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ABSTRACT

Content-based music information retrieval tasks are typi-
cally solved with a two-stage approach: features are ex-
tracted from music audio signals, and are then used as in-
put to a regressor or classifier. These features can be engi-
neered or learned from data. Although the former approach
was dominant in the past, feature learning has started to
receive more attention from the MIR community in re-
cent years. Recent results in feature learning indicate that
simple algorithms such as K-means can be very effective,
sometimes surpassing more complicated approaches based
on restricted Boltzmann machines, autoencoders or sparse
coding. Furthermore, there has been increased interest in
multiscale representations of music audio recently. Such
representations are more versatile because music audio ex-
hibits structure on multiple timescales, which are relevant
for different MIR tasks to varying degrees. We develop
and compare three approaches to multiscale audio feature
learning using the spherical K-means algorithm. We evalu-
ate them in an automatic tagging task and a similarity met-
ric learning task on the Magnatagatune dataset.

1. INTRODUCTION

Content-based music information retrieval (MIR) techni-
ques can be used to solve a variety of different problems,
such as genre classification, artist recognition and music
recommendation. They typically have a two-stage archi-
tecture: first, features are extracted from music audio sig-
nals to transform them into a more meaningful representa-
tion. These features are then used as input to a regressor or
a classifier, which is trained to perform the task at hand.

Although machine learning techniques such as support
vector machines and neural networks have traditionally
been popular for the second stage, the features extracted
from the audio are typically engineered rather than learned.
Feature engineering is a complex and time-consuming pro-
cess. Furthermore, these features are usually designed with
a particular task in mind and are likely not optimally suited
for other tasks. A prime example of this are the popular
mel-frequency cepstral coefficients (MFCCs), which were
originally designed for speech processing. MFCCs mainly
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encode timbre and discard pitch information, which is of-
ten undesirable when working with music audio. Despite
this, they are still very commonly used for this purpose.

In recent years, feature learning has started to receive
more attention from the MIR community. This can be at-
tributed at least in part to a surge of interest in feature learn-
ing in general, ever since the emergence of deep learning
in the mid-2000s [12]. Simply put, the idea of deep learn-
ing is to learn a hierarchy of features, organized in layers
that correspond to different levels of abstraction. Higher-
level features are defined in terms of lower-level features.

A similar evolution has taken place in computer vi-
sion and speech processing, where approaches based on
deep learning are now commonplace, after improving on
the previous state of the art by a large margin [6, 14]. In
light of this, Humphrey et al. [13] advocate the use of
deep architectures to solve MIR problems. However, re-
cent results in feature learning indicate that simple, shal-
low (single-layer) feature learning techniques such as the
K-means algorithm can also be quite competitive, some-
times surpassing more complicated approaches based on
restricted Boltzmann machines, autoencoders and sparse
coding [5]. These models are typically much more diffi-
cult to tune than the K-means algorithm, which only has
one parameter (the number of means). They are often an
order of magnitude slower to train as well.

Another recent development in MIR research is the in-
creased interest in multiscale architectures [1,8,10]. Music
audio exhibits structure on many different timescales: at
the lowest level, signal periodicity gives rise to pitch. Peri-
odicity at longer timescales emerges from rhythmic struc-
ture, repeated motifs and musical form. These timescales
are relevant for different tasks to varying degrees.

Some researchers have explored architectures that are
both deep and multiscale: for example, in convolutional
neural networks, subsampling layers are often inserted be-
tween the convolutional layers, so that the features at each
successive level take a larger part of the input into account
[7, 16]. Indeed, it is not unreasonable to assume that more
complex features will typically span longer timescales.
However, these concepts need not necessarily be inter-
twined; for example in multiresolution deep belief net-
works [19], both hierarchies are separated.

In this paper, we endeavor to build a versatile feature
learning architecture for music audio that operates on mul-
tiple timescales, using the spherical K-means algorithm.
We compare three multiscale architectures and evaluate the
resulting features in an automatic tagging task and a sim-
ilarity metric learning task on the Magnatagatune dataset
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Figure 1: Schematic overview of the feature extraction
process at a single timescale. The mel-spectrogram is di-
vided into large pooling windows. Smaller windows con-
sisting of 1, 2 or 4 consecutive frames are extracted convo-
lutionally and PCA-whitened, and then K-means features
are extracted. The features are pooled by taking the maxi-
mum across time over the pooling windows.

[15]. The rest of the paper is structured as follows: in Sec-
tion 2 we outline the feature learning algorithm we used.
A description of the multiscale architectures we investi-
gated follows in Section 3. Our experiments and evalua-
tion methods are detailed in Section 4 and the results are
discussed in Section 5.

2. FEATURE LEARNING

To learn features from music audio, it is typically con-
verted into a time-frequency representation first, such as
a mel-spectrogram (see Section 4.1 for details). Fea-
ture learning algorithms can then be applied to individ-
ual spectrogram frames or windows of consecutive frames.
We used the following feature extraction pipeline, which
is visualized schematically in Figure 1: first, the mel-
spectrograms are divided into large pooling windows, sev-
eral seconds in length. Smaller windows consisting of 1, 2
or 4 consecutive frames are then extracted convolutionally
and PCA-whitened, and K-means features are extracted
from the whitened windows. The features are pooled by
taking the maximum across time over the pooling win-
dows. Each part of the pipeline is decribed in more detail
below. For now, we will assume a typical single-timescale
setting. In Section 3, we extend our approach to multiscale
time-frequency representations.

2.1 PCA whitening

First, we randomly sample a set of windows from the data,
and whiten them with PCA. We keep enough components
to retain 99% of the variance. The whitened windows
are then used to learn the dictionary. It has been shown
that this whitening step considerably improves the features
learned by the K-means algorithm [5].

2.2 Spherical K-means

We then use spherical K-means to learn features from
the whitened windows. The spherical K-means algorithm
differs from more traditional variants in the fact that the
means are constrained to have a unit L2 norm (they must
lie on the unit sphere). This is achieved by adding a nor-
malization step in every iteration after the means are up-
dated. For a detailed overview of the algorithm, we refer
to Coates et al. [4].

K-means has often been used as a dictionary learning
algorithm in the past, but it has only recently been shown
to be competitive with more advanced techniques such as
sparse coding. The one-of-K coding (i.e., each example
being assigned to a single mean) is beneficial during learn-
ing, but it turns out to be less suitable for the encoding
phase [3]. By replacing the encoding procedure, the fea-
tures become significantly more useful. For spherical K-
means, it turns out that using a linear encoding scheme
works well: the feature representation of a data point is
obtained by multiplying it with the dictionary matrix. To
extract features from mel-spectrograms with a sliding win-
dow, we have to whiten the windows and extract features,
which can be implemented as a single convolution with the
product of the whitening matrix and the dictionary matrix.

We can also skip the K-means step altogether and use
the PCA components obtained after whitening as features
directly. These features were referred to as principal mel-
spectrum components (PMSCs) by Hamel et al. [11]. They
are in fact very similar to MFCCs: if the windows consist
of single frames, replacing the PCA whitening step with a
discrete cosine transform (DCT) results in MFCC vectors.
Both transformations serve to decorrelate the input.

2.3 Pooling

The representation we obtain by extracting features con-
volutionally from mel-spectrograms is not yet suitable as
input to a regressor or classifier. It needs to be summarized
over the time dimension first. We pool the features across
large time windows several seconds in length. Although
a combination of the mean, variance, minimum and maxi-
mum across time has been found to work well for this pur-
pose [11], we use only the maximum, because it was found
to be the best performing single pooling function. This re-
duces the size of the feature representation fourfold, which
speeds up experiments significantly while having only a
limited impact on performance. We used non-overlapping
pooling windows for convenience, but our approach does
not preclude the use of overlapping windows. Figure 1
shows a schematic overview of the feature extraction pro-
cess.

3. MULTISCALE APPROACHES

We explore three approaches to obtain multiscale time-
frequency representations from mel-spectrograms: mul-
tiresolution spectrograms, Gaussian pyramids and Lapla-
cian pyramids [2]. An example of each is given in Figure
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Figure 2: Three different 4-level multiscale time-frequency representations of music audio. Level 0 is at the bottom, higher
levels correspond to coarser timescales. This figure is best viewed in color.

2. To arrive at a multiscale feature representation, we sim-
ply apply the pipeline described in Section 2 to each level
separately, and concatenate the resulting feature vectors.

3.1 Multiresolution spectrograms

The most straightforward approach to learning music au-
dio features at multiple timescales is to extract mel-
spectrograms with different window sizes. This approach
was previously explored by Hamel et al. [10]. For each
consecutive level, we simply double the spectrogram win-
dow size of the previous level. Although we could also
double the hop size to reduce the size of the higher level
representations, this was found to decrease performance
considerably, so it is kept the same for all levels. Figure 2a
shows an example of a set of multiresolution spectrograms.

3.2 Gaussian pyramid

The Gaussian pyramid is a very popular multiscale repre-
sentation in image processing. Each consecutive level of a
Gaussian pyramid is obtained by smoothing and then sub-
sampling the previous level by a factor of 2 in the time
dimension. To our knowledge, it has not previously been
applied to time-frequency representations of music audio.
In this case, mel-spectrograms are extracted only at the
finest timescale and all higher levels can be obtained from
them. Higher-level representations in a Gaussian pyramid
will be smaller in size because of the subsampling step.
This means that the pooling windows used in our feature
extraction pipeline must be shrunk accordingly. An exam-
ple of a Gaussian pyramid is shown in Figure 2b. Note that
the lowest level of the Gaussian pyramid is identical to that
of the multiresolution spectrograms.

3.3 Laplacian pyramid

The Laplacian pyramid can be derived from the Gaus-
sian pyramid by taking each level and subtracting an up-
sampled version of the level above it. The top level re-
mains the same. The result is that the representations at
finer timescales will not contain any information that is al-
ready represented at coarser timescales. This reduces re-
dundancy between the levels of the pyramid. An example
of a Laplacian pyramid is shown in Figure 2c.

3.4 Modeling local temporal structure

Frames taken from multiresolution spectrograms will auto-
matically model longer-range temporal structure at higher
levels, because the spectrogram window size is increased.
For the Gaussian and Laplacian pyramids however, this
is not the case: any temporal structure present at longer
timescales is lost by the downsampling operation that is
required to construct the higher levels of the pyramid. Al-
though frames at higher levels of the pyramid are affected
by a larger region of the input, they do not reflect tempo-
ral structure within this region. To allow for this structure
to be taken into account by the feature learning algorithm,
we can instead use windows of a small number of consec-
utive frames as input. This is not useful for multiresolution
spectrograms because the temporal resolution is the same
at all levels, i.e. higher levels do not have coarser temporal
resolutions as is the case for the pyramid representations.

Figure 3 shows a random selection of features learned
from windows of 4 consecutive mel-spectrogram frames
at different levels in a 6-level Gaussian pyramid, with
PCA whitening (top) and with spherical K-means (bot-
tom). Some features are stationary across the time di-
mension, others resemble percussive events and changes
in pitch. Many of the K-means features seem to reflect
harmonic structure. This is especially the case for level 1
where the features span roughly half a second, which is
around the average duration of a musical note. This type
of structure is less pronounced in the PCA features.

4. EXPERIMENTS

4.1 Dataset

We used the Magnatagatune dataset [15], which contains
25863 29-second audio clips taken from songs by 230
artists sampled at 16 kHz, along with metadata and tags.
It comes in 16 parts, of which we used the first 12 for
training, the 13th for validation and the remaining 3 for
testing. We extracted log-scaled mel-spectrograms with
200 components, with a window size of 1024 frames (cor-
responding to 64 ms) and a hop size of 512 frames (32
ms). For the multiresolution spectrogram representation,
the spectrogram window size was doubled for each con-
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Figure 3: A random selection of features learned with PCA whitening (top) and spherical K-means (bottom) from windows
of 4 consecutive mel-spectrogram frames, at different levels in a Gaussian pyramid. The frequency increases from bottom
to top.

secutive level. We used 6 levels for all three multiscale
representations, numbered 0 to 5. This means that frames
at the highest level span 2 seconds and are spaced 1 sec-
ond apart. We used pooling windows of 128 spectrogram
frames at the lowest level (about 4 seconds).

4.2 Tag prediction

The main task we used to evaluate the proposed feature
learning architectures is a tag prediction task. This allows
us to evaluate the versatility of the representations, because
tags describe a variety of different aspects of the music:
genre, presence (or absence) of an instrument, tempo and
dynamics, among others. All clips in the dataset are an-
notated with tags from a set of 188. We only used the 50
most frequently occurring tags for our experiments, to en-
sure that enough training data is available for each of them.

We trained a multilayer perceptron (MLP) on the pro-
posed multiscale feature representations to predict the
presence of the tags, with a hidden layer consisting of 1000
rectified linear units [17]. We used minibatch gradient de-
scent with weight decay to minimize the cross entropy be-
tween the predictions and the true tag assignments, and
stopped training when the performance on the validation
set was no longer increasing. Hyperparameters such as the
learning rate and the weight decay constant were optimized
by performing a random search on the validation set. We
trained the MLP on feature vectors obtained from pooling
windows. Tag predictions for an entire clip were computed
by taking the average of the predictions across all pool-
ing windows. We computed the area under the ROC-curve
(AUC) for all tags individually and then took the average
across all tags to get a measure of the predictive perfor-
mance of the trained models.

We evaluated four different feature learning setups:
PCA whitening, and spherical K-means with 200, 500 and
1000 means. We also compared 7 different multiscale ap-
proaches: Gaussian and Laplacian pyramids with windows
of 1, 2 and 4 consecutive frames, and multiresolution spec-
trograms. This yields 28 different architectures in total.

4.3 Similarity metric learning

We also used the features to learn an audio-based mu-
sic similarity metric, to further assess their versatility.
Using Neighborhood Components Analysis (NCA) [9],
we learned a linear projection of the features into a 50-
dimensional space, such that similar clips are close to-
gether in terms of Euclidean distance. Each clip is mapped
into this space by projecting the feature vectors corre-
sponding to each pooling window and then taking the mean
across all pooling windows. The linear projection matrix is
then optimized with minibatch gradient descent to project
clips by a given artist into the same region. This approach
to learning a music similarity metric was previously ex-
plored by Slaney et al. [18].

NCA is based on a probabilistic version of K-nearest
neighbor classification, where neighbors are selected prob-
abilistically proportionally to their distance and each data
point inherits the class of its selected neighbor. The objec-
tive is then to maximize the probability of correct classifi-
cation. We report this probability on the test set.

5. RESULTS

5.1 Architectures

The results for the tag prediction task obtained with each
of the 28 different architectures are shown in Figure 4. All
reported results are averaged across 10 MLP training runs
with different initializations. Unfortunately we cannot di-
rectly compare our results with those of Hamel et al. [10],
because they used a different version of the dataset.

The first thing to note is that using features learned with
spherical K-means almost always yields increased perfor-
mance, although the difference between using 500 or 1000
means is usually small. Interestingly, the best perform-
ing architecture uses a Laplacian pyramid, with features
learned from single frames. This is somewhat unexpected,
because it implies that grouping consecutive frames into
windows so that the feature learning algorithm can capture
temporal structure is not necessary for this type of multi-
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Figure 4: Results for the tag prediction task, for 28 different multiscale feature learning architectures. All reported results
are averaged across 10 MLP training runs with different initializations. Error bars indicate the standard deviation across
these 10 runs.
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Figure 5: Results for the similarity metric learning task, for 28 different multiscale feature learning architectures. All
reported results are averaged across 10 training runs with different initializations. Error bars indicate the standard deviation
across these 10 runs.

scale representation. This does seem to help when using a
Gaussian pyramid, however.

Results for the similarity metric task are shown in Fig-
ure 5. Here, a Gaussian pyramid with windows of 2 con-
secutive frames works best. Using 1000 means is notice-
ably worse than using 500 means. This can be attributed
to the fact that the NCA objective seems to be very prone
to overfitting when using a large amount of input features
(6000 in this case, for 6 levels), despite our use of weight
decay and early stopping for regularization.

5.2 Relevant timescales

To assess which timescales are relevant for different tags,
we took the best architecture from the previous experiment
and tried to predict tags from each level individually. Al-
though a combination of all levels performs best for all
tags, it is not always obvious precisely which timescales
are the most relevant ones for a given tag. Figure 6 shows
a selection of tags where some patterns can be identified.

Two tags describe the tempo of the music: slow and
fast. As expected, the highest level seems to be the most
important one for slow. For fast, level 1 (corresponding to
a frame size of 128 ms) performs best. Both tags benefit
quite a lot from the multiscale representation: a combina-
tion of all levels performs much better than any level in-
dividually. Tags describing dynamics, such as loud, quiet
and soft, seem to rely mostly on the top level, correspond-

ing to the coarsest timescale. This may also be because the
top level is the only level in the Laplacian pyramid that is
not a difference of two levels in the Gaussian pyramid.

Tags related to vocals can be predicted most accurately
from intermediate levels, as evidenced by the results for
vocal, female, singing and vocals. Of these, female is the
easiest to predict, being the most specific tag. Finally, the
flute tag is somewhat atypical among the tags describing
instruments, in that it is the only one that relies mostly on
the coarsest timescale (results for other instruments are not
shown). A possible reason for this could be that the instru-
ment lends itself well to playing longer, drawn out notes.
A quick examination of the dataset reveals that many ex-
amples tagged flute in the dataset feature such notes.

6. CONCLUSION AND FUTURE WORK

We have proposed three approaches to building multiscale
feature learning architectures for music audio, and we have
evaluated them using two tasks designed to demonstrate
the versatility of the learned features. Although learning
features with the spherical K-means algorithm consistently
improves results over just using PCA components, there is
no clear winner among the proposed multiscale architec-
tures. However, it is clear that learning features at multi-
ple timescales improves performance over single-timescale
approaches. We have also shown that different kinds of
tags tend to rely on different timescales. Finally, we have
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Figure 6: Results for a selection of individual tags, when using features from all levels combined and when using features
from each level individually. The reported AUCs are for K-means with 500 means on the Laplacian pyramid with features
learned from single frames.

observed that special care has to be taken to prevent overfit-
ting when using large feature representations, which is al-
most unavoidable if a multiscale representation is desired.

In future work, we would like to improve the fea-
ture learning pipeline, by learning multiple layers of fea-
tures for each timescale and investigating other encod-
ing schemes. We would also like to evaluate the pro-
posed architectures on an extended range of tasks, includ-
ing content-based music recommendation and artist recog-
nition, and on multiple datasets.
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