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ABSTRACT 

One of the major parameters in music is the overall speed 
of a musical performance. In this study, a computational 
model of speed in music audio has been developed using 
a custom set of rhythmic features. Speed is often associ-
ated with tempo, but as shown in this study, factors such 
as note density (onsets per second) and spectral flux are 
important as well. The original audio was first separated 
into a harmonic part and a percussive part and the fea-
tures were extracted separately from the different layers. 
In previous studies, listeners had rated the speed of 136 
songs, and the ratings were used in a regression to evalu-
ate the validity of the model as well as to find appropriate 
features. The final models, consisting of 5 or 8 features, 
were able to explain about 90% of the variation in the 
training set, with little or no degradation for the test set. 

1. INTRODUCTION 

This study is focused on one of the major parameters in 
music, the overall speed of a musical performance. From 
a music theoretic background we are used to associate 
speed with the tempo of the music. However, as suggest-
ed earlier, the perceived speed is related to the tempo but 
may also depend on other aspects like the note density 
(number of onsets per second) [9]. An indirect indication 
of this was provided in [2] where it was found that the 
note density (and not the tempo) was constant for a cer-
tain emotional expression across different music exam-
ples. Madison & Paulin [12] asked listeners to rate the 
speed for 50 music examples spanning a variety of musi-
cal styles and rhythms. They found that speed correlated 
with tempo but that there must also be other aspects in-
volved in the perceptual judgment of speed. In earlier 
works [11, 15, 16] it has been shown that a classification 
of songs as fast or slow has helped to improve the accu-
racy of tempo estimation algorithms. 

The current work is part of an ongoing study about per-
ceptually determined features in music information re-
trieval. In a previous study it was shown that speed could 
be modeled by a combination of tempo and different note 
densities of the instruments using symbolic data [7]. The 
explained variation was about 90 % using linear regres-
sion. This indicates that a similar result could in theory be 

obtained using audio data provided that the appropriate 
low-level audio features could be extracted. Unfortunate-
ly, audio features extracted with the MIRToolbox [14] as 
well as the VAMP plugins available in the Sonic Annota-
tor1 did not map well to the perception of speed, high-
lighting the need for new features to be developed [7].  

The purpose of the current study was to develop a 
computational model of speed in music audio restricted to 
examples containing percussive elements (e.g. drums). A 
set of rhythmic features were computed, mainly from 
detected onsets of the music. An important idea was that 
a relevant model should exploit the characteristics of each 
onset to better understand the music. As indicated in [7], 
good results can be achieved by tracking both percussive 
and harmonic onsets. Therefore, these parts were ana-
lyzed separately in the current model. As a first step, 
source separation was used to separate harmonic content 
and percussive content in the audio. Onsets and features 
were computed from both the percussive and the harmon-
ic part as well as from the original audio. A flowchart of 
the processes used is shown in Figure 1.  

To find appropriate features as well to evaluate the va-
lidity of the model, regression was used, in which the 
audio features were mapped against ground truth data 
consisting of listener ratings of speed. 

2. SOURCE SEPARATION AND ONSET             
DETECTION 

2.1 HP-Separation 

Source separation has been used in the past in computa-
tional models related to rhythm [1]. For this study, the 
source separation method proposed by FitzGerald [6] was 
used to separate harmonic and percussive content. The 
basic idea of the method is that percussive sounds are 
broadband noise signals with short duration and that 
harmonic sounds are narrow band signals with longer 
duration. The audio is first transformed to the spectral 
domain by using a short-time Fourier transform (STFT). 
By applying a median filter across each frame in the 
frequency direction, harmonic sounds are suppressed. By 
applying a median filter across each frequency bin in the 
time direction percussive sounds are suppressed. After 
median filtering, the signal is transformed back to the 
time domain again using the inverse STFT.  

With the STFT it is possible to accurately detect per-
cussive content in the music. The frequency resolution in 
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the lower frequencies is however not sufficient to detect 
harmonic content there. Thus, to further suppress har-
monic content in the percussive waveform a second sepa-
ration stage incorporates a constant-Q transform (CQT) 
[17].  The CQT can be understood as an STFT with loga-
rithmically spaced frequency bins, accomplished by vary-
ing the length of the analysis window. With the CQT, an 
appropriate frequency resolution can be achieved at all 
frequencies, at the expense of a poor time resolution in 
the low frequencies. The frequency resolution of the CQT 
was set to 60 bins per octave and each frame was median 
filtered across the frequency direction. After filtering, the 
percussive signal was transformed back to the time do-
main using an inverse CQT. Notice that the phase infor-
mation is retained in the transformation back to the time 
domain. It can be regarded as a mapping that connects a 
frequency bin to a certain point in time. The percussive 
and harmonic waveforms are shown in Figure 2. 

2.2 Onset Detection 

Audio features were computed from all three waveforms 
(original, harmonic and percussive) by the scheme shown 
in Figure 1. The first step, independent of feature and 
waveform, was to compute a spectral flux (SF) [3], where 
spectral fluctuations along the time-domain are detected. 
The SF was computed several times in numerous differ-
ent ways. Some shared steps will be described here, with 
unique steps described in Sections 3.1-3.8.  The power 
spectrum was computed with a CQT or a STFT and con-
verted to sound level. A range of 30 dB was used. Thus, 
the maximum sound level of each band was set to 0 dB 
and sound levels below -30 dB were set to -30 dB. Let 
L(n, i) represent the sound level at the ith frequency 
bin/band of the nth frame. The SF is given by
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The implication of Eq. 2 is that negative spectral fluctua-
tions have a slight influence on the onset detection func-

tion. Onsets were detected by peak picking on a low-pass 
filtered curve of the spectral flux (see Figure 2). 

2.3 Clustering 

Onsets were clustered based on sound level in 8 frequen-
cy bands, spaced approximately an octave apart. An addi-
tional band was based on the RMS sound level. As the 
appropriate number of clusters was unknown beforehand, 
three K-means clusterings were carried out, with the 
number of clusters k, set to 2, 3 and 4. The fit of each 
clustering attempt was defined by the smallest Euclidian 
distance between any two clusters, where a large smallest 
distance gave a higher fit. When choosing k, a higher 
number of clusters were premiered over a lower if their 
fit was similar. The result of the clustering is a separation 
of onsets into different groups as shown in Figure 2.  

3. FEATURE EXTRACTION 

A total of 8 audio features were computed, 2 from the 
original waveform, 5 from the percussive waveform and 
1 from the harmonic waveform. These features are shown 
in the flowchart in Figure 1 and described in Sections 
3.1-3.8, with one subsection for each feature.  An in-
depth visualization of the processes involved to compute 
the features is shown in Figure 2. For conversion to onset 
density, the length of each song was set as the distance 
between the first and last onset. 

3.1 Onset Density – Harmonic 

Onsets were tracked from the original waveform, using 
the SF of a CQT. To avoid false onset detections at pitch 
glides, deviations in a peak by 20 cents (one bin), without 
an increase in sound level, were restricted from affecting 
the SF. This was accomplished by subtracting the sound 
level of each bin of the new frame, by the maximum 
sound level of the adjacent bins in the old frame. 

3.2 Onset Density – Bass 

To comply with the bass feature in [7], onsets in the low 
register (40 Hz - 210 Hz) were tracked using the SF of 
the lower bins of a STFT. The frequency bins were 
summed to a single band before the SF. 

3.3 Onset Density – Perceptual weighting 

Percussive onsets were tracked using the SF of a STFT 
on the percussive waveform. The bins of the frequency
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Figure 1. Flowchart of the processes used to compute audio features for the speed in music. The audio is filtered to sepa-
rate harmonic and percussive content, onsets are detected from a spectral flux, and audio features are computed. 



domain representation were divided into 13 non-
overlapping frequency bands (half-octave spacing). Sub-
band processing for onset detection has been described in 

[13], and can be motivated by its similarity to human 
hearing [4]. The strength of each detected onset was cal-
culated based on the average sound level of the first 
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50 ms from the onset position, where lower frequencies 
were given a higher impact.  

To further determine the perceived strength of the on-
sets, each onset was compared to the surrounding onsets 
within 1.5 seconds. This time span was defined as the 
perceptual present of the particular onset. By comparing 
it with the strongest onset within the perceptual present 
its strength could be altered to represent its perceptual 
impact. The onset was given a higher strength if there 
were no significantly stronger onsets within the perceptu-
al present. If there were onsets that were significantly 
stronger, its strength was lowered. The height of the clus-
ter-bars in Figure 2 represents the perceptual strength. To 
derive at a measure of onsets density, the sum of the 
perceptual strength of the onsets was used. 

3.4 Onsets Density – Strong 

The strongest clusters of the clustering contributed to two 
features. The first feature was simply the number of on-
sets, belonging to a strong cluster, per second. The idea 
behind this feature is that prominent percussive elements 
such as the kick drum and the snare drum likely influence 
the perception of speed in a different way than the less 
prominent elements such as the hi-hat. 

3.5 Strong Cluster IOI 

The second feature derived from the strong clusters was 
developed to catch the assumed perception of a slow 
speed, when the interonset intervals (IOIs) of onsets be-
longing to the same strong cluster are long. As an exam-
ple, a song with equally spaced drum onsets consisting of 
“Kick, Snare, Kick, Snare, etc..” was assumed to have a 
higher perceived speed than a song where the drums 
instead plays “Kick, Kick, Snare, Kick, etc..”. This is 
accounted for in the Tempo feature as well, because the 
tempo in the second example would be half the tempo of 
the first example. Cluster IOIs shorter than 750 ms were 
discarded based on the idea that they can both represent a 
drum fill in a slow song or represent a regular part of the 
drum pattern in a fast song.  

3.6 Tempo 

The tempo detection algorithm is part of an ongoing 
project, and a detailed description is in preparation. All 
distances between onsets within 5 seconds from each 
other are used to detect the tempo. The histogram in Fig-
ure 3 is based on the song presented in Figure 2.  

First, the period length of the percussive waveform is 
detected. A histogram of onset distances is generated, 
where the contribution of each onset-pair is increased 
with increasing similarity in spectrum as well as increas-
ing onset strength. The leftmost peak in the low pass 
filtered histogram, within 92 % of the highest peak, is 
chosen as the period length.  

Secondly, the tempo (beat length) is detected. A histo-
gram over onset distances is once again generated, where 
the contribution of each onset-pair is increased with in-
creasing dissimilarity in spectrum as well as increasing 
onset strength. The final probability distribution for tem-

po (Figure 3) is the Hadamard product of the histogram 
and several filters. One filter is based on the determined 
period length. The idea is that the beat will be a simple 
ratio of the period length, so Hanning windows are pro-
duced at the positions given by 
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   Another filter is based on IOIs within strong clusters as 
described in Section 3.5 and several filters are based on 
onset density. The highest peak in the final probability 
distribution is chosen as the tempo. In compliance with 
the findings that speed is a shallower function of tempo 
for fast and slow music [12], differences in tempo be-
tween 60 and 160 BPM are given the highest impact. 

 

Figure 3. The histogram used to determine tempo.  

3.7 Percussiveness 

An estimate of how percussive the music is was comput-
ed as well. This estimate is derived from the height h of 
the peaks in the SF of the percussive waveform, as shown 
in Figure 2. Equation 4 gives the mean peak height when 
p is 0, an estimate closer to the lowest peaks when p is 
negative, and an estimate closer to the highest peaks 
when p is positive. In this study p was set to 0.4. 
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3.8 SF CQT 

When extracting information from the harmonic wave-
form the integral of the SF was used; indicated as the area 
in the bottom pane of Figure 2. Onset detection was 
avoided as the HP-separation had removed all transients 
from the harmonic waveform. 

4. PREDICTING SPEED FROM THE FEATURES 

4.1 Speed Data and Audio Examples 

The music examples were taken from two earlier studies. 
To ensure that the songs contained percussive elements, 
songs where the RMS of the percussive waveform was 
less than 1/8 of the RMS of the harmonic waveform were 
not included in the data sets. The training set was 89 
popular songs, originally in MIDI format and converted 

0 500 1000 1500 2000
0

1   ← Beat length: 0.613 seconds (97.9 BPM)

Length (ms)

P
ro

b
ab

il
it

y

(4) 



to audio in a previous experiment [7, 10]. The speed 
estimations were previously determined using 20 listeners 
who rated speed for each example on a quasi-continuous 
scale marked slow-fast (range 1-9). The test set consisted 
of 47 real audio examples previously used for studying 
the relation between tempo and speed [12]. They were 
selected for exhibiting a large variation of tempi and 
genres within popular music styles. The speed was previ-
ously estimated in a similar way to the training set using 
continuous scales (range 0-10). Due to a difference in the 
design of the original experiment [12], the medium tempo 
examples were rated by 60 listeners while the fast and 
slow examples were rated by 12 listeners. 

4.2 Modelling Speed of the Training Set 

Two regression techniques were used to analyze the 
mapping between the computed audio features and the 
listener ratings. First, a multiple linear regression (MLR) 
was used, justified by a predictor-to-case ratio higher 
than 1:10. Secondly, partial least square regression (PLS) 
was used. PLS regression carries out data reduction, 
whilst maximizing covariance between features and pre-
dicted data [5]. It constructs new predictor variables 
(components), as linear combinations of the features.  
   The MLR prediction of listener ratings from computed 
audio features is presented in Table 1. As shown, a linear 
combination of the computed audio features was able to 
explain more than 90 % of the variability. In comparison, 
the agreement among the listeners, estimated by the mean 
intersubject correlation was 0.71 and Cronbach’s alpha 
0.98 [7]. 

8 Features R2 = 0.909 Adjusted R2 = 0.900 
Variable beta sr2 p-value 
On Dens. - Harmonic 0.205  0.033 0.000*** 
On Dens. - Bass 0.130  0.007 0.016*   
On Dens. - Perceptual 0.302  0.018 0.000*** 
On Dens. - Strong -0.155  0.010 0.004**  
Strong Cluster IOI 0.127  0.006 0.021*   
Tempo 0.430  0.056 0.000*** 
Percussiveness -0.095  0.005 0.041*   
SF CQT  0.107    0.004 0.053    
5 Features R2 = 0.887 Adjusted R2 = 0.880
On Dens. - Harmonic 0.239 0.049 0.000*** 
On Dens. - Perceptual 0.224 0.020 0.000*** 
Strong Cluster IOI 0.132 0.007 0.027* 
Tempo 0.404 0.053 0.000*** 
SF CQT 0.225 0.032 0.000*** 

Table 1. MLR prediction of the perceptual feature speed 
from computed audio features. The variable sr2 is the 
squared semipartial correlation coefficient. 

For the model based on 8 features, 2 features (Onset 
Density – Strong and Percussiveness) gave a negative 
contribution. Notice that the difference in explained vari-
ance is only about 2 % between the two models, indicat-
ing that the features in the 5-feature model may contain 
almost all relevant information. 
    The PLS regression of the 8 features is shown in Ta-
ble 2. With 3 components, the cross-validated adjusted R2 

indicates that just below 90 % of the variability could be 
explained. Note also that the cross-validation procedure 
only lowers the result marginally, supporting the validity 
of the present features. 
 

PLS Regression – Speed (3 PLS-components) 
R2 = 0.907 Adj. R2 = 0.903 Adj. R2 cv = 0.878 
Component Explained variance Cum. variance 
1 0.845 0.845 
2 0.052 0.897 
3 0.017 0.914 

Table 2. PLS prediction of the perceptual feature speed 
from computed audio features. The squared correlation 
coefficient R2 was derived using PLS, including 10-fold 
cross validation (“cv”). Also, R2 as a function of the 
number of components is shown. 

The fitted values of the linear regression from Table 1 
(8-feature model) are shown in Figure 4 below. As seen 
in the Figure, the deviations from the target are rather 
evenly distributed across the range and with a maximal 
deviation of about one unit. 

 

Figure 4. The fitted values in the MLR prediction of 
perceptual speed, where higher means faster. For each 
song, the x-axis represents the estimated speed and the y-
axis represents the ground truth (derived from listeners). 

4.3 Predicting Speed of the Test Set 

Two linear models of speed (5 and 8 features) were de-
rived from the multiple linear regression analysis of the 
training set shown in Table 1. The models were applied 
to the test set and the squared correlation between rated 
speed and computed speed is shown in Table 3.  

No. of Features/Regression coefficients R2 
5 0.934 
8 0.894 

Table 3. The prediction of the perceptual feature speed 
from a linear model using computed audio features.  

The 5-feature model’s prediction of speed for each 
song of the test set is shown in Figure 5. Computed speed 
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is approximately 1 unit higher than rated speed and this is 
probably due to the differences in the music examples of 
the databases. Furthermore, different scales were used for 
the listener ratings in the two data sets (1-9 and 0-10).  

 

Figure 5. The prediction of the perceptual feature speed, 
where higher means faster. For each song, the x-axis 
represents the estimated speed and the y-axis represents 
the ground truth (derived from listeners).  

5. CONCLUSIONS AND DISCUSSION 

The models were able to explain about 90 % of the varia-
bility in listener ratings. The most important features 
were tempo together with onset densities for different 
layers of the music as well as spectral fluctuations in the 
harmonic part of the audio. The validity of the features 
was supported by cross-validation, and verified by using 
the extracted regression coefficients from the training set 
to accurately predict speed in the test set.   

The results show that it was possible to reach the same 
high explained variance on audio data as on the symbolic 
data in [7] using similar features. This indicates that the 
appropriate low-level audio features have been extracted, 
which is reassuring for the ongoing study. The model 
based on 5 features was able to explain more of the vari-
ance in the test set than the model based on 8 features. 
This indicates that the 8-feature model was overfitting the 
training set. 

The segmentation of audio (HP-separation and cluster-
ing) seems to be a promising path forward. By clustering 
onsets we can detect onsets belonging to the same source 
and thus use the rhythmic pattern of this source in the 
model. By using several onset detection functions on 
separate parts of the audio, different aspects of the music 
can be captured. Source separation can be motivated from 
an ecological perspective; it seems reasonable to assume 
that listeners distinguish between sounds from different 
sources to better understand the soundscape. A drawback 
with the proposed system is that the computation of sev-
eral STFTs and CQTs is relatively time consuming.  

In future work we intend to include songs without per-
cussive elements. We also intend to investigate other high 
level rhythmic features such as rhythmic complexity and 
dynamics. We expect the audio segmentation to be a 

fruitful way forward. Data from this study is freely avail-
able for research purposes2.   
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