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ABSTRACT

The task of separating a single recording of a polyphonic
instrument (e.g. piano, guitar, etc.) into distinctive pitch
tracks is challenging. One promising class of methods
to accomplish this task is based on non-negative matrix
factorization (NMF). Such methods, however, are still far
from perfect. Distinct pitches from a single instrument
have similar timbre, similar note attacks, and contain over-
lapping harmonics that all make separation difficult. In an
attempt to overcome these issues, we use a database of syn-
thesized piano and guitar recordings to learn the harmonic
structure of distinct pitches, perform NMF-based separa-
tion, and then extend the method to allow an end-user to
interactively correct for errors in the output separation es-
timates by drawing on a piano roll display of the separated
tracks. The user-annotations are mapped to linear grouping
regularization parameters within a modified NMF-based
algorithm and are then used to refine the separation esti-
mates in an iterative manner. For evaluation, a prototype
user-interface was built and used to separate several poly-
phonic guitar and piano recordings. Initial results show
that the method of interactive feedback can significantly
increase the separation quality and produce high-quality
separation results.

1. INTRODUCTION

For many audio editing and production tasks, it is desirable
to separate a single recording of a polyphonic instrument
into its respective pitch tracks. One promising method to
do so is that of non-negative matrix factorization (NMF),
which models audio spectrogram data as a linear combina-
tion of prototypical frequency components or basis vectors
over time. NMF can be defined by

V ⇡WH (1)

where V 2 RF⇥T
+ is an audio spectrogram, W 2 RF⇥K

+

is a dictionary or matrix of basis vectors (columns), and
H 2 RK⇥T

+ is a matrix of activations or gain vectors (rows).
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Figure 1: Polyphonic source separation of a single piano
recording (blue) of Mary Had A Little Lamb displayed on a
piano roll. Given an initial separation, a user can annotate
errors (yellow overlays) in the separated outputs (red) and
iteratively improve results. Note underneath the overlays,
incorrect, residual energy is present.

Given a spectrogram V, the matrices W and/or H can then
be computed via an optimization problem

minimize
W,H

D(V |WH)

subject to W � 0,H � 0
(2)

that minimizes the distance between V and WH, where
D is a suitable divergence function (e.g. Euclidean,
Kullback-Leibler, Itakura-Saito, etc.) and the inequalities
are element-wise [5,6,10,11,14]. Note, (2) is non-convex,
typically allowing us to only find a local optima.

When used to separate a single polyphonic recording
into distinctive pitch tracks (e.g. 88 keys of the piano),
typically supervised NMF is used. In this case, isolated
recordings of distinct pitches are used to model the proto-
typical frequency content of each pitch. The pre-learned
models are then collected together and used to estimate the
contribution of each pitch within an unknown mixture.

These methods can sometimes produce high-quality sep-
aration results. At the same time, however, these methods
can be frustrating in that the resulting separation output es-
timates can contain errors that are audibly and/or visually
obvious. These errors are typically caused by overlapping
harmonics, similarities in timbre, similarities in note at-
tack, and other such issues, limiting the general usefulness
of the method.



To overcome these limitations, we propose an extension
to supervised NMF-based source separation. In particu-
lar, we allow an end-user to separate a single recording
into distinctive pitch tracks and then interactively annotate
errors in the output estimates by drawing on a piano roll
display of the separated tracks, as shown in Fig. 1. The
user-annotations are then mapped to linear grouping regu-
larization parameters in a modified NMF-based algorithm
to refine the separation estimates and iteratively improve
results through user-feedback.

To initially train our supervised NMF model, we lever-
age a database of synthesized pianos and guitars to learn
the harmonic structure of distinct pitches. Using the entire
database, we learn a universal pitch model across all in-
struments and timbres. Additionally, we learn instrument-
specific pitch models, and instrument/timbre-specific mod-
els that can be used in place of the universal model if needed.
For evaluation, we built a prototype user-interface and used
it to separate several polyphonic guitar and piano record-
ings. Initial results shows that the proposed method signif-
icantly improves separation quality and can produce high-
quality separation estimates.

The complete proposed method consists of an initial
pre-computation step discussed in Section 2, and two core
steps in Section 3, and Section 4. Algorithmic issues, eval-
uation, and related works are discussed in Section 5, Sec-
tion 6, and Section 7, followed by acknowledgements, and
conclusions in Section 9, and Section 8.

2. LEARNING PITCH MODELS

To separate an unknown polyphonic instrument recording,
we must first precompute or learn the prototypical frequency
content for each pitch p 2 1, ..., P we wish to separate. For
a given pitch p, we learn one or more (Kp) prototypical
spectra or basis vectors that capture the harmonic structure
of that pitch. While this can be achieved by handcrafting
specific spectra, we instead learn this from data by the fol-
lowing supervised NMF procedure:

1. Given isolated training data of each pitch p, compute
the spectrogram Vp, 8 p 2 1, ..., P via the short-
time Fourier Transform (STFT).

2. Factorize each spectrogram Vp via (2), and obtain
the basis vectors Wp 2 R

F⇥Kp

+ of each source,
where Kp is the number of basis vectors per pitch.
Normalize each column of Wp to sum to one. Dis-
card the activations Hp 2 RKp⇥T .

3. Concatenate the basis vectors Wp together to form
the complete pitch model or dictionary
W = [W1 W2 . . .WP ] 2 RF⇥K

+ , where
K =

PP
1 Kp.

For this work, we define D to be the Kullback-Leibler (KL)
divergence and use the multiplicative NMF-update algo-
rithm of Lee and Seung [6] to solve (2). Note, alterna-
tive divergence functions can be used instead, such as the
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Figure 2: One octave of acoustic guitar pitch-based basis
vectors for Kp = 1. Notice the harmonic structure.

Itakura-Saito divergence. An example set of guitar basis
vectors for one octave (Kp = 1) is shown in Fig. 2.

For training data, we used 13 distinct piano synthesiz-
ers and 11 distinct guitar synthesizers and recorded two
measures of quarter notes (⇡ 5 seconds) for each of the 88
piano pitches of each of the 24 synthesizers. The different
synthesizers have contrasting timbres, reverberation, and
other effects and correspond to the guitar and piano pre-
sets of the Logic Pro software package. The piano timbres
include: electric piano, grand piano, grand piano on stage,
grand piano punchy, smokey clav, smooth clav, studio pop
piano, swirling electric piano, whirly, yamaha piano club,
yamaha piano hall, yamaha piano room, yamaha piano stu-
dio. The guitar timbres include: acoustic guitar, big elec-
tric lead, classical acoustic, clean electric, crunchy muted
delays, electric tremolo, fuzzy synth guitar, heavy metal
guitar, los freakos, nylon shimmer, steel string acoustic.

Given the collection of recordings, we then use vari-
ous subsets of the data and the aforementioned supervised
NMF procedure several times to compute various pitch
models. By learning a pitch model on the complete set of
recordings across all instruments and timbres, for example,
we learn a form of universal pitch model (U) that general-
izes across instruments and instrument timbre, similar in
motivation to the work of Reynolds et al. [9] and more re-
cently Sun and Mysore [12]. When using such a model to
perform separation, however, the results might be less than
ideal because of the difference in harmonic structure be-
tween instruments (e.g. guitar vs. piano). This motivates
the ability to train more specific pitch models on subsets of
our training data. As a result, in addition to computing a
general, universal pitch model, we additionally compute a
universal guitar model (UG), a universal piano model (UP),
and all 24 instrument/timbre-specific models (T).

3. MIXTURE SEPARATION

Given a particular pitch model, we can proceed to sepa-
rate an unknown polyphonic mixture sound. This involves
using a single, complete pitch model W to estimate the
weights or activations H of each pitch from the unknown
recording spectrogram V. This is done via

minimize
H

D(V |WH)

subject to H � 0
(3)
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Figure 3: User-annotated penalty weight parameters ⇤
from Fig. 1, depicted as an image. White represents an-
notated regions. Black represents unannotated regions.

where we only optimize over H 2 RK⇥T
+ . Assuming D

is convex, this optimization problem is convex, allowing us
to find a global minimizer. We again use the KL divergence
(which is convex) and the multiplicative update algorithm
of [6] to solve (3), holding W fixed. We then use the given
pitch model and corresponding activations to estimate the
magnitude spectrogram of each pitch within the mixture.
The estimated pitch spectrograms are then converted to the
time-domain using the mixture phase and inverse STFT ac-
cording to standard practice (see Section 5).

4. INTERACTIVE USER-FEEDBACK

Once an initial separation is performed, we allow an end-
user to interactively refine the separated output estimates
by annotating a piano roll display of the results. To do
so, we 1) instruct an end-user to draw on regions of each
pitch track that are incorrectly separated, 2) incorporate the
annotations to update the separation estimates, 3) present
the updated results back to the user, and 4) repeat until
satisfied. This form of interaction is done as a result of the
observation that it is much easier for people to iteratively
correct for errors after an initial result is presented, rather
then pre-annotate time regions of one source or another.
This is similar to the observations discussed in [3], where
user-feedback is used to improve a clustering algorithm.

The specific type of drawing interaction can be done in
several ways, such as 1) annotating a type of amplitude en-
velope for each pitch track, where height is used as a mea-
sure of confidence/strength of the error annotation or 2) al-
lowing a user to paint over the errors with a colored brush,
where opacity is used as a measure of confidence/strength.

The drawing annotations are then collected into a sin-
gle matrix ⇤ 2 RP⇥T , where each row corresponds to
the penalties for a given pitch. This matrix is then used to
penalize the activations of the incorrectly activated pitches
from the initial separation estimates. As a result, we can re-
move errors caused by incorrectly activated notes and re-
allocate the incorrectly assigned energy to the remaining
pitch tracks in an optimal way. This is in contrast to di-
rectly using the annotations to down-weight the appropri-
ate elements of H without recomputing the factorization,
which would not reassign the incorrectly allocated energy.

An example penalty matrix ⇤ is shown in Fig. 3, which

Figure 4: Refined polyphonic separation of Mary Had A
Little Lamb with user-guided interactive feedback. Notice
incorrectly activated notes are eliminated and the note at-
tacks are more sharply outlined.

embodies the user annotations, shown as yellow overlays,
in Fig. 1. Note that while Fig. 3 appears binary in nature,
⇤ is real-valued (the benefit of real-valued annotations is
discussed below).

The user-annotation matrix ⇤ is then incorporated into
our NMF model via

minimize
H

D(V |WH) + � ⌦(H;⇤)

subject to H � 0
(4)

⌦(H;⇤) is an appropriately chosen penalty that is a func-
tion of H and parameterized by ⇤ and � 2 R+ is a scalar
used to decrease or increase the overall weight of the user
annotation penalty. The penalty function ⌦(H;⇤) dis-
courages the activations of specific pitches, dependent on
the user-annotations. For our case, we use a simple linear
group penalty

⌦(H;⇤) =
TX

t=1

PX

p=1

pKpX

k=(p�1)Kp+1

⇤(p,t) H(k,t) (5)

= 1K
T(�⇤�H)1T (6)

where the matrix subscripts are used to index the rows or
columns of the given matrices, � 2 RK⇥P is

� =

2

6664

1Kp 0 . . . 0
0 1Kp . . . 0
...

...
. . .

0 0 0 1Kp

3

7775
, (7)

K =
PP

1 Kp, and 1N 2 RN⇥1 is a column vector of N
ones. While alternative penalties are possible, (6) is rel-
atively straightforward, adds minimal computation com-
plexity, and results in a compact multiplicative update al-
gorithm for solving (4) as discussed below in Section 5.
Also note, due to linearity, we can absorb � into the user
annotation matrix ⇤ and only use ⇤ for user-tuning.

We can see the immediate benefit of the interactive user-
feedback in two demonstrative examples. First, Fig. 4 il-
lustrates the output result of including the user-annotations
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Figure 5: (First Row) Mixture spectrogram of E and D
piano pitches. (Second Row) Initially separated results (E-
left, D-right) using supervised NMF. (Third Row) Initially
separated results (E-left, D-right) using supervised NMF
with overlaid annotations (red-line) depicting incorrectly
separated note transient (yellow box). (Third Row) The re-
fined separation estimates with the transient error removed.

displayed in Fig. 1, which are used to clean up incorrectly
separated regions of each pitch track. We can notice that
both the incorrect note activations are removed and the
note transients of the remaining (correct) notes are sharp-
ened as a result of reallocating the incorrectly assigned
note energy to the remaining pitch tracks.

Second, we can view waveform visualizations in Fig. 5,
which show the benefit of having the ability to annotate
a level of confidence or strength (real-valued annotations)
when correcting for errors. In this example, we separate
two overlapping piano pitches (E and D). Using standard,
supervised NMF-based separation, the energy from the tran-
sient attack of the second note gets incorrectly assigned to
the first note, causing a ghost-like effect. After annotation
(red line), the transient error is reduced and the separation
quality is improved.

5. ALGORITHM

Using a suitably defined divergence function D(V |WH),
our choice of ⌦(H), and an appropriate pitch model W,
we need to derive an efficient algorithm to actually com-
pute the unknown activations H for each pitch. As be-
fore, we define D to be the Kullback-Leibler divergence
and follow the mathematical justification of Lee [6] to de-
rive a Majorization-Minimization optimization algorithm
to solve (4), resulting in a multiplicative update algorithm
that incorporates our user-guided constraints.

Given the modified multiplicative NMF update equa-
tions, we outline the complete interactive separation algo-
rithm in Algorithm 1. We define the forward and inverse
short-time Fourier transform as (V, 6 V) STFT(x) and
x  ISTFT(V, 6 V), 1 to be an appropriately sized ma-
trix of ones, � is element-wise multiplication, the division

Algorithm 1 Interactive Polyphonic Separation
Procedure INTERACTIVE-POLY-SEPARATION (

x, // time-domain mixture signal
W, // pitch basis vectors (model)
Kp, // basis vectors per pitch

)
initialize: ⇤ = 0
precompute:
(V, 6 V) STFT(x)
repeat

input: user-annotated penalties
⇤ 2 RP⇥T

initialize: feasible H 2 RK⇥T
+

repeat

H  H �
W T( V

WH )

W T 1+�⇤
(8)

until convergence
for all p 2 1, . . . , P do

V̂p  V�
W(p) H(p)

WH
(9)

xp  ISTFT(V̂p, 6 V) (10)
end for

until satisfied
return: time-domain signals xp, 8 p 2 {1, ..., P}

is element-wise, and use the subscript notation (p) to pick
off the elements of W and/or H that correspond to pitch p.
At each point within the feedback-loop, the entire NMF-
based separation is re-run from scratch, displayed to the
user, and used as a starting point for further iterations.

6. RELATED WORK

There are several related works that leverage some form
of user-guidance to aid the source separation process. One
of the most similar works to our proposed approach is dis-
cussed in Ozerov et al. [8]. In this work, segmental infor-
mation indicating the time activations of particular sources
is used in a multichannel nonnegative tensor factorization
model to improve separation quality. While similar to our
proposed work, this work only allows for binary annota-
tions that are used to zero-initialize elements of H and does
not allow a user to specify a confidence or strength level.
As a result, there is no mechanism to guide the separation
process within regions where two or more sources overlap,
such as our example of Fig. 5.

Other user-guided approaches include the work of Dur-
rieu et al. [4], Lefèvre et al. [7], and Bryan and Mysore
[1, 2], which each use some form of time-frequency dis-
play to elicit user-annotations. In all such cases, however,
the interaction process is limited to separating two sound
sources at a time (as oppose to P pitches). In addition,
these works require end-users to annotate time-frequency
displays of sound, which can be difficult to interpret even
for expert users, motivating the proposed approach.



Table 1: Piano results (in dB) averaged across songs, tim-
bre, and active notes.

Kp = 1 T T+ UP UP+ U U+
SDR 12.5 13.2 9.4 11.5 9.8 11.6
SIR 19.7 22.9 15.6 21.0 15.9 21.1
SAR 16.2 16.0 15.5 14.5 15.6 14.5

Kp = 5 T T+ UP UP+ U U+
SDR 13.1 13.3 10.5 12.8 10.1 12.6
SIR 19.0 23.0 14.4 22.3 14.2 22.3
SAR 17.0 16.0 17.2 15.5 17.0 15.4

Table 2: Guitar results (in dB) averaged across songs, tim-
bre, and active notes.

Kp = 1 T T+ UG UG+ U U+
SDR 12.7 12.5 8.2 10.4 7.8 10.2
SIR 19.2 22.2 15.0 20.3 14.5 20.1
SAR 16.2 15.3 15.0 13.7 15.4 13.5

Kp = 5 T T+ UG UG+ U U+
SDR 12.8 12.6 9.6 11.5 8.7 11.2
SIR 18.2 22.4 13.5 21.1 12.3 20.4
SAR 17.1 15.3 16.6 14.6 16.6 14.3

7. EVALUATION

We built a C++ prototype user-interface similar to Fig. 1.
We then used the interface to test our proposed method on
several polyphonic piano and guitar recordings with vari-
ous pitch models. We generated the test material from five
short MIDI files, including “Mary Had A Little Lamb” by
Sarah Josepha Hale/Lowell Mason, “The Blue Danube” by
Johann Strauss, “Super Mario Bros” by Nintendo Games,
“Yesterday” by The Beatles, and “Maple Leaf Rag” by
Scott Joplin, using the 24 different synthesizers discussed
in Section 2, resulting in 120 different ground truth record-
ings. For each of the five unique songs, the user-interface
was used to initially separate each song into pitch tracks
and then interactively refine the outputs over of the course
of 30 minutes. The five user-annotations were then saved
and used to test the method across the different ground-
truth recordings and pitch models.

The BSS-EVAL metrics were then used to compute the
Signal-to-Distortion ratio (SDR), Signal-to-Interference ra-
tio (SIR), and Signal-to-Artifact ratio (SAR) to measure
the separation quality [13]. The SIR measures the level of
suppression of the unwanted pitch sources, the SAR mea-
sures the level of artifacts introduced by the separation pro-
cess, and the SDR gives an average measure of separation
quality that considers both the suppression of the unwanted
sources and level of artifacts compared to ground truth.

The results were computed for each instrument before
and after user-interaction, averaged across song and tim-
bre, for various pitch models and values of Kp. When eval-
uating the simultaneous separation of 88 different sound
sources, however, the standard approach of comparing all
combinations of the estimated sources and known sources
becomes computationally prohibitive. As a result, we take
the approach of reducing the problem into 88 two-source
evaluations that compare the separation quality of each in-
dividual pitch p vs. the remaining 87 pitches. In addi-
tion, we partition the results for active and inactive pitches

Table 3: Piano results (in dB) averaged across songs, tim-
bre, and inactive notes.

Kp = 1 T T+ UP UP+ U U+
SDR -6.5 133.9 -12.3 134.5 -2.3 135.2
SIR -79.2 61.5 -84.6 61.7 -74.2 62.1
SAR 4.9 90.0 1.8 90.3 7.3 90.7

Kp = 5 T T+ UP UP+ U U+
SDR -5.7 135.1 -11.7 135.0 -10.9 134.7
SIR -79.6 62.3 -86.3 62.0 -86.2 61.9
SAR 4.8 90.7 0.8 90.6 0.8 90.4

Table 4: Guitar results (in dB) averaged across songs, tim-
bre, and inactive notes.

Kp = 1 T T+ UG UG+ U U+
SDR 1.2 133.9 -7.4 135.5 -11.1 135.3
SIR -84.0 59.4 -91.1 60.6 -94.6 59.9
SAR 7.7 91.4 4.5 92.3 2.5 92.1

Kp = 5 T T+ UG UG+ U U+
SDR 2.7 135.1 -13.0 134.7 -13.4 134.7
SIR -83.9 60.1 -99.2 59.8 -99.4 59.6
SAR 7.7 92.1 0.0 91.8 0.0 91.8

(completely zero signals), allowing for a more detailed and
careful analysis of the results shown below. Without this
partitioning, the results are extremely skewed in favor of
the proposed method due to averaging the inactive signal
results, limiting interpretability.

The results for active pitches are shown in Table 1 for
piano and Table 2 for guitar. The results for inactive pitches
are shown in Table 3 for piano and Table 4 for guitar.
The different pitch models include: universal (U), univer-
sal guitar (UG), universal piano (UP), and each of the 24
instrument/timbre-specific models (T). Items denoted with
a plus (+) indicate user-interaction was used. Note, be-
cause of the partitioning of active vs. inactive pitches,
comparison of SDR vs. SAR vs. SIR should only be done
within like rows.

From these results, we have two initial observations.
First, we compare the results with and without interac-
tion. For active pitches, the SDR and SIR improve by
several decibels for almost all pitch models and values of
Kp. When using the timbre-based pitch model (T) for a
given set of recordings, however, there are cases where
user-interaction (T+) slightly decreases the SDR for active
pitches. For inactive pitches, the SDR, SAR, and SIR all
improve by an extremely large amount (often more than
100 dB) caused by the zero signal pitch tracks in both the
estimated and true recordings, motivating our decision to
separate the results for inactive and active pitch sets. This
shows us that 1) a vast majority of the SDR increase due
to user-interaction is caused by simply annotating inactive
pitch tracks, 2) while the user-annotations can occasion-
ally decrease the SDR for active pitches, in most cases,
user-interaction increases the SDR results for both active
and inactive pitches. This is interesting in that it demon-
strates the idea that annotating incorrectly activated notes
can improve the separation quality of all other pitches on
average.

Secondly, we can compare the results between the uni-



versal pitch model (U), the instrument-specific pitch mod-
els (UG, UP), and the instrument/timbre-specific pitch mod-
els (T). We can see that the instrument/timbre-specific pitch
models (T) perform the best, followed by the instrument-
specific pitch models (UG, UP), and then the universal
pitch model (U) as expected. When we vary the value of
Kp and incorporate user-interaction (+), however, this ef-
fect is significantly reduced or eliminated. In the case of
piano, the universal model with interaction outperformed
the timbre-based pitch model without interaction. This is
significant in that it gives hope to the use of “universal”
pitch models, which eliminates the need for specific train-
ing data for particular instruments and timbres.

Finally, because it is difficult to evaluate the sound qual-
ity of the proposed method via numerical comparison, au-
dio and video examples of our prototype can be found at
ccrma.stanford.edu/

˜

njb/research/pitch.

8. CONCLUSIONS

In an attempt to overcome common, frustrating, and limit-
ing problems in supervised non-negative matrix factoriza-
tion approaches to polyphonic single-channel source sepa-
ration, we propose an extension that allows a user to cor-
rect for errors (with a confidence value) in the separation
results by annotating a piano roll visualization of sound.
The user-annotations are mapped to linear grouping reg-
ularization parameters within a modified NMF-based al-
gorithm, and used to refine the separation estimates and
improve results. In addition, a database of piano and gui-
tar recordings was used to learn a generalized pitch model,
instrument-specific pitch models, and instrument/timbre-
specific models. A prototype user-interface was built and
used to separate several polyphonic guitar and piano record-
ings and initial results show that 1) user-interaction can sig-
nificantly increase separation quality and 2) make the use
of generalized universal pitch models more viable.
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