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ABSTRACT

Two important categories of machine learning method-

ologies have recently attracted much interest in classifica-

tion research and its applications. On one side, unsuper-

vised and semi-supervised learning allow to benefit from

the availability of larger sets of training data, even if not

fully annotated with class labels, and of larger sets of di-

verse feature representations, through novel dimensional-

ity reduction schemes. On the other side, ensemble meth-

ods allow to benefit from more diversity in base learners

though larger data and feature sets. In this paper, we pro-

pose a novel ensemble learning approach making use of

recent non-linear dimensionality reduction methods. More

precisely, we apply t-SNE (t-distributed Stochastic Neigh-

bor Embedding) to a large feature set to come up with em-

beddings of various dimensionality. A k-NN classifier is

then obtained for each embedding, leading to an ensemble

whose estimates can then be combined, making use of var-

ious ensemble combination rules from the literature. The

rationale of this approach resides in its potential capacity

to better handle manifolds of different dimensionality in

different regions of the feature space. We evaluate the ap-

proach on a transductive audio classification task, where

only part of the whole data set is labeled. We confirm

that dimensionality reduction by itself can improve perfor-

mance (by 40% relative), and that creating an ensemble

through the proposed approach further reduces classifica-

tion error rate by about 10% relative.

1. INTRODUCTION

Feature transformation and dimensionality reduction

approaches have attracted a lot of interest as pre-processors

in classification problems, including in the area of multi-

media information retrieval. In general, they are able to
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reduce correlation of feature dimensions as well as noise.

They also help to tackle the issues related to the curse of

dimensionality, to avoid over-fitting on the training data,

and to reduce the computational cost of the classification

scheme.

Unsupervised non-linear dimensionality reduction

schemes have shown their benefit in semi-supervised

learning problems for classification [11, 23]. This follows

from the so-called cluster and manifold assumptions. In

the first, it is assumed that data samples are organized into

distinct clusters and that samples from different classes

belong to different clusters. In the second, it is assumed

that data samples from different classes occupy distinct

manifolds of lower dimensionality in the original feature

space. If one of these assumptions holds, the more the

available data can be used, the better these cluster or

manifold structures can be discovered, to the benefit of

classification accuracy.

Ensemble approaches constitute another popular re-

search theme in machine learning and classification prob-

lems. They consists in training a set of diverse estimators

(referred to as base learners) for the same problem, and

combine their estimates or decisions when new data sam-

ples have to be classified [24]. These have become popular

with approaches such as bagging [2] and boosting [18] (f.i.

AdaBoost), to name a few.

Intuitively, in order to gain accuracy when combining

such estimators, these have to be different. This has led

to research into generating base learners that are as diverse

as possible, by acting on one or more of the factors that

will have an effect on the end result of the learning pro-

cess [4, 24]. There is literature on using different subsets

of the training data for each member of the ensemble, on

manipulating the parameters involved in the training (up

to the architecture of the individual learners), or on using

different output representations.

Methods for altering the input feature space have also

been researched. In this paper, we propose to make use

of recent developments in the area of unsupervised non-

linear dimensionality reduction in order to alter the feature

space and extract low-dimensional embedding whose di-

mensions can be used to define multiple classifiers. Their

estimates are then combined through an ensemble scheme.

Previous attempts and popular methods in creating en-

semble diversity through feature transformations and di-

mensionality reduction will first be summarized in Sec-

tion 2. Section 3 will then describe the proposed approach,



and in particular introduce the non-linear dimensionality

reduction algorithm that have been applied (t-SNE, or t-

distributed Stochastic Neighbor Embedding), the way it

is used to obtain multiple classifiers, and the combina-

tion rules used to obtain the ensemble decision. We then

apply this method on a use case of interest to the cre-

ative community concerned with the classification of mu-

sical instrument loops used in rhythmic music composi-

tion/production. Section 4 presents the experimental pro-

tocol and evaluation metrics, as well as the experimental

results, together with a discussion. We conclude the paper

in Section 5.

2. ENSEMBLE METHODS AND FEATURE

MANIPULATIONS

If earlier proposals in ensemble learning relied on select-

ing different subset of the training data (bagging or boost-

ing) for each ensemble member, subsequent research has

explored various approaches for transforming and manipu-

lating the available feature set, including feature selection

or more generally supervised and unsupervised dimension-

ality reduction. This is summarized in chronological order

in the following paragraphs.

With the Random Subspace (RS) method [9, 17], ran-

dom subsets of the original features are presented to the

classifiers. This was followed by a more general approach

called Random Forests (RF) [3], combining with the idea

of bagging, to end up with ensembles of classifiers (ini-

tially decision trees, hence the name ”forest”) constructed

from random samplings on both features and data.

Selecting features after PCA has been proposed in [12],

with ensembles where each constituent classifier is trained

on a user-determined number of principal components. Su-

pervised dimensionality reduction approaches have also

lead to some ensemble learning trials. In [13], Input Dec-

imation (ID) is proposed. Its goal is to decouple the clas-

sifiers by exposing them to different features. The method

does so by training N classifiers (N being the number of

classes of the problem) and selecting for each the input fea-

ture dimensions (a user-determined number of them) hav-

ing the highest absolute correlation to the presence or ab-

sence of the corresponding class. In [14], the ID-based

approach was shown to compare favorably with the PCA-

based approach. One explanation is that unsupervised di-

mensionality reduction approaches such as PCA are not

well suited for finding features useful for classification as

they totally disregard class information. Remember how-

ever that random or unsupervised feature selection also

work in some contexts.

Rather than selecting feature dimensions randomly as

in RS, or making use of feature transformations, simply

projecting on randomly defined axes as also been proposed

with the Random Projections (RP) approach [7, 20].

In [16], the ideas of RS and PCA are combined to lead

to Rotation Forests (RotF), where the feature set is ran-

domly split into a number of subsets and PCA is applied to

these. Diversity-error diagrams revealed that RotF-based

ensembles construct individual classifiers which are more

accurate than these in AdaBoost and RF, and more diverse

than these in Bagging, sometimes more accurate as well.

More recently [1], it is proposed to make use of Diffu-

sion Maps (DM) [10], a non-linear dimensionality reduc-

tion scheme, and to develop classifiers based on the trans-

formed space dimensions. The approach is compared to

RP, RS and RF methods cited above, as well as Bagging

and Boosting (through the AdaBoost algorithm). A multi-

strategy approach combining DM and Boosting was shown

to be superior to other algorithms in many cases.

Ensemble methods can sometimes look like an art. This

is without accounting for the theoretical considerations and

developments that participate to this research area. One

area concerns the study of so-called diversity metrics and

diversity generation approaches. All these are however out

of the scope of this paper, and the interested reader may

refer to recent literature for more information [19, 24].

3. PROPOSED APPROACH

In this paper, we propose to make use of recent develop-

ments in non-linear dimensionality reduction approaches

in order to obtain several sets of features enabling the de-

velopment of an ensemble of classifiers. This hence fol-

lows up on the literature summarized in the previous sec-

tion. An earlier proposal was indeed reported in [1], with

the use of Diffusion Maps. Here, we will make use of t-

SNE (t-distributed Stochastic Neighbor Embedding), a re-

cent method. As explained in [22], t-SNE is less suscep-

tible than other classical approaches (including Diffusion

Maps) to assigning much higher importance to modeling

the large pairwise distances than the small ones. Hence, it

is better at retaining the local structure, which is definitely

thought to be beneficial in visualization but also classifica-

tion problems.

In a previous paper [6], we showed on two semi-

supervised classification tasks that t-SNE (even when re-

ducing to a very low dimensional space) can perform as

well and sometimes even better than classification in the

original high-dimensional feature space.

3.1 Dimensionality Reduction using t-SNE

The popularity of approaches derived from Multidimen-

sional Scaling (MDS) has inspired variants, in particular

through methods attempting to preserve local properties of

the data in a ”softer” probabilistic fashion. In particular,

SNE (Stochastic Neighbor Embedding) tries to preserve

neighborhood identity [8]. It does so using a cost function

that favors the probability distributions of points belong-

ing to the neighborhoods of other points to be similar in the

high-dimensional space and in its low-dimensional embed-

ding. In the original formulation, a Kullback-Leibler (KL)

divergence is used to measure that similarity, and probabil-

ities for a sample to belong to a neighborhood of another

one is based on Gaussian distributions.

More recently, a symmetric version of SNE has been

proposed. It has also been proposed to use a Student-

t distribution rather than a Gaussian distribution to com-



pute the similarity between pairs of samples in the low-

dimensional space. These modifications have lead to the t-

SNE [22] method. The t-Student heavy-tailed distribution

in the low-dimensional space significantly alleviate the so-

called ”crowding” problem observed with SNE where far

away data samples, for instance low density areas in be-

tween natural clusters, come close together in the low-

dimensional embedding.

In details, we first estimate the (symmetric) probability

that sample xi in the high-dimensional space would pick

sample xj as its neighbor using the following expression:

pij =
exp

(

−‖xi−xj‖
2

2σ2
i

)

∑

k 6=l exp
(

−‖xk−xl‖
2

2σ2
i

) (1)

where σi is the standard deviation of a Gaussian centered

on xi. Similarly, we model the probability that yi, the low

dimensional counterpart of xi, would take yj as its neigh-

bor using the following (symmetric) expression:

qij =

(

1 + ‖yi − yj‖
2
)−1

∑

k 6=l

(

1 + ‖yk − yl‖
2
)−1 (2)

where the model of proximity is Student-t distributed. t-

SNE then proposes to find a representation for which the

probabilities qij are faithful to pij . This is achieved by

minimizing the mismatch between qij and pij measured

using a KL-divergence:

C = KL(P‖Q) =
∑

i

∑

j

pij ln

(

pij

qij

)

(3)

If Pi represents the probability distribution of pij over

all data points given point xi, t-SNE first performs a bi-

nary search for the value of σi producing a Pi with a fixed

perplexity specified by the user, where the perplexity is de-

fined based on the Shannon entropy of Pi measured in bits.

The minimization of the cost function in Equation 3 is

performed using a gradient descent method.

In our experiments, the perplexity of the conditional

probability distribution was set to 20; and we performed

2000 iterations of gradient descent. Also, we used the re-

finements proposed in [22], including a momentum term in

the gradient descent, as well a tricks referred to as ”early

compression” and ”early exageration” in [22].

3.2 Ensemble of t-SNE Features

By varying the parameters involved in dimensionality re-

duction through t-SNE, it is possible to come with several

diverse feature representations of the data samples, and to

obtain a classifier for each of these. In particular, it is pos-

sible to either (1) alter some of the meta-parameters of t-

SNE learning, and in particular the size of the local neigh-

borhood (perplexity of the conditional probability distri-

bution), (2) alter the number of dimensions preserved by

t-SNE, (3) alter the high-dimensional input features used

as input to t-SNE, and in particular select different subsets

from the initial feature set, for instance, as in the Random

Projection approach, or through more principled feature

groupings.

Here, we have been using the later two approaches.

Classification tasks can benefit from dimensionality reduc-

tion, which is sometimes presented as enabling the reduc-

tion of noise and unimportant details in the data, while pre-

serving the multi-dimensional manifold structures. There

is however a tradeoff between more denoising through

lower dimensional target spaces, and better preservation

of the inherent dimensions of the data. The optimal choice

may depend on the selected class of the problem, or on the

considered regions of the space. One assumption is that

ensemble methods making use of classifiers obtained from

various choices of target space dimensionality are able to

mitigate this tradeoff. Experimental results on the pro-

posed classification task will show that some classes in-

deed strongly benefit from dimensionality reduction, while

others do much less, or not at all. Combining the obtained

classifiers leads to improvement over the single best one.

The details of the experimental setup and of the way the

multiple classifiers are obtained are provided in Section 4.

3.3 Combination Rules

As soon as the different classifier are available, several ap-

proaches are possible for ”combining” the individual esti-

mations they provide. Suppose we have K classifiers avail-

able. In this work, we consider classifiers that provide esti-

mates of the posterior probabilities of each class. The ”sum

rule” consists in averaging these posteriors for each class,

possibly using a weight dependent on the classifier. It fol-

lows from considering classification as a regression prob-

lem on posterior probability estimates, and benefit from the

literature on ensemble combination through the averaging

of various estimates [24]:

P (q|x) =

K
∑

k=1

αkPk(q|x) (4)

where q is the class label, x the feature vector, and Pk(q|x)
the posterior probability for class q assigned by classifier

k.

The ”product rule” consists of a product of probability

estimates for each class. If follows from an independence

assumption. When one has available several classifiers

making use of distinct and statistically independent feature

descriptors, the posterior probability of classes can eas-

ily be computed from the a priori probabilities of classes

and posteriors estimated by the different classifiers. Let

x = (x1, ..., xK) be the feature vector built from K inde-

pendent sub-vectors. Bayes rules tells us:

P (q|x) =
P (x|q)P (q)

P (x)
(5)

Assuming that the different subparts of the feature vector



are statistically independent, we successively get:

P (q|x) = P (q)
P (x)

∏K

k=1 P (xk|q)

= P (q)
P (x)

∏K

k=1
P (q|xk)P (xk)

P (q)

=
[∏

K
k=1 P (xk)

P (x)

] [∏
K
k=1 P (q|xk)

(P (q))(K−1)

]

(6)

The first term is independent of k, and if the initial inde-

pendence assumption holds, its value will be 1. In prac-

tice, the posterior probability will be estimated based on

the second term normalized in such a way that the sum of

estimates for all classes is the unity.

Besides averaging, the use of order statistics has also

been proposed in the literature [21]. The ”maximum rule”

consists in approximating the posterior probability for each

class using the maximum of the various classifier estimates

for this class:

P (q|x) =
K

max
k=1

Pk(q|x) (7)

The ”minimum rule” follows a similar principle:

P (q|x) =
K

min
k=1

Pk(q|x) (8)

Finally, the ”median rule” is expressed as:

P (q|x) = medKk=1Pk(q|x) (9)

These five approaches have been compared in this work.

Majority voting is another popular approach, but it has not

been used in this work as it can not benefit from posterior

estimates.

4. EXPERIMENTS

As data set, we used a production music library (ZeroG

ProPack). This library contains more than ten thousand

”loops” and samples of various instruments and music

styles. Each soundfile is typically a few seconds long of

monophonic or polyphonic sound (f.i. in the case of gui-

tars). We manually annotated the files within 7 classes of

instruments: Brass, Drums, Vocals, Percussion, Electric

Bass, Acoustic Guitar and Electric Guitar. After discarding

more complex sounds or effects, we ended up with 4380

samples to be used in our evaluations.

The experimental work that follows is based on a trans-

ductive classification task. It hence considers a closed data

set that has to be classified with minimal effort. Part of the

data is hence annotated with class labels to guide the su-

pervised machine learning, but all the data set can be used

in an unsupervised mode. Transductive learning has many

interesting applications [5].

http://www.zero-g.co.uk/

Data sets definitions and labels available as supplementary material
at http://www.numediart.org/tools/mediacycle/

4.1 Low-level Features for Audio and Music

A large body of recent work in the music information re-

trieval literature has been devoted to the design of fea-

ture extraction algorithms for the purpose of character-

izing, analyzing, searching or classifying audio content.

Here, we consider timbral properties. Audio analysis ap-

proaches for extracting feature descriptors rely on isolat-

ing and analyzing short-term windows of temporal signal

(typically around 30 ms long), to end up with one feature

vector per window. For representing and be able to clas-

sify longer-term signals as used in our experiments, we ex-

tracted statistics (up to order 4) from the short-term win-

dow feature vectors. From previous research, we ended-up

using two groups of features, covering the spectral enve-

lope and the noisiness of the sounds, both being important

for characterizing the perceived timbre. The state-of-the-

art feature set that we used contains:

• Mel-Frequency Cepstral Coefficients (MFCC) as

used in [15], computed using 30 ms frames every

10 ms, using a filterbank of 20 filters covering the

audible frequency range, and keeping the first 12 co-

efficients. To be able to capture the temporal char-

acteristics and statistics of the MFCCs, we actually

used as features the MFCCs means along the sample

duration, as well as their standard deviation, skew-

ness and kurtosis; the means of the first order tempo-

ral derivatives of the MFCCs, as well as their stan-

dard deviation, and the means of the second order

temporal derivatives of the MFCCs, as well as their

standard deviation.

• Spectral Flatness (SF), which is a correlate of the

noisiness (opposite of sinusoidality) of the spectrum

computed on the same audio frames as MFCCs. It

is computed as the ratio between the geometric and

arithmetic means of the spectrum energy values. As

proposed in [15], the spectrum was divided into 4

sub-bands for computing the flatness: 250-500Hz,

500-1000Hz, 1000-2000Hz and 2000-4000Hz. Here

too, we used the mean of the SF over the sound

extract duration, as well as its standard deviation,

skewness and kurtosis.

4.2 Experimental Protocol

We are interested in semi-supervised transductive classifi-

cation, where only part of the whole corpus can be anno-

tated with the desired class labels. We hence performed ex-

periments with different percentages of randomly selected

labeled data (from 10% to 50%, f.i. 10% means that only

438 samples have been labeled using their instrument class

in the production music database). Being unsupervised, t-

SNE is always making use of the whole data set however.

For each training condition, we ran 100 different training

and evaluation batches (with selected labeled data random-

ized for each of them) for each classification system (either

single classifier, or various ensemble configurations). The

classifiers (either individual classifiers or classifiers taking

part in the ensembles) are using k-NN (with k=5).
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Sum rule

Product rule
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Figure 1. Classification error rates when making use of

10% of labeled data: (a) using the full high-dimensional

feature set (b) using a 5-dimensional feature set obtained

through t-SNE on the full high-dimensional feature set

(best single classifier from different t-SNE based classi-

fiers with various target space dimensionalities) (c) En-

semble composed of 5 classifiers obtained using 1 to 5-

dimensional feature sets obtained through t-SNE on the

full high-dimensional feature set; various combination

rules (d) Ensemble classifier composed of 15 classifiers: 5

target dimensionalities x 3 sub features set (mean, standard

deviation, and high-order statistics of the baseline high-

dimensional feature set) (e) Ensemble classifier composed

of 20 classifiers: 5 target dimensionalities x 4 sub features

set (MFCCs, MFCCs first and second derivatives, SF).

The baseline classification system uses the high-

dimensional features set described earlier. We normalized

each feature to zero-mean and unity-variance. We then cre-

ated various classifiers used standalone, or involved in en-

semble configurations according to three principles:

• creating various classifiers by altering the dimen-

sionality of the t-SNE embedding from 1 to 5. This

enabled the design of an ensemble of 5 classifiers.

• creating various classifiers by altering both the di-

mensionality of the t-SNE embedding and the input

features of t-SNE. Rather than selecting random sub-

set of feature dimensions as done in the RD or RS

approaches, we partitioned the full feature set ac-

cording to the order of the statistics used to repre-

sent the sound files. More precisely, three subspaces

were obtained, one gathering the means of the raw

feature vectors, a second one for the standard devi-

ations, and a third one gathering the skewness and

kurtosis. This enabled the design of an ensemble of

15 classifiers: 5 target dimensionalities x 3 subsets

of features.

• similar to the previous approach but where the cat-

egory of the feature is use to define the feature par-

titions. More precisely, we split the individual fea-

tures into four groups: MFCCs, MFCCs first deriva-

tives, MFCCs second derivatives, and SF. This en-

abled the design of an ensemble of 20 classifiers: 5

target dimensionalities x 4 subsets of features.
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Figure 2. Classification error rates when using 10% of la-

beled data on each instrument class. Comparison between:

(1) using the full high-dimensional feature set, (2) using a

5-dimensional feature set obtained through t-SNE on the

full high-dimensional feature set, (3) Ensemble composed

of 5 classifiers obtained using 1 to 5-dimensional feature

set obtained through t-SNE on the full high-dimensional

feature set; maximum rule for combination.
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Figure 3. Classification error rates for various propor-

tions of labeled data. Comparison between: (1) us-

ing the full high-dimensional feature set, (2) using a 5-

dimensional feature set obtained through t-SNE on the full

high-dimensional feature set, (3) Ensemble composed of 5

classifiers obtained using 1 to 5-dimensional feature set ob-

tained through t-SNE on the full high-dimensional feature

set; maximum rule for ensemble combination.

4.3 Results and Discussion

In Figure 1, we present classification results for the case

10% of the whole data set is labeled. It shows results for

the baseline system, for a system where features are first

processed using t-SNE (with dimensionality of 5), as well

as for various ensembles and combination rules. We can

observe that on this kind of data, an efficient dimension-

ality reduction scheme is a useful pre-processing step for

semi-supervised classification. Classification performance

on the reduced dimensional space is indeed better. A 40%

relative reduction of the error rate is obtained.

The first proposed ensemble approach yields a further

error rate reduction of 10% relative. All five combina-

tion rules bring some improvement, but best results are

obtained using the simple maximum rule, followed by the

sum rule. The two other proposed ensembles are uncon-

clusive, and the product and minimum combination rules

perform notably much worse. This can be explained by



the discrepancy in classification performance of the ensem-

ble members: base classifiers using the standard deviations

of features in the first case, and using SF features alone

in the second are much worse than the other base classi-

fiers (detailed results not reported here). More complex or

weighted combination rules may help in those cases.

Overall, the best single classifier is using a 5-

dimensional feature set obtained through t-SNE on the full

high-dimensional feature set. The best ensemble classi-

fier is composed of 5 classifiers obtained using 1 to 5-

dimensional feature sets obtained through t-SNE on the

full high-dimensional feature set; and a maximum rule

for ensemble combination. We then present more de-

tailed comparisons of these two with the baseline clas-

sifier In Figure 2, we observe that some classes indeed

strongly benefit from dimensionality reduction, while oth-

ers do much less, or not at all. As suggested earlier in

the text, the tradeoff between reducing the feature space

dimension and preserving its representativity may depend

on the class and on the region of the feature space. This

also suggests further theoretical and empirical work in en-

semble approaches that could account for non-uniform in-

trinsic dimensionalities of the data set manifolds. In Fig-

ure 3, we present results for various proportions of labeled

data, showing that our conclusions hold when one can ob-

tain labels for a larger part of the data set. With 50% of

labeled date, t-SNE allows to reduce the error rate by 18%

relative over high-dimensional features, and the ensemble

approach further reduces it by 14% relative.

5. CONCLUSIONS

In this paper, we presented a new method for designing

multiple classifiers system relying on non-linear dimen-

sionality reduction through t-SNE, together with an experi-

mental study of its performance on an audio-based musical

instruments transductive classification task. We first ob-

served that classification performance can be boosted when

applying t-SNE as a pre-processing step, even when going

down to as low as a few dimensions. Designing multiple

classifiers by altering the dimensionality of the t-SNE em-

bedding and combining them using a simple combination

rule further improved the results.

These promising initial results invite further work, in

particular in the application of other dimensionality re-

duction schemes and more complex ensemble combina-

tion rules, as well as in understanding how ensembles can

be used for mitigating the tradeoff between denoising and

feature preservation properties. The application of the pro-

posed approach to larger scale data sets can also be the sub-

ject of future work, together with experimental evaluation

on non-transductive tasks using out-of-sample extensions.
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