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ABSTRACT

The “groove” of a song correlates with enjoyment and bod-
ily movement. Recent work has shown that humans often
agree whether a song does or does not have groove and how
much groove a song has. It is therefore useful to develop
algorithms that characterize the quality of groove across
songs. We evaluate three unsupervised tempo-invariant
models for measuring pairwise musical groove similarity:
A temporal model, a timbre-temporal model, and a pitch-
timbre-temporal model. The temporal model uses a rhythm
similarity metric proposed by Holzapfel and Stylianou, while
the timbre-inclusive models are built on shift invariant prob-
abilistic latent component analysis. We evaluate the mod-
els using a dataset of over 8000 real-world musical record-
ings spanning approximately 10 genres, several decades,
multiple meters, a large range of tempos, and Western and
non-Western localities. A blind perceptual study is con-
ducted: given a random music query, humans rate the groove
similarity of the top three retrievals chosen by each of the
models, as well as three random retrievals.

1. INTRODUCTION

The propensity to move to music in a particular way is
widespread and fundamental to our experience of music
listening and enjoyment. Anyone who has spontaneously
bopped their head, clapped their hands, jumped the pogo,
swayed their cigarette lighter in the air, or tapped their fin-
gers or toes to music has shared this common experience of
near-involuntary musical response. Yet this aspect of mu-
sic has been little studied in music information retrieval.

The phenomenon has been variously described as flow
[3], sensorimotor synchronization [9], feel [16], and groove
[8,11,12,16]. Although related, the concept of groove is
different from beat, which is the property of a predictable
underlying periodic pulse [17]. The degree of groove is
correlated with the degree to which the music induces the
desire to move rather than the location and frequency of
periodic entrainment.

We propose a new algorithm that extracts groove ker-
nels—underlying audio patterns that correlate with the propen-
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sity to move. We use these features to measure groove sim-
ilarity between pieces of music. We define groove similar-
ity as that aspect of the sound pattern that induces, within
a subject, the desire to move in the same way.

We conducted a groove similarity experiment using hu-
man subjects. The experiment evaluated three automatic
groove extraction and similarity algorithms: an extant tempo-
invariant rhythm similarity measure [6], and two versions
of a proposed tempo-and-shift invariant groove kernel ex-
traction system. The proposed system is inspired by the
work of [18,20] which we extend with a full groove-oriented
system architecture.

Our evaluation with human subjects used a diverse dataset
of real-world audio files. Results show that our system
retrieves music that corresponds more closely to human
judgements about groove similarity than random baselines.
In summary, the primary contributions of this work are:

e anew groove kernel feature based on shift and time-
scale invariant Probabilistic Latent Component Anal-
ysis,

e anew dataset consisting of over 8,000 musical audio
tracks in 10 contrasting genres,

e cvaluation of three extraction and retrieval systems
and two random baselines against human groove sim-
ilarity judgments.

To the best of our knowledge, this is the first work to detail
an unsupervised system architecture for groove features
and experimentally evaluate it on human subjects. The fol-
lowing section provides background and motivation. Sec-
tion 3 describes how groove kernels are extracted from au-
dio files. Experimental evaluation is presented in Section
4, followed by concluding remarks in Section 5.

2. BACKGROUND
2.1 Groove

Underlying the operational character of groove is the psy-
chological sensorimotor synchronization of auditory stim-
uli and human movement. In their study Janata et al. [9]
showed that subjects strongly agreed that groove was de-
scribed by the extent to which music induces movement,
a positive affect due to such proclivity, and a feeling of
being part of the music. From a sensorimotor perspec-
tive [12] defined groove as “wanting to move some part



of the body in relation to some aspect of the sound pat-
tern”. Other studies consider timing deviations [1], or tem-
poral discrepancies [11], with respect to precise metro-
nomic timing as the source of the groove, relating these
to expressiveness and proclivity for motion. Pressing de-
scribes groove, or feel, as a “firmly structured temporal
matrix” [16]. It is a temporal foundation and an emergent
phenomenon formed out of concurrent recurring pulses (a
stable sense of tempo), perception of a cycle of time that
lasts for 2 or more pulses, and is effective in engaging syn-
chronization of bodily movement.

Following [16] we take the position that groove induces
characteristic responses in subjects and these responses stem
from specific repeated acoustic patterns. Substantially dif-
ferent patterns induce different tendencies of motion, there-
fore the feel or the groove is different. Music that grooves
is characterized by strong repetition. Therefore also fol-
lowing [16], we expect to observe a foundational “tempo-
ral matrix” that expresses the acoustic pattern correspond-
ing to a particular groove at the time scale of roughly two
bars. We hypothesize that such foundational patterns are
invariant to shifts in time (i.e. within a song) and shifts of
tempo (i.e. between songs).

2.2 Beat, Meter, Rhythm

To express invariance to shifts in tempo the description of
groove must be normalized to the concept of beat. Align-
ment of a temporal matrix to the beat is not enough for
comparisons between musical excerpts. There must also
be a way to normalize for the phase of a temporal pattern
with respect to beat hierarchy, or meter. There are two ap-
proaches to this problem: bar extraction and circular shift-
ing of the temporal matrix. If we wish to represent groove
as a multi-bar pattern, then we must rely on circular shift-
ing.

Holzapfel et al. [6] addresses tempo invariant represen-
tations of rhythm at multiple time scales, therefore charac-
terizing multi-scale rhythm. This work is unique in that it
provides a scale-invariant song-level rhythm descriptor for
music. Holzapfel et al. show that music with similar albeit
complex rhythmic structure may be successfully catego-
rized, even when the tempos are rather different. There-
fore we see their algorithm as a candidate representation
for groove similarity.

2.3 Rhythm Retrieval and Classification

While groove retrieval has not been explicitly treated by
the music information retrieval community, rhythm clas-
sification and retrieval has been studied in recent years.
Rhythm similarity metrics typically extract a rhythm de-
scriptor that exhibits tempo-invariant properties. For in-
stance [5] measures pairwise thythm similarity using beat
spectra based upon beat-synchronous low level features.
Pattern segmenting is used in conjunction with dynamic
time warping of acoustic features for pairwise rhythm sim-
ilarity in [13].

The annotation of a large-scale rhythm-based dataset
is expensive. Several authors have leveraged the music

recordings available at the Ballroom Dancer’s website !
which have tempo and genre annotations. With this dataset
authors have presented the results of genre classification
tasks using rhythm descriptors such as amplitude envelopes
of bar/beat synchronous features [4]; log-scale autocorre-
lation of onset strength signals [10]; fluctuation patterns
[15]; and spectral thythm patterns [14]. The success of
many of these approaches is augmented when tempo meta-
data from the dataset is included. Hence the experimental
results reported often reflect a semi-supervised approach.

2.4 Shift-Invariant Representation

To extract the most salient repeated aspects of the music we
use shift-invariant probabilistic latent component analysis
(SI-PLCA) [18]. A convolutional variant of non-negative
matrix factorization (NMF), SI-PLCA places NMF in an
explicitly Bayesian framework and extracts time-frequency
components that are stable to shifts in time or frequency.

Our work focuses on time-shift invariant PLCA. Given
a nonnegative matrix V/, time-shift invariant PLCA factor-
izes V such that V =~ Zk 2z Wi * hy, k is an index to
the factor components, Z is a diagonal matrix containing
mixing coefficients, and * is the convolutional operator. In
our models we extract one component. Hence z = 1, W
is a two-dimensional matrix, and h is a vector. We refer to
W as a kernel and h as an activation function locating the
kernel at multiple positions in a track.

Weiss and Bello [20] used SI-PLCA to evaluate song
structure segmentation in a Beatles data set. They em-

ployed chroma features to extract multiple phrase-level blocks

within songs whereas we use constant-Q spectral and cep-
stral features to extract single rhythmic kernels at the bar
level using different sparseness constraints. Finally, we as-
sessed kernels in a groove similarity task with a large and
diverse dataset using human evaluators.

3. SYSTEM ARCHITECTURE

The groove kernel is built in four stages. In the first stage,
bar and beat detection is performed. In the second stage,
beat-synchronous features are extracted and bar/beat acti-
vation templates are generated. The third module estimates
meter. The fourth stage extracts a shift-invariant groove
kernel. The overall architecture is depicted in Figure 1.
The details of each stage are described below.

3.1 Beat and Bar Tracking

Given a discrete time audio signal, we perform bar and beat
tracking using the Queen Mary bar and beat tracker? re-
ported in [2, 19]. The meter of the audio is a required input
parameter for the bar tracker. Since we do not know the
meter of a given musical audio file, we run the bar tracker
twice: once assuming 3/4 meter and again assuming 4/4
meter. We note that changing the value of the input param-
eter to the beat/bar tracker does not affect the estimated

'http://www.ballroomdancers.com/
2 Available as a Vamp plugin at http://isophonics.net/
OMVampPlugins.
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locations of the beats, only the indices that represent esti-
mated bar onsets. The Queen Mary beat tracker has a re-
ported accuracy of 73.6% when metrical level is not taken
into account. The downbeat detector has a reported ac-
curacy of 52.6%. Beat and downbeat tracking is an open
problem and these results are comparable to the state of the
art.

3.2 Beat Synchronous Features and Activation
Templates

We extract frequency domain beat synchronous features.
In this work, we use two feature types—the Constant Q
Fourier Transform (CQFT) and the Low-Quefrency Con-
stant Q Fourier Transform (LCQFT). The CQFT is com-
puted by applying a log frequency-spaced filterbank to the
Short Time Fourier Transform (STFT) of the audio signal.
The LCQFT is computed by transforming the CQFT of the
audio signal to the cepstral domain, applying a low-pass
lifter, and inverting the signal back to the log frequency
domain, analogous to MFCCs.

There are several parameters to choose when extract-
ing the low level features. In this work, our audio has a
sample rate of 22050 Hz; we use 2048-point FFTs over
hamming-windowed frames of audio. The hop size is dy-
namically determined based upon estimated beat locations.
The duration of each estimated beat is allocated 16 feature
frames. The CQFT is computed using 24 bands per oc-
tave beginning at the approximate frequency of the musi-
cal note C2, yielding 178 CQFT coefficients per frame. We
use 15 lower cepstral coefficients of the CQFT to compute
the LCQFT (the first cepstral coefficient is ignored). A lin-
ear pre-emphasis is placed over the frequency channels to
give higher weight to higher frequencies. This weighting
helps SI-PLCA avoid placing too much probability on the
lower frequencies.

The CQFT preserves pitch information while reducing
spectral resolution at higher frequencies. The liftering stage
of the LCQFT effectively removes much of the pitch infor-
mation from the signal while retaining the timbre infor-
mation. Hence the CQFT-based model is a pitch-timbre-
temporal model, while the LCQFT-based model is a timbre-
temporal model. We refer to the respective models as GI
and G2 in the rest of this paper.

We generate several activation templates based upon the
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Figure 2. Left: H descriptor. The z axis plots the scale
coefficient, with 1 < ¢ < 100, averaged across all frames.
Middle: G1 descriptor. Right: G2 descriptor.

estimated locations of beats and bars. The templates are
used as priors over the activation function h for meter es-
timation and groove kernel extraction. The amplitudes of
the spikes sum to one. A duple meter and a triple me-
ter activation temple are generated without regard to the
bar locations. These have a spike every second and third
beat, respectively. The templates are used for meter esti-
mation. A duple and triple meter activation template are
also generated for groove kernel extraction. The duple-
meter activation template has a spike every fourth beat and
the triple meter activation template has a spike every third
beat. These templates are organized such that the first spike
is centered on the estimated location of the first bar line.

3.3 Meter Estimation

We do not know a priori what the meter of a given song
is. To extract an effective groove representation in the fol-
lowing stage, we set the size of the kernel based upon a
meter assumption. In this stage, we make a decision about
the meter assumption using the log probabilities of two SI-
PLCA models.

The meter estimation activation templates are given as
prior probabilities to two independent SI-PLCA models:
one with a triple, and the other with a duple meter assump-
tion. The triple-meter model has a kernel window size of
96 frames (2 bars in 3/4). The duple-meter model has a ker-
nel window size of 128 frames (2 bars in 4/4). The triple
and duple models are run until convergence, with updates
to the activation functions allowed. There are no sparsity
constraints imposed on the model optimizations. However,
since the initial activation functions are sparse, the final ac-
tivation functions are also sparse. The meter of the song is
chosen according to whichever model has the highest log
probability after convergence.

3.4 Groove Kernel

Once the meter has been chosen, we extract a groove ker-
nel using a final stage of SI-PLCA. We provide a new ini-
tial activation template h to the model in which there is an
impulse every 4 or 3 beats, based upon the assumed meter.
Note that a duple meter model now has activations every



4 beats, instead of 2. We also use the bar estimations pro-
duced in the second stage to center the activations at the
onsets of 4/4 or 3/4 bars. The window size is set to two
bars.

Weiss and Bello [20] have suggested that the optimal
window size and meter may be learned by setting a sloping
prior over an initial h. We tried this approach using varying
initializations of h, slope degrees, initial window sizes, and
sparsity parameters. In informal listening tests we found
that our method provided better qualitative results when
the bar and beat tracker was accurate.

Once a groove kernel has been extracted we smooth it
along the time axis using a gaussian window. In this paper
G1 has no smoothing and G2 is smoothed with a gaus-
sian window having a standard deviation of 1 frame. Since
our features have 16 frames per beat this window places
approximately 95% of the window over 4 frames, or 1/16
note.

We do not know whether the phase of the groove kernel
is aligned with respect to a latent two-bar groove structure
of the music. Therefore for every groove kernel we enter a
zero-phase and a circularly-shifted 1/2-phase version into
our database.

4. EXPERIMENTS
4.1 Dataset

We built a dataset consisting of thousands of songs to eval-
uate the algorithms presented in this paper. All data is pub-
licly available and we will provide the aggregate dataset
and all associated metadata upon request. The data collec-
tion steps are summarized below.

We used the Echo Nest developer’s API*® to construct
a list of 10,000 song titles across 10 genres and 10,000
unique artists. We began by querying the top styles in Echo
Nest’s database. An Echo Nest “style” is a search term
associated with artists. Styles are essentially genres; the
top ranked styes are those that Echo Nest believes yield
the strongest search results. We will refer to Echo Nest
styles as genres hereafter. We handpicked 10 genres from
the highest ranked members of the list that we associated
with having groove and variety. Table 1 shows the genres
we selected, along with their Echo Nest rank.

For each genre we queried 1000 unique artists that were
also cross-indexed with the 7digital* database, ranked by
genre relevance. For each artist we queried 1 unique song
that was in the 7digital database, ranked by Echo Nest’s
highest “danceability” estimation.

7digital is a commercial music distribution service that
maintains .mp3 previews for most of the songs in their cat-
alogue. We downloaded all previews in our list from the
7digital website. While sampling the dataset we discov-
ered anomalous files. We filtered these out, resulting in
8249 unique song/artist clips each between 30 and 60 sec-
onds long. We believe that the dataset dually exhibits a
wide representation of groove and low redundancy.

3nttp://developer.EchoNest.com/
4http://us.7digital.com/

Rank and Genre

1 rock 2 elec- | 3 hip 6 jazz 14 pop
tronic hop
17 reggae| 19 funk | 88 latin 168 world | 179 coun-
jazz try

Table 1. Echo Nest ranks and genres used in this work.

4.2 Models

We investigated three models, designated H, GI, and G2.
H yields a temporal rhythm descriptor. GI yields a pitch-
timbre-temporal groove kernel. G2 yields a timbre-temporal
groove kernel.

The H model is the scale invariant thythm descriptor
presented by Holzapfel and Stylianou in [7]. H computes
multiple Direct Scale Transforms (DSTs) on the autocor-
relation function of an Onset Strength Signal. We follow
the procedure outlined in [7]. The DST is computed over
a range of scale coefficients. The value of the maximum
coefficient is denoted as C. Holzapfel and Stylianou show
that the optimal value of C'is related to the source material,
but a value of C' > 80 achieves nearly constant accuracy in
their rthythm similarity tasks. The H model sets C' = 100.
The final descriptor is the average of the scale transform
magnitudes across frames.

The other two models are G/ and G2. Their architecture
and parameterization are described in Section 3. Note that
the key differences between G/ and G2 are that G/ uses
CQFT features. G2 is built with LCQFT features and has
smoothing over the groove kernel.

Figure 2 graphically depicts three extractions from the
same song clip using H (left), GI (middle), and G2 (right).
Observe that the H descriptor is a vector of Scale Trans-
form Magnitude (STM) against a range of scaling coef-
ficients (denoted c¢). GI and G2 exhibit different images
even though they are extracted on the same audio clip. G!
has finer-grained detail in the temporal domain and a sus-
tained tone with harmonics in the upper third of the image.
The rhythmic structure is apparent in G2, but the tonal and
temporal detail has been smoothed.

4.3 Methods

A subset of 100 musical queries—10 from each genre—
were randomly selected from the dataset. For each query
and each model the top-3 nearest neighbors were selected
(excluding the same song), as measured by cosine simi-
larity. Retrievals for the G2 model were additionally re-
stricted to a have an estimated tempo difference of 8 BPM
to limit the range of tempo variation.

There were two sets of random retrievals. The RI re-
trieval set has 3 songs chosen at random for each query.
Each retrieval in the R2 set has an estimated tempo dif-
ference from its associated query of less than or equal to
8 BPM. Tempos were estimated by computing the me-
dian beat onset differences derived from the bar and beat
tracker. Random retrieval sets were not restricted by genre.

There were two types of participants: solicited and anony-



mous. Solicited participants were paid if they completed
the entire experiment. Both types of participants were pre-
sented the same web-based experiment interface. Partici-
pants were randomly assigned one of ten genre-based test
subsets. A test subset consists of 10 same-genre queries
and 5 retrieval sets. We collected 2,436 ratings from so-
licited participants and 236 ratings from anonymous par-
ticipants. There were 56 unique human evaluators that par-
ticipated in our experiment.

The experiment required that participants utilize a quiet
listening room or headphones. Participants were presented
with the following definition of groove [9]: “The groove
is that aspect of the music that induces a pleasant sense of
wanting to move along with the music.”

We are unaware of any studies in the literature on the
perception of groove similarity. We therefore asked partic-
ipants to consider the similarity of groove based upon the
given definition. The experimental interface further stated,
“Please try to avoid judging groove similarity based upon
song genre. For instance, you may find that two songs are
from different genres, but you would move your body in a
similar way to them. You should rate these songs as having
high groove similarity.”

Each participant was presented query-retrieval pairs from
their test subset in random order. The audio clips were ap-
proximately 5 seconds in duration, corresponding to the
expected duration of a two bar motif. They were asked
to rate groove similarity on a coarse scale using radio but-
tons having the labels “Not Similar”, “Somewhat Similar”,
and “Very Similar”. These ratings were later assigned nu-
merical values from the set {0,1,2}. We denote these as
“coarse” ratings. Participants were also asked to rate the
groove similarity of each pair on a fine scale with a slider.
The slider had a range of [0, 100], but the slider’s numerical
value was not exposed to the user. We denote the ratings
as “Fine”.

A participant was required to listen to each pair of au-
dio clips at least once and assign ratings before moving
to the next comparison. Multiple listens were permitted.
We note that the experimental design was modeled after
the MIREX Audio Music Similarity and Retrieval > eval-
uation procedure. One minor difference is that the Mirex
Audio Similarity task asks its evaluators to rate the top-5
ranked songs per query and model. Due to limited human
resources, we restricted the retrieval space to top-3.

4.4 Results

Figure 3 shows the mean coarse and fine ratings per re-
trieval set. The red cross hairs show standard error. Table
2 shows the results of pairwise t-tests between appropriate
baselines and models. Note that G2 may only be directly
compared with R2; these were the retrieval instances where
the search space was restricted by tempo difference.

The first thing that we notice is that participants were
pessimistic about the groove similarity of query-retrieval
pairings. The mean coarse value across all ratings was

Shttp://www.music-ir.org/mirex/wiki/Audio_
Music_Similarity_and_Retrieval

RI-H RI-G1 R2-G2
Coarse 452 x10°° 0.0038 0.1160
Fine 1.66 x 10~* 0.0094 0.0142

Table 2. Pairwise t-test p-values. Boldface indicates a p-
value less than 0.05.
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Figure 3. Mean coarse and fine ratings by algorithm. The
red cross hairs show standard error about the mean.

0.780; the mean fine rating was 40.909. Users were more
likely to rate a pair of songs as being not similar or some-
what similar than very similar. The songs in the dataset
spanned a range of 10 base genres. Several participants
expressed that they had difficulty cognitively separating
genre and preference from groove. Indeed, Janata et al.
have shown that enjoyment is correlated with groove [9].
We are not aware of a study that evaluates correlation be-
tween genre and groove similarity.

Secondly we observe that all models retrieve groove-
similar songs better than random selection when the re-
trieval space is unrestricted by tempo. We have learned
from Janata et al. that humans are able to reliably detect
the presence of groove. Our results support the hypothesis
that humans may also reliably detect groove similarity.

We find that G/ and H perform competitively. When
adjusting for multiple comparisons using the Tukey-Kramer
method each performs significantly better than R/ (at 95%
confidence), but they share similar statistical distributions
with each other for coarse and fine ratings.

We notice that groove similarity ratings jump upward
for random retrieval when the space is limited to an § BPM
tempo difference from the query. Humans are more likely
to rate two arbitrary songs to have similar groove if they
are close in tempo.

The only model that was evaluated with a restricted tempo
space was G2. As can be seen in Figure 3 and Table 2,
this model performed significantly better than the tempo-
restricted random set on fine evaluations. We do not know
whether the increased performance of G2 is due to a (pitch-
free) low-level feature or the gaussian smoothing of the
groove kernel. Our intuition leads us to believe that smooth-
ing had a significant impact. The kernels are fairly high-
dimensional. By smoothing them, neighbors that were once
distant due to fine differences in temporal structure become
less distant (cf. Figure 2).



5. CONCLUSIONS

Groove is associated with the often pleasurable induction
of bodily movement to music. There are an increasing
number of thythm similarity and classification algorithms
in the literature, yet groove encompasses a higher-level
construct involving sensorimotor interaction stemming from
repeated acoustic patterns. We presented a new groove ker-
nel feature based on shift and tempo invariance. We asked
humans to evaluate the groove kernel and another rhythm
similarity model in a groove similarity retrieval task using
a diverse collection of real-world music recordings span-
ning 10 base genres.

The H and G/ models give groove similarity rankings
that are significantly better than random retrieval. The G2
model performs significantly better than random retrieval
when the retrieval space is limited to an § BPM absolute
difference from the query.

We note that all three models—the temporal H model
and our proposed timbre-inclusive SI-PLCA based models—
are constructed in an unsupervised manner. Building human-
annotated collections of music is expensive. Hence there
is higher value associated with models that do not rely on
human annotation.

Our models rely on beat-synchronous features derived
from the automatically estimated bar and beat estimations.
As noted in Section 3 beat and downbeat estimation is not
a solved problem. We may assume that there is error in the
estimated beat and bar locations. Unfortunately, this error
is necessarily propagated forward through every stage of
the groove kernel models. We expect that our proposed
models will perform better as beat and downbeat detection
improves.

The groove kernel activation templates were restricted
to 3/4 and 4/4 meters. While the dataset included a large
selection of world music, it is possible that the learned ker-
nels did not fit a significant portion of the dataset. We ex-
pect that the algorithm could be improved with enhanced
meter detection.

The experimental design did not allow for a direct com-
parison between the H and G2 or G/ and G2 methods. We
therefore cannot draw conclusions regarding the impact of
the tempo-restricted space on these methods. We also can-
not state conclusively the contribution that smoothing has
on the G2 model since this effect was not studied.

Our human subject study had a limited number of hu-
man participants with respect to the number of song queries.
There were 100 queries each associated with 3 models and
two random baselines. An improved study would include
the effects of pairwise perceived genre similarity, song pref-
erence, and other potential biases. Further investigation is
needed into the relationship between how much groove is
perceived and groove similarity. Future work will include
a larger scale human evaluation with the intent to address
these important issues.

To the best of our knowledge, this paper provides the
first human-based groove similarity retrieval task. Exper-
imental results suggest that the groove kernel presents a
promising direction for exploration of groove metrics.
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