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ABSTRACT

This paper discusses the concept of transfer learning
and its potential applications to MIR tasks such as music
audio classification and similarity.

In a traditional supervised machine learning setting, a
system can only use labeled data from a single dataset to
solve a given task. The labels associated with the dataset
define the nature of the task to solve. A key advantage of
transfer learning is in leveraging knowledge from related
tasks to improve performance on a given target task. One
way to transfer knowledge is to learn a shared latent rep-
resentation across related tasks. This method has shown
to be beneficial in many domains of machine learning, but
has yet to be explored in MIR.

Many MIR datasets for audio classification present a se-
mantic overlap in their labels. Furthermore, these datasets
often contain relatively few songs. Thus, there is a strong
case for exploring methods to share knowledge between
these datasets towards a more general and robust under-
standing of high level musical concepts such as genre and
similarity.

Our results show that shared representations can im-
prove classification accuracy. We also show how transfer
learning can improve performance for music similarity.

1. INTRODUCTION

As human beings, we are constantly learning to solve new
tasks every day. The way we learn to perform new tasks is
influenced by what we know about similar tasks [17].

For instance, let’s think of a pianist that wants to learn to
play guitar. The musician already has some knowledge of
music theory, and knows how to use his motor skills to play
the piano. When he learns to play guitar, he will not start
from scratch but rather use his prior knowledge on music
and motor skills and build on top of it. We can see it as if
the musician transfers knowledge between tasks by sharing
a common abstract internal representation of music.
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Figure 1: Schema of our transfer learning approach. In the
first step, we learn a latent representation in a supervised
way using a source dataset. In the second step, we solve
the target task by first mapping the features to the learned
latent space. In this example, the target task is a classifica-
tion task.

The equivalent concept in machine learning is called
transfer learning. It has been applied successfully in many
domains such as visual object recognition [13] and web-
page classification [8].

The performance of a supervised machine learning sys-
tem is limited by the quantity and the quality of available
labeled data. Obtaining such data can be expensive. As a
consequence, many datasets in the MIR community have
a relatively small number of labeled examples. Some of
these datasets have been built to solve the same task, or
similar tasks. For example, there exist many datasets for
genre classification, and these datasets exhibit semantic
overlap in their labels. However, each individual dataset
contains a relatively small number of examples. In this
context, it would make sense to try to leverage the infor-
mation from all these datasets to improve the overall per-
formance. Transfer learning might allow us to do just that.

In this paper, we investigate how transfer learning ap-
plied to genre classification, automatic tag annotation and
music similarity can be beneficial. We hypothesize that
transferring latent representations learned on related tasks
can improve the performance of a given task when com-
pared with the original features. Our intuition is that the
learned representation will retain some knowledge of the



original task and that this knowledge should make the
given task easier to solve.

The paper is divided as follows. We begin with an
overview of transfer learning in Section 2. We describe the
different MIR tasks that are relevant to our experiments in
Section 3. In Section 4 we give details about how we han-
dle our features. The representation learning algorithm is
presented in Section 5. We describe our experimental re-
sults in Section 6. Finally, we conclude in Section 7.

2. TRANSFER LEARNING

Transfer learning is a machine learning problem that fo-
cuses on reusing knowledge learned on one problem in
order to help solve another. More formally, we will dis-
tinguish between the target task, which is the task that we
ultimately want to solve, and the source task which is the
related task that will help us in solving the target task. It is
worth noting that there could be more than one source or
target task.

Transfer learning is an active field of research, and
many approaches have been proposed [2, 8, 13]. Pan et
al. [6] describe four transfer learning approaches: i) in-
stance transfer, ii) feature representation transfer, iii) pa-
rameter transfer and iv) relational knowledge transfer. In
this work, we will focus on the feature representation trans-
fer approach, which consists of learning a common feature
space between the source and target tasks. More specifi-
cally, we will use a supervised approach to construct a fea-
ture space using labeled data from a source task, and then
use this feature space to help solve the target task. This
transfer learning process is illustrated in Figure 1.

Although transfer learning has been applied success-
fully in many domains, only a few applications can be
found in the MIR domain. In [8], self-taught learning,
which is an extension of semi-supervised learning, is ap-
plied to many tasks, including a 7-way music genre classi-
fication. However, very few details are provided on the na-
ture of the music data. In [3], a deep representation learned
on genre classification is used for automatic tag annota-
tion. Although the transferred representation is compared
to a set of audio features, there is no comparison to the
original spectral features that were used to build the deep
representation. Thus, it is difficult to assess the impact of
the transfer of representation. In [10], a learned automatic
tag annotation system is used to produce features to help
solve a music similarity task. In [15], a method that at-
tempts to capture the semantic similarities between audio
features, tags, and artists names is presented. This multi-
task approach consists of embedding the different concepts
in a common low-dimensional space. This learned space
can then be used to solve many MIR related tasks. In our
work, we use a similar approach to build a shared latent
representation.

3. TASKS AND DATASETS

In this paper, we investigate transfer learning over three re-
lated MIR tasks: genre classification, music similarity es-

Table 1: Characteristics of the genre classification and
automatic tag annotation datasets.

Dataset # of excerpts # of classes Audio length
1517-Artists [11] 3180 19 full

GTZAN [14] 1000 10 30s
Homburg [4] 1886 9 10s
Unique [12] 3115 14 30s

Magnatagatune [5] 22787 160 30s

Table 2: Genre classes for the datasets. In bold are the
terms which are also tags in the Magnatagatune dataset [5].

1517-Artists GTZAN Homburg Unique
Alternative & Punk blues alternative blues
Blues classical blues country
Childrens’s country electronic dance
Classical disco folkcountry electronica
Comedy & Spoken Word hiphop funksoulrnb hip-hop
Country jazz jazz jazz
Easy Listening & Vocals metal pop klassik
Electronic & Dance pop raphiphop reggae
Folk reggae rock rock
Hip-Hop rock schlager
Jazz soul rnb
Latin volksmusik
New Age world
R&B & Soul wort
Reggae
Religious
Rock & Pop
Soundtracks & More
World

timation and automatic tag annotation. Even though these
task all use music audio as input data, they differ in their
goal and in the way performance is evaluated.

3.1 Genre Classification

Genre classification consists of choosing the genre that
best describes an audio excerpt given a set of genre la-
bels. We consider 4 different datasets for genre classifi-
cation: 1517-Artists [11], GTZAN [14] Homburg [4], and
Unique [12]. These datasets each contain between 1000
and 3180 audio excerpts, from 10 seconds in length to full
songs, classified in 9 to 19 genres. In the case where full
songs are provided, we use only the first 30 seconds of each
song. Further details about the datasets are in Table 1. The
genre labels have strong semantic overlap across datasets
as can be seen in Table 2. For simplicity, we will some-
times refer to the 1517-Artists dataset as artists.

To evaluate the performance of a genre classification
system, we use the classification accuracy, which is sim-
ply the percentage of correctly classified excerpts in the
test set.

3.2 Music Similarity

Music similarity systems seek to obtain a measure of sim-
ilarity between audio excerpts.

One issue with this task is that the meaning of similarity
is ill-defined. What is considered similar by one listener
might not be the same for another. Another issue is that



similarity is a pair-wise relative measure. Thus, it is com-
plicated and costly to obtain enough ground truth informa-
tion from human listeners to fully evaluate music similarity
systems. In order to circumvent these issues, music simi-
larity systems often use genre labels as a proxy for simi-
larity evaluation [7,9,12]. In this context, we consider that
two excerpts within the same genre must be more similar
than two excerpts from different genres. On this basis, we
will use the same datasets as for genre classification in our
music similarity experiments.

Even though genre classification and music similarity
use the same data, the tasks differ on how we use the data
and on how we evaluate performance. Typically, in the mu-
sic similarity literature [7,9,12], the labels are not used for
training. Thus, the task must be solved by signal process-
ing, unsupervised learning, or, in our case, by transferring
supervised learning from external datasets.

The evaluation of music similarity systems typically use
precision at k as a performance measure. Precision at k
gives the ratio of excerpts of the same class in the k nearest
neighbors of a given excerpt. In this work we use k = 10.

Approaches to solve this task typically consist of mea-
suring distances in a feature space to obtain a distance ma-
trix. The type of features and the distance measure used
can vary. In [7], distance is computed using the Jensen-
Shannon divergence on a Gaussian representation of the
features. In [12], an L1-distance is computed over aggre-
gated block-level features. In [9], an L1-distance is com-
puted on features extracted in an unsupervised fashion.

In this work, we use the L1-distance on our different
feature sets in order to obtain a similarity matrix. We also
tested Euclidian distance and Cosine distance and obtained
similar results.

3.3 Tag annotation

The automatic tag annotation task consists of assigning
words to describe an audio excerpt. It is a multi-label
problem, meaning that many labels can be applied to a
single example. In this paper, we use the Magnatagatune
dataset [5] which contains more than 22,000 30-seconds
excerpts and 160 tags. Tag labels include musical genre
(rock, blues, jazz), instrumentation (guitar, piano, vocals),
mood (sad, mellow), other descriptors (fast, airy, beat), etc.
There is high semantic overlap with the genre labels from
the four genre datasets. We illustrate this, in Table 2, by
putting in bold the genres which are also tags in the Mag-
natagatune dataset.

4. AUDIO FEATURES

In our experiments, we extract Mel-spectrum features from
audio. We compute the Discrete Fourier Transform (DFT)
on frames of 46ms (1024 samples at 22kHz sampling rate)
with half frame overlap. We then pass the magnitude spec-
trum through 200 triangle Mel-scaled filters and take the
log-amplitude to obtain the Mel-spectrum features. These
are what we will refer to as frame-level features.

However, frame level features have been shown to be
suboptimal for genre classification [1]. To obtain a better
classification performance, we aggregate features on win-
dows of 64 frames (about 1.5s), computing the mean, vari-
ance, maximum and minimum of each feature. We can ap-
ply this aggregation process to the Mel-spectrum features
as well as to the frame-level latent representations. We will
refer to aggregated features as window-level features.

5. LEARNING A LATENT REPRESENTATION

In order to transfer knowledge between tasks, we aim
to learn a latent representation that will be shared across
tasks. To learn this representation, we use the linear em-
bedding method described in [16]. This method consists of
embedding both the features and the labels via linear trans-
formations in a common space. This algorithm is built to
handle a large number of labels in a multi-label problem,
such as in the case of automatic tag annotation. However,
the model can trivially be adapted to multi-class problems
with a small number of classes such as genre recognition.
The model has also been extended to multi-task learning in
MIR in [15].

The algorithm seeks to map both the features and the
labels in a common latent space, as illustrated in Figure 2.
Given a feature representation x ∈ Rd and a set of labels
i ∈ Y = {1, ..., Y }, we seek to jointly learn a feature
embedding transform that will map the feature space to a
semantic space RD

Φx(x) : Rd → RD

and a label embedding transform that will map labels to
the same semantic space

Φy(i) : {1, ..., Y } → RD.

Thus, in this latent space, it is possible to measure dis-
tances between different concepts such as between two fea-
ture vectors, a feature vector and a label, or between two
labels.

Since we use linear maps, we have Φx(x) = V x where
V is a D × d matrix and Φy(i) = Wi where Wi is the
i-th column of a D × Y matrix. We can obtain an affinity
measure between a feature vector and a given label with

fi(x) = Φy(i)>Φx(x) = W>
i V x.

Each training example has positive and negative labels
associated to it. Given a feature vector, an optimal rep-
resentation would yield high affinities for positive labels
and low affinities for negative labels. In other words, if
we rank the affinities of the labels to the feature vector, the
positive labels should be ranked low (i.e. in the first few
positions), and the negative labels should be ranked high.
Computing the exact ranking of the labels becomes expen-
sive when there are many labels. Thus, following [16] we
use a stochastic method that allows us to compute an ap-
proximate ranking.

The training procedure is as follows. For a given train-
ing example x′, we randomly pick a positive label j. Then,
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Figure 2: Illustration of the learning of the latent represen-
tation. Audio features and labels are mapped to a common
embedding space via the transformations Φx and Φy . In
this example, excerpt X ′ has jazz as a positive label and
blues as a negative example. The black arrows illustrate
how the learning gradient will push the negative label em-
bedding and the feature embedding away from each other,
while pulling the positive example embedding and the fea-
ture embedding together.

we iterate randomly through the negative labels until we
find a label j′ for which fj′(x

′) > fj(x
′) − 1. If we do

not find such a negative label, we move to the next training
example. If we only need a few iterations to find such a
negative label, chances are that the rank of the positive la-
bel is high, we thus try to correct this by boosting the loss.
On the contrary, if we need many iterations to find such
a negative label, the rank of the positive label is probably
quite low, so we do not need to change the representation
as much. We then minimize the loss given by

L = L(r)|1− fj(x
′) + fj′(x

′)|

where L(r) =
∑r

k=1 1/k and r is the approximated rank
of the label j and is given by

r =

⌊
Y − 1

N

⌋
where N is the number of iterations needed to find j′,
and b·c is the floor function. The loss L is known as
the Weighted Approximate-Rank Pairwise loss, or WARP
loss [16]. The L term increases as the approximate rank r
grows. The second term in the loss can be seen as a kind of
hinge loss, which tries to maximize the margin. For a more
in depth description of the algorithm, see [16] and [15] .

In our experiments we used a batch method, meaning
that we average the gradient over a batch before updating
the parameters. We use 100 examples per batch. For the
dimensionality of our latent space, we followed [16] and
[15] and chose D = 100 as the latent dimensionality for
all our experiments.

To extend the model to a multi-dataset setting, we sim-
ply alternate between datasets after each batch. The feature
embedding transformation is shared across all datasets, but
the label embedding transformations are independent. In
this way, we do not assume any semantic similarity be-
tween similar classes across datasets. In Section 6.1, we
show that the model naturally learns these semantic simi-
larities.

6. EXPERIMENTS

We conduct several experiments to assess if transferring
knowledge across datasets and task can be beneficial. First,
we qualitatively evaluate the semantic similarity in a multi-
dataset genre embedding. Then, we compare genre clas-
sification performance between tag embedding, genre em-
bedding and the base features. Finally, we use these feature
spaces for the music similarity task.

6.1 Semantic similarity

In our first experiment, we learn an embedding jointly on
the four genre datasets. The combination of the four label
sets gives us a total 52 labels. We then look at the nearest
neighbours of the class embedding and make a qualitative
evaluation. If the embedding process learns semantic infor-
mation about the classes as expected, similar classes across
datasets should be close to each other.

To do this, we compute a distance matrix using an L1-
distance on the embeddings of all the classes. Then, for
each class, we look at which classes are the closest and per-
form a qualitative evaluation. Some typical examples are
presented in Table 3. In general the similar classes across
datasets tend to be close to one another. For example, in
Table 3, we see that the jazz classes all end up near one
another in the embedding space. However, there are also
some problematic classes. For instance, the blues classes
do not appear to all be clustered together. From these re-
sults, we can say that the embedding space indeed learns
some kind of semantic knowledge about the classes.

6.2 Genre Classification

For this experiment, we consider three sets of features for
each genre dataset: base features, genre embedding and
tag embedding. The base features are the window-level
aggregated Mel-spectrum features described in Section 4.

For a given genre dataset, the genre embedding is
learned jointly on the 3 other genre datasets. It is learned
on frame-level Mel-spectrum features. The frame-level
embedded features are then aggregated in a similar fash-
ion as the base features to obtain window-level features.

The tag embedding is learned on the Magnatagatune
dataset. Again, the embedding is learned on frame-level
features and these are then aggregated to obtain window-
level features. We then train a simple linear regression
classifier on the window-level features. Finally to classify
a song, we average the output of the classifier on the whole
song and pick the class with the highest output.

One of the key strengths of transfer learning compared
to standard learning is the ability to improve performance
using fewer training examples [8]. To test this hypothesis,
we measure the accuracy of the classifier across a range
of training examples per class in the target dataset. Since
the number of examples per class is unbalanced in some
datasets, there are cases where there are fewer examples for
the less frequent classes. We ran a 10-fold cross-validation
for each experiment. The results are shown in Figure 3.



Table 3: Nearest neighbouring classes in the genre embedding space for a few examples.

Seed 5 Nearest neighbours (in order)
Hip-Hop(artists) hip-hop(unique), raphiphop(homburg), schlager(unique), hiphop(gtzan), Electronic & Dance(artists)
Rock & Pop(artists) rock(unique) rock(homburg) Alternative & Punk(artists) metal(gtzan) alternative(homburg)
Electronic & Dance(artists) raphiphop (homburg) reggae(unique) electronica(unique) pop(gtzan) dance(unique)
country(gtzan) country(unique), folkcountry(homburg), rock(unique), Country(artists), Religious(artists)
jazz(homburg) jazz(unique), jazz(gtzan), Jazz(artists), world(unique), dance(unique)
blues(unique) alternative(homburg), Alternative & Punk(artists), blues(gtzan), funksoulrnb(homburg), rock(homburg)

Table 4: Classification accuracy and standard error on the
full training set using a 10-fold cross-validation.

Dataset Base Features Genre Embedding Tag Embedding
Artists 0.323 +/- 0.010 0.310 +/- 0.005 0.338 +/- 0.007

GTZAN 0.748 +/- 0.010 0.671 +/- 0.014 0.754 +/- 0.015
Homburg 0.580 +/- 0.012 0.561 +/- 0.009 0.584 +/- 0.008
Unique 0.651 +/- 0.006 0.634 +/- 0.005 0.666 +/- 0.006

Table 5: Precision at 10 for the music similarity task on
different feature spaces. The genre embedding is learned
using the 3 other genre datasets. The tag embedding is
learned on the Magnatagatune dataset.

Dataset Base Features Genre Embedding Tag Embedding
Artists 0.15 0.19 0.19

GTZAN 0.48 0.52 0.53
Homburg 0.36 0.41 0.40
Unique 0.53 0.52 0.54

These results show that the tag embedding often signif-
icantly outperforms the base features. This confirms our
hypothesis. However, the genre embedding does not per-
form as well, obtaining better accuracy only for the Hom-
burg dataset.

We then measured the accuracy of the three feature sets
on the full training dataset. The results are in Table 4. We
see that the tag embedding tends to give slightly better re-
sults.

6.3 Music similarity

For this task, we used the same 3 feature sets as in
Section 6.2. We use precision at 10 as the performance
measure. Results are shown in Table 5. We see that both
the genre and tag embedding features perform better than
the base features, except for the Unique dataset where the
three feature sets perform about as well.

7. CONCLUSION

In this paper, we conducted experiments on sharing a
learned latent representation between related MIR tasks.
We showed that jointly learning a representation on many
genre datasets naturally learns semantic similarity between
genre classes. In the context of genre classification, we saw
that transferring a representation between tasks can signifi-
cantly improve classification accuracy when the number of
training examples is limited. In the context of music sim-
ilarity, we saw that the similarity space obtained by em-
bedding features using genre and tag labels allows better
precision.

The fact that the genre embedding performed worse

than the base features for the genre classification task goes
against our hypothesis that classification accuracy should
be improved by such a representation. This might be due
to the fact that the genre datasets are rather small, and thus
there was not enough data to learn a robust representa-
tion. Another reason might be that some of the seman-
tic knowledge that was learned ended up in the label em-
bedding transform rather than the feature embedding trans-
form. Since we did not use the label embedding transform
in the classification task experiment, some of the learned
knowledge might have been lost in the transfer. To address
this problem in future work, we could try to impose a more
severe regularization on the label embedding transforma-
tion in the learning process. This could help to force the
semantic knowledge to go in the feature embedding trans-
formation.

In this work, to focus on the simplest case first, we lim-
ited ourselves to basic feature aggregation, a linear embed-
ding method, and a linear classifier. Each of these elements
could be improved further. Thus the performance measures
presented in this paper might not reflect the full power of
transfer learning. For the features, more complex block-
level features as described in [12] could be constructed
from the learned frame-level representation. For the rep-
resentation learning, non-linear mappings could be used to
obtain a more powerful representation. Finally, more com-
plex classifiers, such as support vector machines or neural
networks could be used to improve classification accuracy
on the learned features.

This work presents a first analysis of the potential of
transfer learning in MIR. We hope that the results pre-
sented here will stimulate more research in the field and
motivate the application of transfer learning in future MIR
applications.
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