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ABSTRACT

Recent research work has shown that the magnitude spec-
trogram of a song can be considered as a superposition of
a low-rank component and a sparse component, which ap-
pear to correspond to the instrumental part and the vocal
part of the song, respectively. Based on this observation,
one can separate singing voice from the background music.
However, the quality of such separation might be limited,
because the vocal part of a song can sometimes be low-
rank as well. Therefore, we propose to learn the subspace
structures of vocal and instrumental sounds from a collec-
tion of clean signals first, and then compute the low-rank
representations of both the vocal and instrumental parts of
a song based on the learned subspaces. Specifically, we use
online dictionary learning to learn the subspaces, and pro-
pose a new algorithm called multiple low-rank representa-
tion (MLRR) to decompose a magnitude spectrogram into
two low-rank matrices. Our approach is flexible in that the
subspaces of singing voice and music accompaniment are
both learned from data. Evaluation on the MIR-1K dataset
shows that the approach improves the source-to-distortion
ratio (SDR) and the source-to-interference ratio (SIR), but
not the source-to-artifact ratio (SAR).

1. INTRODUCTION

A musical piece is usually composed of multiple layers
of voices sounded simultaneously, such as human vocal,
melody line, bass line and percussion. These components
are mixed in most songs sold in the market. For many
music information retrieval (MIR) problems, such as pre-
dominant instrument recognition, artist identification and
lyrics alignment, separating one source from the others is
usually an important pre-processing step [6,9, 13].

Many algorithms have been proposed for blind source
separation in monaural music signals [21,22]. For the par-
ticular case of separating singing voice from music accom-
paniment, it has been found that characterizing the music
accompaniment as a repeating structure on which varying
vocals are superimposed leads to good separation qual-
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ity [8,16,17,23]. For example, Huang et al. [8] found that,
by decomposing the magnitude spectrogram of a song into
a low-rank matrix and a sparse matrix, the sparse compo-
nent appears to correspond to the singing voice. Evaluation
on the MIR-1K data set [7] shows that such a low-rank
decomposition (LRD) method outperforms sophisticated,
pitch-based inference methods [7,22].

However, the low-rank and sparsity assumptions about
the music accompaniment and singing voice have not been
carefully studied so far. From mathematical point of view,
the low-rank component corresponds to a succinct repre-
sentation of the observed data in a lower dimensional sub-
space, whereas the sparse component corresponds to the
(small) fraction of the data samples that are far away from
the subspace [2, 11]. Without any prior knowledge of the
data, it is not easy to distinguish between data samples
originated from the subspace of music accompaniment and
those from the subspace of singing voice. Therefore, the
low-rank matrix resulting from the aforementioned decom-
position might be actually a mixture of the subspaces of vo-
cal and instrumental sounds, and the sparse matrix might
contain a portion of the instrumental sounds such as the
main melody or the percussion sounds [23].

Because MIR-1K comes with “clean” vocal and instru-
mental sources recorded separately at the left and right
channels, in our pilot study we tried LRD using principal
component analysis (PCA) [2] for the two clean sources,
respectively. Result shows that, contrary to the sparsity
assumption, the vocal channel can also be well approxi-
mated by a low-rank matrix. As Figure 1 exemplifies, we
are able to reduce the rank of the singing voice and the mu-
sic accompaniment matrices (by PCA) from 513 to 50 and
10, respectively, with less than 40% loss in the source-to-
distortion ratio (SDR) [20].

Motivated by the above observation, in this paper we
investigate the quality of separation as a result of decom-
posing the magnitude spectrogram of a song into “two”
low-rank matrices plus one sparse matrix. The first two
matrices represent the singing voice and music accompa-
niment in the subspaces of vocal and instrumental sounds,
respectively, whereas the last matrix contains data samples
deviated from the subspaces. Therefore, unlike existing
methods, the vocal part of a song is also modeled as a low-
rank signal. Moreover, different subspaces are explicitly
used for vocal and instrumental sounds.

To achieve the above decomposition, we propose a new
algorithm called multiple low-rank representation (MLRR),
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Figure 1. (a) (b) The original, full-rank magnitude spec-
trograms (in log scale) of the vocal and instrumental parts
of the clip ‘Ani_1_01" in MIR-1K [7]. (c) (d) The low-rank
matrices of the vocal part (rank=50) and the instrumental
part (rank=10) obtained by PCA. Such low-rank approxi-
mation only incurs 40% loss in signal-to-distortion ratio.

which involves an iterative optimization process that seeks
the lowest rank representation [2, 10, 11]. Moreover, in-
stead of decomposing a signal from scratch, we employ an
online dictionary learning algorithm [12] to learn the sub-
space structures of the vocal and instrumental sounds in
advance from an external collection of clean vocal and in-
strumental signals. In this way, we are able to incorporate
prior knowledge about the nature of vocal and instrumental
sounds to the decomposition process.

The paper is organized follows. Section 2 reviews re-
lated work on LRD its application to singing voice separa-
tion. Section 3 describes the proposed algorithms. Section
4 presents the evaluation and Section 5 concludes.

2. REVIEW ON LOW-RANK DECOMPOSITION

It has been shown that many real-world data can be well
characterized by low-dimensional subspaces [11]. That is,
if we put n m-dimensional data vectors in the form of a
matrix X € R™*", X should have rank r < min(m, n),
meaning few linearly independent columns [2]. The goal
of LRD is to obtain a low-rank approximation of X in the
presence of outliers, noises, or missing values [11].

The classical principal component analysis (PCA) [2]
seeks a rank-r estimate A of the matrix X by solving

min X — A
A (D
subject to  rank(A) <r,

where || X || denotes the spectral norm, or the largest singu-
lar value of X. This problem can be efficiently solved via

singular value decomposition (SVD) by using the r largest
singular values [2].

It is well-known that PCA is sensitive to outliers. To
remedy this issue, robust PCA (RPCA) [2] uses the [; norm
to characterize sparse corruptions and solves

min - [[All. + A [1X — Al 2)
where || - ||« denotes the nuclear norm (the sum of its sin-
gular values), || - || is the /; norm that sums the absolute

values of matrix entries, and A is a positive weighting pa-
rameter. The use of nuclear norm as a surrogate of the
rank function makes it possible to solve (2) by convex opti-
mization algorithms such as accelerated proximal gradient
(APG) or augmented Lagrange multipliers (ALM) [10].

RPCA has been successfully applied to singing voice
separation [8]. Researchers found that the resulting sparse
component (i.e., X — A) appears to correspond to the vocal
part and the low-rank one (i.e., A) corresponds to the music
accompaniment. More recently, Yang [23] found that the
sparse component often contains percussion sounds and
proposed a back-end drum removal procedure to enhance
the quality of the separated singing voice. Sprechmann et
al. [17] considered both A and X — A to be non-negative
and employed multiplicative algorithms to solve the re-
sulting robust non-negative matrix factorization (RNMF)
problem. Efficient, supervised or semi-supervised variants
have also been proposed [17]. Although promising result
is obtained, none of the reviewed methods justified the as-
sumption of considering singing voice as sparse.

Durrieu et al. [3] proposed a non-negative matrix factor-
ization (NMF)-based method for singing voice separation
that regards the vocal spectrogram as an element-wise mul-
tiplication of an excitation spectrogram and a filter spectro-
gram. Many other NMF-based methods that do not rely on
the sparse assumption have also been proposed [14]. How-
ever, we tend to focus on LRD-based methods that have
similar form as RPCA in this work. The comparison with
NMEF-based methods is left as a future work.

Finally, low-rank representation (LRR) [11] seeks the
lowest rank estimate of data X with respect to D € R™* k,
a “dictionary” that is assumed to linearly span the space of
the data being analyzed. Specifically, it solves

min [ Z[[« + A || X = DZ]}x, 3)

where Z € RF*™ and k denotes the dictionary size. Since
rank(DZ) < rank(Z), DZ is also a low-rank recovery to
X. As discussed in [11], by properly choosing D, LRR
can recover data drawn from a mixture of several low-rank
subspaces. By setting D = I,,,, the m x m identify matrix,
the formulation (3) reduces to (2). Although it is possible
to use dictionary learning algorithms such as K-SVD [1]
to learn a dictionary from data, Liu ef al. [11] simply set
D = X, using the data matrix itself as the dictionary. In
contrast, we extend LRR to the case of multiple dictionar-
ies and employ online dictionary learning (ODL) [12] to
learn the dictionaries, as described below.

3. PROPOSED ALGORITHMS

By extending formulation (3), we are able to obtain the
low-rank representations of X with respect to multiple dic-
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Figure 2. The spectra (in log scale) of the learned dictio-
naries (with 100 codewords) for (a) vocal and (b) instru-
mental spectra, using online dictionary learning.

tionaries D1, Do, ..., D, where x denotes the number of
dictionaries. Although it is possible to use a dictionary for
each musical component (e.g., human vocal, melody line,
bass line and percussion), we consider the case k = 2 and
use one dictionary for human vocal and the other for the
music accompaniment.

3.1 Multiple Low-Rank Representation (MLRR)

Given an input data X and two pre-defined (or pre-learned)
dictionaries D; € R™**1 and Dy € R™**2 (k; and ko
can take different values), MLRR seeks the lowest rank
matrices Z; and Zs by solving

min | Z1]l« +B | Z2|l« + A [| X — D12y — DaZsl|1, (4)
1,42

where [ is a positive parameter. This optimization prob-
lem can be solved by the method of ALM [10], by first
reformulating (4) as

min [J1ll« + Bl J2]l« + A Elly
Z1,Z2,J1,J2,E

X:D1Z1+DQZQ—|—E, (5)
lejla Z2:J27

subject to

and then minimizing the augmented Lagrangian function
£ = Al + (T (2= ) + 5 121 = Al
+ B el 4+ (Y (2o = Jo) + 5 (122 = ol
+ M E|L + (Y (X — D1Zy — Dy Zy — E))

T % IX — D121 — DsZs — E|f%,
(6)

where || - || denotes the Frobenius norm (square root of
the sum of the squares of its elements) and p is a posi-
tive penalty parameter. We can minimize (6) with respect
to Z1, 22, J1, Jo, 2, respectively, by fixing the other vari-
ables and then updating the Lagrangian multipliers Y7, Y5
and Y3. For example, J, can be updated by

J; = argmin 8 [ Jo|l. + & 112 = (2o + n'2) [
™

which can be solved via the singular value thresholding
(SVT) operator [2], whereas Z; can be updated by

Zi =51 (DI (X = DsZo — E)+ J1 + (D Y3 — 1)),

®)

where 1 = (I + DY D1)~!. The update rule for the other
variables can be obtained in a similar way as described
in [10, 11], mainly by taking the first-order derivative of
the augmented Lagrangian function £ with respect to the
variable. By using a non-decreasing sequence of {y;} as
suggested in [10] (i.e., using y; in the ¢-th iteration), empir-
ically we observe that the optimization usually converges
in 100 iterations. After the decomposition, we consider
D, Z, and Dy Z, as the vocal and instrumental parts of the
song and discard the intermediate matrices F, J; and Js.

3.2 Learning the Subspace Structures of Singing and
Instrumental Sounds

The goal of dictionary learning is to find a proper repre-
sentation of data by means of reduced dimensionality sub-
spaces, which are adaptive to both the characteristics of
the observed signals and the processing task at hand [19].
Many dictionary learning algorithms have been proposed,
such as kmeans and K-SVD [1, 19]. In this work, we
adopt the online dictionary learning (ODL) [12], a first-
order stochastic gradient descent algorithm, for its low mem-
ory consumption and computational cost. ODL has been
used in many MIR tasks such as genre classification [24].

Given N signals p; € R™, ODL learns a dictionary D
by solving the following joint optimization problem,

1L /1
min — “lps — D12 + nllgs :
L DD (219 a3 +nla ||1) o
subject to ddej <1,¢;>0,

where || - ||2 denotes the Euclidean norm for vectors, @
denotes the collection of the (unknown) nonnegative en-
coding coefficients ¢; € R¥, and 7 is a regularization pa-
rameter. The dictionary D is composed of k& codewords
d; € ™, whose energy is limited to be less than one. For-
mulation (9) can be solved by updating D and () in an al-
ternating fashion. The optimization of ¢; involves a typical
sparse coding problem that can be solved by the LARS-
lasso algorithm [4]. Our implementation of ODL is based
on the SPAMS toolbox [12].!

Figure 2 shows the dictionaries for vocal and instru-
mental spectra we learned from a subset of MIR-1K, using
ki1 = ko = 100. It can be found that the vocal dictio-
nary contains voices of higher fundamental frequency. In
addition, we see more energy in the so-called “singer’s for-
mant” (around 3 khz) from the vocal dictionary [18], show-
ing that the two dictionaries capture distinct characteristics
of the signals. Finally, we also observe some atoms that
span almost the whole spectra in both dictionaries (e.g.,
the 12th codeword in the instrumental dictionary), possi-
bly because of the need to reconstruct a signal by a sparse
subset of the dictionary atoms, by virtue of the /;-based
sparsity constraint in formulation (9).

In principle, we can improve the reconstruction accu-
racy (i.e., smaller ||p; —Dg;||2 in (9)) by using larger & [12],
at the expense of increasing the computational cost in solv-
ing both (9) and (5). However, as Section 4.1 shows, larger

'http://spams—-devel.gforge.inria.fr/



k does not necessarily lead to better separation quality,
possibly because of the mismatch between the goals of re-
construction and of separation.

The source codes, sound examples, and more details of
this work are available online. >

4. EVALUATION

Our evaluation is based on the MIR-1K dataset collected
by Hsu & Jang [7].3 It contains 1,000 song clips extracted
from 110 Chinese pop songs released in karaoke format,
which consists of a clean music accompaniment track and a
mixture track. A total number of eight female and 11 male
amateur singers were invited to sing the songs, thereby cre-
ating the clean singing voice track for each clip. Each clip
is 4 to 13 seconds in length and sampled at 16 khz. Al-
though MIR-1K also comes with human-labeled pitch val-
ues, unvoiced sounds and vocal/nonvocal segments, lyrics,
and the speech recordings of the lyrics for each clip [7],
these information are not exploited in this work.

Following [17], we reserved 175 clips sang by one male
and one female singers (‘abjones’ and ‘amy’) for training
(i.e., learning the dictionaries D¢ and D), and used the re-
maining 825 clips of 17 singers for testing the performance
of separation. For the test clips, we mixed the two sources
v and a linearly with equal energy (i.e., 0 db signal-to-
noise ratio) to generate x, the mixture of sounds similar
to the one available from commercial CDs. The goal is to
recover v and a from x for each test clip separately.

Given a music clip, we first computed its short-time
Fourier transform (STFT) by sliding a Hamming window
of 1024 samples and 1/4 overlapping (as in [8]) to obtain
the spectrogram, which consists of the magnitude part X
and the phase part P. We applied matrix decomposition
using X to get the separated sources. To synthesize the
time-domain waveforms ¢ and a, we performed inverse
STFT using the magnitude spectrogram of the separated
source and the phase P of the original signal [5]. Because
the separated spectrogram may contain negative values, we
converted negative values to zero before inverse STFT.

The quality of separation is assessed in terms of the fol-
lowing measures [20], which are computed for the vocal
part v and the instrumental part a, respectively,

e Source-to-distortion ratio (SDR), which measures the
energy ratio between the source and the distortion
(e.g,vtov—1).

e Source-to-artifact ratio (SAR), which measures the
amount of artifacts of the source separation algo-
rithm such as musical noise.

e Source-to-interference ratio (SIR), which measures
the interference from other sources.

Higher values of these ratios indicate better separation qual-
ity. We computed these ratios by using the BSS Eval tool-
box v3.0,* assuming that the admissible distortion is a

2http://mac.citi.sinica.edu.tw/mlrr

3https://sites.google.com/site/
unvoicedsoundseparation/

4http://bass-db.gforge.inria.fr/

(a) Vocal part (b) Instrumental part

@,
2 ) o,
o ®
z %o ...,
Nl o, .‘“.‘ 'Y
04
[a
w
4
o
2 ]
——RPCA(=1,) ¥ ——RPCAG=1,)
3 @ MLRRO=T) { O @ MLRROST) |
b ~@wMLRROSA) | | e @ MLRR(1=1. )
-4 : : 1 : :
200 400 0 200 400

dictionary size dictionary size
Figure 3. The quality of the separated (a) vocal and (b)
instrumental parts of the 825 clips in MIR-1K in terms of
global normalized source-to-distortion ratio (GNSDR).

time-invariant filter [20]. As in [7], we compute the nor-
malized SDR (NSDR) by SDR(%, v) — SDR(z, v). More-
over, we aggregate the performance over all the test clips
by taking the weighted average, with weight proportional
to the length of each clip [7]. The resulting measures are
denoted as GNSDR, GSAR, and GSIR, respectively (the
later two are not normalized).

4.1 Result

We first compared the performance of MLRR with RPCA,
one of the state-of-the-art algorithms for singing voice sep-
aration [8]. We used ALM-based algorithm for both MLRR
and RPCA [10]. For MLRR, we learned dictionaries from
the training set and evaluate separation on the test set of
MIR-1K. Although it is interested to use different dictio-
nary sizes for the vocal and instrumental dictionaries, we
set k1 = ko = k in this study. For RPCA, we simply eval-
uated it on the test set, without using the training set. The
value of \ was set to either \y = 1//max(m,n), accord-
ing to [2] (recall that (m, n) is the size of the input matrix
X), or 1, as suggested in [11]. We only use \g for RPCA
because using 1 did not work. Moreover, we simply set 3
to 1 for MLRR. For future work it would be interesting to
use different /3 to investigate whether we want to penalize
the rank of one particular source more. ¢

Figure 3 shows the quality (in terms of GNSDR) of the
separated vocal and instrumental parts using different al-
gorithms, different values of the parameter A and different
values of the dictionary size k. We found that MLRR at-
tains the best result when £ = 100 for both parts (3.85 db
and 4.19 db). The performance difference in GNSDR be-

3 Please note that in some previous work the older version BSS Eval
toolbox v2.1 was used [7, 8,23], assuming that the admissible distortion
is purely a time-invariant gain.

61In fact, when 8 = 1 one can combine Z; and Zs, reducing (4) to
(3), and used an LRR-based algorithm to solve the problem as well.



Table 1. Separation quality (in db) for the singing voice
| Method | GNSDR  GSIR  GSAR |

RPCA (A=X) [8] 3.17 4.43 11.1
RPCAh (A=Xo) [23] 3.25 4.52 11.1
RPCAh+FASST [23] 3.84 6.22 9.19
MLRR (k=100, A=1) 3.85 5.63 10.7

tween MLRR (when k£ = 100) and RPCA is significant,
either for the vocal or instrumental part, under one-tailed
t-test (p-value<0.001; d.f.=1648).”

From Figure 3, several observations can be made. First,
it can be found that using larger k£ does not always lead
to better performance, as discussed in Section 3.2. Sec-
ond, for the instrumental part, using k& = 20 (A = o)
already yields high GNSDR (2.74 db), whereas for the vo-
cal part we need to use at least & = 50 (A = 1). This
result shows that we need more dictionary atoms to repre-
sent the space of the singing voice, possibly because the
subspace of singing voice is of higher rank (cf. Figure 1).
The separation quality of the singing voice is worse (i.e.,
lower than zero) when k is too small. Third, we saw that
the vocal and instrumental parts favor different values of A
for MLRR, which deserves future study. 8

Next, we compared MLRR with the two algorithms pre-
sented in [23], in terms of more performance measures.
RPCAh is an APG-based algorithm that uses harmonic-
ity priors to take into account the similarity between si-
nusoidal elements [23]; RPCAh+FASST employs Flexible
Audio Source Separation Toolbox for removing the drum
sounds in the vocal part [15]. Because FASST involves a
heavy computational process, we set the maximal number
of iterations to 100 in this evaluation.

Result shown in Tables 1 and 2 indicates that, except
for the GSIR for singing voice, MLRR outperforms all the
evaluated RPCA-based methods [8,23] in terms of GNSDR
and GSIR, especially for the music accompaniment. How-
ever, we also found that MLRR introduces some artifacts
and leads to slightly lower GSAR. This is possibly because
the separated sounds are linear combination of the dictio-
nary atoms, which may not be comprehensive enough to
capture every nuance of music signals.

Finally, to provide a visual comparison, Figure 4 shows
the separation result for RCA (A=X\p), RCAh+FASST, and
MLRR (k=100, A\=1) for the clip ‘Ani_1_01,” focusing on
low frequency parts 0—4 khz. We saw that the recovered
vocal signal well captures the main vocal melody, and that
components with strong harmonic structure are present in
the recovered instrumental part. We also observed undesir-
able artifacts in the higher frequency components of MLRR,
which should be the subject of future research.

7 We have tried imposing a nonnegative constraint on the dictionary D
(c.f. Eq. 9) but this did not further improve the result.

81t is fair to use different \ for the two sources; for example, if the
application is about analyzing singing voice, one can use A=1.

9 We did not compare our result with another two state-of-the-art meth-
ods [17] and [16], because somehow we cannot reproduce the result for
the former and because the latter did not evaluate on MIR-1K. Moreover,
please note that the evaluation here is performed on 825 clips (excluding
those used for dictionary learning) instead of the whole MIR-1K.

Table 2. Separation quality for the music accompaniment

| Method | GNSDR  GSIR  GSAR
RPCA (A=)o) [8] 319 524 923
RPCAh (A=X) [23] 327 531 930

RPCAh+FASST [23] 321 524 930
MLRR (k=100, \=)o) | 419 780 822

5. CONCLUSION AND DISCUSSION

In this paper, we have presented a time-frequency based
source separation algorithm for music signals that consid-
ers both the vocal and instrumental spectrograms as low-
rank matrices. The technical contributions we have brought
to the field include the use of dictionary learning algo-
rithms to estimate the subspace structures of music sources
and the development of a novel algorithm MLRR that uses
the learned dictionaries for decomposition. The proposed
method is advantageous in that potentially more training
data can be harvested to improve the result of separation.
Although it might not be fair to directly compare the per-
formance of MLRR and RPCA (because the former uses an
external dictionary), our result shows that we can still get
similar separation quality without the sparse assumption on
the singing voice. However, because the separated sounds
are linear combination of the atoms in the pre-learned dic-
tionaries, there are some unwanted artifacts that are audi-
ble, which should be the subject of future work.
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