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ABSTRACT

Deep learning techniques provide powerful methods for
the development of deep structured projections connecting
multiple domains of data. But the fine-tuning of such net-
works for supervised problems is challenging, and many
current approaches are therefore heavily reliant on pre-
training, which consists of unsupervised processing on the
input observation data. In previous work, we have in-
vestigated using magnitude spectra as the network obser-
vations, finding reasonable improvements over standard
acoustic representations. However, in necessarily super-
vised problems such as music emotion recognition, there
is no guarantee that the starting points for optimization are
anywhere near optimal, as emotion is unlikely to be the
most dominant aspect of the data. In this new work, we
develop input representations using harmonic/percussive
source separation designed to inform rhythm and melodic
contour. These representations are beat synchronous, pro-
viding an event-driven representation, and potentially the
ability to learn emotion informative representations from
pre-training alone. In order to provide a large dataset for
our pre-training experiments, we select a subset of 50,000
songs from the Million Song Dataset, and employ their 30-
60 second preview clips from 7digital to compute our cus-
tom feature representations.

1. INTRODUCTION

Deep learning is rapidly becoming one of the most pop-
ular topics in the machine learning community, and such
approaches offer powerful methods for finding deep struc-
tured connections in data. But the success of these methods
often hinges on pre-training, or unsupervised methods that
are used to provide a starting point to perform gradient de-
scent optimization. As there is no guarantee of convexity
in these problems, finding a useful initial starting point is
paramount, as the best case scenario is generally limited to
finding a good local minima.
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In previous work, we have looked into deep learning
methods for the prediction of musical emotion [1–3]. Deep
belief networks (DBNs) were trained on magnitude spectra
observations with the goal of predicting Arousal-Valence
(A-V) coordinates, where valence indicates positive ver-
sus negative emotion, and arousal indicates emotional in-
tensity. Using these models, the individual layers were
treated as basis functions for feature extraction, and the
learned representations were shown to outperform standard
music information retrieval (Music-IR) features (e.g., mel-
frequency cepstral coefficients).

But in looking to further improve these approaches,
many questions remain in the pre-training methodology.
Unsupervised methods such as restricted Boltzman ma-
chine (RBM) pre-training reduce the dimensionality of
data based on the most prominent aspects. For instance,
very compelling results have been shown on text data,
where reducing text documents to two dimensions related
directly to document type [4]. If the goal is to build a doc-
ument type classifier, then this approach will yield an ex-
cellent starting position, but if it is document emotion we
wish to model, then such a starting point may be no better
than random. The same is true in music; if we cannot have
the expectation of learning useful domains from unsuper-
vised pre-training, then we should have low expectations
for the supervised fine-tuning.

In this new work, we develop DBN input represen-
tations specifically designed to allow the model to learn
about rhythm and melodic contour in an unsupervised
fashion. Learning to understand these phenomena nec-
essarily requires the ability to parse musical events, and
we therefore begin with beat tracking, such that the mod-
els can be provided with a history of feature snapshots at
musically relevant time points. In all of our feature ex-
traction, we utilize harmonic/percussive source separation
(HPSS) [5], allowing us to deconstruct the spectrum, sep-
arating out melody and harmonic sources from drums and
percussive sources.

With the percussive spectra, we compute a beat syn-
chronous percussion timbre feature, allowing us to parse
different drum sounds and construct rhythm models by an-
alyzing a history of samples. For the harmonic spectra, we
compute a 48-dimensional beat synchronous chroma rep-
resentation that allows the ability to track melodic contour
over multiple octaves. In addition, we investigate the use
of the 2-d FFT of beat synchronous chroma over four beat



segments, providing a shift (transposition) invariant feature
for melodic contour that has been shown to be successful
in cover song recognition [6].

In order to provide a reasonable dataset for pre-training
we employ a set of 50,000, 30-60 second audio clips from
7digital that were randomly selected from the Million Song
Dataset [7]. The DBNs are fine-tuned for predicting mu-
sical emotion using a publicly available dataset of time-
varying musical emotion data [8].

2. BACKGROUND

Deep learning and DBN based feature learning is a topic
of expanding attention in the machine listening commu-
nity [9]. Lee et al. was one of the first to apply deep
belief networks to acoustic signals, employing an unsuper-
vised convolutional approach [10]. Their system employed
PCA to provide a dimensionality reduced representation of
the magnitude spectrum as input to the DBN and showed
slight improvement over MFCCs for speaker, gender, and
phoneme detection.

Hamel and Eck applied DBNs to the problems of mu-
sical genre identification and autotagging [11]. Their ap-
proach used raw magnitude spectra as the input to their
DBNs, which were constructed from three layers and em-
ployed fifty units at each layer. The system was trained
using greedy-wise pre-training and fine-tuned on a genre
classification dataset, consisting of 1000, 30-second clips.
The learned representations showed reasonable increases
in performance over standard feature representations on
both genre recognition and autotagging. The authors have
also found significant improvement in moving to multi-
timescale representations [12, 13].

Battenberg and Wessel applied conditional DBNs in
modeling drum patterns in recent work, which incorpo-
rated an autoregressive time-varying restricted Boltzman
machine model that can be used for generating sequences
[14]. One downside of the conditional RBM for the appli-
cation discussed in this new work is that the input history
(past samples) only contributes to the bias term between
the visible and hidden layer, and therefore the full informa-
tion about rhythm may not be available in the upper hidden
model layers.

3. DATA COLLECTION

In this paper, we use a universal background model style
pre-training, initializing our models on a dataset of 50,000
songs, followed by fine-tuning on a 240 song labeled
dataset of 15-second clips annotated with A-V emotion.

3.1 Unsupervised Pre-Training Data

For the unsupervised pre-training phase we seek to employ
a large dataset in order to expose our model to a wide dis-
tribution of musical data. As such, we select a subset of
50,000 tracks from the Million Song Dataset (MSD). As
the MSD includes only proprietary features, and we seek to
handcraft original domains, we employ their 30-60 second

preview clips from the 7digital API 1 . In order to ensure
quality audio, we first download clips for the entire MSD
and filter out any songs with less than 128 kbps MP3 bi-
trate, lower than 22050 Hz sampling rate, clips shorter than
30 seconds, clips that were found to be silent, and ones that
had bad frames or file corruption issues.

3.2 Supervised Fine-Tuning Dataset

For the supervised musical emotion training dataset, we
employ a corpus annotated in previous work using Ama-
zon’s Mechanical Turk (MTurk) [8]. The dataset contains
240, 15-second song clips that were sampled from a larger
corpus that was annotated at 1-second intervals using a
game-based approach. Each song clip was selected to en-
sure a uniform distribution was provided across the four
quadrants of the A-V space. The goals of the MTurk activ-
ity were to assess the effectiveness of the game and to de-
termine any biases created though collaborative labeling.
Overall, the datasets were shown to be highly correlated,
with arousal r = 0.712, and valence r = 0.846. The
MTurk dataset is available to the research community 2

and is densely annotated, containing 4, 064 label sequences
in total (16.93± 2.690 ratings per song).

4. ACOUSTIC REPRESENTATIONS

As previously discussed, learning to understand musical
attributes, such as rhythm and melody, necessarily requires
the ability to parse musical events. As such, the success of
these methods hinges on our ability to accurately beat track
music audio. All acoustic representations developed in this
work employ harmonic/percussive source separation. With
beat tracking, HPSS allows us to find the best onsets pos-
sible using percussive spectra. With rhythm features, it al-
lows us to isolate just percussion (or percussive contribu-
tions of other pitched instruments), and to create features
based on the timbre of percussion on the beat. Finally, with
pitch features, it allows us to isolate harmonic (pitched)
sources when creating our chroma representations. Fig-
ure 1 shows the feature extraction process for each stage
in our processing. Beat tracking is shown in the center,
and percussion and pitch features are on the left and right,
respectively.

4.1 Harmonic/Percussive Source Separation

As the time/frequency considerations are different for each
of our feature extraction chains (i.e., beat tracking, pitch,
percussion timbre), we must perform HPSS three times for
each of our 50,000 pre-training songs. As a result, we elect
to use an efficient median filtering based approach [5]. The
general idea of HPSS is that harmonic signals correspond
to horizontal lines in the spectrogram (i.e., Fourier series)
and percussive signals correspond to vertical lines (i.e., im-
pulses). In Figure 2, we show a simple audio example of a
guitar and drums mix.

1 http://developer.7digital.net/
2 http://music.ece.drexel.edu/research/emotion/moodswingsturk
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Figure 1. Feature extraction process for percussion timbre
(left), beat detection (center), and pitch chroma represen-
tations (right).
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Figure 2. Original audio input spectra.

Median filtering based HPSS performs two passes of
median filtering (vertically and horizontally) in order to
generate spectral masks, and is therefore extremely effi-
cient. Figure 3 shows the HPSS separation for the spectro-
gram shown in Figure 2.

4.2 Beat Tracking

Our beat tracking approach begins with an STFT with a 64
frame hop (∼ 3msec) to provide maximal time resolution,
followed by the application of a 128 bin mel-spaced filter
bank that provides vertical smoothing in the spectrum, thus
making percussive onsets more prominent. Following the
filter bank, the onset profile is computed via a multidimen-
sional Laplace filter, and the filter means are used in an
Ellis-style beat tracker using librosa 3 [15].

3 https://github.com/bmcfee/librosa
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Figure 3. Harmonic percussive source separation.

4.3 Percussion Timbre

In order to train a model to understand rhythm, we extract
a percussion timbre feature. This feature is shown in the
left column of Figure 1, where we first extract the STFT
with a window size of 512 samples (∼ 23msec) and hop
size of 256 (∼ 11.6msec). We then compute HPSS, fol-
lowed by MFCCs of the percussive spectra, providing a
percussion timbre feature (e.g., to differentiate the boom
sound of a bass drum vs. the hit of a snare). We then beat
aggregate this feature such that the DBN is provided with
event-driven feature updates to learn rhythmic styles. As
shown in Figure 4, we can parse rhythm visually.
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Figure 4. Beat synchronous aggregation of mel-frequency
cepstral coefficients computed from the percussive spec-
trogram (percussion timbre).

4.4 Pitch Chroma

Following a similar pattern to the percussion timbre, we
begin our chroma representation with HPSS as well, but
with a much larger STFT window size. Here we use a
4096 (∼ 186msec) window in order to provide reasonable
frequency precision on bass frequencies. Next, we apply a
magnitude constant-Q transform (CQT) filter bank starting
at G2 (98Hz), the first CQT filter that fits comfortably into
our STFT representation, and spanning four octaves up to
F]6/G[6 (1479.98). Figure 5 displays our 48-dimensional
chroma representation.

To learn a model of how the chroma evolve, we will
need to present the DBN with multiple frames, and we
therefore elect to center those event around beats, as we
can have a reasonable expectation of a correlation with
note onsets. This also greatly reduces the number of train-
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Figure 5. Four octave pitch chroma.

ing frames in our dataset, making the approach more com-
putationally feasible. Figure 6 shows the beat aggregation
of our chroma feature.
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Figure 6. Beat synchronous chroma.

4.5 Chroma 2-d FFT

For our DBN input representation, we investigate using the
magnitude 2-d FFT of our beat synchronous chroma rep-
resentation. This feature was previously investigated in
the realm of cover song detection, where it was found to
perform well using 75-beat patches, providing shift (trans-
position) and time invariant properties for melody within
a song [6]. Here we shorten this observation to just four
beats, with the goal of obtaining shift/transposition invari-
ance, but still retaining time information. Figure 7 shows
this feature, where it is computed for each shift of a four
beat window.
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Figure 7. 2-d FFT of beat synchronous chroma.

5. DEEP BELIEF NETWORKS

A trained deep belief network shares an identical topology
to a neural network, though they offer a far-superior train-
ing procedure, which begins with an unsupervised pre-
training that models the hidden layers as restricted Boltz-
man machines (RBMs) [4, 16, 17] . A graphical depiction
of our first layer RBM is shown in Figure 8, which uses
four beat synchronous frames of observations in the input.
An RBM is a generative model that contains only a single
hidden layer, and in simplistic terms they can be thought
of as two sets of basis vectors, one which reduces the di-
mensionality of the data and the other that reconstructs it.
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Layer
Features

Hidden
Layer

W

•••

Figure 8. A restricted Boltzman machine with multiple
beat observations.

RBMs are Markov random fields (MRFs) with hidden
units, in a two layer architecture where we have visible
units v and hidden units h. During pre-training, we learn
RBMs “greedily,” where we learn them one at a time from
the bottom up. That is, after we learn the first RBM we
retain only the forward weights, and use them to create the
input for training the next RBM layer.

For our first layer RBM we employ a Gaussian-
binomial RBM, where the visible data is represented as
a Gaussian distribution. The advantage of this representa-
tion over the standard binomial-binomial is that a sigmoid
function is not applied during inference when estimating
the visible layer from the hidden. With the standard bino-
mial units, most visible values are forced to 0 or 1,

p(vi = 1|h) = σ(bi +
∑
j

wijhj), (1)

where the visible layer is v ∈ R1×I , the hidden layer h ∈
R1×J , and the model has parameters W ∈ RI×J , with
biases c ∈ R1×J and b ∈ R1×I .

The Gaussian-binomial RBM allows a more continuous
range,

p(vi|h) = N (bi +
∑
j

wijhj , 1). (2)

During our greedy-wise pre-training we use Gaussian-
binomial RBMs at the first layer, which presents continu-
ous data, but all subsequent layers use standard binomial-
binomial RBMs.

For the Gaussian-binomial RBM, we have an energy
distribution of the form,

E(v,h) =
∑

i∈visible

(vi − bi)2

2
−

∑
j∈hidden

cjhj −
∑
i,j

vihjwij ,

(3)
and the standard binomial-binomial RBM has an energy
function of the form,

E(v,h) = −
∑

i∈visible

bivi−
∑

j∈hidden

cjhj−
∑
i,j

vihjwij . (4)

As in the typical approach to deep learning, after pre-
training we form a multi-layer perceptron using only the
forward weights of the RBM layers. As our goal is to learn
feature detectors for a regression problem, we lastly attach
a linear regression layer and report the prediction error for
fine-tuning as the mean squared error of the estimators. We



trained our DBNs using Theano, 4 a Python-based package
for symbolic math compilation.

6. EXPERIMENTS AND RESULTS

In the following experiments, we investigate employing
DBNs for rhythm and melody feature learning. For each
DBN, we use shrinking layer sizes, where layer 0 contains
75 nodes, layer 1 contains 50 nodes, and layer 2 contains
25 nodes. The goal with this approach is to best take ad-
vantage of the dimensionality reduction power of RBMs.

For our pre-training dataset, we use the 50,000 7dig-
ital preview clips described in Section 3.1, with beat syn-
chronous features that are represented by taking every shift
of a 4 beat window, and vectorizing the input as shown in
Figure 8. For each feature type, we show the pre-training
visible data dimensionality and total number of examples
below in Table 1.

DBN Input Number of
Model Domain Dimensionality Pre-Training Examples

Rhythm 80 4, 645, 595
Pitch Chroma 192 4, 645, 526
2-d FFT Chroma 384 4, 495, 526

Table 1. DBN pre-training Data

Pre-training epochs of 5, 10, 20, and 50 are investigated
for all feature types with a learning rate of 10−5. The
best validation scores were found for 10 epochs with both
the chroma and 2-d FFT of chroma, and 50 epochs with
the percussion timbre representation. For each pre-trained
model, we perform gradient descent back propagation fine-
tuning for each fold, where for each input example xi, we
train the model to produce the emotion space parameter
vector yi,

yi = [µa, µv]. (5)

In performing fine-tuning we note that our DBNs are
beat-synchronous, but our labeled data is annotated at one-
second intervals. In order to fine-tune our DBNs to predict
emotion, we use linear interpolation to estimate the val-
ues of emotion on the beat. However, since we seek to
compare this method to that of previous work, it neces-
sarily must be evaluated on the second-by-second data test
set. Therefore, after DBNs are trained and layer-wise fea-
tures are computed, we then aggregate DBN features over
the past 1-second, as is done with the standard feature do-
mains, providing features at the same rate as the original
labels.

We evaluate these learned representations in the con-
text of multiple linear regression (MLR), as we have in-
vestigated in prior work [18–20], where we develop re-
gressors to predict the parameterization vector yi of a two-
dimensional Gaussian in A-V space,

yi = [µa, µv, σ
2
aa, σ

2
vv, σ

2
av]. (6)

4 http://deeplearning.net/software/theano/

In all supervised experiments, the model training is
cross-validated 5 times, dividing the dataset into 50%
training, 20% verification, and 30% testing. To avoid the
well-known album-effect, we ensured that any songs that
were recorded on the same album were either placed en-
tirely in the training or testing set. Note, for three songs
in the dataset, the beat tracker returned less than four beats
in the labeled portion of the song, and as a result they had
to be removed from the sets. Those songs are IDs: 2996,
5232, 6258. We post updated results for standard features
over previous work in Table 2, and note that their removal
leaves the results nearly unchanged [3].

As in previous approaches, we use Euclidean dis-
tances to evaluate our A-V mean predictions in a normal-
ized space (i.e., axes bound between -0.5 and 0.5), and
Kullback-Liebler divergences to analyze our Gaussian pre-
dictions. We note a slight difference in the KL divergence
calculation from our previous work,

KL(p||q) =
1

2

(
log
|Σq|
|Σp|

+ tr(Σ−1q Σp)+

(µq − µp)T Σ−1q (µq − µp)− d
)
, (7)

where in previous work we had omitted the 1
2 multiplier

term (see [20]).

Feature Average Mean Average KL
Type Distance Divergence

MFCC 0.140± 0.004 0.642± 0.069
Chroma 0.182± 0.005 1.654± 0.143
Spectral Shape 0.153± 0.005 0.755± 0.074
Spectral Contrast 0.139± 0.005 0.647± 0.072
ENT 0.151± 0.005 0.700± 0.079

Table 2. Emotion regression results from previous work
for fifteen second clips.

Results for the different DBN feature types are shown
in Table 3. For each learned feature type, we investigate
that feature alone, as well as that feature in combination
with the others. As we pull the spectrum apart with HPSS
to learn the different DBN features, it makes sense that we
should put the two domains back together for prediction.
The rhythm feature, which uses the percussion timbre as
input, is the best single performing feature at a mean error
of 0.128, and the best result overall is when combining the
pitch and 2-d FFT of chroma at 0.113 mean error.

7. DISCUSSION AND FUTURE WORK

This work presented a novel approach for training deep be-
lief networks for understanding rhythm and melody. The
fine-tuned DBN features easily outperformed any other
singular existing representation, and the combination of
the rhythm and melody DBN features outperformed any
other system previously tested on this dataset.

In moving forward with deep learning approaches that
require pre-training, we believe that it should be based
around input observations from which high level musical



DBN DBN Pre-training Model Error Fine-tuning Model Error
Layer Feature Type Mean Distance KL Divergence Mean Distance KL Divergence

Layer 0 Rhythm 0.146± 0.007 0.681± 0.083 0.139± 0.009 0.652± 0.085
Layer 1 Rhythm 0.148± 0.007 0.708± 0.086 0.132± 0.013 0.598± 0.094
Layer 2 Rhythm 0.156± 0.006 0.754± 0.086 0.128± 0.016 0.582± 0.104

Layer 0 Pitch 0.160± 0.004 0.786± 0.105 0.143± 0.015 0.678± 0.122
Layer 1 Pitch 0.161± 0.005 0.792± 0.086 0.131± 0.022 0.618± 0.149
Layer 2 Pitch 0.165± 0.006 0.815± 0.095 0.129± 0.024 0.608± 0.153

Layer 0 2-d FFT Pitch 0.171± 0.007 0.889± 0.103 0.148± 0.014 0.716± 0.132
Layer 1 2-d FFT Pitch 0.175± 0.007 0.926± 0.116 0.137± 0.022 0.669± 0.166
Layer 2 2-d FFT Pitch 0.175± 0.006 0.915± 0.112 0.129± 0.024 0.620± 0.170

Layer 0 Rhythm+Pitch 0.145± 0.006 0.685± 0.082 0.129± 0.012 0.604± 0.091
Layer 1 Rhythm+Pitch 0.147± 0.007 0.709± 0.078 0.117± 0.019 0.534± 0.122
Layer 2 Rhythm+Pitch 0.153± 0.007 0.743± 0.089 0.114± 0.022 0.514± 0.125

Layer 0 Rhythm+2-d FFT Pitch 0.147± 0.005 0.707± 0.075 0.131± 0.013 0.606± 0.098
Layer 1 Rhythm+2-d FFT Pitch 0.151± 0.006 0.739± 0.077 0.119± 0.019 0.552± 0.128
Layer 2 Rhythm+2-d FFT Pitch 0.156± 0.007 0.763± 0.082 0.113± 0.022 0.514± 0.131

Table 3. Emotion regression results for Mechanical Turk annotated clips. Rhythm features use percussion timbre as input,
pitch features use beat synchronous chroma, and 2-d FFT pitch features use our four beat 2-d FFT of chroma representation.
Feature combination results are all early fusion based (concatenation of dimensions).

ideas like rhythm, melody, and harmony can easily be ex-
tracted. Furthermore, as understanding these ideas nec-
essarily requires the presentation of time-series data, fu-
ture approaches should further investigate the best way to
present this information to the first DBN layer.

In continuing this work, we wish to further analyze the
optimal number of beat synchronous frames to present to
the DBN input, as well as investigating smaller units of
musical events, such as eighth or sixteenth note feature up-
dates. It would also be interesting to apply these learned
features in the context of a graphical model such as a con-
ditional random field, as investigated in prior work [21].
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