

JPRODUCTIONCRITIC: AN EDUCATIONAL TOOL FOR

DETECTING TECHNICAL ERRORS IN AUDIO MIXES

 Cory McKay

Marianopolis College and CIRMMT
cory.mckay@mail.mcgill.ca

ABSTRACT

jProductionCritic is an open-source educational

framework for automatically detecting technical

recording, editing and mixing problems in audio files. It

is intended to be used as a learning and proofreading tool

by students and amateur producers, and can also assist

teachers as a timesaving tool when grading recordings.

A number of novel error detection algorithms are

implemented by jProductionCritic. Problems detected

include edit errors, clipping, noise infiltration, poor use of

dynamics, poor track balancing, and many others.

The error detection algorithms are highly configurable,

in order to meet the varying aesthetics of different

musical genres (e.g. Baroque vs. noise music). Effective

general-purpose default settings were developed based on

experiments with a variety of student pieces, and these

settings were then validated using a reserved set of

student pieces.

jProductionCritic is also designed to serve as an

extensible framework to which new detection modules

can be easily plugged in. It is hoped that this will help to

galvanize MIR research relating to audio production, an

area that is currently underrepresented in the MIR

literature, and that this work will also help to address the

current general lack of educational production software.

1. INTRODUCTION

Audio production is a broad field that essentially involves

recording and creating music. Important aspects include:

 Recording: configuring an acoustic environment,

microphone selection, microphone placement, etc.

 Editing: shifting segments of audio in time within a

track, or moving them between tracks.

 Mixing: combining multiple tracks with appropriate

gains, panning and EQ settings, applying effects, etc.

 Synthesis: artificially generating audio.

 Sampling: incorporating pre-existing audio.

 Mastering: preparing a mix for final distribution via

specific audio formats.

DAW (Digital Audio Workstation) software has come

to play a central role in production. Such software ranges

from recording-oriented tools like Avid Pro Tools, to live

performance-oriented software such as Ableton Live, to

free tools like Audacity.

Improved functionality, better user interfaces and

decreasing costs have made audio production more and

more accessible in recent years. This has helped to cause

an explosion of content created in home studios, ranging

from amateur mashups to recordings by professional

musicians. While this has certainly resulted in a great

deal of interesting music, it has also led to error-prone

technical work on the part of overconfident amateur

producers who lack the professional training that was

previously necessary to be involved in production at all.

This problem is part of the motivation behind the

jProductionCritic software, which automatically detects

technical production errors, especially those relating to

editing and mixing. It can help students and amateur

producers check their work for unnoticed errors, much as

one might use a grammar checker when writing prose.

This is beneficial from an educational perspective, as it

teaches users to notice problems that they might not

otherwise have known to look for. This in effect trains

them to improve their listening skills, which are arguably

a producer’s greatest asset, and pushes them to learn how

to avoid or correct the detected problems, thus improving

not only their current work, but also the skills that they

will be able to apply in the future.

Such error checking software is also useful to those

teaching audio production, as it can greatly facilitate

grading. While it would certainly be ill-advised to rely

exclusively on automated marking, as expert humans are

needed to fully evaluate the difficult-to-quantify

aesthetics involved in the art of production, simply

automating the painstaking task of enumerating and time-

stamping basic technical errors can be a great time saver.

Finally, error checking software could even be of some

use to professional audio engineers as a final verification

tool, just as professional writers make use of

spellcheckers. It is not unheard of to find technical errors

in professional work, often due to rushed production

schedules and the high costs of studio time.

Aside from such practical benefits, developing

algorithms for detecting production errors can also have

important research value. As discussed in Section 2, not

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.

© 2013 International Society for Music Information Retrieval

only is there currently a surprising dearth of production-

oriented research in the MIR community specifically, but

those tools that do exist in the general audio world tend to

be closed-source black boxes or based on disappointingly

naïve algorithms. This presents an exciting research

opportunity, particularly considering the importance of

production from both commercial and artistic

perspectives. jProductionCritic has therefore been

designed not only as a ready-to-use application, but also

as a modular framework for developing and deploying

new error detection and analysis algorithms in the future.

2. RELATED RESEARCH

Commercial DAW software like Pro Tools tends to offer

some basic error detection functionality, and extensive

additional functionality can be added via plug-ins.

Unfortunately, with certain important exceptions, such

functionality tends to be relatively simplistic in

implementation and based on proprietary closed-source

code, making it expensive to use and difficult to extend.

Also, such software tends to emphasize correcting

problems rather than detecting where they occur (the

latter is not always necessary for the former), something

that is of limited educational value. Finally, DAW

applications and plug-ins tend to address specific

problems independently, with limited functionality for

presenting errors to users via integrated interfaces.

Moving outside the domain of DAW software, there

are a few commercial integrated error detection systems,

such as Fraunhofer IDMT’s A/V Analyzing Toolbox [4]

and Quadriga Audiofile-Inspector [12]. Unfortunately, as

with commercial DAWs, such software is closed-source

and thus difficult for independent researchers to extend.

This software is also limited in the range of errors

detected and in the sophistication of its processing.

In terms of open-source integrated systems, the very

basic Digital Audio Error Detection [13] is the only one

available. A few open-source error detection DAW plug-

ins can also be found, but they are isolated algorithms

that each only look for individual errors, and have no

integration with one another. Furthermore, they are

largely intended for professional use, and typically

require a significant amount of knowledge to use, limiting

their usefulness in educational contexts.

With respect to research in the MIR community,

surprisingly little work has been done relating directly to

audio production, even though many of the audio features

and metrics used in MIR research are highly relevant to

this domain. Scott and Kim [9] and Montecchio and Cont

[6] provide good examples of the kind of production-

oriented MIR research has been done, but even this high-

quality work focuses on automating production tasks

rather than finding errors. Such automation is certainly

very useful in practice, but it does not address the

educational needs emphasized by jPoductionCritic.

There has been a substantial amount of research done

outside the MIR community on detecting errors in audio

signals. However, this focuses mainly on techniques

associated with specific problems rather than general

integrated systems. Furthermore, much of this research

relates to domains such as broadcasting and audio

compression, with less focus on production-oriented

problems, and with almost no attention paid to addressing

the issue from an educational perspective. Having noted

this, there are many technical papers than can each be

very useful in detecting specific production problems,

particularly in AES (Audio Engineering Society) and

IEEE (Institute of Electrical and Electronics Engineers)

publications. There are also a number of important

general references on audio production, including books

by Barlett and Barlett [1], Vaseghi [10], Owsinki [7] and

Huber and Runstein [3], the first of which includes a

particularly useful chapter on the kinds of defects that one

can encounter in an improperly prepared mix.

3. DESIGN AND FUNCTIONALITY

The first main design objective of jProductionCritic is

that it be useful and accessible to music students, amateur

producers and teachers, all of whom may have little or no

experience with software development. To this end,

jProductionCritic is distributed with a detailed manual in

order to make it as easy to learn as possible. Its basic

interface is also designed to be minimalistic and direct so

that users can avoid being distracted by anything

superfluous. Users simply need to specify an audio file or

batch of files to check and where reports are to be saved,

and the software automatically takes care of the rest.

Of course, it is also important that the software be

highly configurable for those who desire flexibility.

There is therefore a separate extensive configuration file

that advanced users can modify in order to control which

errors are checked for, what error thresholds are used for

each error, and so on. It is thus possible to customize

jProductionCritic for certain styles of music (e.g. metal

vs. jazz), or to simply use the provided general-purpose

default settings without worrying about the details.

jProductionCritic processes final mixes in the form of

single mono or stereo files rather than DAW projects with

tracks still separated out. Although this does make certain

errors much harder to detect, it also ensures that no new

unchecked errors are incorporated during final mixing

and mastering. This also makes it possible to process any

standard audio recording with jProductionCritic, and

avoids tying it to any particular DAW framework.

Three types of error reports can be generated by

jProductionCritic for each audio file. The first is simply

an enumeration of the errors that were detected, annotated

with time stamps indicating either an instantaneous time

or time range, as appropriate. Errors are also marked as

being mild, moderate or severe.

The second type of report consists of a series of

Audacity Label Tracks, one for each type of time-specific

error. These are metadata tracks that Audacity displays

alongside audio and MIDI tracks. This can be very useful

for visually demonstrating to users where errors occur in

a waveform or spectrogram. Audacity was chosen in

particular because it is free and thus accessible to all

users, whether or not they used it to prepare the audio

being checked for errors.

The third type of error report consists of error

annotations in Weka ARFF [11] or ACE XML [5], two

file formats related to machine learning that are used by

the MIR community. Although not directly applicable to

the educational context targeted by jProductionCritic,

these reports could be helpful to MIR researchers who

might want to use the output of jProductionCritic in

research involving machine learning. These formats can

also be useful when performing experimental validations.

jProductionCritic is implemented in Java, in order to

help make it as cross-platform and accessible as possible.

This avoids forcing users to buy proprietary

environments such as Matlab, and avoids the installation

and linking problems that one can encounter with

languages like C++.

The second main design objective of jProductionCritic

is that it serve as a framework under which new error

detection algorithms can be developed and deployed, and

not only as a ready-to-use application. This is an

important priority in encouraging future MIR research

and development focusing on audio production. A strong

emphasis was therefore put on designing

jProductionCritic using a modular and highly extensible

architecture to which new error checking algorithms can

be easily added as plug-ins, with virtually no changes

needed to the overall jProductionCritic processing

infrastructure. Special attention was also paid to

extensively documenting the code.

jProductionCritic is distributed as an integrated part of

the jMIR [5] suite of MIR research software. This allows

researchers to easily combine jProductionCritic’s

functionality with other jMIR components, such as the

jAudio feature extractor or the ACE meta-learning

system.

As with all jMIR components, jProductionCritic is free

and open-source.

4. TECHNICAL ERRORS ASSESSED

Due to limited space, only broad overviews of

jProductionCritic’s main error detection algorithms are

provided in the sub-sections below. Those wishing to

read more details on any particular algorithm are

encouraged to view the jProductionCritic manual or the

Java class associated with the error type, both of which

are available at http://jmir.sourceforge.net.

It is important to emphasize here that there are many

important subtle subjective and artistic qualities that must

be considered if one is to truly evaluate the production

quality of a mix. Performing such an evaluation is well

beyond the current technological capabilities of any

automated system, and is best left to human experts, such

as professional producers and instructors.

jProductionCritic therefore only attempts to detect

clear objective technical errors, which many students and

amateurs can still unfortunately produce many of.

jProductionCritic is intended as a supplement and aid to

human experts, not as a replacement for them.

Of course, even with this policy there can still be

ambiguity with respect to certain error types. What might

be considered unwanted noise in a classical flute

recording, for example, might be part of a desirable

production aesthetic in a flute sample used in an

electronic dance track. Fortunately, jProductionCritic’s

diverse range of configuration settings makes it possible

to easily modify the detection thresholds of given error

types, or to disable them entirely, in order to match the

various production aesthetics of different musical styles.

4.1 Digital Clipping

Digital clipping occurs when a signal exceeds the

representational limits of its bit depth. Clipped signals are

characterized by flat peaks and troughs, as samples are

rounded to maximum and minimum values. Digitally

clipped signals sound rough and distorted, and are almost

never aesthetically desirable. Analog clipping, in contrast,

can be desirable in certain styles of music, and is

characterized by more curved peaks and troughs.

Digital clipping tends to occur in two main ways in

student work: either the gain is set too high during

recording or synthesis of an individual track, or the gains

on individual tracks mixed onto the same channel are too

high, such that the combined signals clip, even if none of

the source signals are themselves clipped individually.

Although clipping detection is a common software

feature, the popular implementation of simply flagging

any samples at the representational limits is surprisingly

naïve. This approach has two major problems. Firstly, a

sample that actually should have a value at the

representational limit is not in fact clipped, and such

samples are to be expected in normalized signals.

Secondly, students may attempt to hide clipping by

reducing the master gain in the final mix, such that

sample values fall below representational limits (and are

thus not flagged) but the signal distortion caused by the

clipping remains.

The approach used by jProductionCritic can overcome

these two problems: if a number of adjacent samples

beyond a threshold have an identical signal value

(whether or not it is at the representational limit), then

report clipping. The number of such consecutive samples

gives an indication of clipping severity.

Despite its simplicity and effectiveness, other uses of

this technique were not found in the literature, although

related counting techniques at the representational limit

have been used. It should be noted that the literature also

includes spectral approaches for detecting clipping, but

these can be too sensitive for styles of music where

analog clipping (or its digital simulation) is desirable.

4.2 Edit Clicks

An edit click occurs when an improperly treated edit is

made, and can result in a discontinuity in the waveform

that typically sounds like a click. This can happen when

two signals are spliced together, or at the beginnings and

ends of tracks (due to a sudden jump in the signal from or

to silence). Although there are a number of techniques

that can be used to avoid edit clicks, students and

amateurs often neglect to use them.

Although the literature includes a substantial number

of techniques for detecting instantaneous noise like clicks

in general, it largely neglects edit clicks in particular.

This is problematic from an educational perspective, as it

is useful for students to know where imperfections in

their work come from.

jProductionCritic uses a simple technique to detect edit

clicks based on windows of only four samples: report an

edit click if a signal jumps in value beyond a threshold

from samples 2 to 3, but does not change in value beyond

another threshold when progressing from samples 1 to 2

or 3 to 4. This approach is sensitive to improperly

executed edits, is relatively impervious to false positives,

and can also provide a severity measurement. This

technique is also surprisingly absent from the literature,

although related techniques considering much broader

spreads than four samples are used for detecting

instantaneous noise in general. Clicks at the beginnings

and ends of tracks are simply found by looking for first

and last samples far from zero, respectively.

It should be noted that this algorithm focuses only on a

particular kind of edit error. It does not detect edit errors

in general, of which there are many other types (e.g. a

splice involving two segments of audio recorded under

very different reverberant conditions).

4.3 Other Clicks, Pops and Instantaneous Noise

There are also many other types of undesirable

instantaneous noise. Plosive pops due to the improper

micing of a singer or noise when a needle jumps on a

record are just two examples amongst many.

Although, there are a number of established techniques

for detecting such problems, many of them tend to

produce false positives. jProductionCritic’s approach,

which also produces some false positives but was still

found to be the most effective during comparative

experiments, is to high-pass filter the signal (due to the

common assumption that unwanted noise will stand out

most clearly against the musical signal in the high

frequency range) and look for sudden and unusual peaks

in the filtered signal’s spectral flux.

4.4 Hums and Other Background Noise

Tracks can also be infiltrated by various types of

sustained noise (as opposed to the more sudden and

short-lived types of noise discussed above). Ventilation

systems in recording environments and faulty cable

shielding are two of the many possible sources. Detecting

such noise in general can be particularly difficult, as it

can be hard to distinguish from the musical signal.

Although the literature does include certain sophisticated

techniques, including approaches based on Hidden

Markov models [8], these tend to be too limited in the

styles of music to which they can be applied, so it was

decided to use a simpler and more general technique11.

jProductionCritic’s basic approach is to calculate the

power spectrum of the audio and look for sustained peaks

in particular frequency regions that are present in all or

most of the audio. Extra weighting is applied if these

peaks are still present in otherwise quiet parts of the

signal. This approach tends to work reasonably well for

detecting loud noise, but can miss quieter noise, and can

result in false positives for those styles of music that

feature sustained drones.

jProductionCritic also has specialized detectors that

look for electrical noise (e.g. ground loops), a common

problem in imperfectly configured or used studios. Such

noise consists of a hum at the AC frequency of the power

supply (and its integer multiples), which is generally

either 50 Hz or 60 Hz, depending on where one is.

4.5 Phasing

Phasing is a problem that occurs when a signal is mixed

with another signal that includes a phase delayed version

of itself. This can occur, for example, when two

omnidirectional microphones mapped to the same

channel are too close to each other, or a single

microphone is too close to an acoustically reflective

surface. This results in cancellation or reinforcement of

various frequencies, depending on the phase offset, which

can result in a muddy tone.

Although the literature specifies several effective ways

to detect phasing before mixing is carried out, it is much

more difficult to automatically detect afterwards, and is

easily confused with sometimes desirable comb filter

effects like flanging. jProductionCritic’s (admittedly

limited) approach is to look for consistent troughs in the

power spectrum of a track.

4.6 Dynamic Range

A common mistake made by students is to keep gains

excessively low due to fear of clipping. Students then

sometimes exacerbate this by forgetting to normalize

their work during mastering (which can be desirable in

order to achieve relatively consistent volumes). Another

potential problem is that some tracks are insufficiently

dynamically compressed (a desirable “hot” aesthetic in

pop styles) or, conversely, do not have enough dynamic

range (a problem for styles such as classical music).

To address the first issue, jProductionCritic reports an

error if the maximum absolute sample value is too far

below the representational maximum. To address the

other two problems, optional style-specific configuration

settings can be specified to generate errors if the standard

deviation of the windowed RMS across a track is too high

or too low, respectively.

4.7 Stereo Balance and Channel Similarity

Some students do not include enough channel separation

in their recordings to create a sufficient sense of stereo

space, or even forget to specify panning settings at all.

Additionally, students sometimes fail to properly balance

the stereo channels, with the result that one stereo

channel is consistently louder than the other.

jProductionCritic compares the left and right stereo

channels and generates an error if the signal correlation is

too high. It was found that this works better in general

than spectral approaches. An error is also generated if the

RMS of one channel as a whole is too high relative to the

RMS of the other channel as a whole.

4.8 Other Errors Assessed

There are several additional errors that can be reported by

jProductionCritic if desired. These include, among others:

 Too much silence (either absolute or at the noise floor)

at beginnings and ends of tracks.

 Audio dropout.

 DC signal offset.

 Poor encoding parameters (e.g. low sampling rate or bit

depth, lossy compression, etc.) in cases where high-

quality masters should be used.

jProductionCritic also reports basic summary metadata

(e.g. track length, audio encoding parameters, etc.).

5. VALIDATION EXPERIMENTS

Much of the error detection processing described above is

based on thresholds, which the user has the option of

specifying via configuration settings. However, it is

important that it also be possible to apply

jProductionCritic easily and effectively to arbitrary types

of music without any user tweaking. To this end,

experiments were performed to first arrive at good default

configuration settings, and to then validate these settings’

effectiveness.

In order to do this, music technology assignments were

collected from multiple sections of three different courses

over four semesters at Marianopolis College. Most but

not all of the students involved were enrolled in the music

program. Some of these assignments required students to

make classical or jazz recordings using Pro Tools (in

studio and live), and others required students to make

mashups in any musical style using Audacity. The

instructor’s original (and later re-verified) corrections to

the assignments served as the ground truth. In all, 110

assignments were collected.

Forty-four of these assignments were randomly

selected and used to experimentally choose the error

detection algorithms and tune their configuration settings.

Once this was done, the remaining 66 assignments were

then processed by jProductionCritic in order to verify that

the configuration settings had not been overfitted to the

tuning set. The results of this validation experiment are

shown in Table 1:

 True

Positives

False

Positives

False

Negatives

Human 499 0 8

jPC 452 38 55

Table 1. Results of the validation experiment comparing

jProductionCritic’s performance with expert human

correction. Values indicate the total number of errors

detected combined across all 66 validation assignments.

It is interesting to note that 8 true technical errors were

detected by jProductionCritic that were wrongly missed

during original human correction (they were found to be

true errors upon manual secondary verification). It was

also found upon secondary verification that, unlike

jProductionCritic, the original corrector did not wrongly

indicate any false errors.

Overall, it can be seen that jProductionCritic

performed quite well. It found 89% of the true errors,

compared with 98% found by the expert course

instructor. Furthermore, 92% of the errors detected by

jProductionCritic were in fact true errors. This is

impressive when one recalls that the assignments were in

a variety of musical styles, and were all processed using

the same default configuration settings. It should be

noted, however, that these results would be even more

meaningful if students at different institutions with

different instructors had been involved in the study.

With respect to the relative performance of the

different error types, the algorithms for detecting phasing,

background noise and, to a lesser degree, instantaneous

noise (other than edit clicks) were by far the worst

performers. It was difficult during the tuning stage to find

configuration settings for them that would minimize false

positives while also maximizing true positives, and this

was reflected in the validation stage, where these three

types of error detectors were responsible for 73% of all

jProductionCritic’s false positives and false negatives.

The other algorithms performed relatively similarly (and

successfully).

While jProductionCritic is still not as good as a human

expert, it did perform well enough to be at least

comparable, and it certainly caught many errors missed

by the students. It is sufficiently good to serve as a time-

saving and verification tool for teachers, and can

effectively provide students and amateur producers with

valuable feedback for improving their work.

6. CONCLUSIONS AND FUTURE RESEARCH

It is hoped that jProductionCritic will help to address

several underserved needs: the absence of integrated

open-source production error checking software in

general; the absence of software intended to meet the

educational needs of audio production students in

particular; and the relatively limited attention given to

both production and education software in the MIR

community to date.

From a research perspective, jProductionCritic has the

advantages of including a number of original error

detection algorithms and of being fully open-source.

Unlike almost all other integrated production error

detection software, its algorithms are not proprietary

black boxes. Furthermore, jProductionCritic has a

modular and easily extensible design that is intended to

encourage its use as a framework for future MIR research

on developing additional error checking algorithms.

From an applied perspective, jProductionCritic is the

only known production-oriented software that is intended

to meet the specific needs of education, and looks for

many more errors than any other known general

integrated system. Moreover, the validation experiments

found that the software performs more than well enough

to be used successfully in practice.

The first priority for future work is to port

jProductionCritic to a standard DAW plug-in format,

such as VST or Nyquist. This will greatly increase its

accessibility to students. Another priority is to implement

it as a Vamp plug-in so that it can be used with Sonic

Visualiser [2], which would increase the scope and clarity

of information that could be shown to users by

supplementing the Audacity Label Tracks currently used.

It would also be useful to implement an interface with

which teachers could specify a grading scheme, so that

assignments could be marked more easily, and students

could have an idea what grades they will receive before

submitting. Of course, it is important to reserve room for

the instructor’s subjective judgment when doing this.

There are also many other useful error detection

algorithms that remain to be implemented, including

detection of poor EQ, too much or too little reverberation,

excessive performance artifacts, etc. There is also still

plenty of potential to refine and improve the existing

algorithms, especially those that performed poorly in the

validation tests, perhaps with the ultimate goal of making

jProductionCritic more useful in professional contexts.

jProductionCritic, its code and documentation can all

be downloaded for free from: http://jmir.sourceforge.net.

7. REFERENCES

[1] Barlett, B. and J. Barlett. 2009. Practical recording

techniques: The step-by-step approach to

professional audio recording. Burlington, MA:

Focal Press.

[2] Cannam, C., C. Landone, M. Sandler, and J. P. Bello.

2006. The Sonic Visualiser: A visualisation platform

for semantic descriptors from musical signals.

Proceedings of the International Conference on

Music Information Retrieval. 324–7.

[3] Huber, D. M., and R. E. Runstein. 2009. Modern

recording techniques. Burlington, MA: Focal Press.

[4] Kühhirt, U. 2008. A/V Analyzing Toolbox. Retrieved

8 May 2013, from

http://www.idmt.fraunhofer.de/en/Service_Offerings

/technologies/a_d/av_analyzing_toolbox.html.

[5] McKay, C. 2010. Automatic music classification

with jMIR. Ph.D. Dissertation. McGill University,

Canada.

[6] Montecchio, N., and A Cont. 2011. Accelerating the

mixing phase in studio recording productions by

automatic audio alignment. Proceedings of the

International Society for Music Information

Retrieval Conference. 627–32.

[7] Owsinski, B. 2013. The mixing engineer’s handbook.

Independence, KY: Course Technology PTR.

[8] Sabri, M., J. Alirezaie, and S. Krishnan. 2003. Audio

noise detection using hidden Markov model.

Proceedings of the IEEE Workshop on Statistical

Signal Processing. 637–40.

[9] Scott, J., and Y. E. Kim. 2011. Analysis of acoustic

features for automated multi-track mixing.

Proceedings of the International Society for Music

Information Retrieval Conference. 621–6.

[10] Vaseghi, S. V. 2009. Advanced digital signal

processing and noise reduction. Chichester, West

Sussex: Wiley.

[11] Witten, I. H., E. Frank, and M. A. Hall. 2011. Data

mining: Practical machine learning tools and

techniques. New York: Morgan Kaufman.

[12] Audiofile-Inspector & Digital Error Checker.

Retrieved 8 May 2013, from http://www.cube-

tec.com/products/quadriga/quadriga-features-

system-integration/quadriga-features-audiofile-

inspector-and-digital-error-checker.

[13] Digital Audio Error Detection. Retrieved 8 May

2013, from http://digauderrodetec.sourceforge.net.

