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ABSTRACT 

Accurate performance timing is associated with the per-
ceptual attack time (PAT) of notes, rather than their phys-
ical or perceptual onsets (PhOT, POT). Since manual an-
notation of PAT for analysis is both time-consuming and 
impractical for real-time applications, automatic tran-
scription is desirable. However, computational methods 
for onset detection in audio signals are conventionally 
measured against PhOT or POT data. This paper de-
scribes a comparison between PAT and onset detection 
data to assess whether in some circumstances they are 
similar enough to be equivalent, or whether additional 
models for PAT-PhOT difference are always necessary. 
Eight published onset algorithms, and one commercial 
system, were tested with five onset types in short mono-
phonic sequences. Ground truth was established by mul-
tiple human transcription of the audio for PATs using 
rhythm adjustment with synchronous presentation, and 
parameters for each detection algorithm manually adjust-
ed to produce the maximum agreement with the ground 
truth. Results indicate that for percussive attacks, a num-
ber of algorithms produce data close to or within the lim-
its of human agreement and therefore may be substituted 
for PATs, while for non-percussive sounds corrective 
measures are necessary to match detector outputs to hu-
man estimates. 

1. INTRODUCTION AND MOTIVATION 

This research forms part of a larger project involving 
evaluation of controller hardware and parameter map-
pings in the context of real-time physical modeling syn-
thesis [10]. Thus a specific device (e.g. Microsoft Ki-
nect) will have its control outputs (e.g. performer’s 2D 
hand position) mapped onto synthesis model parameters 
(e.g. plectrum position in relation to a string). A number 
of techniques for controller evaluation have been pro-
posed, e.g. [9], including qualitative and quantitative 
methods. One method of evaluation to be used will ask 
the performer to match as accurately as possible a given 
audio target phrase using a given combination of control-
ler, mapping and synthesis configuration. The target and 
the attempt will then be compared to assess how well the 

task was completed, in addition to other qualitative as-
sessments. Given that a number of participants, control-
lers and targets may be used, it would be helpful to com-
plete the performance analysis computationally rather 
than rely on expert markup of the audio. While in some 
situations it would be possible to use the timing of con-
trol data such as MIDI NoteOn events directly, with per-
haps a fixed latency, here the timing of a note or onset 
may vary significantly for a given control value depend-
ant on other parameters. For example, the position of a 
plectrum along a string, pluck release threshold, current 
string displacement and velocity and tension (pitch) will 
all impact upon the distance from the string the plectrum 
will need to reach before releasing the string and generat-
ing the onset. This indirect control over event timing 
means that measuring the audio output is necessary. Pre-
vious work on onset detection generally does not consid-
er timing accuracy in detail, justifiably prioritising detec-
tion rates (type 1 and type 2 errors) and using a temporal 
tolerance between ground truth and detections beyond 
which an onset is said to have been missed [3]. Here 
however, the detailed timing of the onsets is critical. 

The measure of two performances being “in time” is a 
complex issue with a large number of contextual factors, 
but in this case the target and performance are short mon-
ophonic solo instrument phrases with a fixed tempo and it 
was felt that this case would be simple enough to be stud-
ied. More expressive timing feature are ignored and PAT 
synchronous events are considered the ideal. 

2.  ONSET TIME  

2.1 When is a Note? 

Three potential onset times are described in published 
work. Physical onset time (PhOT) is usually considered 
to be the audio signal first rising from zero, perceptual 
onset time (POT) the time at which a human listener can 
first detect this change and finally perceptual attack time 
(PAT) is the “perceived moment of rhythmic placement” 
[15], or rhythmic centre, and is similar to the p-centre 
concept in speech analysis [13]. A “correct” performance 
therefore places the events’ PATs appropriately, rather 
than PhOTs or POTs. 

While most studies have considered PAT to be a spe-
cific time, Wright proposes that PAT is distributed over a 
finite time period and should be considered as a probabil-
ity density function describing the likelihood of a listener 
hearing the PAT at each time point (PAT-pdf) [15]. This 
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could account for variation between listeners and by indi-
viduals in repeated trials and implies that there will be 
span of time over which an event can remain in musical 
time with another. This spread of time values is of inter-
est here, since this governs how well-localized the PAT 
for a particular sound is and how accurately a detection 
algorithm must match the ground truth. 

2.2 PAT Measurement 

2.2.1 Measurement Methods 

PAT can be measured in a number of ways as identified 
in [4, 7, 13, 14, 15]. The intrinsic PAT of a sound is typi-
cally not measured directly, but rather the delta-PAT 
(!PAT) [7], calculated via comparison against a refer-
ence tone. If the reference sound is very short in time, its 
PAT will be very close to its PhOT and so the target 
sound PAT can be estimated from the !PAT. PAT must 
be expressed relative to a zero point, usually either the 
sound’s PhOT or the offset from the beginning of the au-
dio file where a sequence is being considered [15]. 

The most common measurement is rhythm adjust-
ment, where two sounds are aligned by the listener until 
they either appear synchronous (sound together) or isoch-
ronous (sound evenly spaced rhythmically, alternately 
presented) [14]. Both synchronous and isochronous 
methods have problems (such as event fusion in synchro-
nous presentation) while isochronous cannot be used 
where the PATs for a musical sequence are to be meas-
ured, rather than isolated events. Likewise Villing’s phase 
correction response (PCR) method [14] is unsuitable for 
sequences and so the synchronous method was used here.  

A tool was created for participants to align a reference 
sound against a series of test sounds containing a number 
of onsets (Figure 1). While the reference sound should be 
short, Wright found that if it is too short there are prob-
lems for accurate alignment. He also found that a refer-
ence click based on matching the spectrum of the test 
sound aided PAT alignment [15]. In our experiment, the 
reference was a simple sine tone, which is the same as the 
target we will use for the performer to follow, which will 
include pitch changes at a later stage.  Wright gave users 
control over amplitudes to help avoid fusion of the two 
events and this was included here. Our tool also allowed 
the user to change the pitch of the reference, again to help 
limit fusion ([4] suggests frequency independence of 
PAT). Gordon [7] indicated that subjects had difficulty 
matching sounds with very different attack times, and so 
a user variable attack time was included to ameliorate 
this, although clearly this has the potential to add uncer-
tainty to the ground truth and so was limited to <127ms. 

The participant can choose a sound, select any part of 
it to be looped and place a marker on the sound that trig-
gers the reference tone. The marker can be dragged with 
the mouse and fine-tuned by changing the value in a 
number box, in samples at 44.1kHz sample rate. Thus the 
location of the reference can be adjusted by ~0.02ms. 
Participants were instructed to adjust this value until the 
test event and reference sounded musically synchronous. 

The visual display is to aid users in finding physical on-
sets quickly before searching those regions for perceptual 
alignment. For each event the tool recorded the PAT and 
the other user settings so that these could also be analysed 
if necessary. Participants were each given a training ses-
sion (in addition to a written manual) and asked to com-
plete the task using headphones. 

 

Figure 1. Software tool for ground truth collection. 

2.2.2 Test Sounds 

Five test sounds were used, four were synthesized with 
the IRCAM’s Modalys software [6] and the performances 
made deliberately imperfect, so that each event in the se-
quence would not be identical and the timing of events 
not strictly metrical. The sequences provide a set of varia-
tions in timbre and attacks as one might expect in an in-
strumental performance. The dynamics were generally 
stable but with occasional deviations. The models were: 
plucked string (un-damped), legato bowed string, struck 
plate (un-damped) and a single reed-tube. Only in the 
reed sound was complete silence reached between onsets 
and not for all of those. The final sound was a sine tone, 
which is used as the target for performance matching, in 
this case precisely metrical. These beeps were 95ms long 
(5ms attack, 90ms decay) with a 500ms inter-PhOT inter-
val. Each sound was normalized, had a fundamental fre-
quency of 130.81Hz (an octave below middle C) and con-
tained 16 onsets, providing 80 events in total. 

2.2.3 Ground Truth Results 

Nine participants completed the task for all 80 events and 
so each sound file had 144 marked-up onsets and there 
were 720 data points in total. All participants had some 
musical experience, typically in ensembles or bands 
and/or formal performance training. Where data seemed 
particularly erroneous, such as a missing or duplicated 
event, or in isolation extremely different to others , partic-
ipants were asked to review and double-check their data 
to ensure they were content with the values originally 
supplied, and, only if not, amend them.  As with other 
studies, participants reported that the task was challeng-
ing, particularly with the non-percussive sounds, while 
one reported that (in the reed case) there were a range of 
time values over which the reference and test sound were 



  
 

equally “in time”, and that they had simply tried to be 
consistent in where they placed the reference sound. 
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Figure 2. Scatterplot of !PAT ground truth data. 

 
To group the results of !PAT values across different 
events within a particular sequence, the mean !PAT val-
ue was taken for each event and then each !PAT value 
replaced by its distance from that mean. Figure 2 shows 
scatter plots of these mean-shifted !PAT values (with 
vertical jitter to improve visibility). As expected, shorter 
attacks gave rise to more tightly clustered !PAT times, 
although outliers remain, while the longer attacks pro-
duce more widely spread results, as the location of the 
note is more ambiguous. We also expect smaller variation 
in the beep sounds since each event is almost identical, 
differing only in the phase of the sine in each. The plucks 
show greater spread than the other percussive attacks, 
again expected due to the more complex articulation: a 
double attack of the initial plectrum impact on the string 
followed rapidly by the release of the string creating the 
note (Figure 3). The time between impact and release was 
typically between 20ms and 40ms, averaging 23ms. The 
audio files were also annotated for PhOT for comparison 
with !PAT and onset detector times. For the percussive 
attacks this was straightforward as in each case there 
were discontinuities in the signal at the point where each 
new event began and which could be found through visu-
al inspection. In the case of the pluck sounds, both the 
impact and string release times were noted. For the reed 
sound, onsets starting from silence were similarly clear, 
while others were estimated from the inflection point in 
amplitude between the decay of one note to the beginning 
of the next. The bow sound was particularly difficult and 
required inspection of the sonogram in addition to the 
time domain signal and PhOT was estimated from disrup-
tion to the harmonic structure as one event ends and the 
other begins. Table 1 shows the mean and standard devia-
tion offsets from !PAT to PhOT for each sound, where 
the pluck sound is using the string release time. All apart 
from pluck are positive values as expected, where "PAT 
is later than PhOT. As can be seen from the table, "PAT 
appears very close to PhOT for the short attacks, although 
with some variation as reflected in Figures 2 and 4. Inter-

estingly pluck is very close to the string release point, in 
fact slightly earlier, suggesting an effect of the preceding 
impact bringing the PAT forward. Given the close 
agreement between mean "PAT and PhOT for the short 
attacks, this is indicates that onset detectors which meas-
ure PhOT should provide timing data close to "PAT. For 
the non-percussive attacks "PAT is significantly later 
than PhOT, and so the utility of onset detectors will de-
pend on whether they remain close to PhOT or are simi-
larly delayed. 
 

impact release 

23ms 

 
Figure 3. Section of pluck waveform showing decay of 
previous event followed by initial plectrum impact and 
release of string. 
 

 
Table 1. Mean and standard deviation for "PAT-PhOT 
distance. 
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Figure 4. Mean !PAT standard deviations. 

Figure 4 shows the # across events for !PAT, indicating 
how consistently human listeners can determine !PAT 
for each sound (against the reference tone). Thus for 
bowed sounds, ±# gives a spread of ~42ms and for the 
sine beep ~11.0ms. While only bow and pluck passed 
Shapiro Wilks normality tests, over 70% of data for each 
sound were within ±# of the mean. The limit of discrimi-
nation of temporal events is typically considered to be 
~10ms [4]. Wright logically proposed a system for auto-
matic mark-up of audio using onset detection followed by 

Sound Bow Pluck Reed Strike Beep 
Mean (ms) 23.52 -0.46 51.21 3.48 2.08 
# (ms) 22.83 10.64 18.46 7.42 5.91 



  
 

a PAT model to correct for the difference between PhOT 
and PAT [15]. However, if the time differences between 
the ground truth and onset times reported by onset detec-
tors are within similar limits to human listeners it indi-
cates that these may be used directly to provide PAT data 
without adding a specific PAT-PhOT model. 

3. ONSET DETECTION 

3.1 Onset Detection Algorithms 

Onset detection algorithms are typically based on PhOT 
or POT, with a time tolerance to decide successful detec-
tions. The task usually comprises three main steps: (op-
tional) pre-processing; generation of an onset detection 
function (ODF) that indicates the probability of an onset 
at each moment in time; and peak selection across the 
ODF. While some methods are psychoacoustically moti-
vated, differences between PhOT, POT and PAT are usu-
ally ignored. Here those differences are important if an 
onset detector is to provide "PAT estimates. 

Several comparative studies of the performance of on-
set detection algorithms have been published, while the 
MIREX event compares a number of new algorithms an-
nually. Studies, including [1, 3, 5], compare the rates of 
false positives and false negatives against a selection of 
test sounds. Collins [3] compared 16 onset detection al-
gorithms with NPP (non-pitched percussive) and PNP 
(pitched non-percussive) monophonic sounds, finding 
that for the NPP case, a spectral difference function based 
on work by Klapuri [8] was most effective, while for the 
PNP case all algorithms performed less well, with a phase 
deviation method being the most successful [1]. While 
comparing algorithms against PhOT rather than PAT, 
Collins used detection tolerances of 50ms for PNP sounds 
and 25ms for NPP, which compare well with the figures 
shown in Figure 4 [3]. 

3.2 Onset Measurement 

3.2.1 Implementation 

A Max patch was developed to run a number of onset de-
tection algorithms against the test audio. This displays the 
ODF for each detector as well as the detection hits. Ini-
tially 8 algorithms were tested, including two widely 
known Max objects bonk~ and sigmund~, both later re-
jected as unable to provide sufficiently accurate results. 
To compare results with a commercial onset detection 
system, the audio software Melodyne 3.21 was also in-
cluded in the experiment. For each sound Melodyne’s 
percussive mode detection was used, as this outperformed 
the other options, even on non-percussive sounds, and it 
should be noted that no detection parameters were user 
adjusted in this case. 

A modified2 version of the aubioonset~ MSP object 
by Andrew Robertson [11], itself a port of algorithms im-

                                                             
1 http://www.celemony.com/ 
2 Modified to include audio rate output of the onset detec-
tions as 1-sample delta functions, rather than Max bangs, 
to improve timing accuracy.  

plemented by Paul Brossier [2] was used for high fre-
quency content (HFC), energy based, modified Kullback-
Leibler (MKL), complex, spectral difference (SD) and 
phase deviation (PD) functions, the equations for which 
can be found in the literature [2]. In each case the FFT 
size was 2048 with a hop of 128 samples. While there are 
more recent algorithms, these were chosen as being wide-
ly available and frequently referred to in the literature as 
the basis for other algorithms or tests. Due to difficulties 
with non-percussive attacks, two adaptations were im-
plemented as Max patches – weighted phase deviation 
(WPD) and spectral flux (SF) following Dixon [5], the 
latter rectifying the difference between frames in SD, im-
portant in distinguishing between onsets and offsets. 
Peak-picking for WPD and SF involved taking the differ-
ence between the outputs of two moving average filters 
(using average~) and passing the result to a Schmitt trig-
ger (thresh~).  One filter was coarse providing an adap-
tive threshold (averaging over ~130ms), the other fine to 
smooth the ODF (typically ~20ms). 

3.2.2 Comparison with Ground Truth 

Detection function parameters were adjusted to achieve 
as close as possible to 100% success rate, i.e. 0 false posi-
tives (FP) or false negatives (FN). This was achieved for 
all the percussive attacks with all detectors, but the reed 
and bow sounds proved more problematic. Figure 5 
shows the mean distance of each algorithm from the 
ground truth for the percussive attacks. The error bars in-
dicate one standard deviation above and below the mean, 
the first set being those of the ground truth.  

  

 

Figure 5. Mean distance from ground truth for each al-
gorithm, percussive attacks (positive values are later). 

As can be seen in the figure, HFC and Energy are typical-
ly late detectors, and fall outside the standard deviation 
(#) ranges for the ground truth, while Melodyne per-
formed very well across all three percussive attacks, pre-
empting the !PAT values (PhOT earlier than PAT) as 
expected. In fact comparison with the PhOT data shows 
that Melodyne very accurately tracked PhOT (e.g. -0.1ms 
average distance for the beep), performing slightly worse 



  
 

with pluck as it marked the impact time rather than string 
release for two events. Strike and beep across all the de-
tectors show relatively consistent offsets from the ground 
truth, albeit varying by sound and detector, the # values 
are all < 3ms. For pluck, HFC, Energy, WPD and Melo-
dyne achieved a # less than the ground truth.  

To decide whether an onset detector can be used as a 
!PAT measurement tool we must define how closely the 
outputs of the detector must correspond to the ground 
truth. Table 2 shows a summary of each detector against 
each percussive attack for three simple tests. The first test 
(a) is simply whether the standard deviation of the detec-
tor output is less than that of the ground truth – not in it-
self sufficient, but indicative of relative stability. The se-
cond (b) and third (c) state whether combinations of the 
detector mean and standard deviation lie within limits of 
the 1 or 2 standard deviations of the ground truth: 

( µD +! D ) < !GT                                    (1) 

( µD + (2 !! D )) < (2 !!GT )                                    (2) 

where µD is the detector mean deviation from ground 
truth, #D and #GT the detector and ground truth standard 
deviations respectively. Equation 1 implies (for normal 
distributions) that we expect ~64% of detector values to 
lie within one standard deviation of the ground truth 
mean, changing to ~95% of detector outputs within two 
standard deviations of ground truth mean in equation 2. 
 

  
Table 2. Onset detector summary for percussive attacks.  
 
 As can be seen in Table 2, Melodyne passed each test for 
each percussive attack, indicating that it is likely to pro-
vide a useful equivalent to !PAT data, while WPD is ef-
fective for beep and pluck, and MKL for strike. 

With the reed sounds several algorithms conflated on-
set and offsets, with Complex, SD, MKL and PD often 
showing stronger peaks, sometimes double peaks, on off-
sets in the detection function (see Figure 6), making their 
FN rate unacceptably large1 . Melodyne also suffered 
from offset conflation with the reed sound, although the 
detection function could not be examined. As expected, 
                                                             
1 Testing with a single clarinet sample indicated that these 
algorithms suffer offset conflation there also, rather than 
this being a product of the physical model synthesis. 

the half-wave rectification introduced in the SF algorithm 
eliminated this problem, with offset peaks significantly 
lowered, as did WPD by shaping the response by ampli-
tude. The remaining detectors were able to provide zero 
FN and FP rates, and for HFC, SF and WPD with # less 
than the ground truth. All means were delayed with re-
spect to the !PAT ground truth and none were contained 
within ±# of the ground truth (see Figure 7). 
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Figure 6. Complex onset detection function over the du-
ration of a single reed event, showing large offset peaks. 

 

 
 

Figure 7. Mean distance from ground truth for selected 
algorithms, reed sound. 
 

 
 

Figure 8. Mean distance from ground truth for selected 
algorithms, bow sound. 
 
The bowed sound was most problematic (Figure 8), with 
only Melodyne achieving 0 FN and FP rates, while others 
(e.g. HFC) resulted in an FP rate of ~33% if adjusted to 
zero FN rates. SF had one FP with rectification off - i.e. 
as SD but with the dual-filter peak picker (labeled MSF). 
MKL only identified a single onset, while WPD achieved 
zero FN and FP, when rather than weighting each phase 
contribution by the magnitude from the FFT frequency 

Sound  Beep Strike Pluck 
Detector  a b c a b c a b c 
HFC Y - - Y - - Y - - 
Energy Y - - Y - - Y - - 
SF Y - Y Y - Y - - - 
WPD Y Y Y Y - - Y Y Y 
MKL Y - Y Y Y Y - - - 
Complex Y - Y Y - Y - - - 
SD Y - Y Y - - - - - 
Phase Y - Y Y - Y - - - 
Melodyne Y Y Y Y Y Y Y Y Y 



  
 

bins, a threshold was used (TPD). None of the three best 
detectors were within the ground truth range or had # 
lower than the ground truth. 

4. DISCUSSION AND FUTURE WORK 

The aim of this work was to assess whether automatic 
onset detection methods might be used to provide metrics 
for measuring performance accuracy, where the phrases 
to be assessed would be monophonic but the sounds po-
tentially complex. This required testing since perfor-
mance timing is considered to be PAT based, while onset 
detection PhOT or POT based. Further, the reported per-
formance of onset detectors is often reduced to type I and 
II errors, rather than distances from ground truth. 

Ground truth data captured via rhythm adjustment 
with synchronous presentation indicated levels of agree-
ment of approximately 12-20ms for percussive attacks 
and 42ms for non-percussive (within a single standard 
deviation). Given the likelihood that there is indeed a 
span of time offset over which two sounds may be said to 
remain in time rhythmically, it would seem useful to de-
velop a new method of !PAT measurement that does not 
force the participant to select a single time value, but ra-
ther supports identification of a range. Such a method 
could make the task easier for participants, speeding up 
the annotation process and increasing accuracy. 

All of the onset detectors managed zero type I and 
type II errors with the percussive attacks, but only some 
produced results close enough to the ground truth to be 
regarded as PAT equivalent data. For the non-percussive 
sounds, achieving 100% detection even in these short se-
quences proved challenging, and the timing did not match 
the ground truth closely enough, requiring some form of 
PAT model to correct for this. Future work should inves-
tigate existing models, such as those tested in [4]. 

The algorithms used are well known and therefore re-
sults may usefully be compared with other studies, but it 
would be helpful to test more recent algorithms for per-
formance improvements. Recent work has explored the 
influence of peak-picking algorithms on the performance 
of onset detection and it would be useful to test alterna-
tive methods in this context, particularly as the temporal 
location of the peak is so critical here [12]. Similarly, pre-
processing could be explored. 

It would be useful if the MIREX onset detection test 
data were additionally annotated for PAT so that algo-
rithms could be assessed against PAT as well as 
PhoT/POT data and against a large data set. 
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