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ABSTRACT 

The general goal of music signal decomposition is to rep-

resent the music structure into a note level to provide val-

uable semantic features for further music analysis tasks. 

In this paper, we propose a new method to sparsely de-

compose the music signal onto a MIDI dictionary made 

of musical notes. Statistical music knowledge is further 

integrated into the whole sparse decomposition process. 

The proposed method is divided into a frame level sparse 

decomposition stage and a whole music level optimal 

note path searching. In the first stage note co-occurrence 

probabilities are embedded to generate a sparse multiple 

candidate graph while in the second stage note transition 

probabilities are incorporated into the optimal path 

searching. Experiments on real-world polyphonic music 

show that embedding music knowledge within the sparse 

decomposition achieves notable improvement in terms of 

note recognition precision and recall. 

1. INTRODUCTION 

Large amounts of digitalized music available drive the 

need for the development of automatic music analysis, for 

example automatic genre classification, mood detection 

and similarity measurement. Most of the tasks rely on ef-

fective features extracted from music signals. Among 

various features, music notes, denoted by MIDI notes in 

this paper, provide the most comprehensive information, 

since music is indeed sound poetry comprised of notes 

played by instruments. If notes are accurately recovered 

from music signal, automatic music analysis can be great-

ly improved. However, mixing different instrument play-

ing is trivial while decomposing is quite challenging due 

to the intrinsic complexity of polyphonic music.  

Recovering notes from a music wave signal is usually 

referred to multiple F0 estimation. The approaches in lit-

erature can be roughly sorted into two categories: param-

eterized like statistical model based methods and non-

parameterized like non-negative matrix factorization 

(NMF) based methods. Parameterized approaches usually 

assume that multiple F0 can be described by particular 

models with a small number of free parameters that can 

be estimated from the signal. For example, in [1] 

Kameoka et al. propose a multi-pitch analyzer named the 

harmonic temporal structured clustering (HTC) method 

that jointly estimates pitch, intensity, onset and duration. 

HTC decomposes the power spectrum time series into 

distinct clusters such that each cluster has originated from 

a single source modeled by a Gaussian Mixture Model 

(GMM). The parameters of the source model are comput-

ed thanks to maximum a posteriori (MAP) estimation. In 

[2], Wu et al. extend Kameoka's work to propose a flexi-

ble harmonic temporal timbre model to decompose the 

spectral energy of the signal in the time-frequency do-

main into individual pitched notes. Each note is modeled 

with a 2-dimensional Gaussian kernel. Parameters of 

Gaussian mixtures are then estimated by expectation 

maximization (EM) algorithm with a global Kullback–

Leibler (KL) divergence cost function. 

Unlike parameterized approaches, non-parameterized 

methods like NMF focus on recovering pitch combina-

tions from the signal data itself without presuming any 

underlying model forms. For example, NMF [3] based 

methods try to decomposes the multiple pitch spectrum 

matrix   into two matrices   and   [4].   contains var-

ious harmonic patterns and   consists of activation be-

haviors so that     . In [5], Hoyer extends the origi-

nal NMF by adding a regulation term to make   sparse. 

Sparseness property is quite helpful especially for music 

note estimation, since a short period music can only con-

tain a few notes played together, compared with all pos-

sible notes.  

NMF is such an extensible framework that it largely 

dominates non-parameter methods. For example, in [6] 

Zafeiriou adds a linear discriminant analysis (LDA) stage 

to the activities extracted by NMF. In [6-8], fisher-like 

discriminant constraints are embedded inside the decom-

position. In [9], Lewandowski proposes a supervised 

method with two discriminative criteria that maximize 

inter-class scatter and quantify the predictive potential of 

a given decomposition. In order to extract features that 

enforce the separability between pitch labels, pitch in-

formation present in time-aligned musical scores is fused 

in sparse NMF. In [10], Sakaue combines Bayesian infer-

ence with NMF to propose a Bayesian non-negative har-

monic-temporal factorization (BNHTF). BNHTF models 

the harmonic and temporal structures separately with 

Gaussian mixture models. In [11], a music sparse decom-

position approach is proposed using high quality MIDI 
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dictionary. This work is a variant of sparse NMF and uses 

non-negative matching pursuit to solve sparse NMF. Un-

like NMF that processes the entire signal, this work con-

structs the activity matrix   column by column. It is still 

worth mentioning the work in [12] where Leveau et al. 

propose to learn instrument specified note atoms with a 

modified matching pursuit and a tracking of the played 

instrumental notes by searching an optimal path with re-

spect to the reconstruction error. 

Thus, previous works in the literature have demon-

strated the effectiveness of various approaches in multi-

ple-F0 estimation, especially NMF based methods. How-

ever, under the NMF framework, the entire music spec-

trum series   are treated as a whole object to be recon-

structed. Most of the algorithms focus on reducing the 

spectrum reconstruction error so as to overlook the com-

patibility in concurrent and consecutive notes. This batch 

processing style makes it hard to fuse note co-occurrence 

and transition information to guide note detection during 

the matrix factorization. Indeed, after the signal spectrum 

matrix is factorized,   and   are new represents of the 

music, which have lost signal context information for 

post-processing to correct possible error. Even in [12], 

the Viterbi algorithm is used to search the optimal path 

only with respect to a minimum reconstruction error and 

neglects the underlying note relations. Nevertheless cor-

relation between concurrent and consecutive notes con-

tains significant heuristics that can help to correct the de-

composition error introduced by a signal level analysis.  

Therefore, to employ note statistical information to 

help music sparse decomposition, we propose in this pa-

per a two-stage sparse decomposition approach integrated 

with music knowledge. In frame level decomposition 

stage, note co-occurrence probabilities are embedded to 

guide atom selection in modified matching pursuit algo-

rithm with a MIDI dictionary. A sparse multiple candi-

date graph is then constructed to provide backup choices 

for later selections. In the global optimal path searching 

stage, note transition probabilities are incorporated to-

gether with a goodness measure of frame decomposition. 

Its principle is to guide the local sparse music decomposi-

tion with co-occurred notes information and decode the 

global optimal decomposition path with consecutive note 

knowledge. Due to the Gabor limit, time and frequency 

resolution cannot be well satisfied at the same time. Thus, 

we emphasize the frequency resolution aspect rather than 

the exact time location, since correct note recognition is 

more important for our following classification task. 

The rest of this paper is organized as follows: Section 

2 introduces our two-stage approach in detail. Section 3 

shows experimental results on real-world music signals. 

The conclusion is drawn in the final section.  

2. SPARSE DECOMPOSITION WITH NOTE 

STATISTICS 

Our proposed method consists of two main steps. In the 

first step, the entire music signal is framed and a modified 

orthogonal matching pursuit algorithm is performed on 

each frame to generate decomposition candidates. In the 

second step, decomposition candidates are connected to 

form a directed graph. An optimal path is then construct-

ed to produce the final decomposition result. 

2.1 Frame Level Sparse Decomposition 

Former study shows that elaborating an appropriate musi-

cal dictionary is a key issue since this set of atoms has to 

be rich enough to characterize the varieties of real word 

music. Although [12] has developed sophisticated meth-

od to learn atoms from instrument recordings, it is still 

impractical to apply to a large instrument set. Therefore, 

in order to get adequate instrument note sounds, we pro-

pose to make use of a MIDI synthesizer. Logic Pro 9 is 

employed in our approach to generate the MIDI note dic-

tionary because of its huge instrumental library and the 

high sound quality. Unlike pre-installed MIDI synthesizer 

with sound card, Logic Pro 9 uses a large number of real 

instrument recordings to make synthesized wave signal as 

natural as possible.  

To build the MIDI dictionary, we choose the first 80 

realistic instruments as in general MIDI level 1 set and 31 

percussion instrument sets including 1860 percussion 

sounds. For each instrument, we keep 60 notes from note 

31 to note 90. The 60 notes span 5 octaves from low to 

high, covering most instrumental playing range. The du-

ration of each note is set to 186ms, which are 4096 sam-

ples under a sample rate of 22050Hz. This duration is 

long enough to hold one attack-decay-sustain-release 

(ADSR) envelope and leads to 5.38Hz in terms of fre-

quency resolution, which is sufficient to discriminate ad-

jacent notes in piano roll. Our MIDI note wave is then 

converted into a single-sided power spectrum obtained by 

applying the short time Fourier transform (STFT) with a 

Hamming window. The final MIDI dictionary thus con-

tains 6660 2048-dimensional vectors.  

The adoption of the sparse representation is based on 

the hypothesis that during a 186ms time slot, there will 

not be many notes played together. Therefore, concurrent 

notes are sparse within one frame. Sparse representation 

[13] is originated from finding the solution    of an un-

derdetermined linear system      so that    contains 

as few non-zero components as possible. In most cases 

     is hard to satisfy, thus in practice      and 

        are minimized simultaneously instead.  

Armed with our MIDI dictionary, the classical match-

ing pursuit algorithm like orthogonal matching pursuit 

(OMP) [17] must be modified because the single-sided 

power spectrum words in MIDI dictionary impose an in-

herent positive constraint on sparse solutions. In other 

words, any negative component of a sparse solution is 

prohibited, as negative appearance of certain notes is im-

possible. To solve this problem we adopt a positive con-

straint matching pursuit (PCMP) algorithm that is men-

tioned in [11][14]. The difference between OMP and 



  

 

PCMP is in updating a provisional solution step: for 

OMP, least mean square (LMS) suffices to solve the min-

imization resulting in residual signals orthogonal to sup-

port set. For PCMP, however, after the positive constraint 

minimization, orthogonality is not always guaranteed, 

thus the algorithm is turned to a weak orthogonal match-

ing pursuit.  

When scrutinizing the decomposition results of PCMP 

within one frame, we found a number of irregular note 

combinations. This is due to PCMP’s over-fitting target 

signals without considering any compatibility of concur-

rent notes. In fact, atom selection in each iteration of or-

thogonal matching pursuit algorithm is very important. 

OMP guarantees that expending support set with any lin-

ear independent atoms will decrease the reconstruction 

error and at the same time keep the residual signal or-

thogonal to the new expanded support set. Any atom se-

lected in the support set will permanently reside. There-

fore previously selected atoms have a great influence on 

following ones and alter the overall OMP performance. 

Although PCMP does not always hold orthogonal proper-

ty, the principle remains the same. 

Selecting a new atom in dictionary is thus the very 

place where concurrent note heuristic information should 

be embedded. To formulate concurrent note information, 

Bayes model is employed in our approach to approximate 

the posterior probability of potential note given observed 

notes  

       
            
 
   

             
 
    

                           

where              denotes   observed notes ob-

tained by first   PCMP iterations,   represents a poten-

tial co-occurred note with  . The note prior probability 

     and the note co-occurrence posterior probability 

       are estimated from our classical music MIDI da-

tabase. To obtain       , a joint distribution        is 

firstly estimated by accounting the frequency with over-

lap degree of the concurrent note   and    Then        

is obtained by normalizing        over    Although 

equation (1) provides instructive information to help se-

lect appropriate note combinations, it is still risky to only 

consider the best note decomposition, since the second 

best one may be more appropriate in adjacent note con-

text.  To avoid the one best bias, we propose to preserve 

multiple candidates to give top-N best decompositions 

chances to recover in optimal path searching. 

Orthogonal matching pursuit is a greedy algorithm. In 

each iteration only the best atom will be added into sup-

port set. This can be risky in some cases, since once a 

“bad” atom is selected, this error cannot be corrected in 

the future. In [15], it has been shown that it is possible to 

select “bad” atom initially so as to trap OMP from recon-

structing target signals. Methods like OCMP in [19] are 

proposed to overcome the problem. However, in music 

decomposition the same note in different octave or from 

the same kind of instruments shares the similar harmonic 

pattern. Therefore it is hazardous to rule out a suboptimal 

decomposition too early before adjacent note compatibil-

ity is checked.  

To overcome this drawback of OMP, we propose to 

keep   best candidates in each iteration instead of only 

one. To measure the goodness of frame decomposition 

we define                         
 , where   is 

sparse note decomposition vector,    is decomposition 

residual signal,                   
 
     denotes 

note concurrent probability,   is a free parameter that 

balances concurrent probability term and reconstruction 

error term. As an example shown in Figure 1 we keep the 

top 3 decomposition candidates in every iteration. In the 

first iteration (C), (E), (G) are kept. In the second itera-

tion, (C, D), (E, F) and (E, G) are obtained according to 

the reconstruction error and concurrent probability. Note 

that (G) selected in the first iteration is eliminated be-

cause its descendant combinations (G,*) are inferior to 

others’. After 3 iterations, combinations of (C, D, E), (C, 

D, G) and (E, F, B) survive, as shown in orange.  

 

Figure 1. Multiple candidate selection example 

When sparse decomposition terminates, the top   note 

candidates are derived for every signal frame. The best 

one can be treated as the decomposition result of the cur-

rent frame. Besides, all candidates are preserved for con-

structing the optimal decomposition path when we further 

investigate inter-frame relations. The multiple candidate 

PCMP algorithm that we propose is summarized in Algo-

rithm 1. 

2.2 Global Level Optimal Note Path Searching 

All previous steps in section 2.1 focus on improving 

sparse note decomposition within one signal frame. When 

further scrutinizing the PCMP decomposition between 

consecutive frames, we can still find a number of discon-

tinuous note decompositions, in which the note sequence 

has sudden abnormal jumps in adjacent frames, including 

octave shift or sharp/flat drift. This is due to a lack of 

note transition regulation and because the sparse decom-

position only minimizes reconstruction error in current 

frame without considering any neighbor frame contexts.  

Besides the co-occurred ones, consecutive notes bear 

strong correlations which convey various melody, tem-

poral and dynamic information of music. It is reasonable 

to incorporate such sequential knowledge of notes as to 

suppress the discontinuous note error. 



  

 

Task: Approximate the solution of problem:         , 

subject to         . 

Input: Dictionary  , signal  , max iteration number  , top 

   candidates to keep, balance parameter   , note posterior 

probability        and error threshold   . 

Output: sparse solution:    

Initialization:
 

Initial residual:   
   . 

Initial support:   
     . 

Initial candidate queue:       
    

    
 } 

Main iteration:  

for             
for          

 Compute       
     according to equation (1) 

 Compute error:                   
    

 

 
   

           
      all   using the optimal choice 

  
    

   
        

 
 . 

 Find top   minimizers of      to form   
                         

     , and push 

      
           

           
           into 

    
end 

for each   
      

 Compute   that minimizes        
  subject to 

             
     . 

 Compute residual   
      . 

end 

Ascendingly sort    according to    
  

 

 
   

         
    and keep the first   items. 

If any    
  

 

 
    break. 

end 

Output result:      . 

Algorithm 1. Positive constraint matching pursuit pro-

ducing multiple candidates 

We thus apply transition probabilities to model rela-

tions between two decomposition candidates in adjacent 

frames. To formulate note transitions, Bayes model is 

adopted so that conditional probability can be approxi-

mated from individual note pairs. Since at most   candi-

dates remain in one frame the posterior probability of 

candidate   in frame   given candidate   in frame     is 

calculated as 

    
   
     

   
   

       
   
     

   
  

   

        
        

   
  

    

                     

where   
   
      

   
     

   
     

   
  denotes the decomposi-

tion candidate   in frame   containing   notes. 

            is calculated similarly as in equation (1).  

Thanks to the multiple decomposition candidates gen-

erated by the modified PCMP previously, an inter-

decomposition directed graph is further constructed to 

help determining the optimal decomposition path through 

all frames, as illustrated in Figure 2. In this directed 

graph, each decomposition candidate forms a node and 

outgoing edge denotes the transition probability comput-

ed by equation (2). The nodes are disconnected within the 

same frame indexed with  . 

  

Figure 2. Optimal path decoding example 

In order to connect transition probabilities with the 

sparse decomposition candidates, the decomposition 

goodness measure is converted into corresponding proba-

bilities as                
  , since the frame signal   

and atoms in   have been normalized to unit vectors. The 

conversion also reflects a reasonable assumption that the 

reconstructed signal is approximately Gaussian distribut-

ed around original one. Treating the decomposition can-

didates as hidden states of a Hidden Markov Model 

(HMM), Viterbi algorithm decodes the optimal decompo-

sition candidate path   : 

         
 

      
           

         
    

 
 
     

   
 
 

 

 

 

   

    

where   is the frame index,   is the total number of 

frames,   is a balance parameter to adjust emphasis,    
denotes decomposition candidate index in frame   along 

path  . Initially      
   
    

   
  =1. 

3. EXPERIMENT AND RESULTS  

To evaluate the decomposition quality of the proposed 

PCMP with note statistics, a multi-timbral music with 

time domain note reference has been used, which is pro-

vided in Mirex2007 multiF0 development data [16]. The 

music is a recording of the fifth variation from L. van 

Beethoven Variations from String Quartet Op.18 N.5, 

lasting for 54s. 5 instruments are included into the music. 

Each instrument was recorded separately and then mixed 

to a mono 44.1 kHz 16 bits wave file. The whole music is 

tested by our system (PCMP with multi-candidate and 

Viterbi) against its ground truth MIDI file. 

Another widely used dataset adopted in our experi-

ments is MUS, provided in MAPS [18]. MUS contains 

270 pieces of classical and traditional music, recorded in 

different conditions which vary in piano instruments and 

surroundings. For each piano music piece, as in [9], first 

30 seconds are tested by our system against ground truth 

MIDI files. 

Figure 3 shows precision and recall scatter diagram of 

the proposed decomposition that improve original PCMP, 

noted as PCMPMC and PCMPMCV. Table 1 displays the 



  

 

comparisons in terms of precision, recall and F-measure 

between our proposed method and the state of the art re-

sults. F-measure is defined as the harmonic mean of pre-

cision and recall. Statistic of note recognition precision 

and recall has been made upon consecutive 186ms 

frames. For ground truth MIDI, if 70% of some note lies 

in the frame the note is accounted and there is no fre-

quency tolerance. Threshold for drawing the diagram is 

imposed on sparse solution vector in each frame to filter 

insignificant note detection according to its sparse solu-

tion value. Different thresholds result in scatter points in 

Figure 3. Two free parameters   and   are set to 0.8 and 

1.3 to balance reconstruction error and note statistics.  

 Prec. (%) Rec. (%) F-meas. (%) 

NMF[4] 41.1 46.6 45.3 

HTC[1] 57.4 51.3 54.2 

 JHT[2] 59.7 61.4 60.5 

PCMPMCV 51.8 72.0 60.3 

Table 1. Average multiple pitch estimation perfor-

mance on MIREX2007 dataset. 

From Figure 3 we can see that when co-occurrence 

note information is integrated into PCMP, the precision 

increases about 6% while recall increases by 2%~3%. 

When the note transition information is fused and the op-

timal path decoding is applied, the precision and recall 

are further improved by 5% and 2% approximately. From 

Table 1 and Figure 3 we can find that if no threshold is 

imposed on the sparse solution of PCMPMCV, 72% of 

the notes can be recalled while the precision is 51.8% re-

sulting in an F-measure of 60.3 %. The recall of our best 

configuration outperforms state of the art result in [2] by 

more than 10% while the precision is 8% lower, resulting 

in an F-measure 0.2% lower than that reported in [2]. 

 Prec. (%) Rec. (%) F-meas.(%) 

Spectral con-

straints [20] 
71.6 65.5 67.0 

Isolated note 

spectra [20] 
68.6 66.7 66.0 

DNMF-LV[9] 68.1 65.9 66.9 

DNMF-AE[9] 66.8 68.7 67.8 

SONIC[21] 74.5 57.6 63.6 

PCMPMCV  60.7 77.3 68.0 

Table 2. Average multiple pitch estimation perfor-

mance on MUS dataset. 

Table 2 shows the precision, recall and F-measure re-

sults on MUS data set. All parameters and setups are the 

same as used in previous experiment except for the condi-

tional probability estimation. In this experiment the rest 

data other than first 30 seconds are used to estimate con-

ditional probabilities       . From Table 2 we can ob-

serve that the proposed approach achieves the highest re-

call and F-measure of 77.3% and 68%, although obtains 

the lowest precision of 60.7%. 

 
Figure 3. Note precision vs. recall of the two im-

provements 

From the two experiments, we can find that with sta-

tistical musical knowledge sparse decomposition is im-

proved in terms of both precision and recall. The pro-

posed approach tends to obtain superior recall and F-

measures but lower precisions compared with variant 

NMF and other methods. Higher recall means the more 

information is preserved in the decomposition results. 

Since our final aim of the decomposition is to provide 

decent features for music classifications, the performance 

of our system is actually preferred. Our higher recalls and 

F-measures are attributed to the quality of MIDI diction-

ary as well as statistical music knowledge fused in sparse 

decomposition. Longer analysis window is another im-

portant factor.  

When comparing decomposition with the ground truth, 

we found numbers of instrument errors even with correct 

note detections, which is likely caused by mismatches 

between the MIDI dictionary and the real-world data. In 

some cases concurrent and transition probability of notes 

can even make incorrect compensation to original PCMP, 

which is probably due to the limitation of the naive Bayes 

model. To overcome these drawbacks, dictionary adapta-

tion techniques and sophisticated graphical models will 

be proposed and investigated in our future work. 

4. CONCLUSION  

We have proposed in this paper a novel sparse music de-

composition approach driven by music knowledge. It 

employs note statistical information to improve sparse 

decomposition with a MIDI dictionary. In the frame lev-

el, music signals are decomposed onto a MIDI dictionary 

with a note co-occurrence heuristic. Transition probabili-

ties are then computed between adjacent decomposition 

candidates through the whole frame sequence. The final 

optimal decomposition path is then constructed by the 

Viterbi algorithm. Experimental results show that embed-

ding concurrent note statistics in PCMP and applying a 

note sequence heuristic allows improving the note recog-

nition precision and recall. 
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