ON FINDING SYMBOLIC THEMES DIRECTLY FROM AUDIO FILES
USING DYNAMIC PROGRAMMING

Antti Laaksonen', Kjell Lemstrom?!
! Department of Computer Science, University of Helsinki
2 Laurea University of Applied Sciences

ahslaaks@cs.helsinki.fi,

ABSTRACT

In this paper our goal is to find occurrences of a theme
within a musical work. The theme is given in a symbolic
form that is searched for directly in an audio file. We
present a dynamic programming algorithm that is related
to an existing time-warp invariant algorithm. However, the
new algorithm is computationally more efficient than its
predecessor, and it can also be used for approximate time-
scale invariant search. In the latter case the note durations
in the query are taken into account, but some time jitter-
ing is allowed for. When dealing with audio, these are
important properties because the number of possible note
events is large and the note positions are not exact. We
evaluate the algorithm using a collection of themes from
Tchaikovsky’s symphonies. The new approximate time-
scaled algorithm seems to be a good choice for this setting.

1. INTRODUCTION

In this paper we present new content-based music retrieval
(CBMR) algorithms for discovering occurrences of a given
musical theme, called the pattern, in a musical work under
consideration, called the database. The algorithms have
both important scientific applications and theoretical inter-
est: they can be used in music analysis to locate occur-
rences of themes in a single musical work or to search for
a given theme within a music database. Moreover, to the
best of our best knowledge, our algorithm for time-warped
search is the most efficient algorithm available for the task.

We allow both the pattern and the database to be poly-
phonic. Traditionally CBMR problems like this have been
tackled by using a linear string representation combined
with a string matching algorithm. However, the represen-
tation does not effectively capture important intrinsic fea-
tures of music. The geometric modeling of music [8] is
more appropriate for this case and has recently been suc-
cessfully used by several authors [4,7,10, 13]. Reasonable
geometric modelling allows the matching process to ignore
extra intervening notes in the database that do not appear

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

(© 2013 International Society for Music Information Retrieval.

kjell.lemstrom@laurea.fi

in the query. Such extra notes always occur because of
polyphony and unexpected noise.

Until recently, the geometric framework suffered from
the fact that the timing of the notes had to be exact. Recent
studies have challenged this problem. First, in [5, 10] the
occurrences were allowed to be transposed and time-scaled
copies of the query. Under this transposition and time-
scale invariance (the TTSI setting), however, the queries
still need to be given exactly in tempo. Under a more re-
alistic, transposition and time-warp invariance (the TTWI
setting), local time jittering is allowed for in every note-
onset. The first solutions for this setting were introduced
by Lemstrom and Laitinen [4, 6].

In this paper we introduce a new dynamic programming
algorithm that can be used for both time-scale and time-
warp invariant search. As an application of the algorithm,
we search for musical themes from audio files. Only a
few other algorithms for symbolic queries from audio have
been proposed in the literature [2, 11, 12]. Our experiment
shows that our algorithms are efficient in practice, and the
music search results from audio files are also promising.

Let us next define the problems under consideration.
The problems are elaborations of Ukkonen, Lemstrom and
Mikinens P1 problem [13]. In each case, the music is rep-
resented in a pitch-against-time representation of note-on
information. The database 7" contains n note events, and
the query pattern P contains m note events. In a typical re-
trieval case, the pattern P is monophonic and much shorter
than the polyphonic database 7'. The problems are:

W 1: Find time-warped translations of P such that each
note in P matches with a note in T [4, 6].

S1: Find time-scaled translations of P such that each
note in P matches with a note in 7" [5, 10].

AS1: Find approximate time-scaled translations of P
such that each note in P matches with a note in 7.

The new problem (AS1) can be seen as an intermediate
form of W1 and S1. Instead of a constant time-scaling
factor a, we allow the scaling to vary in a range [a/€,]
where € > 1. If ¢ = 1, the problem is the same as S1.

2. ALGORITHMS

The dynamic programming algorithm of Laitinen and Lem-
strom [4] solves the problem W1 in O(nmw) time where
w is the window size. In this section we present a modifi-
cation for the algorithm that reduces the time complexity to

O(nm). Furthermore, the new algorithm also solves prob-
lems S1 and AS1 in O(nms) time where s is the number
of possible scaling factors.

The input of the algorithm consists of two lists: the
database notes T[1],T[2],...,T[n] and the pattern notes
P[1], P[2],..., P[m]. Each database note T[k] is a triplet:
T[k].time is the onset time, T'[k].pitch is the pitch value
and T'[k].score is a real value in the range [0,1]. Each
pattern note P[k] is a pair with the fields P[k].time and
P[k].pitch. We assume that both of the lists are sorted in
increasing order according to the onset times and that the
pitches are represented in semitones.

The score field of the database notes is only used with
audio material. If the input is symbolic music, each score
is simply set 1. However, when audio material is used, the
note events are approximations. The idea is that the score
reflects the amplitudes of the frequencies that correspond
to the note in the audio.

The output of the algorithm is a list S[1], S[2], ..., S[n]
consisting of real values. Each value S[k] is the maximum
score for a pattern occurrence starting from the database
note k. In an occurrence, each pattern note is matched with
a database note, and the score is calculated as a sum of
individual scores of the database notes. In the case of a
symbolic database, a score of m denotes that the pattern is
found, and in the case of an audio database a high score
suggests that the pattern is found.

Next, in Section 2.1 we present our modifications to
the time-warped search algorithm. After this, in Section
2.2, we show how the algorithm can also be used for time-
scaled search.

2.1 Time-warped search

Let us next introduce a reformulation of the dynamic pro-
gramming algorithm for W1 that was presented in [4]. The
original algorithm uses a three-dimensional array M ¢, p, c|
where t and p refer to a database and pattern note and c is
a counter that limits the search window. Instead of this,
we use a two-dimensional array M [t, p] and go through all
possible values of c.

forp=m — 1do
fort =n — 1do

if p = m then

MT[t,p] = T[t].score
else

b= -0

for c =1 — min(w,n —¢) do
dy = T'[t + c].pitch — T[t].pitch
dy = Plp + 1].pitch — P|p].pitch
if dl = d2 then

b = max(b, M [t + ¢,p + 1] + T[t].score)

end if

end for

Mlt,p] =b

end if
end for
end for

This algorithm can be used to calculate the list .S’ be-
cause S[k] = Mk, 1] for each k. The time complexity
is still O(nmuw), but next we will show how to reduce it
to O(nm). The idea is to remove the innermost loop and
find the best value more efficiently. To achieve this, we
maintain a deque of maximum values for each possible
pitch and use a standard sliding window maximum algo-
rithm. Note that we assume that the set of possible pitches
is constant. This is a very natural assumption when we are
working with pitch values in semitones.

Consider the situation where p and t have been fixed and
p < m. We are looking for maximum value M[t',p + 1]
where t < t' < t+w with the constraint that T'[t'].pitch =
T[t].pitch + P[p + 1].pitch — P|[p].pitch. Now, for each
pitch v, we maintain a deque D[v] containing pairs whose
first element is the value M[t’, p + 1] and second element
is the position ¢’. The last pair in the deque always corre-
sponds to the maximum value in the window.

We update the deques as follows. When the value ¢ has
changed, we always add the pair (M[t+1,p+1],t+1) to
the front of deque D[T[t 4 1].pitch] and remove the pair
(M[t+w+1,p+1],t + w + 1) from the tail of deque
D[T[t + w + 1].pitch]. Before adding the new pair, we
remove all pairs from the front of the deque whose value
is smaller than the new value. When removing the pair, we
require that the second element equals the current position
(i.e. the pair has not been removed earlier).

The amortized time complexity for finding all the max-
imum values for fixed p is O(n) because every value is
added and removed to a deque only once. Thus the time
complexity of the whole algorithm is O(nm).

The following pseudocode clarifies the structure of the
O(nm) algorithm. The array D contains a deque for each
possible note, and the deque operations work as described
above. Note that the operation remove only takes the sec-
ond element of the pair to be removed.

forp=m — 1do
D.clear()
fort=n—1do
if p = m then
MTt,p] = Tt].score
else
ift + 1 <n then
D[T[t+1].pitch].add((M[t+1,p+1],t+1))
end if
ift +w+ 1 < n then
DI[T[t + w + 1].pitch].remove(t + w + 1)
end if
v = Tt].pitch + Plp + 1].pitch — P[p|.pitch
if D[v].empty() then

MIt,p] = —c0
else
MT[t,p] = D[v].maximum() + T'[t].score
end if
end if
end for

end for

Note that if we use a symbolic database and every note
score is 1, the deques are not needed. In this case it is
sufficient to store, for each pitch v, the most recent position
R[v], for which M[t',p + 1] = n — p. If R[v] < ¢ + w,
then M |t, p] equals n — p + 1 and otherwise —oo.

2.2 Time-scaled search

The algorithm described in Section 2.1 can also be used
for time-scaled search. The only difference is that the size
of the window is not constant. Instead of this, the size
of the window depends on the position in the pattern and
the time values of the notes. However, the sliding window
maximum algorithm can still be used and the time com-
plexity of the algorithm remains O(nm) when the range
of the scaling factor is fixed.

Let « be the scaling factor and e be the jittering toler-
ance. In this case, pattern notes P[p] and P[p + 1] can be
matched to database notes T'[t] and T'[t'] only if (Plp +
1].time — P[p].time)a/e < T[t'].time — T[t].time and
(P[p+1].time— P[p|.time)ae > T[t'].time—T[t].time.
In other words, we are looking for ¢’ values for which
t+w; <t < ¢4 wy T[t+ wy]is the first note that
fulfils the first condition and T'[t 4 ws] is the last note that
fulfils the second condition.

We can combine the parameters w; and wsy with the al-
gorithm presented in Section 2.1 as follows. Consider the
situation for fixed p. First, we set w; = wy = n. When
t changes, we decrease w as long as (P[p + 1].time —
Plpl.time)a/e < T[wy — 1].time — T[t].time. Then, we
decrease wy as long as (P[p + 1].time — P[p].time)ae <
T[we — 1].time — Tt].time. When decreasing w, we
add new values to the deque, and when decreasing wo,
we remove old values. Even if the deque operations are
more irregular than in the time-warped search, each value
is added and removed only once and the time complexity
remains O(nm).

In practice, the correct o value is unknown and several
searches have to be performed. Thus, the time complexity
becomes O(nms) where s is the number of searches. In
practice, however, the number of scaling factors that needs
to be tested is small because the duration of a single note
is typically at most some seconds.

3. EXPERIMENT

In this section, we present the results of our experiment
where we searched for themes within audio material using
the algorithms described in Section 2. We consider two
scenarios: (1) finding the location of the given theme in a
single audio file, and (2) finding the audio file which con-
tains the given theme. Moreover, we analyse the perfor-
mance of the O(nmw) and O(nm) algorithms in practice.

3.1 Material

The material used in the experiment, shown in Table 1,
consists of Tchaikovsky’s six symphonies.

We created the audio database from Deutsche Gram-
mophon recordings found under the catalogue id 423 504-

Work | Movements | Total length | Themes
Symphony 1 4 44 min 10
Symphony 2 4 35 min 11
Symphony 3 5 46 min 15
Symphony 4 4 42 min 13
Symphony 5 4 49 min 15
Symphony 6 4 45 min 11

Total 25 262 min 75

Table 1. The material used in the experiment.

2. We converted the material from CD tracks into mono
WAV files with a sample rate 44,100 Hz. Each audio file
contains a single movement of a symphony. The total du-
ration of the audio is 4 hours and 22 minutes.

The themes to be searched for were taken from the book
A Dictionary of Musical Themes [1]. The book contains
75 themes from Tchaikovsky’s symphonies and we used
all of them in the experiment. Each theme has an identifier
in the form of TXXX where X is a digit. The themes are
also available online ! as MIDI files which we automati-
cally converted to simple symbolic notation. In addition,
for each theme, we marked the locations where it appears
in the audio material to allow automatic evaluation.

The duration of a theme ranges from about 5 seconds
to about 25 seconds. We kept all of the themes unchanged
with two exceptions. First, theme T231 actually consists
of two themes from which the second one is very short.
They are indexed separately online, and we have removed
the second theme from our material. Second, there is an
error in the notation of theme T243 both in the book and
online: only the first two triplets are marked and the other
notes are too slow. We corrected this in our material.

3.2 Audio processing

Our algorithms require that the database is represented as
a list of note events. However, there is no direct way to
convert an audio file into symbolic notation. Therefore we
estimated the note events using the discrete Fourier trans-
form. In general, strong notes in the music can be observed
as strong frequencies in the audio signal.

We used standard techniques for processing the audio
signal: we divided each audio file into frames of 4,096
samples. After this, we calculated a frequency spectrum
for each frame using the discrete Fourier transform. We
assumed that the frequency of A4 is 440 Hz and calcu-
lated the amplitude of its frequency in the spectrum for
each note from G3 to B5. The selected note range encom-
passes a large part of the melodies in orchestral music and
avoids very low and very high notes. All the amplitudes
were normalized and estimated using linear interpolation.

‘We built three databases of note events, which are sum-
marized in Table 2. The value k refers to the amount of
note events produced from a single audio file. The values
min k and max k are the minimum and maximum amounts

"http://www.multimedialibrary.com/barlow/

Database min k max k n
D1 | 107,793 | 353,249 | 4,948,386
D2 | 33,830 | 107,914 | 1,541,098
D3 | 37,510 | 122,703 | 1,732,997

Table 2. The number of note events in the databases.

of note events in a file, and the value n denotes the total
number of note events in the database.

Database D1 contains a note event for each note in each
frame, and the score of the note event is the amplitude of
the note in the spectrum. In this case the database includes
a lot of note events with low scores that are unlikely to be
a part of a theme occurrence.

Databases D2 and D3 are subsets of D1, and the aim is
to locate potential note candidates from the full spectrum.
Database D2 contains the notes whose amplitudes are peak
amplitudes (i.e. the note with pitch p is selected only if
notes with pitches p—1 and p+1 have a weaker amplitude).
Database D3 contains the 10 strongest notes in terms of the
amplitude for each frame. A value of 10 is selected so that
the sizes of D2 and D3 are nearly equal to each other.

This estimation of note events resembles salience value
calculation in automatic melody extraction (for a review,
see [9]). However, salience values are usually calculated
as combinations of the harmonics of the note. We exper-
imented with various ways to use higher harmonics, but
to our surprise, using only the fundamental frequency pro-
duced the best results with this material.

3.3 Algorithms

We implemented the audio processing method described
in Section 3.2 and the time-warped and time-scaled algo-
rithms described in Sections 2.1 and 2.2 by using C++ and
FFTW library. For the rest of the paper, we call the time-
warped algorithm W and the time-scaled algorithm S.

When using algorithm W, we had to choose the window
length w. In this experiment, w has to be relatively high be-
cause there can be a large number of note events between
two consecutive theme notes in the database. More pre-
cisely, the amount of note events per second is about 300
in D1 and about 100 in D2 and D3, and a note in a theme
occurrence can have a duration of several seconds.

In algorithm S there are several parameters. First, the
scaling factors o have to be specified. In this experiment
we assumed that the duration of theme is between 5 and 25
seconds and tested « values for which the time between the
first and last note in the theme is 5,6,7,...,25 seconds.
The jittering tolerance e was more difficult to choose; in
orchestral music the rhythm is usually quite exact, thus in-
dicating a small value to be the most suitable option.

Moreover, we had to choose how the occurrences of the
themes were reported. For this purpose we used the param-
eter 6, a real number in the range [0,1]. All occurrences
with a score of at least Jb were reported, where b is the
best score. The lower the § is, the more results are pro-
duced. However, a small § would result in a large number

Database Metric W S
D1 | Themes found 29 34

Total results 76 77
Precision | 0.38 | 0.44
D2 | Themes found 30 29
Total results 76 77
Precision | 0.39 | 0.38
D3 | Themes found 31 33
Total results 76 77
Precision | 0.41 | 0.43

Table 3. The best results of the algorithms. For W, pa-
rameter w is 500 in D1 and 150 in D2 and D3, and for S,
parameter € is 1.50

w\o | 1.00 | 0.99 | 0.95 | 0.90 | 0.75

100 12 15 28 46 69
0.16 | 0.14 | 0.09 | 0.05 | 0.01
200 22 25 35 52 70
0.29 | 0.24 | 0.12 | 0.06 | 0.01
500 29 34 51 64 71
0.38 | 0.28 | 0.09 | 0.03 | 0.01
1000 23 32 61 71 74
0.24 | 0.15 | 0.04 | 0.02 | 0.01
2000 22 41 72 73 74
0.07 | 0.05 | 0.02 | 0.01 | 0.01

Table 4. The results of W on database D1 when w and §
change. Themes found and precision levels are reported.

of false positives. Finally, we required that the interval be-
tween two reported occurrences is at least 5 seconds. This
was done to prevent one occurrence from being reported
multiple times.

3.4 File search

In the first part of the experiment, we searched for each
theme in the file where it appears. We calculated three
measures: the number of themes located correctly, the to-
tal number of occurrences reported and the search preci-
sion as the ratio of previous two values. We considered
that the theme was found if the difference between one of
the occurrences reported by the algorithm and one of the
occurrences in the ground truth was less than 5 seconds.

Table 3 shows the best results of the algorithms. The
parameter § is 1.00 in each case. For algorithm W, param-
eter w is 500 in D1 and 150 in D2 and D3. For algorithm
S, parameter € is 1.50. Interestingly, the best results were
achieved in D1 which contains a note event for each pos-
sible note in each audio frame. The results of S were in
general somewhat better than the results of W.

Note that in some cases there can be several occurrences
even if is 1.00. For example, when using W and D1, the
number of occurrences is 76 instead of 75. In those cases
all normalized note scores in the occurrences are 1, thus
the total score is m where m is the number of notes.

e\d | 1.00 | 0.99 | 0.95 | 0.90 | 0.75
1.10 25 29 37 51 70
0.33 | 0.27 | 0.13 | 0.06 | 0.02
1.20 30 34 43 53 71
0.40 | 0.33 | 0.14 | 0.06 | 0.02
1.33 33 38 46 58 71
0.44 | 036 | 0.14 | 0.06 | 0.02
1.50 34 37 49 60 72
0.44 | 036 | 0.13 | 0.05 | 0.01
2.00 30 37 49 63 73
0.36 | 0.25 | 0.07 | 0.03 | 0.01

Table 5. The results of S on database D1 when € and §
change. Themes found and precision levels are reported.

Table 4 shows the results of W in D1 with different set-
tings of parameters w and 6. The optimal value for w is
approximately 500. Finally, Table 5 shows the results of S
in D1 with different settings of parameters € and ¢ change.
The optimal value for € is approximately 1.50. Using larger
0 values, S would still find themes accurately in some situ-
ations. For example, when 6 = 0.99 and € = 1.33, S found
38 themes with a precision level of 0.36.

The database used in the experiment is challenging in
general; finding some of the themes requires a moderate
amount of work even for an experienced human listener.
An interesting phenomenon is that the results of the algo-
rithms varied very strongly depending on the symphony.
For example, S was able to find 9 out of 10 themes from
Symphony 1, but only 1 out of 11 themes from Symphony
6. A possible explanation for this is that the themes in
Tchaikovsky’s later works are more subtle.

3.5 Database search

In the second part of the experiment, we searched for each
theme in the database D1. This resembles the query-by-
humming setting [3]; however, our queries are exact (for
example, created by a musician) and the database is atypi-
cal because it contains a small number of files, each having
more than 100,000 note events.

The search was conducted as follows. For each file in
the database, we calculated the maximum score for an oc-
currence of the theme. Having done this, we constructed a
list of files that were sorted in decreasing order according
to their scores. Following the usual convention, we con-
centrated on the rank of the correct file (the file where the
theme actually appears) in the sorted list. For example, a
rank of 5 means that the correct file has the 5th highest
score in the search results.

Figures 1 and 2 show the distribution of ranks using
W and S in D1 with the same parameters as in Table 3.
There were 18 and 22 themes with a rank of 1, and 26
and 31 themes, respectively, with a rank of 1-3. Some-
what surprisingly, in this material locating the theme in the
whole database was not much more difficult than locating
the theme in the correct file.

L0 o e L s s e e e L s s s

251

20

1234567 8910111213141516171819202122232425

Figure 1. Distribution of correct file ranks using algorithm
W and database D1.

VT T T T T T T T T T T T T T T

251

20

.
12345678 910111213141516171819202122232425

Figure 2. Distribution of correct file ranks using algorithm
S and database D1.

3.6 Performance

Finally, we analyzed the practical performance of the algo-
rithms. We ran the tests on an Intel Core 2 Duo Processor
with a clock rate of 3.16 GHz.

Figure 3 shows the running times of three algorithms:
S is the O(nms) implementation of the time-scaled algo-
rithm, and W and W’ are O(nm) and O(nmw) imple-
mentations of the time-warped algorithm. We searched for
theme T252 with 27 notes from each audio file in database
D1 using parameters 6 = 1.00, ¢ = 1.50 and w = 500, as
shown in Table 3. As discussed previously, the variable &
denotes the number of note events in the audio file.

As expected, W clearly outperformed the other two al-

time (s)

-

e e KR B Ko

T S iukattilod xo . . .
180000 150000 200000 250000 300000 350000
k

Figure 3. Running times of S, W’ and W using the param-
eters shown in Table 3.

gorithms: it was more than 10 times faster than both W’
and S. Furthermore, S was almost as fast as W’ although it
performed twenty separate searches for each query.

4. CONCLUSIONS

In this paper we presented a new time-warp invariant poly-
phonic music search algorithm that works in O(nm) time.
Unlike the earlier algorithms [4, 6] with time complexities
O(nlognmw) and O(nmw), the running time of our al-
gorithm does not depend on the window size w, and it can
be used with arbitrarily large windows.

In addition, our algorithm can also be used for time-
scale invariant search. We introduced a new approximate
time-scale invariant schema which allows limited jittering
within the scaled note durations. In this case, the time com-
plexity of our algorithm is O(nms) where s is the number
of possible scalings. In typical queries s is small.

We used our algorithms to search for musical themes in
Tchaikovsky’s symphonies. We estimated the note events
using amplitudes of frequencies in the audio files. Consid-
ering the challenging nature of orchestral music input, the
results of the algorithms were promising, and the experi-
ment also showed that the modified dynamic programming
algorithm is efficient in practice.

Our future plan is to further develop the database con-
struction. Limiting the number of notes in the database
could make the search both more accurate and more effi-
cient. However, within the context of a frame, it is difficult
to decide which note pitches should be included; in our ex-
periment, the best results were achieved when all pitches
were included. Therefore, another approach would be to
remove entire frames which are probably not needed in the
search.

5. ACKNOWLEDGEMENTS

This work has been supported by the Helsinki Doctoral
Programme in Computer Science and the Academy of Fin-
land (grant number 118653).

6. REFERENCES

[1] H. Barlow and S. Morgenstern: A Dictionary of Musi-
cal Themes, Crown Publishers, New York, 1948.

[2] A.Duda, A. Niirnberger and S. Stober: “Towards query
by singing/humming on audio databases,” Proceedings
of the 8th International Conference on Music Informa-
tion Retrieval, 331-334, 2007.

[3] A. Ghias et al: ”Query by humming: musical infor-
mation retrieval in an audio database,” Proceedings of
ACM Multimedia 95, 231-236, 1995.

[4] M. Laitinen and K. Lemstrém: “Dynamic program-
ming in transposition and time-warp invariant poly-
phonic content-based music retrieval,” Proceedings of
the 12th International Society for Music Information
Retrieval Conference, 369-374, 2011.

[5] K. Lemstrom: “Towards more robust geometric
content-based music retrieval,” Proceedings of the 11th
International Society for Music Information Retrieval
Conference, 577-582, 2011.

[6] K. Lemstrom and M. Laitinen: “Transposition and
time-warp invariant geometric music retrieval algo-
rithms,” Proceedings of the 3rd International Work-
shop on Advances in Music Information Research, 1-6,
2011.

[71 A. Lubiw and L. Tanur: “Pattern matching in poly-
phonic music as a weighted geometric translation prob-
lem,” Proceedings of the 5th International Society
for Music Information Retrieval Conference, 289-296,
2004.

[8] D. Meredith, G. Wiggins and K. Lemstrom: Pat-
tern induction and matching in polyphonic music and
other multi-dimensional datasets,” Proceedings of the
Sth World Multi-Conference on Systemics, Cybernetics
and Informatics, 61-66, 2001.

[9] G. Poliner et al: "Melody transcription from music au-
dio: approaches and evaluation,” IEEE Transactions
on Audio, Speech, and Language Processing, 15(4),
1247-1256, 2007.

[10] C.A. Romming and E. Selfridge-Field: ~Algorithms
for polyphonic music retrieval: The hausdorff metric
and geometric hashing,” Proceedings of the 8th Inter-
national Society for Music Information Retrieval Con-
ference, 457-462, 2007.

[11] M. Ryynénen and A. Klapuri: ”Query by humming
of midi and audio using locality sensitive hashing,”
Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2249-2252,
2008.

[12] J. Salamon, J. Serra and E. Gémez: “Tonal represen-
tations for music retrieval: from version identification
to query-by-humming,” International Journal of Mul-
timedia Information Retrieval, 2(1), 45-58, 2013

[13] E. Ukkonen, K. Lemstrom and V. Mékinen: ”Geomet-
ric algorithms for transposition invariant content-based
music retrieval,” Proceedings of the 4th International
Society for Music Information Retrieval Conference,

193-199, 2003.

