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ABSTRACT

As artist identification deals with the vocal part of
music, techniques such as vocal sound separation and
speech feature extraction has been found relevant. In
this paper, we argue that the phase information, which is
usually overlooked in the literature, is also informative in
modeling the voice timbre of a singer, given the necessary
processing techniques. Specifically, instead of directly
using the raw phase spectrum as features, we show that
significantly better performance can be obtained by learn-
ing sparse features from the negative derivative of phase
with respect to frequency (i.e., group delay function) using
unsupervised feature learning algorithms. Moreover, better
performance is achieved by using singing voice separation
as a pre-processing step, and then learning features from
both the magnitude spectrum and the group delay function.
The proposed system achieves 66% accuracy in identifying
20 artists from the artist20 dataset, which is better than a
prior art by 7%.

1. INTRODUCTION

Singing voice is one of the most prominent characteristics
in music. To model the vocal signal accurately, much
of the effort has been focus on two topics: 1) extracting
speech-related features of the audio signal [25, 27], and 2)
separating human voice from the accompaniment [9,18,24,
29].

For feature extraction in speech processing, the phase-
based features has been noticed with the application of
speaker recognition or the reconstruction of intelligible
voice [13, 21, 23, 26]. Instead of using phase only, these
works adopted the group-delay function (the negative deri-
vative of phase by frequency), sometimes also merged
together with amplitude-based features. On the other hand,
the application of phase on music has been limited mostly
in signal-level, such as onset detection [2, 5, 16, 17] and
pitch tracking [10]. For high-level musical concepts, like
genre or the timbre of the vocal artist, phase information
has been rarely discussed. Since singing timbre is closely
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related to characteristics of the speech signal, it is worth
investigating the use of phase derivatives for artist identifi-
cation from popular songs.

As for vocal separation, one remarkable development
emerged recently is the sparse and low-rank matrix decom-
position, also known as robust principal component anal-
ysis (RPCA) technique. It notices that the main melody
and the accompaniment can be suitably regarded as the
sparse and low-rank counterparts respectively in an audio
spectrogram [15, 30], since the former involves only a few
notes at a time, and the latter are typically contributed by
repetition of metre and harmonic structure. This technique
satisfies the requirement of artist identification, as such
application needs an efficient algorithm to remove the
accompaniment and preserve the vocal (mostly melody)
information.

Recent years have witnessed progression of sparse mod-
eling techniques [4, 6, 28], which allow for constructing a
succinct representation of raw features as a combination of
only a few atoms learned from an external data collection
[22]. The resulting signal reconstruction has been shown
robust to noise or corruptions of data. In consequence,
sparse coding techniques have been applied in many fields,
including MIR. For example, Yeh et al. [31] demonstrated
accuracy on par with state-of-the-systems for genre classi-
fication using sparse features learned by sparse modeling
techniques.

This paper will investigate the sparse modeling tech-
niques for singing voice separation and unsupervised fea-
ture learning of group-delay functions. In what follows, we
will provide the details of the proposed system in Section
2, followed by experimental evaluations in Section 3. We
will discuss the main findings and limitations in Section 4
and conclude the paper in Section 5.

2. SYSTEM OVERVIEW

Figure 1 shows the flow diagram of the system we im-
plemented for artist identification. The system makes use
of a collection of songs, named the “training corpus,” to
build the audio dictionaries, which are used to compute the
sparse representation of a querying audio signal. Prior to
dictionary learning or sparse coding, frame-level features
are extracted from the audio files. We consider both the
magnitude-based and phase-based features derived from
the short-time Fourier transform (STFT), by taking the log-
magnitude spectrogram as the amplitude-based feature,



Figure 1. Proposed artist identification system.

and the group-delay as the phase-based feature.
Two types of dictionaries, DSG and DGD, both of size

m× k, are respectively learned from the spectrograms and
group-delay functions gathered from the training corpus
using the online dictionary learning (ODL) algorithm (see
Section 2.2). When there is a large overlap of artists
between the training corpus and the querying songs, the
generalizability of the learned dictionary might be lim-
ited (this is the so-called transductive learning setup).
Therefore, it is preferable to use a training corpus that is
representative enough, but is disjoint from the querying
songs in the experiments.

As for testing, we first separate the query songs into
singing voice and music accompaniment using RPCA
technique, one of the state-of-the-art algorithms for singing
voice separation [15]. Then, the log-magnitude spectro-
gram and group-delay functions are then encoded by DSG

and DGD respectively by l1-regularized sparse coding,
engendering the codewords αSG and αGD. Each input
feature is normalized to its Euclidean norm before sparse
coding. After sparse coding, bag-of-frames (BOF) features
are obtained by summing over all the frame-based features
αSG and αGD, respectively, thereby creating a histogram
of the cumulative term occurrence of the dictionary atoms
[19]. Then we perform feature fusion by concatenating the
two BOF features encoded from spectrograms and group-
delay functions. Finally, the performance is evaluated
by multi-class support vector classification in a cross-
validation scheme.

2.1 Group Delay Function

Consider a general representation of short-time Fourier
transform (STFT) of a time-domain signal x (t):

Shx (t, ω) =

∫ ∞
−∞

x (τ)h∗ (t− τ) e−jωτdτ (1)

= Mh
x (t, ω) ejΦ

h
x(t,ω) , (2)

Figure 2. Examples of magnitude spectra, group-
delay functions and phase profiles for tenor vocal /ah/
with fundamental frequencies at C4, selected from RWC
Musical Instrument Sound Database [11]. Bold solid line:
normal (less vibrato); thin solid line: vibrato; thin dashed
line: falsetto.

where Shx (t, ω) ∈ C is the two-dimensional STFT rep-
resentation on time-frequency plane, h (t) is the window
function, Mh

x (t, ω) and Φhx (t, ω) of (1) are the amplitude
and the phase of the STFT representation, respectively. By
taking the natural logarithm of Eq. (2), we obtain the log-
magnitude spectrogram in the real part and the phase the
imaginary part:

log Mh
x (t, ω) = Re

(
log Shx (t, ω)

)
, (3)

Φhx (t, ω) = Im
(
log Shx (t, ω)

)
. (4)

Taking the negative derivative of phase (4) with respect to
frequency, we have

−∂Φhx (t, ω)

∂ω
= Re

(
t− ST hx (t, ω)

Shx (t, ω)

)
, (5)

where ω = 2πf is the angular frequency and T (·) is the
operator such that T h (t) = t · h (t). The first term t
denotes the current time, while the second term is defined
as group-delay function. Detailed derivation procedures
of group-delay function can be found in [1, 12]. In this
work, the group-delay function is computed by the Time-
Frequency Toolbox. 1

To illustrate the effect of singing timbre on phase, in
Figure 2 we show the spectral amplitudes, group-delay
functions and phase profiles of three different examples
(normal, vibrato and falsetto) of single vowel /ah/ sung
by a tenor singer with the same fundamental frequencies
C4. Since the fundamental frequencies of these three
sounds are the same, the peaks in the amplitude spectra
are mostly overlapped. At the spectral peak frequencies,

1 http://tftb.nongnu.org/



the group-delay values of all three sounds are nearly zero.
However, except for the spectral peaks, the group-delay
function of falsetto sound is largely different from those of
normal and vibrato sounds. The group-delay of falsetto
is more peaky, possibly because of the occurrence of
the transmission zeros (dips) evident from the magnitude
spectrum, which mostly correspond to the spurious peaks
seen in the group-delay function. We cannot observe
this kind of spurious peaks from the magnitude spectra
alone, due to the non-stationary nature of the signal under
analysis (singing with vibrato), as well as the lack of
sufficient frequency resolution. In contrast, group-delay
functions better indicate the characteristics in frequency
bands with small-energy.

2.2 Dictionary Learning and Sparse Coding

The atoms of a dictionary are typically learned from a
large-scale training corpus. To overcome the difficulty of
loading data into memory, the ODL algorithm is adopted
[22]. ODL comes with a mini-batch mechanism that learns
the dictionary incrementally by using a part of the training
corpus in each update. Specifically, during the dictionary
learning process, the atoms are updated for each input
feature of the finite set of training signals Y = [y1, ...,yN ]
through the following joint optimization problem:

D̂ = argmin
D∈C

1
N

∑N
i=1

(
1
2‖yi −Dαi‖22 + λ‖αi‖1

)
,

∀j = 1, . . . , k, dTj dj ≤ 1 ,
(6)

where yi ∈ Rm is the i-th frame-level feature (column
vector) of the input data (i.e., either log Mh

x or Φhx) from
the training corpus, αi ∈ Rk is the codeword, D ∈ Rm×k
is the dictionary, and the atom dj is the jth column vector
of D. We can solve for D and αi by minimizing one
while keeping the other fixed [22]. The optimization of
α involves a typical l1-regularized sparse coding problem,
which can be described as

α̂t = arg min
αt

‖xt −Dαt‖22 + λ‖αt‖1 . (7)

This problem has been well-studied in the machine learn-
ing and statistics fields, under different names such as
the basis pursuit [4] or the lasso problem [28]. In this
work, we use the open-source package SPAMS 2 and the
LARS-lasso algorithm [6] for ODL and sparse coding,
respectively. The parameter λ is set to 1/

√
m as in [6].

2.3 Source Separation

Given a monaural music signal, we first compute its
m× n spectrogram Mh

x through STFT. Then, we separate
the singing voice E (sparse components) from the music
accompaniment A (low-rank components) by formulating
the problem as the following RPCA problem,

min
A,E: Mh

x=A+E
‖A‖∗ + µ‖E‖1 , (8)

2 http://spams-devel.gforge.inria.fr/

Corpus Original Vocal Accompaniment
USPOP 62.6% 65.9% 58.5%

USPOP2 61.7% 65.5% 56.6%
MIR-1K 55.9% 63.4% 53.4%

RWC 54.2% 59.9% 49.9%

Table 1. Average accuracy using log-magnitude spectro-
gram BOF features for various audio signals and training
corpora. The vocal and accompaniment parts are separated
by RPCA technique.

where ‖ · ‖∗ denotes the trace norm of a matrix (the
sum of its singular values), ‖ · ‖1 is the l1 norm that
denotes the sum of the absolute values of matrix entries,
and µ is a positive weighting parameter that can be set to
1/
√

max(m,n) as recommended in [3]. This algorithm
is proven to be robust against gross errors and outliers,
in comparison to its l2-regularized counterpart, the well-
known PCA algorithm. As Eq. (8) is convex, efficient
algorithms such as accelerated proximal gradient (APG)
and augmented Lagrange multipliers (ALM) [3, 20] can
be employed to compute A and E in an iterative fashion.
Open-source implementation of such solvers can be found
from the Internet. 3

3. EXPERIMENT

3.1 Dataset and Experimental Setup

We evaluate the performance of artist identification using
the artist20 dataset [7], 4 which consists of six albums
(1,413 songs in total) sung by 20 artists. For each song,
a 30-second length audio signal with both vocal and music
accompaniment is clipped for evaluation. The clips are
sampled at 16 kHz. Most of the songs in the artist20
dataset can also be found in the uspop2002 dataset, 5

which contains over 7,000 Western Pop songs.
For computing the STFT, we use the Hanning window

and try different values of the window size w (in terms
of samples) and the hop factor h (the ratio of hop size
and window size). For classifier training and testing, the
l2-regularized l2-loss support vector classifier in LIBLIN-
EAR 6 is employed for efficiency. To avoid album effect, a
six-fold jack-knife cross-validation scheme is conducted.
Each fold contains only one album from every artist.
As there are many possible fold partitions, we perform
the random partitions for ten times to get the average
classification accuracy. Two-tailed t-test is also performed
(over the ten six-fold partitions) to evaluate whether the
performance difference between different methods or pa-
rameter settings is significant.

3 http://perception.illinois.uiuc.edu/
matrix-rank/

4 http://labrosa.ee.columbia.edu/projects/
artistid/

5 http://labrosa.ee.columbia.edu/projects/
musicsim/uspop2002.html

6 http://www.csie.ntu.edu.tw/˜cjlin/liblinear/



w/ GD, w = 512 w/ GD, w = 1024 w/ GD, w = 2048
SG w/o GD h = 0.1 h = 0.2 h = 0.5 h = 0.1 h = 0.2 h = 0.5 h = 0.1 h = 0.2 h = 0.5

w =
1024

h = 0.1 62.9% 63.3% 63.6% 64.0% 64.5% 64.3% 63.8% 64.6% 64.3% 63.8%
h = 0.2 63.1% 62.1% 62.9% 64.2% 64.4% 65.0% 63.8% 65.4% 64.7% 64.3%
h = 0.5 63.4% 58.1% 59.6% 62.1% 61.9% 62.5% 62.4% 64.9% 64.5% 63.9%

Table 2. Comparison of average accuracy among SG BOF features and fused SG + GD BOF features under various window
sizes and hop factors. Vocal audio signal and MIR-1K training corpus are used. Data in bold style are those which achieve
significant improvement in comparison to non-fused features under the same parameter settings.

Figure 3. Average accuracy (in %) for SG BOF (left)
and GD BOF (right) features constructed under various
window sizes and hop factors. Vocal audio signal and
MIR-1K training corpus are used.

3.2 Training Corpora

As discussed in Section 2, the size and the diversity of
the training corpus are important to the generalizability of
the learned dictionaries. We also have to pay attention to
the possible overlap between the training corpus and the
querying data (i.e., the dataset of the target classification
problem; here artist20). To study the effect of training
corpora, we compared the performance of artist identifi-
cation using dictionaries learned from the following four
training corpora: the whole uspop2002 dataset (USPOP),
the uspop2002 dataset excluding overlap with artist20
(USPOP2), the MIR-1K dataset, and the whole vocal data
in the RWC instrument dataset (RWC) [11]. MIR-1K
contains 1,000 song clips extracted from 110 Chinese Pop
songs released in karaoke format [14]; we use the vocal
channel to train the dictionary. RWC vocal data contains
five vowels (/a/, /i/, /u/, /e/, /o/) with various pitches and
singing techniques sung by eight female and ten male
singers, totaling more than 20,000 isolated notes. Among
the four corpora, USPOP has the largest overlap with
artist20. USPOP2 has no overlap but the music genre is the
same (Western Pop). In contrast, the MIR-1K and RWC
are considered more dissimilar from artist20.

As the first evaluation, we consider only BOF features
computed from the log-magnitude spectrogram, usingw =
1024 and h = 0.5. The size k of the dictionary is set to

1024. The evaluation result is shown in Table 1. The three
columns of the table show the averaged accuracy using
the original signal and the separated signals (vocal and
accompaniment). By comparing the result of the four rows
along the first column, we see that USPOP and USPOP2
lead to better accuracy comparing to MIR-1K and RWC.
This is not surprising as the last two datasets are less
similar with artist20. Although USPOP performs slightly
better than USPOP2, the performance difference is not
significant under the t-test.

3.3 Source Separation

By comparing the result of the three columns of Table
1, also it can be observed that using the separated vocal
sound generally improves the classification accuracy, in
comparison to using the original audio signals. In contrast,
using the separated music accompaniment deteriorates the
accuracy, which makes sense as the task emphasizes the
vocal part of music. Two-tailed t-test shows that the im-
provement of Vocal over Original is significant (p<0.001,
df=118). Moreover, when features are extracted from the
vocal part, we see that the performance of using MIR-
1K as the training corpus comes close to the case when
USPOP is used (63.4% vs 65.9%).

To ensure the evaluation reported here is general enough,
we use MIR-1K as the training corpus in the following
experiments. Moreover, the features are computed from
the separated vocal part of the song clips.

3.4 Incorporating Group Delay

Figure 3 shows the average accuracy of the BOF fea-
tures computed from log-magnitude spectrogram (SG) and
group-delay (GD) under various window sizes w and hop
factors h. The sizes for the SG and GD dictionaries are
both set to 1024. Note that we use different y-axes for the
two features. As the figure shows, the performance of GD
(20–35%) is generally much worse than the performance
of SG (61–64%), possibly due to the highly noisy parts of
the phase information. However, the result of GD is by
no means random; the accuracies are significantly better
than the random guess (whose accuracy is close to 5%).
Moreover, we see a clear trend of the performance of GD
with respect to w and h: better result is obtained by using
smaller w and smaller h. In contrast, the performance of
SG seems to be less sensitive to w and h.

We further experiment with the option of fusing the two
types of features. The result is shown in Table 2, where we



Figure 4. Average accuracies of different SG + GD BOF
features by varying the dictionary size (k) and the window
sizes of SG feature. Vocal audio signal and MIR-1K
training corpus are used. As for GD feature, the window
size is fixed to 1024. Hop factors for both SG and GD are
0.2.

compare the result without (‘w/o’) and with (‘w/’) using
GD features with different values of w and h. We see the
best result is obtained when SG (w=1024, h=0.2) and GD
(w=2048, h=0.1) are fused, each using different values of
w and h. Comparing to the case when GD is not used
(i.e., the third column), the accuracy is improved from
63.1% to 65.4%, a significant improvement under the t-
test (p<0.05, df=118). Actually, significant improvement
is also observed for other cases, as indicated by the use of
bold font weight in Table 2. This result shows that phase
information is indeed useful for this task.

3.5 Influence of Dictionary Size

It has been shown that the performance of dictionary-based
approach can be improved by using a larger dictionary
[31]. As this is only verified on spectrogram-based fea-
tures before, in this experiment we test the effects of the
dictionary size k on the accuracy of artist identification
using the group-delay features. Instead of using the GD
features alone, we fuse it with SG features that is computed
from a dictionary of size 1024, as this brings about better
performance. Figure 4 shows the results as the dictionary
size for GD ranges from 0 (no fusion) to 2048. When the
window sizes w of SG are 512 or 1024, the performance
gradually increases until reaching a plateau as we increase
the dictionary size of GD. Generally speaking, using larger
dictionary is also beneficial to phase-based features.

3.6 Comparison with the Existing Work

Finally, we compare our method with the GMM-based
model proposed in [7], whose underlying frame-level
feature representation is based on the early fusion of the
classic MFCC and Chroma. Under a six-fold jack-knife
cross-validation, the overall accuracy on artist20 was 56%
for MFCC features and 59% for MFCC+Chroma features.
Using the same fold partition and dictionaries learned from

separated vocal parts of USPOP2, the proposed method
reaches 66.0%, an improvement of 7%. Even if the
less similar MIR-1K dataset is employed for dictionary
learning, the classification accuracy reaches 65.5%.

4. DISCUSSION

In view of the source-filter model of voice, group-delay
function contains the information on the phase-distortion
behaviors of the vocal tract filter, which varies with the
individual. Differently, the magnitude part contributes
to the distribution of the resonance peaks on the time-
frequency plane. Mathematically, the magnitude and the
phase part of a STFT profile are strongly related, but
they still have different characteristics [8]. Although the
information provided by the magnitude part is prominent,
the incorporation of group-delay usually better explains the
characteristics of the target signal. There are many pos-
sibilities combining these two features, such as merging
the two features at frame level [13], combining at BOF
level, or in decision stage. Therefore, the way by which
the features are combined and the relative weights of the
two features are worthy for future study.

The use of singing voice separation generally improves
the modeling of either the magnitude or phase information.
However, the RPCA technique adopted in this work is not
perfect. Under many cases the sparse counterpart of RPCA
technique contains not only vocal sources but predominant
instrument solo or the percussion sound. This issue might
be partially solved by performing vocal detection first to
exclude non-vocal segments.

5. CONCLUSION

In this paper, we have proposed a novel artist identification
method based on sparse features learned from both the
magnitude and phase parts of the spectrum. The features
are computed from the separated vocal part of music signal
using robust principal component analysis, in order to
better model the characteristics of singing timbre. Our
analysis shows that both singing voice separation and un-
supervised feature learning are required steps for the fea-
tures to be informative. Moreover, group-delay functions
contain information complementing spectrogram. Evalu-
ation on the artist20 dataset validates the effectiveness of
the proposed phase feature. It is hoped that the present
work can inspire more research towards the modeling of
phase information of music signals, which might hold the
promise of improving other MIR problems.
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