
digital encoding of the edited musical document. These
editors allow changes to individual symbol attributes, like
note pitch and ornamentation, as well as changes to
global musical properties, such as tempo and time
signature. Since certain properties of common music
notation do not exist in square-note notation, an editor for
neume notation does not need to handle features such as
tempo, time signature, chords, multiple voices on a staff,
beams, slurs, or tuplet marks.

Editors for square-note notation do exist, although they
are significantly less prevalent than editors for common
music notation. The Medieval plugin5 for Finale allows
square-note notation to be edited in Finale. To input and
render this notation in Finale, the plugin must work
around some syntactic musical requirements that Finale
imposes on scores. For example, the plugin alters the
time signature of each bar in the score (each of which
may have a different number of notes), to prevent Finale
from automatically inserting bar lines.

Another neume notation editor has been developed as
part of the NEumed Unicode Manuscript Encoding
Standard (NEUMES) project [2]. The editor is developed
as a Java applet and is therefore available for use in a web
browser6. The editor uses NeumesXML, an encoding
format that describes square-note notation as well as
earlier neume notation systems without staff lines.
NeumesXML is an XML-based format that uses Unicode
characters to represent different neumes. Although the
editor did not advance beyond the prototyping phase of
development, the user interface allows scanned images of
musical scores to be displayed side-by-side with the
rendered notation for reference.

As part of the Tübingen project [7], the MEI-Neumes-
Viewer7 renders neume notation in the web browser. In
the preliminary stages of the project, the Humdrum
Toolkit was used to develop a data representation specific
to their repertoire. In later stages of the project8 they
developed the neume-encoding scheme that is now part
of the Music Encoding Initiative (MEI). The MEI-
Neumes-Viewer is an engraving system, not an editor,

1 http://www.finalemusic.com
2 http://www.sibelius.com
3 http://musescore.org
4 http://www.noteflight.com
5 http://www.klemm-music.de/notation/medieval
6 http://www.scribeserver.com/medieval/staves_applet.html
7 http://www.dimused.uni-tuebingen.de/hildegard
8 http://www.dimused.uni-tuebingen.de/tuebingen_phase1_e.php

and so does not provide the ability to interactively edit a
score.

Many music notation encoding schemes have been
proposed over the years, most of which are tailored to a
specific notation system. However, few formats seek to
provide a universal data representation that encompasses
and describes all musical notation systems. A music
notation editor requires a digital representation of the
symbolic notation because it needs to be stored and
processed by a computer. Digital encoding systems
should be explicit and declarative to prevent loss of
information [11]. An encoding system should not require
software applications to derive relationships between
elements in the musical score. Instead, all relationships
should be explicitly described. For neume notation, the
digital encoding should preserve neume types and pitch
information [7].

Aruspix, an OMR system for recognizing early printed
music [10], contains an editor that is used to correct
recognition errors in OMR output. Aruspix renders the
recognized score over top of the original image,
facilitating error detection and correction by the user.

2.2 Crowdsourcing Systems

Many projects have benefited from using online
crowdsourcing techniques to harness the computational
power of many humans (e.g., Wikipedia). The
reCAPTCHA project [1] has successfully transcribed
over 440 million words that were unrecognizable by
optical character recognition algorithms. This was
accomplished by presenting transformed words as
“Completely Automated Public Turing test to tell
Computers and Humans Apart” (CAPTCHA) challenges
on the web. These tests are designed to prevent malicious
software from performing actions that should only be
performed by humans, who must transcribe the machine-
unrecognizable words to prove they are human. In the
process, optical character recognition errors are corrected
[1]. When this is deployed over millions of websites, it
becomes a highly effective method of performing large-
scale text correction. A further advantage of online
crowdsourcing for document digitization is that it is
inexpensive and requires minimal training for the
contributors, compared to the cost and training required
to set up a scanning and recognition workstation [8].

3. ONLINE EDITING

3.1 Web Versus Desktop Applications

The AJAX programming technique [9] for websites
enables the creation of interactive web applications that
behave like desktop applications. This has lead to
discussions, involving both users and software
developers, about the advantages and disadvantages of
creating web applications over desktop applications.

There are many features of web applications that are
appealing to application users and developers. Unlike
desktop applications, web applications can be continually
updated by developers with new features and do not need
to be updated by the end-user when a new version is
released. Another feature is that any user with an Internet
connection and a web browser can access and use the
application, whereas desktop applications require time to
install and typically have different installation procedures
depending on the operating system of the client machine.
While not necessarily browser independent, web
applications are platform independent, creating a larger
user base.

There are, however, disadvantages of hosting a music
notation editor online. The most notable disadvantage is
that the user must be connected to the Internet to use the
application. Compared to desktop applications, web
applications that have a client-server architecture can be
architecturally complex since interactions and
synchronicity between the client and server must be
maintained. Advocates of desktop application
development also claim that web applications exhibit
slower performance and discontinuous user interactions
in relation to compiled programs. These deficits are
becoming negligible now that contemporary web
browsers have become faster at executing JavaScript, and
the use of AJAX has enabled seamless and transparent
communication between the client and server.

Web applications have a lower barrier to entry than
desktop applications. Fewer obstacles are presented to
users interested in using the software, making them more
suitable for use in crowdsourcing applications targeted to
a large number of people.

3.2 Crowdsourcing online

Crowdsourcing may be used in an OMR workflow for the
purposes of quickly and inexpensively correcting errors
in digitized musical documents. Pattern recognition
algorithms are not perfect—there will inevitably be
recognition errors that must be fixed by a human. A
single person can allocate a large amount of time to
perform these corrections, or this unwieldy workload can
be distributed amongst many people. The resulting digital
encoding can then be archived, indexed for searching, or
used as ground-truth data to further train OMR
algorithms.

In creating an online crowdsourcing system for the
correction of OMR errors, there are four challenges that
developers of these systems must consider [4]. First,
users must be recruited and their interest maintained. A
potential recruitment problem exists for the correction of
square-note notation, since early music is less popular
than contemporary music. Next, large tasks must be
decomposed into manageable sub-problems, which are
easily solvable by a single person. This method of
problem solving is called divide-and-conquer. For OMR,

error correction of an entire corpus can be broken down
into smaller tasks where segments of music, such as a
single page, line, or bar, are corrected. Each subtask
would require users to correct the position and pitch of
erroneous notes. A typical correction task is displayed in
Figure 1. By providing an image of the original musical
document for reference, a task that would normally
require domain-specific musical knowledge can be posed
as a comparison problem. The task of correcting pitch
and position errors involves dragging the incorrectly
recognized notes to match the position of those notes on
the source image. This increases the number of possible
contributors that can be recruited to perform correction
tasks. One potential limitation of this correction scheme
occurs when the neume type is incorrectly recognized. In
this case, the incorrect glyph must be deleted and the
correct glyph inserted to match the original score—a task
that may require musical knowledge and may be
surrendered to another user. The encouragement and
retention scheme known as instant gratification could be
used to immediately show contributors how their
contributions are making a difference [4]. After
correcting errors within a segment of music, displaying or
auralizing the full score would not only emphasize the
contributions of the user, but also encourage future
corrections of OMR output.

Figure 1. An example of a pitch correction task. Some
recognized notes (dark) need to be moved to the same
location as on the original score (light).

The last two challenges a crowdsourcing system must

consider is the evaluation of user contributions, and the
combination of these contributions to solve the target
problem. To manage OMR error corrections by multiple
contributors, an ideal system might present the same
segment of music to more than one person for correction.
An automated voting system [1] can be used to choose
the most commonly made correction for a segment of
music and then combine segments into the final digitized
score.

3.3 Tools for Musical Engraving and Interaction

Adobe Flash, Scalable Vector Graphics (SVG), and the
HTML canvas element are technologies available for
dynamic drawing in the web browser. Flash is a popular
web technology that supports interactive manipulation of
the drawing surface with scripts to produce interactive

and media-driven web applications. However, web
applications that use Flash require an additional program
to be installed as a browser plugin in order to be used.
Some operating systems and devices do not support Flash
and therefore cannot run these applications.

SVG is an XML format for describing images as
vectors—mathematical descriptions of lines and curves.
This representation enables SVG images to be rendered at
any size, making the format a good choice for images that
require a high level of detail. Most modern web browsers
can display SVG images and manipulate them using
JavaScript.

The HTML canvas element is a low-level raster
drawing surface supported by modern web browsers,
which can be controlled with JavaScript. JavaScript
libraries such as jQuery 10 can be used to simplify
common tasks such as event handling, animations, and
AJAX interactions. The canvas element implements a
“fire-and-forget” model, where a drawing surface is
presented as a two-dimensional array of pixels that can be
independently coloured. Although images drawn on the
canvas can be easily manipulated, interaction with the
drawings requires some additional overhead. Since the
canvas “forgets” what was drawn, the state of objects
drawn to the canvas needs to be maintained. When the
state of an object changes (e.g., dimensions and colour),
the canvas is repainted to reflect these changes.

4. A NEUME NOTATION EDITOR

This section introduces our web-based neume notation
editor, Neon.js. We start with a description of music
notation encoding and how it can be rendered in a web
browser. We then describe how the music notation editor
links the notation encoding and the graphical
representation.

4.1 Notation Encoding

Neon.js reads and writes files encoded in the Music
Encoding Initiative (MEI) format. MEI is an XML-based
file format for the representation of many notation
formats. The MEI schema is split into a “core”, which
defines features common to many notation formats, and a
set of additional modules that each define a specific
notation system [6]. Neon.js uses the Solesmes module,
an extension to the MEI core that allows representation of

10 http://jquery.com

square-note notation along with other specific practices
particular to the notation system used by monks in
Solesmes, France in the 19th century. These practices
include divisions (breath marks), episemata (note
stresses), and unique neume names.

4.2 Notation Rendering

We decided to use the canvas element for rendering
scores in Neon.js. We store images of neumes and
ligatures as SVG so that the score can be rendered in
detail at any zoom level. We use Fabric.js11, a library that
provides high-level drawing functions such as lines and
boxes. Fabric.js is also used to render our SVG images
directly onto the canvas drawing surface in the browser.

MEI files that have been transcribed by OMR contain
the physical locations on the page of each recognized
element, stored as a bounding box surrounding that
element. We use these physical locations to calculate
where to draw the musical symbols, including systems,
clefs, neumes, and divisions. An example of Neon.js
rendering one system of music from the Liber Usualis is
shown in Figure 2.

Neon.js draws elements of the score on top of an image
of the musical document that the score was transcribed
from. The user can adjust the transparency of the
background image to show just the rendered notation, or
both the background and notation.

4.3 Software Architecture

Neon.js is built using a client-server architecture. The
Neon.js client renders the musical score in the browser
and transforms user input into edit commands that are
sent to the server. We use AJAX to send edit commands
from the client to the server without needing to reload the
web page. The server receives these commands from the
client and applies them to a stored MEI file, saving the
changes. The server is written in Tornado12, an open-
source Python web server framework. To read,
manipulate, and write MEI files on the server, Neon.js
makes use of the Python bindings of libmei13, an open-
source C++ library [6].

The Neon.js client uses object-oriented programming
techniques and the model-view-controller design pattern
[5] to separate display from musical knowledge. The role

11 http://fabricjs.com
12 http://www.tornadoweb.org
13 http://ddmal.music.mcgill.ca/libmei

Figure 2. Neon.js rendering one system of the Liber Usualis, with and without bounding boxes.

of the model-view-controller design pattern is to isolate
application logic in the model from display and user
interface logic in the view through an intermediary
controller that coordinates the two. The model keeps the
state of all of the musical elements on a score. When a
user modifies an element, the score is redrawn to reflect
the changes to the object’s state. This means that
changing the data representation from MEI to
NeumesXML, for example, would not affect the drawing
code. Similarly, changing the drawing medium from
canvas to SVG, for example, would not affect the data
representation and editing functionality.

5. EDITING FUNCTIONS

To develop a more thorough understanding of the major
functions of Neon.js, the structure of an instantiated
neume object will be described. In Neon.js, a neume is
represented as a sequence of puncta. A punctum is the
simplest type of neume, consisting of only one note that
is represented as a single square. Only the note name and
octave of the first note is stored in the model. Subsequent
notes are encoded as having a pitch relative to the first
note. The following client-side functions operate on this
information and then call a corresponding server function
to update the underlying MEI file. In this section we
focus on implementation details of the main editing
functions that are specific to neume notation.

5.1 Inserting and Deleting Neumes

The only neume type that can be added to the score
through the user interface is the punctum. Neumes that
are composed of more than one note are entered by
inserting a punctum for each pitch in the neume, then
combining them with the neumify function (Section 5.2).
This feature lets a user focus on the melodic content of
the score without needing to identify the name of each
neume to insert.

Neumes may be deleted. When a neume contains
multiple notes, all of the notes in the neume are deleted.
To delete individual notes within a neume, it must first be
ungrouped (Section 5.3).

5.2 Neumify

In the same way that ligatures pose problems for OMR
systems by obfuscating pitches of individual notes [12],
ligatures within neumes pose problems for square-note
notation editors. In many cases, the graphical
representation of a neume is not a simple concatenation
of the selected glyphs. Figure 3 shows three notes being
selected and combined by the neumify function into a
porrectus neume, identified by the downward then
upward melodic contour of the notes. Neon.js needs to be
able to recognize a neume by its contour in order to draw
it with the correct ligatures. MEI also requires the name
of a neume to be encoded along with the notes that make

up the neume. The neumify function infers the name of a
neume from the pitch differences in a sequence of notes.

Figure 3. A use case where the user selects a set of
puncta and applies the neumify function to create a
porrectus neume.

When the neumify function processes a sequence of
notes, the melodic contour of the notes is calculated. To
describe the relationship of a note to its previous note, -1,
0, or 1 is used to represent a lower pitch, the same pitch,
or a higher pitch, respectively. We create a prefix tree
containing all of the neume types that Neon.js can render.
The edges of the tree represent the direction of movement
between two notes. For example, the porrectus neume
from Figure 3 has a contour of -1, 1. The traversal of a
partial prefix tree is shown in Figure 4 with bolded lines.
Using a prefix tree for lookups means that the speed of
identifying a neume type is dependent on the number of
notes in the neume and not the size of the tree, which
means that more neume types can be added without
affecting the speed of lookups. When the melodic
movement of a sequence of puncta cannot be matched to
a known neume type, the neume type is labeled
“compound neume”. Instead of naïvely concatenating the
selected glyphs to form the drawing of a compound
neume, the longest matching prefix in the tree can be
used to determine the best way of rendering notes within
the neume. Neon.js is currently capable of differentiating
between 44 distinct neume types.

Figure 4. An example of deriving the porrectus neume
type by searching a prefix tree. The bolded arrows re-
veal the traversal of the tree.

5.3 Ungroup

The ungroup function in Neon.js performs the inverse of
the neumify function. When the ungroup function is
applied to a neume, the neume is replaced by puncta
having the same pitches as the underlying notes in the
neume. This functionality lets a user adjust properties of a
single note in a neume, such as pitch and ornamentation,
and then regroup the neume with the neumify function.

5.4 Modify Pitch

Neon.js allows the user to modify pitches of neumes
through a click and drag interface. The notes
automatically snap to spaces or lines within the staff.
When the user moves a neume comprised of multiple
notes, all notes within the neume are shifted by the same
amount.

6. CONCLUSION

Neon.js14 is an online and open-source neume notation
editor developed as a web application. The editor uses the
HTML canvas element to render musical symbols in the
web browser. Neon.js supports MEI as a digital data
representation for square-note notation and uses open-
source software libraries to facilitate manipulation of this
data format. A minimal but powerful graphical user
interface allows the user to digitally replicate or edit early
music documents containing square-note notation. As the
user modifies the arrangement of musical symbols, the
underlying MEI file is modified to reflect these changes.

As a web application, the software is easily accessible,
requires no installation, and enables large-scale
crowdsourcing to distribute the task of correcting note
pitch and position errors made in the process of optical
music recognition. We hope that the resulting symbolic
music collections will then be indexed and available for
search at a single location, creating a substantial source of
information for early music researchers. We also hope
that this centralized collection of corrected symbolic
musical documents is made available for use as ground-
truth training data for the digitization of other
manuscripts in square-note notation. Although developed
as a component of an online optical music recognition
workflow, Neon.js can also be used to manually
transcribe or write new works.

7. ACKNOWLEDGEMENTS

The authors would like to thank Catherine Motuz for her
answers to our early music notation questions. This
project has been funded with the generous financial
support of the Social Sciences and Humanities Research
Council of Canada.

14 http://ddmal.music.mcgill.ca/neon

8. REFERENCES

[1] Ahn, L. V., B. Maurer, C. McMillen, D. Abraham,
and M. Blum. 2008. reCAPTCHA: Human-based
character recognition via web security measures.
Science 321 (5895): 1465–8.

[2] Barton, L. W. G. 2002. The NEUMES project:
Digital transcription of Medieval chant manuscripts.
In Proceedings of the International Conference on
WEB Delivering of Music, 211–8.

[3] Catholic Church. 1963. The Liber Usualis, with
introduction and rubrics in English. Tournai,
Belgium: Desclée.

[4] Doan, A., R. Ramakrishnan, and A. Y. Halevy.
2011. Crowdsourcing systems on the world-wide
web. Communications of the ACM 54 (4): 86–96.

[5] Gamma, E., R. Helm, R. Johnson, and J. Vlissides.
1994. Design Patterns: Elements of Reusable
Object-Oriented Software. Boston, MA: Addison-
Wesley.

[6] Hankinson, A., P. Roland, and I. Fujinaga. 2011.
The Music Encoding Initiative as a document-
encoding framework. In Proceedings of the
International Conference on Music Information
Retrieval, Miami, FL, 293–8.

[7] Morent, S. 2001. Representing a Medieval repertory
and its sources: The music of Hildegard von
Bingen. Computing in Musicology 12: 19–31.

[8] Newby, G. B., and C. Franks. 2003. Distributed
proofreading. In Proceedings of the Joint
Conference on Digital Libraries. 361–3.

[9] Paulson, L. D. 2005. Building rich web applications
with AJAX. IEEE Computer 38 (10): 14–7.

[10] Pugin, L. 2009. Editing Renaissance music: The
Aruspix project. In Digitale Edition zwischen
Experiment und Standardisierung Musik - Text -
Codierung, 147–56.

[11] Roland, P. 2002. The Music Encoding Initiative
(MEI). In Proceedings of the International
Conference on Musical Applications Using XML,
55–9.

[12] Vigliensoni, G., J. A. Burgoyne, A. Hankinson, and
I. Fujinaga. 2011. Automatic pitch detection in
printed square notation. In Proceedings of the
International Society for Music Information
Retrieval Conference, Miami, FL, 423–8.

	Papers

	Poster
Session 1
	NEON.JS: NEUME EDITOR ONLINE

