EVALUATING THE QUALITY OF PLAYLISTS BASED ON
HAND-CRAFTED SAMPLES

Geoffray Bonnin
TU Dortmund, Germany

geoffray.bonnin@tu-dortmund.de

ABSTRACT

The automated generation of playlists represents a parti-
cular type of the music recommendation problem with two
special characteristics. First, the tracks of the list are usu-
ally consumed immediately at recommendation time; se-
cond, tracks are listened to mostly in consecutive order so
that the sequence of the recommended tracks can be rele-
vant. A number of different approaches for playlist gene-
ration have been proposed in the literature. In this paper,
we review the existing core approaches to playlist gene-
ration, discuss aspects of appropriate offline evaluation de-
signs and report the results of a comparative evaluation
based on different data sets. Based on the insights from
these experiments, we propose a comparably simple and
computationally tractable new baseline algorithm for fu-
ture comparisons, which is based on track popularity and
artist information and is competitive with more sophisti-
cated techniques in our evaluation settings.

1. INTRODUCTION

Among the different application domains of recommender
systems (RS), music is often considered as being particu-
larly difficult to deal with [5, 12]. One specific approach
for music recommendation and discovery is the automated
generation and provision of playlists (mixes). This stra-
tegy however induces additional challenges as the tracks
are consumed in sequence and usually immediately at re-
commendation time. This means that the context of the
previous recommendations has some influence on user sa-
tisfaction and should be taken into account in the playlist
generation process.

When our goal is to automatically generate playlists,
i.e., lists of sequentially ordered tracks, one key question
is the evaluation of their quality. In fact, there might be
a number of different factors that influence the perceived
value of a playlist, including, e.g., the coherence of the list,
or the variety or freshness of the songs [9]. Many playlist
generation algorithms have been proposed in the literature,
but their quality is hard to compare as they often focus on
particular families of techniques and use different baseline
algorithms and evaluation criteria.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

(© 2013 International Society for Music Information Retrieval.

Dietmar Jannach
TU Dortmund, Germany

dietmar. jannach@tu-dortmund.de

In this paper, we review existing playlist generation ap-
proaches and propose a comparably simple and computa-
tionally efficient new baseline algorithm for future compa-
risons which relies on track popularity and artist informa-
tion. We discuss evaluation designs from the literature and
present experiments that use two evaluations metrics based
on comparisons with hand-crafted playlists, i.e., playlists
made by hand by music enthusiasts. The results show that
our algorithm outperforms the other approaches on two out
of three data sets when using hit rates as a metric. In ad-
dition, the experiments reveal a considerable limitation of
using the log-likelihood metric as a means to compare the
quality of automatically generated playlists.

2. AUTOMATED PLAYLIST GENERATION

In the following, we review existing approaches to playlist
generation and present our new approach. A playlist is usu-
ally defined to be an ordered sequence of musical tracks.
The playlist generation problem typically consists in cre-
ating such a list given either some seed information or se-
mantic description [3]. As another input, we might also
have some extra information for each track, e.g., the audio
signal, the composer, artists, lyrics, tags, ratings, etc.

In this work, we assume that the seed information con-
sists of the listening history so far. Given this history,
the system presents recommendation lists of tracks to the
user, and each time a track is selected the process is re-
peated [4]. Thus, the problem comes down to the compu-
tation of the score of a candidate track ¢ given a playlist
history h = (t1, ta, ..., t;). The resulting scores — which in
some cases correspond to probability estimates — can then
be used to filter and rank the remaining tracks.

2.1 Markov chains

Attempting to recommend tracks that represent a smooth
transition from the previous track is an obvious approach.
This corresponds to the Markov property and leads to a
first-order Markov model in which states correspond to
tracks. Given a history h of a playlist and a candidate track
t, the probability of ¢ in such a model thus only depends
on t;, the last element of h. Examples of playlist model-
ing approaches based on this strategy include [14] and [6].
In [14], the authors compare a set of approaches to assign
transition probabilities to a Markov model including the
uniform distribution, tags, audio signal and artist informa-
tion. In [6], a more sophisticated Latent Markov Em-
bedding (LME) model in which tracks are represented by

vectors in the Euclidean space is compared with the bigram
model and a uniform distribution.

The major limitation of these models is that the assump-
tions on which they are based may be too strong as the
choice of the next track by a user may or may not depend
only on the previous track. Although tracks are usually
being listened one after the other and transitions between
tracks surely have some importance, in practice, the rules
users follow to build playlists can be quite different and
often contradict this assumption, see also [8].

2.2 Frequent patterns

Another possibility to recommend tracks for playlist gene-
ration is to extract frequent patterns from playlists. The
common techniques are association rule (AR) and sequen-
tial pattern (SP) mining. An association rule [1] has the
form A — C, where A and C are two itemsets. Sequen-
tial patterns are a sequential version of association rules
[2] in which the order of the elements in the pattern is also
taken into account in the mining process. The additional
constraints of sequential patterns over association rules can
in general lead to more accurate recommendations, but the
approach has a higher computational complexity and re-
quires a larger amount of training data. Another possible
limitation of this approach might be the comparably small
confidence values for the extracted patterns given the usu-
ally high sparsity of musical data sets.

2.3 Neighborhood recommenders

Another way to exploit co-occurrences of tracks is to use a
k-nearest-neighbors (kKNN) recommender which is based
on the similarity between playlists. Such a kNN approach
was proposed in [11] and used as a basis for a more so-
phisticated recommender which uses sequential patterns of
latent topics based on tags. Similar to association rules,
this kNN approach not only exploits information about the
collocation of items in playlists but also takes the number
of shared items in each playlist into account when estima-
ting the probability. However, association rule mining is
based on counting the frequency of patterns for all users
in an offline process. The kNN approach, in contrast, dy-
namically computes a “local” probability using the k£ most
similar playlists. In other words, the limitation mentioned
in the previous subsection with respect to low confidence
values is reduced. The computation of neighborhoods and
playlist similarities is however computationally complex
both in terms of time and space, making the approach in-
tractable when recommendations have to be made in real
time.

2.4 Playlists as users

In principle, if we interpret the playlist generation problem
to be similar to the item prediction problem in typical RS
settings by considering playlists to be users, existing RS al-
gorithms for item recommendations can be applied inclu-
ding recent learning-to-rank techniques. In particular, the
BPR-approach (Bayesian Personalized Ranking) from [15]

has been included in previous comparative evaluations for
playlist or music recommendation, see e.g. [11] and [13].
The experiments in the last two papers however show that
the plain BPR method can be easily outperformed by other
methods in particular problem settings.

2.5 Content-based approaches

Using additional information, one can try to enhance the
confidence of pattern-based approaches or avoid the comp-
lexity of the kNN approach. Such additional information
can be the content of the tracks (lyrics, spectrum, etc.),
the similarity of musical features [10], user tags, or more
simple elements such as artist names. Some of the afore-
mentioned approaches use some forms of content and meta-
data. For instance, the topic-aware hybrid recommender
of [11] uses tags to determine topics, but does not solve
the scalability problem of the underlying kNN approach.
Also McFee and Lanckriet [14] experiment with Markov
models that use tags, the audio signal and artist names.
However, their approach does not solve the problem of the
strong assumption of the Markov property.

Regarding the incorporation of additional information
into the recommendation process, we hypothesize that the
use of artist names in general is particularly promising as
this type of data is objective, easy to obtain and to process
(as opposed to, for instance, information about the playlist
topic, genre or style).

2.6 Popularity-based approaches

In many application domains for RS and in particular in
the music domain [5], we can observe a so called “long
tail” distribution of items, meaning that a small subset of
the items accounts for the majority of transactions or inter-
actions. This popularity bias results in the fact that simple
popularity-based approaches, which present the same set
of popular items to everyone, can represent a compara-
bly hard baseline [7]. Given these observations, we in-
cluded two approaches that are based on popularity com-
bined with artist information in the experiments.

“Same artists - greatest hits” (SAGH): In [13], the
authors propose a baseline algorithm for music recommen-
dation —not in the context of playlists — called “Same artists
- greatest hits”, which simply recommends the most popu-
lar songs of the artists appearing in the user’s listening his-
tory. Their experiments on the Million Song data set shows
that higher prediction accuracy can be obtained with such
an approach than when using, e.g., the above-mentioned
BPR method. This method would thus be a hybrid that
uses both additional information as well as popularity.

“Collocated artists - greatest hits” (CAGH): In this
paper, we do not only apply the previous scheme, but pro-
pose an extension to it. Our assumption is that the different
artists that are included in playlists by the users are not too
different from each other. We thus propose to recommend
tracks based on the frequency of the collocation of artists.

More precisely, we compute the similarity between two
artists a and b according to the following formula:

Zp (5a,p ’ 5b,p)

\/ Zp 5“1? ’ Zp 5b’p

with §,, = 1 if playlist p contains a and 0 otherwise. The
similarity thus depends on the collocations of artists within
playlists, which can be computed offline. Our proposed
formula for the computation of the score of a next track ¢
with artist a given a playlist beginning h is as follows:

sim,(a,b) =

scorecacu(t, h) = Z simy(a, b) - counts(t) (1)
beAy

where Aj, is the set of artist names of the tracks in ~A and
counts(t) is the number of occurrences of ¢ in the data set,
which corresponds to the greatest hits of the data set.

3. A COMPARATIVE EVALUATION OF PLAYLIST
GENERATION STRATEGIES

The presented playlist generation techniques follow diffe-
rent strategies and exploit different types of inherent cha-
racteristics of the playlists or rely on external information.
The goal of this study is to obtain a better understanding of
different aspects related to the generation and evaluation of
playlists. In particular, we aim to better understand the role
of sequentiality and popularity, find out if different metrics
follow the same trends in a comparative evaluation and if
the observations are consistent across different data sets.

3.1 Data Sets

We used three data sets in our experiments. One is from
Artofthemix, which is probably the most commonly used
data set for related research [11, 14]. The second was re-
trieved from last.fm'. The third was provided to us by
8tracks 2. In order to reduce the sparsity of the data, we
used the web service of Musicbrainz? to correct artist and
track misspellings. We also removed playlists of size 1.
For the last.fm data, we furthermore decided to select play-
lists in a way that long-tail tracks are used at least twice.
Table 1 shows the data set characteristics.

Notice that the Artofthemix data does not contain user
IDs. As implicitly done also by [11], we consider users as
being equivalent to playlists, as they usually do not create
large numbers of playlists. Regarding track occurrences,
the last.fm and 8tracks data sets have a similar average
track usage count (5.5 and 5.3)* . This usage count is sig-
nificantly smaller for Artofthemix (2.7). Another related
characteristic is the long tail distribution of track usages.
Table 1 divides the corresponding distribution into three
parts: head, middle and tail. The “head” contains tracks
which appeared more than 20 times in playlists, tracks in
the “middle” were included in playlist between 2 and 20

'http://www.lastfm.com/api

2http://8track.com

3http://musicbrainz.org/ws/2/

4 The track/artist usage count means how often a track/artist was used
in all playlists

last.fm| Aotm 8tracks
Playlists 50,000 | 28,636 | 99,542
Users 47,603 | — 51,743
Tracks 69,022 | 214,769 | 179,779
Avg. tracks/playlist 7.6 20.1 9.7
Avg. track usage count | 5.5 2.7 53
Head 4.8% 1.6% 4.5%
Middle 35.0% 18.5% | 25.7%
Tail 60.1% | 79.9% | 69.8%
Artists 11,788 | 47,473 | 29,352
Avg. artists/playlist 4.5 17.3 8.9
Avg. artist usage count | 32.2 12.1 32.7
Artist reuse rate 31.1% | 21.8% 13.8%

Table 1. Properties of the data sets.

times, and songs from the “tail” were only used once or
twice. These values are admittedly somewhat arbitrary
but allow us to roughly compare the respective distribu-
tions. The resulting proportions reveal another difference
between the last.fm and 8tracks data sets: although they
have a similar average track usage count, the size of the
long tail of 8tracks is much larger.

Regarding artist-based recommendation approaches, Ta-
ble 1 shows that playlists usually contain fewer artists than
tracks. The row “artist reuse rate” in the table represents
the percentage of cases when the artist of the last track
of a playlist already appeared in the same playlist before.
The corresponding values are 31.1% for the last.fm data
set, 21.8% for the Artofthemix data set and 13.8% for the
8tracks data set. This represents another difference be-
tween the last.fm and 8tracks data sets: although they have
a similar average artist usage count, the artists are more
distributed across the playlists in the 8tracks data because
8tracks’ license only allows for up to two songs from the
same artist per playlist. Overall, we think that these values
represent a strong argument to emphasize on artist names
as an additional information when recommending tracks,
except maybe for the 8tracks data set.

Using three data sets with quite different characteristics
should allow us to analyze how the different algorithms
perform in different situations. In general, generating re-
commendations based on the Artofthemix data set should
be much more difficult than with the last.fm and 8tracks
data sets, as it is smaller and the individual tracks are less
often used. Other factors may however play a major role
as well, in particular the size of the long tail.

3.2 Evaluation Metrics

Playlist generation is usually evaluated according to three
possible strategies: semantic cohesion, human opinion sur-
vey and comparison with hand-crafted playlists. Seman-
tic cohesion corresponds to the assumption that a good
playlist is a playlist which tracks are as homogeneous as
possible, e.g., in terms of genre or style, which can be con-
sidered as a strong assumption. Human opinion surveys
do not have this drawback but are time consuming and dif-
ficult to reproduce. We thus choose the third option and

evaluate playlisters by comparing their output with hand-
crafted playlists. Two evaluation strategies are common,
the hit rate and the average log-likelihood.

3.2.1 Measuring hit rates

A first way of measuring the accuracy of playlist gene-
ration for music recommendation is to use the hit rate,
i.e., the proportion of relevant predictions on a test set. An
evaluation method of this type is used, e.g., by [11], who
hide the last element of each given playlist, which has then
to be recommended by the algorithm. In general, any sub-
set of playlist elements could be hidden in such a protocol.
Removing the last one however is based on the assumption
that the sequential history of a playlist can be relevant.
The limitation of this evaluation metric is that it cor-
responds to the assumption that the actual next tracks in
the playlist are the only relevant tracks that can be rec-
ommended, although some other tracks may be relevant.
In other words, it is possible that hundreds of tracks are
relevant, but as the recommender has to select a subset of
them, the actual next tracks of the test playlists might not
be recommended. As it is impossible to know how many
tracks are relevant for each situation, it is reasonable to
analyze the accuracy of a system using longer recommen-
dation lists. Such lists could of course not be used in a
real framework, but our goal here is only to compare the
algorithms. The assumption is then that there is a corres-
pondence between the size of the recommendation lists and
the average number of relevant tracks. Still, the hit rate can
only be considered to be a lower bound for the accuracy.

3.2.2 Measuring the average log-likelihood

Another way to measure accuracy is to use the average log-
likelihood. The average log-likelihood can be used to mea-
sure how likely a system is to recommend the tracks of a
given set of playlists through a weighted random process.
More precisely, given a test set of playlists, the average
log-likelihood can be determined by computing the proba-
bility of observing each next track according to the corres-
ponding playlist history and some model learned on the
training data. Research on music recommendation using
playlists that use this metric includes [6] and [14]. Obvi-
ously, the application of this measure requires that the out-
put of a playlist recommender can be expressed as proba-
bility values for each song, which can be easily obtained
by a normalization over the prediction lists.

In contrast to the hit rate, which provides a realistic
lower bound on the accuracy that is directly interpretable,
this metric is not interpretable on an absolute scale: the
possible values vary between —oo (at least one track in the
test set has a corresponding O probability in the model) and
0 (all probabilities in the model for all tracks in the test set
are 1). Thus, this metric does not tell us if a generative
approach leads to good playlists, but allows us to compare
the results of different generative approaches. It can thus
be considered as a complementary measure to the hit rate.

As only one track having a 0 probability is sufficient to
induce a —oo average log-likelihood, 0 probabilities must
be avoided. This requires an additional smoothing step,

which might result in a strong bias. For instance, new
tracks will always have such O probabilities with a fre-
quency-based approach. In that situation a combination
with the uniform distribution can be used, but then the
weight of the uniform distribution may become too large
given the long-tailed distribution of our data sets.

3.2.3 Computational complexity

Another important fact that should be taken into account is
the computational complexity. Indeed, as opposed to, for
instance, movie recommendation, for which recommen-
dations can be computed offline and updated regularly, mu-
sic recommendation can be highly dynamic and contex-
tual. Users usually listen to tracks in sequence, where
each track lasts a few minutes. Therefore, a music re-
commender should be able to provide fast contextual re-
commendations. Moreover, as the number of tracks that
can be recommended is usually very high, the efficiency of
the training phase can become crucial. In the subsequent
analysis of algorithms, we will thus also briefly discuss as-
pects of computational complexity.

4. EXPERIMENTS

In the following evaluation, we use the two aforementioned
accuracy metrics: hit rate and average log-likelihood. A
10-fold cross-validation procedure was applied for both
metrics on the three data sets. Recall that the total number
of tracks of the data set highly influences the hit rate va-
lues. In [11], the results for prediction lists of size varying
between 1 and 300 given 21, 783 tracks are reported. This
corresponds to the selection of about 1.5% of the tracks.
We used a similar proportion in our experiments and set the
maximum size of the prediction lists to 1, 000 for last.fm,
3,000 for Artofthemix and 2, 500 for 8tracks.

4.1 Evaluating Hit Rates

Figure 1 shows the results of comparing five different re-
commendation approaches on the three data sets using the
hit rate. The approaches include the three above-mentioned
frequent-pattern approaches AR and SP, a kNN recom-
mender using 50 and 100 neighbors, the SAGH recom-
mender and our new baseline recommender CAGH? .

We can first notice that all approaches lead to compa-
rably low accuracy values for short recommendation lists.
For longer recommendation lists, our new CAGH recom-
mender clearly outperforms the other approaches on the
last.fm and Artofthemix data, except for recommendation
lists longer than 2, 800 for the frequent-patterns approach
on the Artofthemix data. On the data from 8tracks, the
frequent pattern approach clearly outperforms all other ap-
proaches, followed by the kNN approach with 100 neigh-
bors, and the CAGH recommender. The reason for the
lower performance of the CAGH recommender is proba-
bly the better distribution of artists across playlists on this
particular data set due to the corresponding license restric-
tions (see section 3.1).

5 The method of [11] is not included here but is comparable to the kNN
method according to their measurements.

40 T

hit rate

SPwithn=2andw=10 —— |
kNN with k = 50
kNN with k = 100
0 " " " " " " 1 1
0 100 200 300 400 500 600 700 800 900 1000
Size of the recommendation list

Artofthemix

Q
©
E
ARwithn=3andw =100 ---+---
kNN with k = 50
| kNN with k = 100
0 L L L ! !
0 500 1000 1500 2000 2500 3000
Size of the recommendation list
8tracks
35
30 -
25
o 20
®
=

CAGH —e—

SAGH —a—
5H SPwithn=3andw =100 —+— -
/ kNN with k = 50
o !))) kNNwithk:‘100
0 500 1000 1500 2000 2500

Size of the recommendation list

Figure 1. Hit rates of the different approaches.

In general, using more neighbors enhances the accuracy
of the kNN approach on the three data sets. The KNN
approach may even outperform all the other approaches
using more than 100 neighbors. However, both neighbor-
hood sizes used in these experiments are already high and
make the recommendation algorithm not only intractable
in terms of space requirements, but also in terms of run-
ning time. Still, kNN approaches lead to a lower accuracy
values than both our new baseline approach and the fre-
quent patterns method. More precisely, on the three data
sets the accuracy of the kNN approach seems to be limited
by the size of the recommendation lists it is able to build.
This is probably the reason why the frequent patterns out-
perform this approach on the 8tracks data set, as it is close
to a kNN approach that uses all the neighbors.

Other observations depend on the used data set. In parti-
cular, for the last.fm data set, the SAGH recommender
leads to results that are similar to those of the kNN re-

commender with 100 neighbors. For the Artofthemix data
set, the SAGH recommender is clearly outperformed by all
other approaches. For the 8tracks data set, it leads to results
that are similar to those of the KNN recommender with 50
neighbors for recommendation lists longer than 750.

Beside the results shown in Figure 1, we also experi-
mented with models based on the Markov property, among
them the simple bigram model and the recent Latent Mar-
kov Embedding (LME) model of [6]. Despite the long time
that can be required to train these models — e.g., several
weeks for the LME model — these methods led to particu-
larly low accuracy values which were consistently below
10% for recommendation lists of size 1, 000 for the last.fm
data set and 5% for recommendation lists of size 3, 000 for
the Artofthemix data set. We therefore omit these results
in this paper. In general, given these comparably strong
differences, assuming the Markov property might be too
strong for this problem setting. Furthermore, our results
indicate that emphasizing on artist names can be particu-
larly promising for accurate track recommendation in the
context of playlist generation.

4.2 Evaluating Average Log-Likelihoods

last.fm

LME

Uniform -

KNN with k=50 |-

KNN with k=100 |-

SP with n=2 and w=10 -
SAGH -

CAGH

Average log-likelihood

Artofthemix

Uniform

KNN with k=50 |-

KNN with k=100 |-

AR with n=3 and w=100 -
SAGH -

CAGH

Average log-likelihood

8tracks

Uniform

KNN with k=50 -

KNN with k=100 |-

SP with n=3 and w=100 |-
SAGH -

CAGH

0 -2 -4 -6 -8 10 12
Average log-likelihood

Figure 2. Av. log-likelihood of the different approaches

Figure 2 shows the results of the generative versions of
the five approaches on the three data sets using the average
log-likelihood. The experimented methods all correspond
to mixture models that combine the uniform distribution
with the approaches of the previous set of experiments.
In order to perform these evaluations, each training set of
the cross-validation process was further split into a lear-
ning set for obtaining model probabilities and a validation
set to compute optimized weights using the Expectation-

Maximization algorithm. We also provide the results of the
LME model with standard parameters on the last.fm data
(on both other data sets the training process lasted more
than a month).

We focus on the correspondences with the previous set
of hit rate results. On the last.fm data set the mixture of the
uniform distribution with the CAGH and SAGH recom-
menders leads to the best average log-likelihood values.
It is worth noting that both models provide similar results
according to this metric although on the same data set the
CAGH recommender was a clear winner in terms of the
hit rate. We also evaluated all the mixture models of this
section in terms of the hit rate and obtained a similar out-
put: both CAGH and SAGH recommenders lead to a simi-
lar hit rate when combined with the uniform distribution.
More precisely, this combination strongly lowers the hit
rate of the CAGH recommender, but not that of the SAGH
recommender. This result confirms the bias of using this
metric we mentioned in section 3.2: as a relatively impor-
tant number of tracks are new in the test sets, EM-based
mixtures tend to give more weight to tracks coming from
the uniform distribution than tracks coming from the simi-
lar artists. This phenomenon also appears on the three data
sets, although the CAGH and SAGH do not outperform
the other models. On the Artofthemix data set, it even ap-
plies to all the models: the accuracy of all approaches is
strongly lowered when combined with the uniform distri-
bution. These results indicate a limitation of using the ave-
rage log-likelihood metric, i.e., smoothing the models have
highly lowered the accuracy, although in reality a RS does
not have to avoid 0 probabilities.

When testing the LME model on the last.fm data set, the
experiments showed that the model lead to lower results
than the uniform distribution. This confirms the previous
conclusion about the use of the Markov property.

5. CONCLUSION

This paper proposes a classification of existing approaches
for playlist generation and discusses limitations of typical
experimental designs, which for example do not take sca-
lability aspects into account or are based on comparably
strong assumptions such as the Markov property. Based
on this discussion, we propose a new computationally ef-
ficient recommendation scheme based on popularity and
artist information. An experimental comparative evalu-
ation showed that our algorithm outperforms the other ap-
proaches in terms of hit rate on two of three data sets. On
the remaining data set, our recommender is on a par with
neighborhood-based approaches and was outperformed by
a frequent pattern technique. This difference is probably
caused by the high dispersion of artists among playlists due
to license constraints. However, other factors may have in-
duced this difference in accuracy, which we are investigat-
ing in our current work. Our evaluations also put forward
a strong limitation of using the average log- likelihood me-
tric: it implies to smooth models in order to avoid O proba-
bilities which resulted in a strong degradation of the quality
of the approaches.

6. ACKNOWLEDGMENTS

We thank 8tracks for providing us their valuable data.

7. REFERENCES

[1] R. Agrawal, T. Imieliiski, and A. Swami. Mining
Association Rules between Sets of Items in Large
Databases. In SIGMOD 1993, pages 207-216, 1993.

[2] R. Agrawal and R. Srikant. Mining Sequential Patterns.
In Proc. ICDE 1995, pages 3—14, 1995.

[3] L. Barrington, R. Oda, and G. Lanckriet. Smarter than
Genius? Human Evaluation of Music Recommender
Systems. In Proc. ISMIR 2009, pages 357362, 2009.

[4] Dominikus Baur, Sebastian Boring, and Andreas Butz.
Rush: Repeated Recommendations on Mobile De-
vices. In Proc. IUI 2010, pages 91-100, 2010.

[5] O. Celma. Music Recommendation and Discovery -
The Long Tail, Long Fail, and Long Play in the Dig-
ital Music Space. Springer, 2010.

[6] S. Chen, J.L. Moore, D. Turnbull, and T. Joachims.
Playlist Prediction via Metric Embedding. In Proc.
KDD 2012, pages 714-722, 2012.

[7] P. Cremonesi, Y. Koren, and R. Turrin. Performance
of recommender algorithms on top-n recommendation
tasks. In ACM RecSys 2010, pages 39—46, 2010.

[8] S. Cunningham, D. Bainbridge, and A. Falconer.
‘More of an Art than a Science’: Supporting the Cre-
ation of Playlists and Mixes. In Proc. ISMIR 2006,
pages 240-245, 2006.

[9] B. Fields. ”Contextualize Your Listening: The Playlist
as Recommendation Engine”. PhD thesis, Goldsmiths,
University of London, London, UK, April 2011.

[10] A. Flexer, D. Schnitzer, M. Gasser, and G. Widmer.
Playlist Generation Using Start and End Songs. In IS-
MIR 2008, pages 173-178, 2008.

[11] N. Hariri, B. Mobasher, and R. Burke. Context-Aware
Music Recommendation Based on Latent Topic Se-
quential Patterns. In Proc. ACM RecSys 2012, pages
131-138, 2012.

[12] P. Lamere and 0. Celma. Music Recommendation
and Discovery Remastered, Tutorial at ACM RecSys
2011. Online at http://www.slideshare.net/
slideshow/embed_code/9860137,2011.

[13] B. McFee, T. Bertin-Mahieux, D. Ellis, and G. Lanck-
riet. The million song data set challenge. In Proc. Ad-
MIRe’12,2012.

[14] B. McFee and G. Lanckriet. The Natural Language of
Playlists. In Proc. ISMIR 2011, 2011.

[15] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. BPR: Bayesian Personalized
Ranking from Implicit Feedback. In Proc. UAI, pages
452461, 2009.

