
MEUSE: RECOMMENDING INTERNET RADIO STATIONS

Maurice Grant
Ithaca College

mgrant1@ithaca.edu

Adeesha Ekanayake
Ithaca College

aekanay1@ithaca.edu

Douglas Turnbull
Ithaca College

dturnbull@ithaca.edu

ABSTRACT

In this paper, we describe a novel Internet radio rec-
ommendation system called MeUse. We use the Shout-
cast API to collect historical data about the artists that are
played on a large set of Internet radio stations. This data
is used to populate an artist-station index that is similar
to the term-document matrix of a traditional text-based in-
formation retrieval system. When a user wants to find sta-
tions for a given seed artist, we check the index to deter-
mine a set of stations that are either currently playing or
have recently played that artist. These stations are grouped
into three clusters and one representative station is selected
from each cluster. This promotes diversity among the sta-
tions that are returned to the user. In addition, we provide
additional information such as relevant tags (e.g., genres,
emotions) and similar artists to give the user more contex-
tual information about the recommended stations. Finally,
we describe a web-based user interface that provides an
interactive experience that is more like a personalized In-
ternet radio player (e.g., Pandora) and less like a search en-
gine for Internet radio stations (e.g., Shoutcast). A small-
scale user study suggests that the majority of users enjoyed
using MeUse but that providing additional contextual in-
formation may be needed to help with recommendation
transparency.

1. INTRODUCTION

Prior to the advent of personal computers and the Internet,
there were two primary music recommendation technolo-
gies: the jukebox and the AM/FM radio. A Jukebox was
a common feature of many social spaces such as bars and
diners. Using a jukebox, an individual could chose from
a small set of on-demand songs to play for the rest of the
people in the nearby vicinity. AM/FM radios were found
in more personal spaces such as the home or car. However,
listeners were connected to one another through a com-
mon stream of music that was broadcast over the air waves.
This gave popular, trend-setting DJs the opportunity to be
heard by millions of listeners at the same time.

Today, we see a number of new music recommenda-
tion technologies emerging as a result of the availability of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2013 International Society for Music Information Retrieval.

personal computers, mobile devices and the Internet. We
can generally classify them as being similar to a jukebox,
AM/FM radio or a hybrid of the two (see table 1). Ce-
lestial jukeboxes [2] such as Apple iTunes 1 and Spotify 2

provide users with instant on-demand access to millions
of songs at the click of a button. Internet radio allows
computer users to listen to broadcasts of songs or pro-
grams from traditional radio stations like NPR and BBC
or through radio aggregators such as Shoutcast 3 . Accu-
Radio 4 , and Live365 5 .

The hybrid of these two digital technologies is person-
alized Internet radio which allows users to listen to a per-
sonalized stream of music based seed artists or semantic
tags (e.g., genres, emotions). Popular examples include
Pandora and Slacker. These systems are like jukeboxes in
that a user has some control over which songs are selected,
but like radio in that there is some element of serendipity
in that the user cannot predict exactly what will be played
ahead of time. In this paper, we describe a system called
MeUse which attempts to harness the strengths of Internet
radio but functions more like personalized Internet radio.

The core of our system relies on data collected using the
Shoutcast API 6 . Shoutcast is a music service that aggre-
gates 50,000 Internet radio stations, many of which are cu-
rated by human DJs. They provide a simple user interface
that allows users to search by artist or genre. This search
returns a list of stations that are currently playing the artist
or genre of music that a user is seeking. They also pro-
vide metadata for each station which includes the station’s
web address, the number of current listeners, bit rate and
stream format. Using the web address, users can launch
a 3rd party media player (e.g., Apple iTunes, Winamp 7 ,
VLC 8) to connect to the radio stream.

One problem with Shoutcast is that they may not rec-
ommend any stations for a given seed artist if no station
is currently playing that artist. They may also return too
many stations if the seed artist is currently very popular
(e.g., a search for Rihanna might return over 100 stations.)
This causes the paradox of choice in which increasing con-
sumer choices can also increase the chance of user dissat-
isfaction [8]. A user may also not know which station to

1 http://www.apple.com/itunes/
2 https://www.spotify.com
3 http://www.shoutcast.com/
4 http://www.accuradio.com/
5 http://www.live365.com/
6 http://wiki.winamp.com/wiki/SHOUTcast_Radio_

Directory_API
7 http://www.winamp.com
8 http://www.videolan.org/index.html

Technology Discovery
Mode

Delivery
Medium

Examples Advantages

Internet Radio
(analogous to
AM/FM radio)

Passive Broadcast NPR, BBC,
Shoutcast,
AccuRadio

Often Curated by Human DJs,
Ease of Use, Serendipity

Personalized
Internet Radio

Passive Automatic
Playlist

Pandora,
Slacker,
Jamendo

Personalization,
Ease of use, Serendipity

Celestial Jukebox
(analogous to a
physical jukebox)

Active Metadata
Search

iTunes,
Spotify,
Tomahawk

Customized Playlists,
Immediate Gratification,
Personalization

Table 1. Comparison of Music Recommendation Technologies

choose based on the limited metadata that is provided for
each radio station. The ability to search by genre is also
limited because radio stations are only allowed to have
one genre (even though stations often play music from a
diverse set of genres) and the genre label may be vague,
rarely updated, or simply inaccurate.

Historically, another problem with Internet radio aggre-
gators is they used to forces the user to use a web browser
for recommendation and a 3rd party audio player for listen-
ing. This meant that it took a relatively long time before a
user could start listening to music and switch between sta-
tions. More recently, web technologies such as the VLC
web plugin and the SoundManager2 JavaScript API 9 have
made it possible to stream radio stations directly from the
browser.

In this paper, we are interested in improving Internet
radio station recommendation both in terms of backend
recommendation algorithms as well as developing a better
frontend user experience. Specifically, we use the Shout-
cast API to collect historical data about the artists that
each station plays over time. We use this data to pop-
ulate an artist-station index that is similar to the term-
document matrix of a traditional text-based information re-
trieval system but where the documents are stations and
the terms are artists. When a user wants to find stations
for a given seed artist, we check the music index to deter-
mine a set of stations that are either currently playing or
have recently played that artist. These stations are grouped
into three clusters and one representative station is selected
from each cluster. Clustering is intended to promote diver-
sity among the stations that are returned to the user. In
addition, we provide additional information such as rel-
evant tags and commonly played artists to give the user
more contextual information about the recommended sta-
tions. Finally, we incorporate an embedded audio player
directly into our website so that users do not need to use an
external 3rd party media player.

2. RELATED WORK

While we have been unable to find related work on the
specific task of Internet radio station recommendation, our

9 http://www.schillmania.com/projects/
soundmanager2/

work is functionally equivalent to a generic text-based
search engine in that the main data structure is an inverted
index and we rely on a vector space model to access rele-
vance and cluster our data [4]. That is, each radio station is
represented as a vector over a vocabulary of artists. When
given a seed artist, we can rank stations by the dimension
corresponding to that artist. We are also able to cluster sta-
tions once they are each represented as a vector.

There has been considerably more work on using histor-
ical playlists from Internet radio stations as data for study-
ing music similarity and automatic playlist algorithms
[1, 3, 5, 6]. Although it is not the focus of this work, our
artist-station index can also be used to calculate artist sim-
ilarity if we instead think each vector corresponding to an
artist over a vocabulary of stations.

3. SYSTEM OVERVIEW

When designing MeUse for Internet radio recommenda-
tion, we focus on three information retrieval concepts: Rel-
evance, Diversity and Transparency. In this sections we
describe both the backend recommendation algorithm and
frontend user interface in terms of these important design
concepts.

3.1 Backend Recommendation Architecture

In this subsection, we discuss how we collect data, use this
data to find a set of relevant stations, clustering these sta-
tions, and then select stations that are recommended to the
user. An overview of our system architecture is shown in
figure 1.

3.1.1 Data Collection

The set of artists in the database was initialized by down-
loading the top 100 tags on Last.fm, and then downloading
the top 100 artists for each tag. This provided us with a
diverse set of 4460 artists. The set of tags was initialized
by downloading the set of tags for all of these artists. Once
downloaded, the set of tags was pruned by first removing
weak song-tag associations (e.g., a Last.fm tag score < 5)
and then making sure that each tag was associated with a
minimum of 5 artists.

We then grow a set of Internet radio stations by querying
the Shoutcast API multiple times for each of our artists.

That is, Shoutcast returns a set of stations that are currently
playing a given seed artist. For each of these stations, we
increment a counter (e.g., a cell in our artist-station index
matrix) each time we see that the stations is playing the
artist. If we have never observed the station in the past, it
is added to our set of stations.

In addition, whenever a user searches for an artist using
our frontend user interface, we use the given artist as a
query to the Shoutcast API. The results are used to further
grow the set of artists, the set of stations, and increment the
values in the artist-station index. Finally, we apply a daily
decay to the values in the artist-station index so that newer
observation have more weight than older observations.

3.1.2 Relevance

Once we had gathered the above data, we used the follow-
ing algorithm to recommend stations for a given seed artist.
To begin, we selected a set of between 10 and 30 candi-
date stations. These stations have played the seed artist the
highest number of times in the past or are currently play-
ing the seed artist according to Shoutcast. If we have too
few candidate stations, we find the top ranked similar artist
to the seed artist according to Last.fm and use that artist
to find additional candidate stations. If we have too many
candidate stations, we rank order stations by the number of
times they have played the seed artist but also taking into
account observation decay as described above.

3.1.3 Diversity

Next, we use the information that is stored in our artist-
station index to represent each candidate stations as a vec-
tor over our vocabulary of artists (e.g., columns of the
artist-station matrix). These vectors are grouped into three
clusters using the k-mean algorithm [7]. We then selected
a representative station from each cluster by selecting the
station with the highest listen count while giving stations
currently playing the seed artist priority. This ensures that
the station is not only relevant but also important.

3.1.4 Transparency

To make our station recommendation more transparent, we
provide three representative artists and three representative
tags for each of the recommended station. To select rep-
resentative artists for a given station, we ranked artists ac-
cording to the difference between the play count on that
station and the sum of the play counts for that artist on
the other two stations. By this method, we select repre-
sentative artists that differentiate the recommended stations
from one another.

The three representative tags for a recommended station
are found by first finding all of the tags for all of the artists
that are played on that station and then removing the tags
that are also associated with artists who have been played
on the other two recommended stations. The remaining
tags are then rank ordered by the average Last.fm artist-tag
score for all artists associated with the station. Again, this
algorithm has been designed to pick tags that differentiate
the three recommended stations rather than select the most
representative tags for the station.

Figure 1. Backend System Architecture. A artist-station
index is created by counting the number of times an artist
is played on a station. When a user provides seed artist
(e.g., Coldplay), the index is used to find a set of relevant
station. These stations are clustered and a representative
station is selected from each cluster.

3.2 Frontend User Interface

The web-based user interface for MeUse is shown in figure
2. We wanted the interactive experience to be more like a
personalized Internet radio player (e.g., Pandora) and less
like a search engine for Internet radio stations (e.g., Shout-
cast). This is accomplished in a few ways.

First, after a user has entered a seed artist in the search
bar, only three stations are recommended to the users based
on clustering and station selection as is described in the
preceding subsection. We provide a clear and concise snip-
pet of information for each station. This includes the name
of the station and other important metadata that is provided
directly from Shoutcast (e.g., current number of listeners,
bit rate, audio format). In addition, we provide the lists of
representative artists and tags that differentiate the recom-
mend stations.

We also provide an embedded VLC audio player that is
hidden from the user but can be manipulated by the user
through various control mechanisms found on the page
(e.g., play/pause, volume). In addition, the user can eas-
ily switch between the recommended stations, request new
recommendations, or change the seed artists. While the
VLC plugin is useful for removing the need for an exter-
nal 3rd party player (e.g., iTunes, Winamp), it does require
the user to have the (free) pluggin be installed for their
browser. In the future, we expect that web technologies
(e.g., HTML5) will allow for more seamless streaming of
Internet radio directly through the web browser.

4. EVALUATION

To evaluate MeUse, we first explore how well our algo-
rithm is able to recommend a diverse set of Internet radio
stations. We then describe a small-scale user study that
was primarily directed at evaluating our user interfaces but
also allows us to ask questions about our backend recom-
mendation system.

Figure 2. MeUse User Interface

4.1 Exploring Diversity

One of the primary goals of MeUse is to dramatically limit
the number of recommended stations while providing a di-
verse set of relevant stations to match the user’s interests.
We also want to provide users with contextual information,
such as representative tags and artists, so that the user can
make an informed decision when choosing between the
recommended stations. To evaluate this, we designed an
experiment that compares how often a representative artist
for a station is played on that station verses how often the
representative artist is played on one of the other recom-
mended stations.

For the experiment, we randomly selected 100 artists
from the set of 500 most popular artists (according to
Last.fm) in our database. For each artist, we obtained
three recommended stations using MeUse. We then lis-
tened to each of these three stations for the next two hours
by recording the currently playing artist every 10 minutes.
Finally, we counted how often the seed artist was played,
how often one of the three representative artists for the sta-
tion was played, and how often one of the six representa-
tive artists from the other two recommended stations was
played.

The results for our experiment are shown in table 2.
While we should have collected on the order of 3600 song-
play observations (e.g., 100 artists, 3 stations, 12 observa-
tions), we found data collection to be a more noisy pro-
cess than expected. That is, some stations did not appear

to update their “recently playing” information and other
stations’ “recently playing” information contained infor-
mation about the station and not about the music currently
being played. In both these cases, we ignored the dupli-
cated “recently playing” information. We also found a few
cases where a station stopped broadcasting during our two
hour observation window which prevented us from collect-
ing some additional song-play observation. In the end, we
were able to collect 2627 observations.

of Artists Play Count Play Count
of Artists

Seed Artist 1 147 147

Representative Artists
for Station 3 25 8.3

Representative Artists
for Other Recommended
Stations

6 30 5

Table 2. Results from diversity experiment after recording
2627 song-play observations.

The results show that stations play the seed artists 5.6%
of the time. We also observe that the stations play each
of our representative artists 0.32% of the time. While this
appears to be rather low, our goal in picking representative
artists is to pick artists that differentiate the station from the
other two recommended stations rather than simply pick-

ing popular artists that have been played on the station in
the past. We also note that this is higher than the 0.19%
of times that each of the representative artists from the
other two recommended stations are played on the station.
However, this is not a statistically significant improvement
(α = 0.18, one-tailed two-proportion pooled z-test). We
suspect that the ability to find better representative artists
will improve as we are able to collect more data to populate
the artist-song index. 10

4.2 User Study

To evaluate the usability of MeUse we conducted a small-
scale user study of our interface. The study involved 20
college-aged individuals who were asked to play around
with the interface and then fill out a short survey about their
experience. About half of the test subjects were observed
in our lab while using the system. The other half were
asked to use MeUse in their own environment. Of the ones
that we observed, all users seemed to find MeUse easy-
to-use, were quickly able to listen to music through the
embedded player, and seem to enjoy switching between
the recommended stations.

No Not Really Sort of Mostly Definitely
0 3 3 9 4

Table 3. Relevance: Were the recommend stations that
were relevant to you?

No Not Really Sort of Mostly Definitely
2 3 5 7 2

Table 4. Transparency: Did we give you enough infor-
mation to make a clear choice between the 3 stations we
recommended?

In terms of our ability to recommend Internet radio sta-
tions, 70% of the test subjects stated that the recommended
stations were mostly or definitely relevant (see table 3) but
only 45% of users felt that they were given enough infor-
mation to make an informed decision on which of the three
stations to choose (see table 4). This suggest that we need
to think about additional ways to provide the user with con-
textual information about the stations. For example, one
test subject suggested adding a point-rating system for sta-
tions. The test subjects did indicate that the stations that
were recommended were diverse in nature (see table 5)
and that, in general, they enjoyed using MeUse to listen
to Internet radio (see table 6).

5. DISCUSSION

In this paper we described MeUse as a complete Internet
radio recommendation system. The results of our small-
scale user study suggests that the system shows promise
but additional user testing is required. In particular we

10 At the time of submission, we have only been able to search the
Shoutcast API approximately 5 times for each of the ∼4,500 artists in
our database. This is because Shoutcast limits the number of query’s one
can make on a daily basis.

No Not Really Sort of Mostly Definitely
1 1 3 11 3

Table 5. Diversity: Were the three stations we recom-
mended different enough from each other to make select-
ing a station meaningful?

No Not Really Sort of Mostly Definitely
2 1 2 6 8

Table 6. Overall: Did you enjoy using MeUse to listen to
Internet radio?

planned to do extensive A/B testing to isolate specific as-
pects of our system (e.g. UI design, recommendation algo-
rithm). This will include both observing a small number of
users in our lab as well as large-scale and long-term user
studies in natural user enviroments.

We also would like to further develop MeUse by explor-
ing additional ways in which we can make MeUse more
like a personalized Internet radio player. This will include
allowing users to be able to rate stations and using col-
laborative filtering to improve our station recommendation
algorithm. Finally, we plan to explore modifying our artist-
tag index to benefit from common text retrieval techniques
(e.g. tf-idf) to further improve recommendations.

Acknowledgments: Steven Lam help implement
MeUse. This research was supported by NSF Award IIS-
1217485.

6. REFERENCES

[1] N. Aizenberg, Y. Koren, and O. Somekh. Build your
own music recommender by modeling internet radio
streams. In WWW, 2012.

[2] P. Lamere and J. Donaldson. Tutorial on using visual-
ization for music discovery. In ISMIR, 2009.

[3] F. Maillet, D. Eck, G. Desjardins, and P. Lamere. Steer-
able playlist generation by learning song similarity
from radio station playlists. In ISMIR, 2009.

[4] C.D. Manning, P. Raghavan, and H. Schtze. Introduc-
tion to Information Retrieval. Cambridge University
Press, 2008.

[5] B. McFee and G. R. G. Lanckriet. The natural language
of playlists. In ISMIR, 2011.

[6] J. Moore, S. Chen, T. Joachims, and D. Turnbull.
Learning to embed songs and tags for playlist predic-
tion. In ISMIR, 2012.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[8] B. Schwartz. The paradox of choice. HarperCollins e-
books, 2009.

