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ABSTRACT

In this paper we propose a novel approach to music tag-
ging. The approach uses a statistical framework to model
two acoustic features: timbre and rhythm. A collection
of tagged music is thus represented as a graph where the
states correspond to the songs and the models probabilities
are related to the timbric and rhythmic similarity. Under
the assumption that acoustically similar songs have similar
tags, we infer the tags of a new song by adding it to the
graph structure and observing the tags visited in acousti-
cally meaningful random walks. The approach has been
tested using the CALS500 dataset, with encouraging results
in terms of precision.

1. INTRODUCTION

The ability of humans to associate tags or generic meta-
data with multimedia content is a difficult task to simulate,
because it relies on subjective judgments and on the iden-
tification of connections between abstract concepts. In the
case of music content, tagging has always been a feature
of online streaming services like LastFM, Apple Genius,
Pandora or Grooveshark, since these services rely on music
descriptors to deliver the right songs to the right user. Their
tags have different origins though: while Pandora pays mu-
sic experts to annotate music with reliable and expressive
terms, the other services rely on user generated tags and
playlists and exploit statistics tools like collaborative fil-
tering [8] for annotating and recommending music. A typ-
ical problem of manual tagging regards the annotation of
new items. While songs by renowned artists may easily get
proper tagging by their advertisers, there are thousands of
tracks — for instance produced by small independent labels
— that are likely to be unreachable because of the lack of
good descriptors.

Another interesting problem is the long tail distribution:
the analysis of listening charts highlights that the distribu-
tion of play counts over artists follows a power law. This
means that a restricted number of artists gets the major-
ity of play counts. However, the total play counts of the
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long tail largely outnumbers the one of the top artists. This
situation is also common for the global charts of a music
streaming service and has a reflection on how these ser-
vices make money [6]. The problem is related to tagging
because in most of the times the long tail consists of poorly
tagged music pieces.

Early works on automatic music tagging addressed the
recognition of the music genre [11,12,25]. The subjective-
ness of “genre” classification led researchers to propose a
novel genre taxonomy [18] and to identify music tagging
as a more broad concept that includes other types of infor-
mation — like track’s pace and dance-ability. To this end,
tagging has also been defined as “music semantic annota-
tion” [10,24]. Other approaches have explored the associ-
ation between related tags [16], or the inclusion of mined
social tags to infer some relation between tags and audio
features [2].

A variety of features were considered in search of the
right combination to correctly annotate novel songs. First
attempts started with Mel Frequency Cepstral Coefficients
(MFCC), which were successfully used for music classi-
fication while improvements were obtained with the aid
of other sources such as social tags [5], or temporal fea-
tures [15]. More recent work investigates the improvement
of MFCC by using Principal Component Analysis [13]
while learning frameworks have been applied as well, such
as Support Vector Machines [3] and Artificial Neural Net-
works [9].

This paper describes a method for semantically tagging
music clips by exploiting timbre and rhythm features rep-
resented in a single statistical framework, where audio fea-
tures are related to different model parameters that have
been developed on top of a previously defined retrieval
model based on content and context descriptors [17].

2. THE TAGGING MODEL

Our basic assumption is that the relation between tags and
music features can be better exploited by using multiple
features in a single tagging model. Our framework, in-
spired by Hidden Markov Models (HMMs), accounts for
music similarity in terms of two different audio features:
timbre represented by MFCC and rhythm represented by
Rhythm Histograms (RH).
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Figure 1. A graphical representation of the tagging model

2.1 Model Elements

Given the close relationship with HMMs, we introduce the
different elements of the model using, when possibile, the
same notation introduced in [21].

States: A song is represented as a state .S; from a set S =
{S1,...,Sn}, and state at time ¢ is denoted as s(t).

Prior Probabilities: The query song to be tagged is added
to the model as state S, requiring the computation of the
transition-wise similarity with each song in the collection
to obtain a,; for all 7. Each path in the model is forced to
start from the query song.

Transition Probabilities: They are related to the acous-
tic similarity between the songs using one of the two fea-
tures, thus they can be related either to timbre or to rhythm
similarity. Referring to the usual naming convention for
HMMs, a;; stands for the acoustic similarity of song .S;
with song S;.

Observation Probabilities: They are related to the acous-
tic similarity between the songs and the query song, com-
puted from a different music dimension than the on used
for transitions. We introduce symbol ¢;(q) as the proba-
bility for song S; of emitting the audio features of query
song Sj.

Tags: The information regarding the tags of the known
songs is stored in a separate variable, named b;(w), that
associate tag w to song .S; in the collection. We assume
that the vocabulary of tags consists in |V| different symbols
belonging to V = {wy,ws, ..., wyy}. The vector b; is in
binary form, it contains a 1 in position j if tag j is present,
0 otherwise.

The model is then exploited to generate random walks
across the collection, starting from the song to be tagged.
Transition probabilities guarantee acoustic consistency of
the songs in the paths, while observation probabilities guar-
antee acoustic similarity with the query song. A graphical
representation of the model can be found in Figure 1.

Although in principle a;; > 0 for each (7, 7) pair, we
artificially keep, for each song S;, only a subset R(S;) of
non-zero transitions. That is, we keep the top P highest

transition probabilities for each state, and we set to O the
remaining transitions, with an increase in model scalabil-
ity. The value of P has been set to 10% of the global num-
ber of the songs. Transitions are normalized to maintain
the stochastic properties.

As a consequence of the analogy with HMMs, the ob-
servation’s feature plays a more important role than the
transition’s feature in discriminating the songs. This hap-
pens because observation’s feature is compared to the query
at each step in a random walk across the model, while the
influence of transition similarity decreases as the path gets
longer. Having the tags in a separate structure let us grow
the model easily if there is a novel tag.

2.2 Acoustic Features

We use MFCC to capture the timbre signature of each song.
MFCC are computed using 23 ms, half-overlapping win-
dows over 6 seconds of music after the first 30 seconds.
We thought 6 seconds may be a good amount of data to
be used for automatic tagging for online services and for
fast tagging of large collections. The output is a 13-sized
vector for each window, but since we include the first and
second derivatives, we end up with a matrix of 39 elements
multiplied by the number of windows.

We use Rhythm Histograms (RH) and Rhythm Patterns
(RP) to hold information regarding the rhythm of a given
piece of music, as described in [19, 22] as psychoacousti-
cally motivated Rhythm Patterns. Rhythm Patterns them-
selves are a variation of Fluctuation Pattern [7]. RH are
computed using the same 6 seconds of audio as MFCC.
Simplifying some psychoacoustic adjustments steps in the
definition of RP and slightly varying the calculation param-
eters, we ended up with a matrix descriptor of 120 modu-
lation frequencies by 24 frequency bins.

2.3 Similarity Measures

We adopted two approaches to compute the similarity be-
tween two songs. The first one considers each frame as a
fixed-width word in a dictionary [14]. We calculate mean



and covariance of the (letters of the) words over the length
of the song and the result is a representative multivariate
Gaussian distribution of the song. To compare these two
distribution we use the Kullback-Leibler divergence (KL
divergence):

KL(llo) = | p<x>10glq’ggdx, M

where p(z) and ¢(z) are the two distributions. The KL di-
vergence is then transformed to a [0, 1] value (with 1 rep-
resenting two identical songs) by exponentiating the diver-
gence:

sim(p, q) = e~ YKL(pIl9) )
where v is a parameter to be tuned (for this work it has
been set to 0.009, see [20]). In this paper this similarity is
referred to as “single gaussian”.

We investigated also a number of alternative similarity
measures [4]: the Cosine similarity and its varied version
Modified Chord, a similarity based on Euclidean distance,
two biology-based similarities (Bray-Curtis and Ruzicka),
the Similarity Ratio, the Kulczynski similarity and the ex-
ponentiated version of the discrete KL-divergence (very
similar to the one from Equation 2). This second group
of measures is based on a vectorized version of the matrix
representations. For MFCC we keep the absolute value of
the time-wise sum, obtaining a 39-sized vector represent-
ing the average timbre across the piece of music. For the
RH we sum along the frequency bins (barks) to obtain a
118 sized vector representing the influence of each modu-
lation frequency in the [0, 10]Hz range.

2.4 Querying the model

We developed a modified version of the Viterbi algorithm,
which application to HMMs can be found in [21] where &
represents the probability of the optimal path and v is used
to keep track of its actual state sequence. We refer to the
query song using the subscript ¢ (e.g. S, for the song, b, ()
for the tags, and so on).

Initialization: As introduced in Section 2.1 the song to
be tagged S, is inserted in the model and the initialization
stepis, foralle =1,..., N :

N )1 i=g
51(1)—{0 i 44 3)
¥ (2) =0. “

Recursion: Here we present a variation from the original
Viterbi. Fort =2,...,T,andi =1,...,N:

0¢(i) = e [0¢—1(%) ajs] dq(i) )

V(i) =arg 2 [0¢—1(4) aji] (6)

i :% for = (i), 1 = 10. %)

Where ¢, (i) is the similarity between S, and \S; and can
be computed using one of the possible similarity measures
introduced in Section 2.3. Equation 7 aims at preventing

looping by lowering the probability of performing a tran-
sition twice [20].

Decoding: The most probable path is computed as in the

original Viterbi algorithm:

arg 12?5\[[&(1)] ift=T ®)

wt+1(8(t+1)*) lft:T—].,,].,

max [0;(i)] ift=T

1) = 1<i<N 9)
0r(s(t)*) ift=T-1,...,1

Where p(t)* represents the probability of the optimal path
at each step. The parameter 7" is the maximum length of
the subpath, which is discussed in the following section.

s(t)" =

Tagging: The tags of states belonging to the optimal path
are used to tag the query song, because they are likely to
be acoustically similar to the query and to share some of
their textual descriptors. We take the 7" songs extracted by
Equation 8 and we calculate a vector of tag weights b, (w)
foralltagsinj =1,..., M asin:

T
bo(w) =Y by(w)w(t). (10)

Where w(t) is a decreasing monotonic function of the path
position 7. That is, tags from songs acoustically similar
— reached early in the optimal path — to the query should
have more importance than songs that are not that similar
— observed at the latter steps of a random walk.

Iteration: To keep a high transition-wise similarity, the
procedure is split in substeps. After having computed a
path of length 7", with T" = 4 giving the best experimental
results, we restart Viterbi decoding from the initialization
step without resetting the modified transitions (i.e. keep-
ing the effects of Equation 7). The procedure is iterated a
number of times until enough songs are visited in order to
correctly infer the tags for the query song. The final weight
of a tag is computed as the sum of the weights computed
at each iteration.

It has to be noted that there is no real control of the
paths extracted at each iteration, in a sense that there can
be songs that appear multiple times on different iterations
or maybe multiple times on the same iteration. This as a
desired behavior: if a song is chosen multiple times we
assume that it is particularly relevant to the query, and so
its tags may be better related to the it. In fact, we sum
the tags contribution of these songs every time they are
chosen, regardless of the number of times and the position
in the path where they appear.

The proposed approach allows us to exploit the influ-
ence of two features at once. It can be noted that we could
calculate query’s tag by simply using all the neighbor songs
computed from a forward exploration of the model starting
from the query. The advantage of using Viterbi decoding
relies on the fact that it finds an acoustically meaningful
“music path” from the query, which helps us avoiding non-
related songs. Another important advantage is that we can



also decide which weight we want to assign to each song
in the path, which could lead to better results.

2.5 Weighting the Tags

As of the weighting function in Equation 10 we explored
different options, that have been tested experimentally. For
each time step t = 1,..., T the function w(t) can be com-
puted according to:

Path probability: As a first option, the path probabil-
ity at step ¢ can be used directly a the tag weight, using
w(t) = plt)".

Linear decay:The relevance of tags can decrease linearly
with the length of the path required to obtain them, accord-
ingtow(t) =1—m(t—1),with0 <m < 1.
Exponential decay: Since the probability of a path across
HMMs decreases exponentially with the length of the path,
tag weight can be computed also according to w(t) = at="b,
with0 < a < 1.

Hyperbolic decay: In order to obtain, for small values of
T, intermediate weights between linear and exponential,
tag weight can be also computed as w(t) = 1/t.

3. RESULTS

An automatic tagging system is expected to put meaning-
ful tags on novel songs in a reliable way. We have already
seen the importance of automatic tagging in the introduc-
tion and we wanted to test how our model performs in this
difficult task.

3.1 Data Source

For the experimental evaluation we focus on the quality of
the source data, as we need to rely on it to put the right
tags to songs. For these reasons we have chosen to use
the CAL500 dataset [23], which consists of 502 popular
songs of Western music by different artists. Songs from
this dataset have been tagged, through a controlled survey,
by at least three human annotators each. The semantic vo-
cabulary consists of 149 tags spacing from genre classifi-
cation (e.g. “rock”, “pop”) to vocal and acoustic charac-
teristics (e.g. “female lead vocals”), as well as emotions
(e.g. “aggressive”) and song usages (e.g. “studying”). The
survey results is a binary annotation of each song.

Acoustic features (i.e. MFCC and RH) have been com-
puted from a degraded version of the clips in the dataset,
with an encoding quality which was still high enough for
our purposes. The availability of the audio motivates the
choice of CAL500. Moreover, we are more interested in
the reliability of the tagging procedure, so we prefer to
evaluate our approach with a small yet controlled collec-
tion. Experimental evaluation with larger collections, such
as CAL10k or Magnatagatune, will be part of our future
work.

3.2 Evaluation Measures

What the users expect from an automatic tagging system
is that proposed tags are relevant, in a sense that they truly
describe the content of the song, and the tags are complete,

so there is no lack of information. Any extra tag is counted
as an error, or at least as noise. We also expect that the sys-
tem has to be concise, that is, if the output of the system is
aranked list of tags, where the rank is a relevance measure,
we may want to keep only the top most tags as the query
result. In other words, we need to measure whether the
system is able to propose the most relevant tags at the top
of the ranked list, while other tags (not-so-relevant ones
and wrong ones) should have lower ranks. With this aim
in mind we choose to use the precision metric: we mea-
sured the precision at 10 (P@10), which reports the frac-
tion of relevant tags of the top 10 results from the ranked
list, and the mean average precision (MAP), which aver-
ages the precision at each point of the ranked list of tags.

3.3 Testing Procedure

Since the role of this model is to tag a new song we can test
it using the ground truth (the CAL500 dataset) in a leave-
one-out fashion on all the songs minus one. What we have
done is calculating the acoustic similarity for each song
in the dataset, and, in turns, we simulated the querying of
each song against the rest of the dataset.

To this end, the tagging procedure ignores the tag con-
tribution from the query song as it assumes that it does not
have tags on it.

3.4 Parameters Tuning

The tagging model as proposed in this thesis has some pa-
rameters which have to be tuned.

We tested some combinations of the values of T' (length
of the optimal path) in relation to the number of effectively
retrieved songs per path and the total number of iterations
(see section 2.4). What we have seen is that short paths
give better results, and the number of effectively retrieved
songs should be as close as possible to the length of the
path: this could mean that the conservation of acoustic sim-
ilarity is preferred over the number of retrieved results. We
ended up choosing a path length of 4 with 3 retrieved song
per iteration. This approach can produce iterations where
as little as 1 song are retrieved, that is, there can be a loop
of length 3 with the query and one song. Other combi-
nations of path length and retrieved songs led us to worse
results MAP-wise.

Regarding the total number of iterations of the Viterbi
algorithm we have seen that, for our data, the best results
were obtained with 9 iteration. Of course the influence of
these parameters should be further discussed and optimal
values may change for different datasets or as the model
grows integrating the tagged songs.

3.5 Experimental Results

The approach was tested using MFFC for transitions and
RH for observations and viceversa. Moreover, we wanted
to evaluate the effect of individual features and compare
them with a baseline approach. To measure this we tried
three strategies: first, we measured the influence of the ob-
servation similarity by imposing uniform transitions. Then



we measured the influence of the transition similarity by
uniforming the observation probabilities. The last test sim-
ulated a completely random walk by uniforming both prob-
abilities, in order to obtain a true baseline.

Precision at 10
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Figure 2. P@10 from MFCC on transitions with KL (sin-
gle gaussian) similarity, RH on observations with Modified
Chord similarity, comparing the effects of different weight-
ing and the single features. Note: The span of this and the
following figures is set in the range [0; 0.7] in order to bet-
ter appreciate the differences between the values

In Figure 2 are shown the results of P@10 compar-
ing different combinations of uniform probabilities and tag
weighting schemes. We can see that the exploitation of
both features gives consistently better results than uniform
probabilities. In turn, using only observations gives bet-
ter results than using only transitions while the baseline
gives always poorer results. It can also be observed that
linear weighting performs slightly better than all weight-
ing strategies and that the simple use of path probability —
although a natural choice — gives the lowest results.

0.

seen, not all similarities combinations have the same ra-
tio between “normal” approach and uniform probabilities
approach. For some combinations “normal” approach has
worse results than “uniform transition probabilities” which
underlines the importance of the choice of the distance
measure.
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Figure 4. P@10 from RH on transitions with KL (single
gaussian) similarity, MFCC on observations with multiple
similarities, with linear tag weighting

Our MAP performance is in line with the one of other
works at initial stage described in the literature. Table 1
shows a MAP results summary for the same configuration
as Figure 3 and Figure 4 respectively.

MFCC on transitions (KL - single gaussian),
RH on observations (Modified Chord)

0.4

Precision at 10 Normal | Un. Tr. | Un. Obs. | All Un.
I oo B nif. Tranc. inif. obe. M 211 unif. Path P. 0.481 0.474 0.442 0.442
Linear 0.536 0.507 0.450 0.442
Exp. 0.533 0.504 0.451 0.453
Hyperb. | 0.533 0.504 0.452 0.450
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Figure 3. P@10 from MFCC on transitions with KL (sin-
gle gaussian) similarity, RH on observations with multiple

similarities, with linear tag weighting

In Figure 3 and Figure 4 are shown the results of P@10
comparing different similarity measures, using linear tag
weighting. Our best results lead to over 0.6 precision,
which means that if we pick a random song and we keep
only the top 10 proposed tags, we can expect 6 of them
to be correct on average, which is a good result for the
first implementation of a novel approach. As it can be

RH on transitions (KL - single gaussian),
MEFCC on observations (Euclidean)

Normal | Un. Tr. | Un. Obs. | All Un.
Path P. 0.478 0.489 0.447 0.446
Linear 0.528 0.523 0.465 0.442
Exp. 0.526 0.520 0.468 0.453
Hyperb. | 0.526 0.520 0.467 0.450

Table 1. Mean average precision summary table

4. CONCLUSIONS

We describe a novel approach for semantic music tagging
based on a statistical framework that combines two mu-
sic features: timbre and rhythm. Tagging is based on a
modified Viterbi algorithm to carry out iterated random
walks in the graph that represents a collection of tagged
songs. The approach was evaluated using the CAL500
dataset. Experiments have shown encouraging results in
terms of precision at 10 and Mean Average Precision of
the ranked lists of tags. Performance contribution of each
feature has been also measured separately and compared to



arandom baseline. The effects of different similarity mea-
sures for observations have been tested as well, together
with four approaches to weight tags according to the num-
ber of steps required to obtain them. To the best of our
knowledge, we think that our performances are in line with
other early stage approaches. As pointed out in [1], purely
audio-based approaches are instrinsically limited because
they cannot capture all the music dimensions perceived by
listeners. We think that additional parameter tuning, possi-
bly using other collections, will give further improvements
before the “glass ceiling” is reached.

One issue that will be addressed in future work is the
effect of loops in the optimal path, which at the moment
is minimized with the modified Viterbi algorithm (Equa-
tion 7) but can be improved by alternative strategies to
modify the transition probabilities. The current tagging
procedure suggests a way to grow the collection by adding
the newly tagged song to the graph, thus we aim also at
measuring how performances degrade with the increase of
the collection size.
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