LOCAL GROUP DELAY BASED VIBRATO AND TREMOLO
SUPPRESSION FOR ONSET DETECTION

Sebastian Bock and Gerhard Widmer
Department of Computational Perception
Johannes Kepler University, Linz, Austria

sebastian.boeck@jku.at

ABSTRACT

In this paper we present a new vibrato and tremolo sup-
pression technique for onset detection. It weights the dif-
ferences of the magnitude spectrogram used for the cal-
culation of the spectral flux onset detection function on
the basis of the local group delay information. With this
weighting technique applied, the onset detection function
is able to reliably distinguish between genuine onsets and
spectral energy peaks originating from vibrato or tremolo
present in the signal and lowers the number of false posi-
tive detections considerably. Especially in cases of music
with numerous vibratos and tremolos (e.g.opera singing
or string performances) the number of false positive detec-
tions can be reduced by up to 50% without missing any
additional events. Performance is evaluated and compared
to current state-of-the-art algorithms using three different
datasets comprising mixed audio material (25,927 onsets),
violin recordings (7,677 onsets) and solo voice recordings
of operas (1,448 onsets).

1. INTRODUCTION AND RELATED WORK

Onset detection is the process of finding the starting points
of all musically relevant events in an audio performance.
While the detection of percussive onsets can be considered
a solved problem, I softer onsets, vibrato and tremolo are
still a major challenge for existing algorithms.

Soft onsets (e.g. bowed string or woodwind instruments)
have a long attack phase with a slow rise in energy, thus en-
ergy or magnitude-based approaches are not the best fit to
detect these sort of onsets. In the past, special algorithms
have been proposed to solve the problem of soft onsets by
incorporating (additionally) phase [3, 4, 10] or pitch infor-
mation [9, 14, 15] or a combination thereof [12] to over-
come the shortcomings of energy or magnitude-based on-
set detection algorithms. However, advances in magnitude-
based methods [6] show that these methods are now on par

! F-measure values > 0.95 as obtained with state-of-the-art onset de-
tection algorithms [1] can be considered to have solved the problem.
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with the before-mentioned methods but outperform them
on all sorts of percussive audio material.

The current state-of-the-art methods for online [5] and
offline [11] onset detection are based on a probabilistic
model and incorporate a recurrent neural network with the
spectral magnitude and its first time derivative as input fea-
tures. Especially the offline variant OnsetDetector shows
superior performance on all sorts of signals [1]. Because
of its bidirectional architecture, it is able to model the con-
text of an onset to both detect barely dicernible onsets in
complex mixes and suppress events which are erroneously
considered as onsets by other algorithms.

Vibrato is an artistic effect commonly used in classi-
cal music and can be sung or played by (mostly) string
instruments. It reflects a periodic change of the played or
sung frequency of the note. Vibrato is technically char-
acterized by the amount of pitch variation (e.g. + a semi-
tone for string instruments and up to a complete tone in
operas) and the frequency with which the pitch changes
over time (e.g. 6 Hz). It is sometimes used synonymously
as a combination with another effect: the tremolo, which
describes the changes in volume of the note. Because it is
technically hard for a human musician to play pure vibratos
or tremolos, usually both effects are performed simultane-
ously. The resulting fluctuations in loudness and frequency
make it very difficult for onset detection algorithms to dis-
tinguish correctly between new note onsets and an intended
variation of the note.

So far only a few publications have addressed the prob-
lem of spuriously detected onsets music containing vibrato
and tremolo. Collins [9] uses a vibrato suppression stage
in his pitch-based onset detection method, which first iden-
tifies vibrato regions that fluctuate at most one semitone
around the center frequency and collects the extrema in a
list. The region is expanded gradually in time to cover the
whole duration of the vibrato. After having identified the
complete extent of the vibrato, all values within this win-
dow are replaced by the mean of the extrema list. The onset
detection function is based on the concept of stable pitches
and uses the change in pitches as cues for new onsets.

Schleusing et al. [14] deploy a system based on the
inverse correlation of N consecutive spectral frames cen-
tered around the current location. Regions of stable pitch
lead to low inverse correlation values, and pitch changes
result in peaks in the detection function. To suppress vi-
brato they deploy a warp compensation which cancels out
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small pitch changes within the considered window, leaving
genuine onsets mostly untouched.

Recent research [7] applies a maximum filter to sup-
press vibrato in audio signals. This method operates in
the spectral domain; specifically it only considers the mag-
nitude spectrogram without incorporating any phase infor-
mation. Like the common spectral flux algorithm [13] it re-
lies on the detection of positive changes in the energy over
time, but instead of calculating the difference between the
same frequency bin for the current and previous frames,
it includes a special magnitude trajectory tracking stage
which is able to suppress spurious positive energy frag-
ments.

Still, all algorithms (apart from those relying solely on
phase information) suffer from loudness variations, which
mostly originate from the tremolo effect. This paper ad-
dresses this problem by incorporating the phase — more
specifically the local group delay (LGD) information — to
determine steady tones and suppress the spurious loudness
variations accordingly.

2. PROPOSED METHOD

Incorporating phase information is only feasible if each
frequency bin of the spectrogram is considered separately
as in the methods described in [3, 4, 10]. However, these
methods have proven to perform poorly compared to cur-
rent state-of-the-art algorithms [6]. Thus, our method is
based on the recently proposed SuperFlux [7] algorithm,
which is an enhanced version on the common spectral flux
algorithm [13]. It is already significantly less sensitive to
frequency variations caused by vibrato, but adding a spe-
cial local group delay based weighting technique to the dif-
ference calculation step, makes this method even more ro-
bust against loudness variations of steady tones, e.g., those
caused by tremolo.

2.1 SuperFlux

The system performs a frame-wise processing of the audio
signal (sample rate 44,1 kHz). The signal is divided into
overlapping chunks of length N = 2048 samples and each
frame is weighted with a Hann window of the same length
before being transformed to the spectral domain via the
discrete Fourier transform (DFT). Two adjacent frames are
located 220.5 samples apart, resulting in a resolution of
200 frames per second, which allows reportin of onsets to
within 5 ms.

It has been found advantageous [6] to first filter the re-
sulting magnitude spectrogram |X (n, k)| (n denotes the
frame number and k the frequency bin index) with a fil-
terbank F'(k,m) (with m being the filter band number)
before being processed further. The filterbank has M =
138 filters aligned equally on the logarithmic frequency
scale with quarter-tone spacing. To better match the human
perception of loudness, the resulting filtered spectrogram
Xp(n,m) is then transferred to a logarithmic magnitude
scale, denoted Xy, p(n,m) hereafter. Instead of calculat-
ing the bin-wise difference to the previous frame of the
same logarithmic filtered spectrogram, a maximum filter

along the frequency axis is applied (i.e. the value of a bin
is set to the maximum of the same bin and its direct neigh-
bors on the frequency axis) and the difference is calculated
with respect to the u-th previous frame of this maximum
filtered spectrogram X 7' (n, m) resulting in the follow-

ing equation for the difference calculation stage:

D(n,m) = Xr p(n,m) — X[ (n — p,m) (1)

The parameter 1 depends on the frame rate f,., which is
set to 200 fps, resulting in p = 2frames. The SuperFlux
onset detection function is then defined as the sum of all
positive differences:

SF(n)= > H(D(n,m)) 2)

with H(x) = %m being the half-wave rectifier function.

The positive effect of these measures can be seen clearly
in Figures la to lc, which depict a 4 second recording of a
violin played with vibrato and tremolo. However, there are
still some spurious positive energy fragments left, which
can be eliminated with the approach described in the next
section. For a more detailed description of the SuperFlux
algorithm, please refer to [7].

2.2 Local Group Delay based difference weighting

Using solely the magnitude information of the spectrogram
enables onset detection algorithms to detect most onsets
reliably, but also makes them susceptible to all kinds of
loudness variations of steady tones. Using the phase as an
additional source of information helps to lower the impact
of these loudness variations. However, the main problem
of incorporating the phase information is that it can only
be combined easily with the magnitude spectrogram if all
frequency bins of the STFT are considered individually.
But since filtering the magnitude spectrogram with a filter-
bank (i.e. merging several frequency bins into a single one)
previous to the difference calculation yields much better
performance for almost all kinds of audio signals [6], the
phase information of constituent frequency bins of a filter
band have to be combined such that phase can be used in
conjunction with the filtered spectrogram.

We investigated different approaches for combining the
phase information of several frequency bands into one, and
propose the following simple but effective solution. Given
the phase ¢ of the complex spectrogram X by:

¢(n7 k) = angle (X(’I’L, k)) ’ 3

we can estimate the local group delay (LGD) of the spec-
trogram as:

with ¢* defined as the 27-unwrapped (over the frequency
axis) phase. The local group delay gives information as
where the gravitational centre of the magnitude is located.
The spectrogram reassignment method [2] uses this infor-
mation to gather a sharpened (reassigned) representation
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(d) local group delay based difference weighting

Figure 1: (a) logarithmic magnitude spectrogram of a 5s
violin played with vibrato and tremolo, (b) the positive dif-
ferences calculated as in the spectral flux algorithm, (c)
with applied maximum filtering as in [7] and (d) the pro-
posed local group delay based difference weighting ap-
proach .

of the magnitude spectrogram. Although this representa-
tion is more exact, the process leads to areas with lower
magnitudes. The reassigned spectrogram looks a bit like a
“scattered” version of the well known magnitude spectro-
gram. Thus, using this representation directly to calculate
the spectral flux showed worse performance, mostly be-
cause of lots of smaller energy peaks, which we are trying
to avoid.

Instead of using the local group delay information to re-
locate the magnitudes of the spectrogram, the information
can be interpreted in a different way: regions with values
close to zero indicate stable tones (or percussive sounds if
they are aligned along the frequency axis) and regions with
absolute values greater than zero indicate a possible onset.
Holzapfel et al. [12] use the average of all local group de-
lay values along the frequency axis as a feature for their
onset detection function. Instead of averaging the individ-
ual values, we determine the local minimum within each
band of the filterbank F'(k, m) for the SuperFlux calcula-
tion, and use these values as a weighting function.

Care has to be taken that the individual filters of the fil-
terbank do not cover too many frequency bins, as the like-
lihood that there is a local group delay minimum that does
not belong to any steady tone increases accordingly. Fil-
terbanks with 24 filters per octave yielded good results for
all kinds of music material. The higher the expected fluc-
tuations in frequency, the lower should be the chosen num-
ber of filter bands. However, the fewer filter bands used,
the wider the individual filter bands become, and in turn,
this impacts the performance on percussive onsets. Percus-
sive onsets have low local group delay values over a broad
range of the frequency axis, thus applying the local min-
imum as a weighting would “erase” almost all percussive
onsets.

To lower the impact of local group delay weighting on
percussive sounds, we first apply a maximum filter over
time which covers the range of 15ms. For a frame rate
of f, = 200 fps, this equals to three frames and results in
a temporal maximum filtered version of the LGD spectro-
gram:

LGD*(n,k) =max (| LGD(n—1:n+1,k)]) (5

After this first filtering step, we get the final local group
delay based weighting by applying the previously described
minimum filter, which sets the value of a bin to the local
minimum of the region defined by the filter band:

W(n,m) = min (LGD* (n, kr(m) : k‘U(m))) 6)

with kp,(,,,) representing the lower frequency bin index of
the filter band m of the filterbank F'(k,m), and k() the
upper bound respectively. This function is then used to
weight the difference of the SuperFlux (cf. Equation 1), re-
sulting in the modified detection function:

m=M
SF*(n) = Z H (D(n,m)) - W(n,m) @)



with H(z) = %‘zl being the half-wave rectifier function,
n the frame number and m the frequency bin index. The -’
operator denotes the element wise multiplication of the two
matrices.

The effect of all proposed measures can be seen in Fig-
ure 1. Compared to the standard spectral flux implemen-
tation (1b), the difference with applied maximum filtering
trajectory tracking (1c) already shows fewer positive en-
ergy components, which are further reduced by the pro-
posed method, as can be seen in (1d). Figure 2 shows the
sums of the positive differences. It is evident that the new
approach lowers the overall noise in regions with vibrato
and tremolo but keeps very sharp peaks at the onset posi-
tions.
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Figure 2: Spectral flux sum of the differences shown in
Figure 1. The simple filtered spectral flux is shown as dot-
ted line, the SuperFlux as dashed line, and the proposed
local group delay based difference weighting approach as
solid line.

It should be mentioned that the same weighting tech-
nique could be used for unfiltered magnitude spectrograms
(i.e. the original spectral flux implementation). Instead of
using the local maximum of all frequencies of a filter band,
only the same frequency bin and its direct neighbors should
be considered. Although the same positive impact on sig-
nals containing vibrato and tremolo can be observed, the
overall performance compared to the filtered variants of
the spectral flux (e.g. the LogFiltSpecFlux [6] or the Super-
Flux [7]) is much lower, especially for polyphonic music.

2.3 Peak-picking

For selecting the final onsets of the weighted SuperFlux de-
tection function we use the same peak-picking method as
in [7]. Since the new onset detection function SF*(n) has
a lower noise floor and shows sharper peaks than the orig-
inal implementation (Equation 2), we had to alter the pa-
rameters for the peak-picking method used in [7]. A frame
n of the onset detection function SF*(n) is selected as an
onset if it fulfills the following three conditions:

1. SF*(n) = max (SF*(n —w;y : 1+ ws))
2. SF*(n) > mean(SF*(n —ws :n+wy)) + 8

3.n— Nprevious onset > Wws

where § is the tunable threshold. The other parameters
were chosen to yield the best performance on the complete
dataset. wq; = 30ms, wy = 30ms, wy = 100ms, wy =
70 ms and the combination width parameter ws = 30ms
showed good overall results. Parameter values must be
converted to frames depending on the frame-rate f, used.

3. EVALUATION

For the evaluation of the algorithm, different datasets and
settings have been used to allow highest comparability with
previous publications.

3.1 Performance measures and evaluation settings

For evaluating the performance of onset detection meth-
ods, commonly Precision, Recall, and F-measure are used.
If a detected onset is within the evaluation window around
an annotated ground truth onset location, it is considered
a correctly identified onset. But every detected onset can
only match once, thus any detected onset within the eval-
vation window of two different annotated onsets counts
as one true positive and one false negative (a missed on-
set). The same applies to annotations, i.e. all additionally
reported onsets within the evaluation window of an anno-
tation are counted as false positive detections. In order to
keep the comparability with other results, we match the
evaluation parameters as follows:

Our standard setting is the one used in [6], which com-
bines all annotated onsets within 30 ms to a single onset
and uses an evaluation window of £ 25 ms to identify cor-
rectly detected onsets. Thus the combination width param-
eter ws of our peak-picking method is set to 30 ms as well.

The second set of parameters (denoted with an asterisk
in Table 1) uses the same settings as in [14], where all on-
sets within 50 ms are combined (i.e.ws = 50ms) and an
evaluation window of £ 70 ms is used.

Unless otherwise noted, all given results are obtained
by swiping the threshold parameter § of the peak-picking
stage and choosing the value that maximizes the F-measure
on the respective dataset.

3.2 Datasets

For comparison with the former state-of-the-art algorithm
for pitched non-percussive music, the dataset from [14] is
used. Unfortunately not all sound files and annotations
could be used for evaluation, since the authors were only
able to provide part of this set. Still, we believe that the
achieved results are comparable, because the dataset has
over three quarters of the size of the original dataset (7,677
instead of 9,717 onsets) and an identical distribution of the
different playing styles (50% contain vibrato, some stac-
cato etc.). This will be called the Wang dataset.

To show the ability to suppress tremolo and vibrato pre-
sent in sung opera vocals, a second dataset introduced in [7]
and consisting of solo singing rehearsal recordings of a
Haydn opera is used. The set covers both male and fe-
male singers and has a total length of 10 minutes contain-
ing 1,448 onsets. It is called the Opera dataset.



The biggest dataset used for evaluation is that described
in [6], which consists mostly of mixed audio material cov-
ering different types of musical genres performed on var-
ious instruments. It includes the sets used in [3], [12],
and [11]. The 321 files have a total length of approximately
102 minutes and have 27,774 annotated onsets (25,927 if
all onsets within 30 ms are combined). The main purpose
of this set is to show how the new local group delay weight-
ing for the SuperFlux algorithm impacts the performance
on a general purpose dataset. This dataset is named Bdck.
Based on this set, we build a subset that contain violin and
cello recordings played with vibrato and tremolo, but also
feature accompaniment instruments. These 16 files have
849 onsets.

3.3 Results & Discussion

Because the local group delay weighting technique is de-
signed especially for audio signals containing mostly vi-
brato and tremolo, the main focus should be put on the re-
sults obtained on the Wang and Opera datasets. But since
we expect that it does not harm the overall performance of
the underlying SuperFlux algorithm too much when used
on other musical signals, the results given on the general
purpose Bock dataset should not be neglected.

3.3.1 Competitors

Besides the former state-of-the-art algorithm for pitched
non-percussive music presented in [14] (for comparison on
the Wang dataset), we chose the winning submissions of
last year’s MIREX evaluation [1] for comparison. We con-
sider these submissions to be state-of-the-art, since they
achieved the highest F-measure ever measured during the
MIREX evaluation.

The OnsetDetector.2012 is an improved version of the
method originally proposed in [11], which shows supe-
rior performance in offline scenarios, and represents the
group of probabilistic onset detection approaches. Since
the OnsetDetector.2012 was trained on the Bdck dataset,
the results given in Table 3 and 4 for this algorithm were
obtained with 8-fold cross-validation and parameters se-
lected solely on the training set. Instead of the LogFilt-
SpecFlux [6] algorithm, we chose the recently proposed
SuperFlux algorithm [7], which shows better performance
on all datasets. The SuperFlux algorithm does not use any
probabilistic information and thus has much lower com-
putational demands, marking the current upper bound of
performance of so-called “simple” algorithms.

Because the onset detection functions of the compared
methods show very different shapes and characteristics,
and the choice of peak-picking methods and parameters
highly influence the final results, we use offline peak-pick-
ing only. Since all algorithms yield their best performance
in offline mode and are less sensitive to variations of pa-
rameters, we consider this a valid choice. Nonetheless, all
algorithms can be used in online mode with slightly lower
performance.

3.3.2 Wang set

Table 1 shows the performance on violin music for the
Wang dataset. The new local group delay weighted Super-
Flux method outperforms all other algorithms with respect
to false positive detections by at least 25%. Compared
side-by-side with the current state-of-the-art onset detec-
tion algorithm, the OnsetDetctor, the weighted SuperFlux
is able to achieve the same level of true positive detections,
but improves regarding false positive detections by an im-
pressive 56%.

TP FP
OnsetDetector.2012 [11] * 96.5% | 15.5%
Schleusing et.al. [14] * 91.2% | 9.2%
SuperFlux [7] * 947% | 9.1%
SuperFlux w/ LGD weighting * | 97.0% | 6.8%

Table 1: True and false positive rates of different onset
detection algorithms on the Wang dataset. Results for
Schleusing’s algorithms were taken from [14]. Asterisks
mark the evaluation method used in [14].

Since the recordings in the Wang dataset are exclusively
solo recordings made in a sound absorbing room and con-
tain only very few polyphonic parts, this result can be seen
as the maximum possible performance boost that can be
obtained with the local group delay weighting method for
this type of music.

3.3.3 Opera set

On the Opera dataset with male and female opera rehearsal
recordings, the new method also shows its strength and
is able to dramatically lower the number of false positive
detections. Compared with the original SuperFlux imple-
mentation, the number of false detections go down from
450 to 221 (which is a reduction by 51%), if the new lo-
cal group delay based weighting technique is applied. The
new method even outperforms the current best-performing
probabilistic approach (with respect to F-measure), but it
should be noted that the neural network based method was
not trained on any opera material.

P R F

OnsetDetector.2012 [11]
SuperFlux [7]
SuperFlux w/ LGD weighting

0.576 | 0.777 | 0.662
0.672 | 0.635 | 0.653
0.806 | 0.635 | 0.711

Table 2: Precision, Recall and F-measure of different on-
set detection algorithms on the Opera dataset.

3.3.4 Bock set

In Table 3 results for the full Bick dataset are given. With
the new difference weighting scheme, slightly lower per-
formance can be observed. This was expected, since the
new approach is tuned specifically towards music with vi-
brato and tremolo but which otherwise contains only very



few percussive sounds (as present in complex audio mixes
like pop songs). It could be argued, that the impressive
performance gains achievable for this special type of mu-
sic justify the small performance penalty on this dataset.

P R F
OnsetDetector.2012 [11] 0.892 | 0.855 | 0.873
SuperFlux [7] 0.883 | 0.793 | 0.836
SuperFlux w/ LGD weighting | 0.873 | 0.778 | 0.823

Table 3: Precision, Recall and F-measure of different on-
set detection algorithms on the Bock dataset.

More interesting are the results given in Table 4 for the
strings subset, which includes pieces with string instru-
mentation that also feature accompaniment instruments —
which make vibrato and tremolo suppression harder. As
can be seen, the local group delay weighted SuperFlux
method also performs slightly worse than the original Su-
perFlux implementation. Thus, it must be concluded that
the new weighting scheme is mainly suited for signals
which feature numerous vibratos and tremolos but do not
contain many other instruments.

P R F
OnsetDetector.2012 [11] 0.834 | 0.820 | 0.827
SuperFlux [7] 0.836 | 0.701 | 0.762
SuperFlux w/ LGD weighting | 0.777 | 0.710 | 0.742

Table 4: Precision, Recall and F-measure of different on-
set detection algorithms on the strings subset of the Bock
dataset using the same parameters as used for the results
in Table 3.

4. CONCLUSIONS

In this paper a new method for vibrato and tremolo sup-
pression with local group delay based spectral weighting
was presented. The new weighting scheme can be applied
to any spectral flux like onset detection method and is able
to reduce the number of false positive detections originat-
ing from vibrato and tremolo by up to 50% compared to
current state-of-the-art implementations.

For future versions of this weighting technique, the Con-
stant-Q transform could be investigated. Using this trans-
form instead of the Short-Time Fourier Transform would
make both the use of a filterbank for the magnitude spectro-
gram and the rather simple combination technique for the
phase information of several frequency bins into one obso-
lete, but retain the beneficial behavior of this approach.
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