
REUSE, REMIX, REPEAT: THE WORKFLOWS OF MIR

Kevin R. Page 1 Ben Fields 2,3 David De Roure 1 Tim Crawford 3 J. Stephen Downie 4

1Oxford e-Research Centre, University of Oxford 2Musicmetric (Semetric Ltd.)
3Department of Computing, Goldsmiths, University of London

4Graduate School of Library and Information Sciences, University of Illinois

ABSTRACT

Many solutions for the reuse and remixing of MIR meth-
ods and the tools implementing them have been introduced
over recent years. Proposals for achieving the necessary
interoperability have ranged from shared software libraries
and interfaces, through common frameworks and portals,
to standardised file formats and metadata. Each proposal
shares the desire to reuse and combine repurposable com-
ponents into assemblies (or “workflows”) that can be used
in novel and possibly more ambitious ways. Reuse and
remixing also have great implications for the process of
MIR research. The encapsulation of any algorithm and its
operation – including inputs, parameters, and outputs – is
fundamental to the repeatability and reproducibility of any
experiment. This is desirable both for the open and reliable
evaluation of algorithms (e.g. in MIREX) and for the ad-
vancement of MIR by building more effectively upon prior
research. At present there is no clear best practice widely
adopted throughout the community. Should this be consid-
ered a failure? Are there limits to interoperability unique to
MIR, and how might they be overcome? In this paper we
assess contemporary MIR solutions to these issues, align-
ing them with the emerging notion of Research Objects for
reproducible research in other domains, and propose their
adoption as a route to reuse in MIR.

1. INTRODUCTION

The integration of tools for Music Information Retrieval
(MIR) into a “complete system” has been repeatedly iden-
tified as a key – if not the grand – challenge [5, 6] for our
community. This stems from the predominance of tools
that are designed to solve a specific task, often developed in
different frameworks, and usually with incompatible for-
mats for input, output, and parameters. Production of any
more sophisticated application that combines several tech-
niques therefore requires either a full reimplementation and
combination of the constituent algorithms, potentially with-
out source code or a sufficient published description of the
method, or development of a mechanism through which
the original tools can be reused or interoperate.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

© 2012 International Society for Music Information Retrieval.

The benefits of the latter approach appear multiple and
desirable, that is to:
1. realise any number of “complete systems” assembled
from building block components; specialised versions of
our tools for different music-related end-user communities.
2. “stand on the shoulders of giants” and advance research
by building upon and reusing prior methods and results.
3. optimise systems through reuse of data, as well as func-
tionality, at points of interoperability, e.g. to reuse already
calculated features.
4. build distributed systems [12] through reuse of network
exposed interoperability.
5. reuse the mechanisms of interoperability for the pur-
poses of transparent comparability in evaluation systems
such as those undertaking MIREX.

Yet despite the steady production of frameworks and
toolkits over many years a de facto standard has failed to
emerge. In this paper we assess reuse through considera-
tion of MIR research as a data intensive scientific method,
and assess how a selection of MIR tools might meet the
requirements of scientific workflow systems. As such it is
not a study of MIR capabilities or algorithms, but rather
of the cogs and levers that together enable MIR systems to
operate – of the effectiveness of our research processes and
the scalability of MIR methods and data.

2. CHARACTERISING WORKFLOWS AND
REUSE

To characterise reuse we draw on experience from the sci-
entific workflow systems – tools that assist the composi-
tion and execution of computational or data manipulation
steps. As a key tool for overcoming the issues of scale and
usability associated with ad-hoc scripting when applied to
data-driven science, Gil [9] identifies three requirements
for assisted workflow composition: workflows described
at different levels of abstraction to support varying de-
grees of reuse and repeatability; expressive descriptions
of workflow components describing data input and out-
put, constraints on interactions between components (in-
teroperability), and relationships between alternate com-
ponents; and flexible workflow composition mechanisms
to assist the user in construction of complete executable
flows. The principles of reuse and the deployment of sci-
entific workflow systems go hand-in-hand: adherence to
the latter encourages structured system design and interop-
erability, providing the principled framework within which
the metadata and provenance required to support the for-



mer can be gathered.
Bechhofer et al. [1] go on to introduce seven character-

istics required to satisfy reuse of the data and method that
comprise an experimental workflow, capturing the motiva-
tions raised in the previous section through the notion of
Research Objects: (i) reuse or redeployment as a whole or
single “black box” entity; (ii) repurposable elements that
can be reused independently of the whole; (iii) sufficient
information describing data and method that the study is
repeatable; (iv) the repeating of an experiment to repli-
cate a result, bringing with it the need for comparability;
(v) replayable examination of provenance of data and re-
sults (how they came to be); (vi) referencable and retriev-
able versions to support unambiguous citation of results;
(vii) revealable provenance for auditing the integrity of the
digitally captured data and method.

3. REUSABILITY OF MIR SYSTEMS

To inform our discussion of reuse within MIR we have
studied many of the tools used across the community, ex-
amining publications, software documentation, and source
code during our evaluation. There is a wide spectrum of
purpose and architecture between these systems and as such
direct implementation-level comparison becomes unwieldy
and uninformative; rather, we make our judgement within
the context characterised in Section 2, i.e. primarily with
regard to reusability, workflow, and for interoperability.

We perform our comparison through the identification
of what we have termed realised abstractions, summaris-
ing these for ten systems in Table 1 with further points of
discussion within this Section.

A realised abstraction can take several forms: for a soft-
ware library this might be a function or class definition,
for a service a remote-procedure call or file serialization,
or on the semantic web an ontology; but it must be, in
some sense, a tangible resource that might be repurposed
or called upon with or by other MIR software components.
A realised abstraction is not synonymous with functional-
ity implemented by the software: a framework or toolset
might provide functionality in a manner completely practi-
cal and appropriate for its own use cases, but which is not
recognised as a realised abstraction because we have been
unable to identify a principled abstraction of the function-
ality that could be reused or that is suitable for interoper-
ability. Neither is the study intended to be comprehensive
– it is an illustrative sample of typical practice from across
the community.

3.1 Implementation and scope

There is significant variety in the interaction by which a re-
searcher or developer will reuse the provided functionality
of the tools and systems in Table 1.

The implementation environment and language have
a strong bearing on this. libXtract [3], for example, is a
portable C library with Python and Java bindings provid-
ing feature extraction primitives, but requiring a developer
to write the enacting skeleton of the software. jMIR [13]

provides an extensible suite of components written in Java,
while MIR Toolbox [11] and supporting toolboxes (Signal
Processing, Auditory, Netlab and SOM) are written for the
high-level MATLAB numerical computing environment.
ChucK [22] is a programming language and environment
using a time-based concurrent model designed with com-
puter music in mind.

Some software provides a framework in which devel-
opers can structure reuse and extensions of existing code.
Marsyas (C++ with Ruby, Python, and Java bindings) pro-
vides a comprehensive architecture for creating, manag-
ing, and visualising dataflows of audio, signal processing,
and machine learning [20, 21]. sMIRk provides a toolkit
of reusable functions for ChucK [8]. Once a developer
has written a VAMP plugin (in C/C++; Python bindings
available) it can be hosted and executed within the Sonic
Annotator and Sonic Visualiser applications [4] – one such
plugin exposes functionality from libXtract. The NEMA
system [23] provides a language agnostic environment lim-
ited only by the Operating System and architecture of the
underlying (virtual) machines: its framework uses the Me-
andre workflow system for distribution and execution of
virtually any MIR algorithm (typically written using one of
the other tools described here) and a Java-based data model
for exchanging and consolidating inputs and outputs.

Scope of systems also varies, often depending on
whether a general or specialised approach has been taken,
and if it is operated as a stand-alone platform or in con-
junction with other tools. Weka [10], for example, is a gen-
eral purpose Java-based data-mining and machine learning
toolset favoured within the MIR community for its experi-
mentation environment and range of classifiers. AudioDB
[18], on the other hand, is a specialised piece of database
infrastructure for content-based similarity searches that re-
lies upon the import of features extracted by other tools.

3.2 Reusable Method

At a basic level any piece of software with source code (or
indeed machine code) can be considered reusable, along
with the methods it embodies. In this study, we require
more explicit recognition and encoding of concepts. In
the first section of Table 1 we look for such realised ab-
stractions representing MIR methods that are reusable and
repurposable (and, for novel solutions, potentially refer-
encable). Even when not developed for a workflow sys-
tem we have also tried to identify the key characteristics of
workflow components: different levels of abstraction, and
explicit description of input, output, parameters, and inter-
operability. These are, of course, the same attributes that
enable reuse at the level of a software library or develop-
ment framework and which typically emerge from a prin-
cipled software engineering effort to recognise the realised
abstractions and encourage their reuse through implemen-
tation of, for example, a documented API.

Reusable MIR methods can be broadly grouped into
three categories: signal processing derived feature extrac-
tion, within which we subdivide more deterministic signal
features from less clearly defined music features; metric



A
ud

io
D

B
1

C
hu

cK
&

sM
IR

k

jM
IR

2

lib
X

tr
ac

t

M
2K

(i
nc

.D
2K

)

M
ar

sy
as

M
at

la
b

&
to

ol
bo

xe
s3

N
E

M
A

/
M

ea
nd

re

VA
M

P
4

W
ek

a

METHOD
Signal Feature Extraction

Basic signal • • • • • • •
Basic maths • • • • •
Basic filters • • • • • •

Envelopes and windowing • • • • •
Spectral distribution • • • • • •

Error rate • •
Power • • • • •

Transforms • • • •
Linear Predictive Coding • •

MFCC • • • • •
Music Feature Extraction

Pitch • • • •
Beat • • •

Correlation and Distance
Correlation • • •

Distance • • •
Dimensional reducers • •

Classification
Predictive modelling • • • •

Regression • • •
Clustering • • • •

Association Rule Learning • •
WORKFLOW

Components ◦ ◦ • ◦ ◦ • •
Workflows ◦ ◦ • ◦ ◦ • • •

DATA EXCHANGE
Abstract Signal • • • • •
Signal (values) • • • • •

Audio (playback, I/O) • • • • •
Abstract Feature • • • • •
Feature (values) • • • • • •

Events / scheduling • • •
Abstract Classifier • • • •

Classification (values) • • •
Aggregation (signal, feature) • ◦ • • •

Annotation • • •

◦ caveat described in Section 3. 1 including fftextract tool and AudioDB API library. 2 including jAudio, ACE, and ACE XML.
3 including MIR toolbox, Signal Processing Toolbox, Auditory toolbox, Netlab toolbox, SOM toolbox.
4 distribution including example plugins and Sonic Annotator.

Table 1: Presence of Realised Abstractions in MIR systems and tools.

based correlation and distance measures; and machine-
learning based classification, which broadly includes any
method taking as input features or distances and outputting
item groupings. Coverage of these methods through re-
alised abstractions varies widely between systems and is
often a reflection of the intended scope and specialism of
the tool: few have comprehensive coverage beyond a core
competency, while others present no specialisation and rely
on the ecosystem provided by their framework for method

implementation, e.g. NEMA hosting of standalone algo-
rithms, VAMP use of plugins, and toolboxes in Matlab. In
these latter cases it also highlights a limitation of the sur-
vey, since including only a subset of extensions creates an
artificial limit on methods unrepresentative of the tool’s ca-
pabilities.

This highlights an opportunity for interoperable and re-
placeable workflow components when considering MIR sys-
tems as a single ecosystem, and starts to identify the group-



ing of methods for which expressive descriptions (Section
2) would be required to effect this process (a more compre-
hensive taxonomy of features, without the filter of realised
abstractions, can be found in [15]).

3.3 Workflow

The second section of Table 1 appraises realised abstrac-
tions for the constituent parts of scientific workflow sys-
tems: the structure of workflows themselves, and the en-
capsulation of reusable components within them.

Several of the surveyed systems adopt a workflow ap-
proach in spirit: the dataflow and patching model at the
core of Marsyas, and ACE (jMIR) Coordinator and Exper-
imenter, provide facilities for chaining and adapting func-
tionality but are strongly tied to their respective environ-
ments and do not easily generalise (Marsyas, for example,
is tied to a synchronous tick model). MIRtoolbox follows a
user centric procedural model with abstractions well suited
to the MATLAB environment, but reflecting the process
a (human) MIR researcher performs, rather than one that
might map cleanly to a (machine-driven) workflow system.

Others tools embody more explicit examples of work-
flow technique: M2K [7] and NEMA build upon exist-
ing general purpose workflow environments (D2K and Me-
andre respectively) and their graphical management inter-
faces. However, with the exception of a genre classifica-
tion proof of concept, NEMA has not made use of work-
flow components to encode a deconstructed method at the
level described in the previous subsection, rather it utilises
the distribution and scheduling features of the workflow
systems when performing the MIREX evaluation. VAMP,
a system designed for MIR but offering many traditional
workflow system features, uses hosts such as Sonic An-
notator which provide a flexible and extensible environ-
ment in which to compose and execute workflows consist-
ing of VAMP plugin components. sMIRk and ChucK are
also strongly workflow oriented, with their pervasive time-
centric concurrent model providing ample illustration of
how workflows can be applied across radically different
approaches.

3.4 Data Exchange

Realised abstractions of specific methods and workflow el-
ements can identify reuse within the bounds of a common
environment (e.g. particular toolkit or software library).
For reuse to occur between systems there must also be a
mechanism for a mapping of method and workflow be-
tween systems, performed through some process of data
exchange. To move beyond ad-hoc workflows components
must be sufficiently described to support workflow com-
position. We have identified these higher-level concepts
in the third section of Table 1 and, as in previous sub-
sections, marked systems in which a realised abstraction
correlates with the concept. The presence of a realised ab-
straction does not indicate an implementation of data ex-
change, merely that, within the software design, there is an
explicit abstraction of the concept which could, in theory,
form a basis for interoperability.

For Signals, Features, and Classifiers we highlight the
need to represent both the abstract concept – required for
flexible workflow composition and the provision of generic
mechanisms for referencable and revealable reuse – and
the values associated with an instance of that concept (sig-
nal input, feature data, classifier results) for repeatable and
replayable reuse. The conceptual recognition of events and
scheduling is also necessary for exchange of the temporal
semantics often used in MIR applications. Aggregation of
resources – be it collections of audio for analysis, com-
puted features, or classified results – is a common require-
ment for scientific workflows systems and critical to sys-
tems interoperability, reuse (of data and results), and eval-
uation (including repeatability) in MIR. A particular facet
of music, included here due to its common occurrence, is
the explicit notion of exchange or playback of audio data.

The level at which the abstraction is found reflects the
differing scope of the systems: for signal libXtract uses
named pointers to data structures, whereas ChucK includes
a sample primitive, and VAMP uses the Signal class from
the Music Ontology [17]; for feature values Marsyas writes
out from (the somewhat overloaded) realvec, jMIR defines
a DataSet class, ChucK uses the (timesliced) unablob, while
VAMP applies the Audio Features ontology. In all cases
there is, if not a full model, a principled abstraction to-
wards one.

Abstractions used for interoperability through serialisa-
tion of data to either file and network are a relevant sub-
topic. Serialisation can raise a number of requirements
distinct from those considered purely for information mod-
elling, including the reduction of parsing and transmission
(size) overheads and the incorporation of mechanisms for
efficient error checking. Several of the systems reviewed
deploy abstractions designed with serialisation in mind, in-
cluding ACE XML [14], the WEKA Attribute Relationship
File Format (ARFF), and to a lesser extent the Audio Fea-
tures Ontology used by VAMP. That these serialisations
may not be optimal for data exchange beyond serialisation
reinforces the need for varying levels of abstraction (Sec-
tion 2) when building workflow systems – it is unlikely that
a single abstraction will be appropriate for all operations.

4. REFLECTION

4.1 Reusable MIR: success or failure?

A superficial glance over Table 1 might highlight a signif-
icant level of duplication between MIR systems with an
associated failure of reuse. This is not a failure. It is the
mark of a strong and vibrant community that can support
multiple toolkits catering to different preferences in devel-
opment and deployment. There is no automatic benefit –
nor apparent desire – to “standardise” on a single platform,
toolkit, or programming language; indeed the rich variety
of sophisticated software tailored to MIR specific problems
indicates, if anything, the exact opposite.

Such a view would also overlook the successful soft-
ware reuse exemplified in our study by libXtract, where a
small well designed library with multi-language bindings



has been reused by tools such as ChucK and VAMP. But
more significantly, this would be a mischaracterisation of
reuse which, as we have explored, goes beyond the rede-
ployment and compatibility of source code.

4.2 Adoption of reuse

While our study has shown that no single MIR system pro-
vides comprehensive coverage across all notions of reuse,
it also raises plentiful opportunities for systems that share
common concepts to use these as a basis for abstraction
and interoperability. Yet ISMIR proceedings indicate lit-
tle cross-fertilization of most systems beyond the “home”
lab and close collaborators. An explanation for this dis-
crepancy might be the difference between the potential for
reuse and the overhead of actual implementation: while we
have highlighted the points at which there is conceptual
alignment between systems, any implemented interoper-
ability through the surveyed tools would require adoption
of a software library, toolkit, or service, and the associated
costs of building that interface.

At the level of an individual researcher selecting a tool,
interoperability does not automatically follow reuse. The
prevalence of Matlab – 52% of MIREX submissions in
2011 – demonstrates the preference for a familiar envi-
ronment with a large body of basic methods, despite the
lack of wider interoperability. Conversely, the authors of
M2K believe the choice of Java was an unpopular one that
limited uptake even through the system provided a work-
flow creation environment. In both cases the provision of
interoperability, or the lack thereof, has not provided a suf-
ficient motivation to override other preferences.

One approach, then, might be to lower interoperability
overheads by switching from an “all or nothing” adoption
model to something more akin to “pick and choose”: se-
lectively implementing interoperability where the benefits
are clear and well scoped. Scientific workflow approaches
can provide the principled framework to assist such con-
version, exemplified at a technical level by the deployment
of NEMA to run the MIREX evaluations: whilst wedded to
a single implementation, the complexity of interoperability
has been reduced to a single data abstraction appropriately
selected and scoped for the evaluation and presentation of
task results.

Another promising and flexible approach to reuse is the
adoption of an agnostic modelling substrate upon which
MIR specific abstractions can be developed. A prominent
example of this is the use of RDF and other Semantic Web
technologies in Sonic Annotator, VAMP plugins, and the
the tools and ontologies they interoperate with and through.
The use of a modelling layer that bridges into domains be-
yond MIR brings further benefits: the common model and
distribution mechanism afforded by RDF and Linked Data
can enable reuse and exchange of related data beyond that
produced and consumed by the MIR system alone [16].

The uptake of Linked Data in industry and academia,
including the scientific workflow and publishing commu-
nities, provides an opportunity to reuse and adapt tools
and software developed elsewhere for similar purpose – al-

though the burden and utility of adding compatible layers
to MIR tools should not be overlooked. Nor, given its im-
portance, should we ignore the task of selecting and scop-
ing the appropriate level of abstraction for a model; it is not
a panacea in itself, as evidenced by the lengthy gestation of
standardised models such as MPEG-7.

4.3 Workflow centric research

We have presented our review of reuse within MIR through
the lens of requirements originating in the scientific work-
flow community. We have seen that workflow systems are
explicitly used as the basis for several MIR frameworks,
and implicitly as an approach in others, however in both
cases they are primarily employed for the distribution and
scheduling of “black box” workflow components.

The increase in data driven science and the associated
introduction of scientific workflow systems has led to a re-
flection on the nature of scientific method and its dissemi-
nation in a digital world – the question of how we can open
these “black boxes”. The principles for reuse outlined ear-
lier in Section 3 are also the defining characteristics of a
Research Object [1] – a semantically rich principled ag-
gregation of resources bringing together the essential in-
formation relating to an experiment or investigation. This
includes not only the data used, the methods employed to
produce and analyse that data, but also the people involved
in the investigation.

In our study of contemporary MIR systems we have
surveyed for the principles of reuse, repurposing, and re-
peatability. While providing a foundation for data-driven
research, it is when they are supplemented to encompass
replication, replay, referencing and revealability that we
see how the method and provenance captured by Workflow-
centric Research Objects [2] can radically enhance the re-
search environment and process.

By identifying realised abstractions for method, work-
flow, and data exchange in MIR systems we have demon-
strated that the underlying conditions for Research Objects
in MIR are already present: one can easily imagine a future
in which MIREX entries are developed, submitted, evalu-
ated and published as Research Objects.

5. CONCLUSIONS

Interoperability has not been – and should not be – achieved
through the adoption of a single portal, toolkit, or program-
ming language. Plurality of systems and the different ap-
proaches they embody is as important in avoiding skewed
research and results as the plurality of datasets.

MIR embodies a process of digital research. While work-
flows provide a platform for principled reuse, they are also
the building blocks for Research Objects, and through these
the opportunity to conduct our research in new transparent,
reusable, repurposable, and repeatable ways. In this paper
we have demonstrated MIR is well positioned to take ad-
vantage of these approaches.

Workflows and Research Objects can provide a frame-
work, but as a community we must define the levels of



reuse and interoperability we wish to achieve through them.
This does not imply a single level of abstraction nor an as-
sociated single level of modularised software, but multiple
models appropriate to each task at hand. As the survey
in this paper has shown, the basis for these encapsulations
already exists at different levels within MIR systems.

Adopting a “pick and choose” approach to reuse, the
identification of boundary objects [19] – points of shared
understanding through standardised method and transla-
tion between viewpoints – may prove helpful. So too can
MIREX as a process through which the community must
reach consensus regarding tasks and output – and where
the benefits of reuse might be most keenly felt. In this con-
text we suggest a first step should be taken at the data level:
describing and exchanging input, output, and parameters
using community agreed vocabularies encoded in RDF.

6. ACKNOWLEDGEMENTS
This work was carried out through the EPSRC funded e-Research South
platform grant (Grant No. EP/F05811X/1) and the Structural Analysis of
Large Amounts of Musical Information project funded by the JISC Digi-
tisation and e-Content programme and the National Science Foundation
(Grant Nos. IIS 10-42727 and IIS 09-39253). We are also grateful for the
helpful comments from reviewers of earlier drafts of the paper.

7. REFERENCES

[1] S. Bechhofer, I. Buchan, D. De Roure, P. Missier,
et al. Why linked data is not enough for scientists.
Future Generation Computer Systems, In press/online.
http://dx.doi.org/10.1016/j.future.2011.08.004.

[2] K. Belhajjame, O. Corcho, D. Garijo, J. Zhao, et al.
Workflow-centric research objects: First class citizens
in scholarly discourse. In Proc. Workshop on the Se-
mantic Publishing (SePublica), pages 1–12, 2012.

[3] J. Bullock. Libxtract: A lightweight library for au-
dio feature extraction. In Proc. International Computer
Music Conference, pages 25–28, 2007.

[4] C. Cannam, C. Landone, M. Sandler, and J.P. Bello.
The sonic visualiser: A visualisation platform for se-
mantic descriptors from musical signals. In Proc. 7th
International Conference on Music Information Re-
trieval, pages 324–327, 2006.

[5] M.A. Casey, R. Veltkamp, M. Goto, M. Leman, et al.
Content-based music information retrieval: current di-
rections and future challenges. Proc. IEEE, 96(4):668–
696, 2008.

[6] J.S. Downie, D. Byrd, and T. Crawford. Ten years of
ISMIR: Reflections on challenges and opportunities. In
Proc. 10th International Society for Music Information
Retrieval Conference, pages 13–18, 2009.

[7] J.S. Downie, A.F. Ehmann, and X. Hu. Music-to-
knowledge (M2K): a prototyping and evaluation en-
vironment for music digital library research. In Proc.
5th ACM/IEEE Joint Conference on Digital Libraries,
pages 376–376, 2005.

[8] R. Fiebrink, G. Wang, and P. Cook. Support for MIR
prototyping and real-time applications in the chuck

programming language. In Proc. 9th International
Conference of Music Information Retrieval, pages
153–158, 2008.

[9] Y. Gil. Workflow composition: Semantic representa-
tions for flexible automation. Workflows for e-Science,
pages 244–257, 2007.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, et al.
The WEKA data mining software: an update. ACM
SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

[11] O. Lartillot and P. Toiviainen. MIR in Matlab (II): A
toolbox for musical feature extraction from audio. In
Proc. 8th International Society of Music Information
Retrieval Conference, pages 127–130, 2007.

[12] D. McEnnis, C. McKay, and I. Fujinaga. Overview of
OMEN. In Proc. International Conference on Music
Information Retrieval, pages 7–12, 2006.

[13] C. McKay. Automatic music classification with jMIR.
PhD thesis, McGill University, 2010.

[14] C. McKay, J.A. Burgoyne, J. Thompson, and I. Fuji-
naga. Using ACE XML 2.0 to store and share feature,
instance and class data for musical classification. In
Proc. International Society for Music Information Re-
trieval Conference, pages 303–8, 2009.

[15] D. Mitrović, M. Zeppelzauer, and C. Breiteneder. Fea-
tures for content-based audio retrieval. Advances in
Computers, 78:71–150, 2010.

[16] K. R. Page, B. Fields, B .J. Nagel, G. O’Neill, et al. Se-
mantics for music analysis through linked data: How
country is my country? In Proc. IEEE Sixth Interna-
tional Conference on e-Science, pages 41–48, 2010.

[17] Y. Raimond, S. Abdallah, M. Sandler, and F. Giasson.
The music ontology. In Proc. International Conference
on Music Information Retrieval, pages 417–422, 2007.

[18] C. Rhodes, T. Crawford, M. Casey, and M. d’Inverno.
Investigating music collections at different scales with
audiodb. Journal of New Music Research, 39(4):337–
348, 2010.

[19] S.L. Star and J.R. Griesemer. Institutional ecology,
translations and boundary objects: Amateurs and pro-
fessionals in Berkeley’s Museum of Vertebrate Zool-
ogy, 1907-39. Social studies of science, 19(3):387–
420, 1989.

[20] G. Tzanetakis and P. Cook. Marsyas: A framework for
audio analysis. Organised sound, 4(3):169–175, 1999.

[21] G. Tzanetakis, L.G. Martins, L.F. Teixeira,
C. Castillo, R. Jones, and M. Lagrange. Interop-
erability and the marsyas 0.2 runtime. In Proc.
International Computer Music Conference, 2008.
http://hdl.handle.net/2027/spo.bbp2372.2008.149.

[22] Ge Wang. The ChucK Audio Programming Language
A Strongly-timed and On-the-fly Environ/mentality.
PhD thesis, Princeton University, 2008.

[23] K. West, A. Kumar, A. Shirk, G. Zhu, et al. The net-
worked environment for music analysis (NEMA). In
Proc. 6th IEEE World Congress on Services, pages
314–317, 2010.


	Papers
	Oral Session 7: MIRrors Session
	REUSE, REMIX, REPEAT: THE WORKFLOWS OF MIR



