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ABSTRACT

Nonnegative matrix factorization (NMF) has been widely
used for discovering physically meaningful latent compo-
nents in audio signals to facilitate source separation. Most
of the existing NMF algorithms require that the number of
latent components is provided a priori, which is not always
possible. In this paper, we leverage developments from the
Bayesian nonparametrics and compressive sensing litera-
ture to propose a probabilistic Beta Process Sparse NMF
(BP-NMF) model, which can automatically infer the proper
number of latent components based on the data. Unlike
previous models, BP-NMF explicitly assumes that these
latent components are often completely silent. We derive
a novel mean-field variational inference algorithm for this
nonconjugate model and evaluate it on both synthetic data
and real recordings on various tasks.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [9] has been ex-
tensively applied to analyze audio signals, since the ap-
proximate decomposition of the audio spectrogram into the
product of 2 nonnegative matrices X ~ WH provides a
physically meaningful interpretation. We can view each
column of X, which represents the power density across
frequencies at a particular time, as a nonnegative linear
combination of the columns of W, determined by the col-
umn of activation H. Thus W can be considered as a dic-
tionary, where each column acts as a component. This can
be particularly useful for audio source separation, where
the goal is to find out the individual sources from mixed
signal.

Audio source separation poses a meaningful and chal-
lenging problem, which has been actively studied for the
last few decades. One of the obstacles which makes source
separation difficult is that the number of sources is gener-
ally not known. For example, when we listen to a piece of
polyphonic music, it is difficult and tedious to figure out
how many notes or instruments are being played. How-
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ever, most existing NMF algorithms require the number of
components to be provided as input, based on the assump-
tion that there exists a certain mapping between the learned
components and real sources. To address this issue, we
propose BP-NMF, a nonparametric Bayesian NMF model
that uses a beta process prior. The model automatically
determines how many sources it needs to explain the data
during posterior inference.

1.1 Related Work

NMF has been applied to many music analysis problems
such as music transcription [1, 12], music analysis [5], and
music source separation [10, 15].

On the other hand, most of the literature on nonpara-
metric Bayesian latent factor models focuses on conjugate
linear Gaussian models, for example, beta process factor
analysis [11] which is the main inspiration for BP-NMF.
However, such models are not appropriate for audio spec-
trograms as they do not impose nonnegativity constraints.
To address this limitation, [7] proposed a nonparametric
Bayesian NMF model based on the gamma process.

BP-NMF extends the standard NMF model in two ways:

e BP-NMF can explicitly and completely silence la-
tent components when they should not be active. This
captures the intuition that a note which appears fre-
quently during one phrase may not contribute any-
thing in another phrase, and most notes are silent
most of the time.

e The number of latent components, which is difficult
to set a priori, is inferred by the model.

Both of these issues have been addressed in previous work,
but to the authors’ knowledge, BP-NMF is the first model
to combine them.

2. BP-NMF

We adopt the notational conventions that upper case bold
letters (e.g. X,D, S and Z) denote matrices and lower
case bold letters (e.g. x, d s, and z) denote vectors. f €
{1,2,---, F}isusedtoindex frequency. t € {1,2,--- ,T}
is used to index time. k € {1,2,--- , K} is used to index
dictionary components.

BP-NMF is formulated as:
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where X is a F' x T spectrogram and D is a ' x K dictio-
nary with K components. The activation is the Hadamard
product between a nonnegative matrix S and a binary mask
Z, both of which have the shape of K x T'. E is an i.i.d.
Gaussian noise matrix which has the same shape as X. We
use Gaussian noise model instead of Poisson or exponen-
tial mainly for mathematical convenience and extending
BP-NMF to more audio-oriented model is part of the future
work. Unlike previous models, BP-NMF can explicitly si-
lence some components by turning off the corresponding
elements in Z. For example, when a clarinet is playing A3
the model should silence all clarinet notes that are not A3.

We place a beta process [6] prior on the binary mask Z
so that the number of components K can potentially go to
infinity and the inference algorithm will choose the proper
number to describe the data. We adopt the finite approxi-
mation to a beta process in [11]:

Zyt ~ Bernoulli(my)

2
7 ~ Beta(ag/K, bo(K @

- 1)/K)

where K is set to a large number. As shown in [4], a finite
approximation for Indian buffet process ! performs compa-
rably well as the infinite model. In this formulation 7y,
explicitly controls the prevalence of each individual com-
ponent; the closer 7y, is to zero, the less frequently it will
contribute to X. The rest of the model is specified as:

log(dy) ~ N(0,Ir)
st ~ Gamma(c, 3)

e~ N(0,7, '1Ip)

~Ye ~ Gamma(cg, dp) 3

The choice of component dj, being lognormal distributed
will become natural as we describe our inference algorithm
in Section 3.2. For activation s;, being gamma distributed
instead of lognormal distributed is easier to extend to a
time-dependent gamma chain prior [5]. The full model is
summarized in Figure 1.

Exact inference for this model is infeasible, so we in-
stead derive a mean-field [8] variational inference algo-
rithm. Note that this model is nonconjugate between the
observation X and priors D and S, which makes deriving
an inference algorithm more difficult.

3. VARIATIONAL INFERENCE
3.1 Laplace Approximation Variational Inference

Since BP-NMF is nonconjugate, we use Laplace approxi-
mation variational inference [16].

Given a probabilistic model P(X, ©) where X denotes
the observation and © denotes hidden variables, mean-field
inference approximates the posterior P(0|X) with a fully
factorized variational distribution ¢(©) = [], ¢(6;) by min-
imizing the KL-divergence between the variational distri-
bution and the true posterior. Inference can be carried out
via coordinate descent for each hidden variable §; which is
guaranteed to find a local optimum.

! It has been shown [13] that beta process is the de Finetti mixing mea-
sure for the Indian buffet process.
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Figure 1: Graphical model representation of BP-NMF.
Shaded node represents observed variable (spectrogram).
Unshaded nodes represent hidden variables. A directed
edge from node a to node b denotes that the variable b de-
pends on the value of variable a. Plates denote replication
by the value in the lower right of the plate.

The general mean-field update for a variable 6; can be
shown [3] to be:

q(6;) o exp{(log P(X,©)) 4, } @

where (-)_g, indicates the expectation with respect to g(©\
{6;}). For simplicity, we will omit the subscript —6; when
there is no ambiguity.

For nonconjugate model, we cannot write Eq. 4 in closed
form. The Laplace method is used to approximate ¢(6;):

f(0:) = (log P(X,0)) g
~ f(0;) +

A second-order Taylor expansion is taken in (5) where 0; is
a local maximum of f(6;) and H (6;) is the Hessian matrix.
This suggests that we use a Gaussian variational distribu-
tion for ¢(6;):

%(ei —)TH@)0: —6) 5

q(0:) = N(6:;,—H(0;)™") (6)
H (0}) is guaranteed to be negative definite at any local
maximum of f(6), provided f(6) is smooth. —H (6;)~!

is therefore a valid covariance matrix. Conjugate gradient
or L-BFGS can be used to search for 6;.

3.2 Inference for BP-NMF

Laplace approximation variational inference assumes that
the nonconjugate continuous variables are unconstrained,
thus we reparametrize {D, S} as {®, ¥}, where & €
RF*E with @ ¢, = log(Dyi) and ¥ € RE*T with ¥y, =
log(Skt)- The fully-factorized variational distribution is:

) =a(7e qu (Hq <I>fk)Hq Ukt)q(Zyt)

where the variational distributions are specified as:
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We will briefly describe the mean-field update and a Python
implementation is available online % .

3.2.1 Update ® and ¥
Following Eq. 4, we can write ¢(® ) as:
q(®y1) o exp{(log P(X, 0)) —a, }

X eXp{<10g P($f|¢fa v, Za 75)> + IOg P((pfk)}
= exp{f(®sk)} ®)

and express P(xf|¢¢, ¥, Z,.) in exponential family form:

(log P(x |y, W, Z,7c))
=(0(ds, ¥, Z,7)" )T (ws) — (A()).
For BP-NMF, both (1(¢,4:, 2¢,7ve)) and (A(7)) can be

computed ip closed form. Thus, we can search for a local
maximum @ ;.. The mean-field update following Eq. 6 is:

(€))
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The update for Wy is basically the same as ® s, except
that P(Wy,) is a log-gamma distribution:

P(Uy) x exp{aPi: — Bexp{P:}}. (11
3.2.2 Update Z

Similarly, we can follow Eq. 4:

C](Zkt) X exp{(log P(X7 6)>7Zkt} (12)

o exp{(log P(x:|®, ¢, 2¢,7e)) + (log P(Zye|mr)) }

Since Zy,; is Bernoulli distributed, we can explicitly com-
pute Py < ¢(Zg: = 0) and Py x q(Zy: = 1), respectively.
Then the update for Z, can be carried out:

(2) Py

— = 13
Pt Py+ P (13)
3.2.3 Update 7 and Ye

In BP-NMF, 7 and Z are conjugate, therefore we can di-
rectly derive the mean-field update for 7 in closed form:

T
= a
oy = 2D (Zi)
=t . (14)
(), bo(K —1) TNz
ﬁ}c — 7}.{ + tz:;< kt>
Similarly, . can also be updated in closed form:
© !
ar® ¢y + §FT
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Zhttps://github.com/dawenl/bp_nmf

3.3 Accelerating inference

Both [11] and [7] proposed heuristics to speed up the in-
ference. In general, we want to set number of dictionary
components K to be large so that it can better approximate
the infinite functional prior. On the other hand, a large
value of K will dramatically increase the time for infer-
ence. This can be compensated by setting K initially to a
large value and truncating the rarely-used dictionary com-
ponents as the inference proceeds. The heuristic applied
for BP-NMF is that, for dictionary component dy, if the
corresponding 7, drops below 102 of the maximal 7r, we
skip it during the inference. The first few iterations may be
slow, but inference accelerates as more elements of 7 are
driven towards 0.

4. EXPERIMENTS

We conducted a set of experiments to evaluate if BP-NMF
can effectively capture the latent components from music
recordings. First, we performed a sanity check on a syn-
thetic example. Then we tested BP-NMF on 2 different
tasks: bandwidth expansion and blind source separation.
We also designed a transcription-based mechanism to eval-
uate the quality of the learned dictionary.

All experiments were done on magnitude spectrum with
hyperparameters « = 8 = 2, a9 = by = 1, and ¢y =
do = 1075, All the variational parameters were randomly
initialized. The initial K was set to 512. All recordings
were sampled at 22.05 kHz.

We compared with three other NMF algorithms: GaP-
NMF [7] which is another nonparametric Bayesian NMF
based on the gamma process, IS-NMF [5] which uses the
audio-oriented Itakura-Saito divergence as loss function,
and EUC-NMF [9] which minimizes the sum of the squared
Euclidean distance and can be considered as a finite ver-
sion of BP-NMF.

4.1 Synthetic Data

We synthesized a short clip of audio with 5 distinct piano
notes and 5 distinct clarinet notes using Chuck 3 which is
based on physical models for the instruments. At any given
time, one piano note and one clarinet note are played si-
multaneously at different pitches.

DFTs of 512 samples (23.2 ms) were computed with
50% overlap. K quickly converged to 7 after a few it-
erations of variational inference. Ideally, there should be
10 components, but since some of the notes only appear
with some others, they were grouped together by BP-NMF.
The learned dictionary components (in log scale) and ac-
tivations are shown in the Figure 2, from top to bottom in
descending order of 7. As we can see, there are clear har-
monic structures in the learned dictionary and the activa-
tion does reasonably reflect the location where note com-
binations are played. Most importantly, the binary mask Z
succeeds in explicitly controlling the appearance and dis-
appearance of the components, which is not reflected when
we test on GaP-NMF, IS-NMF, and EUC-NMF.

3nttp://chuck.stanford.edu/
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Figure 2: The learned dictionary components and activations from BP-NMF on synthetic data. Both of them are listed in

descending order of 7.

4.2 Bandwidth Expansion

The basic idea of bandwidth expansion [2] is to infer the
high-frequency content of a signal given only the low fre-
quency part of the spectrum.

We use 2 pieces of music: Pink Moon by Nick Drake
and Funky Kingston by Toots and the Maytals, both of
which are also used in [7] for bandwidth expansion evalu-
ation. DFTs of 512 samples are computed with no overlap.
We take the middle 4000 frames of each piece and do a
5-fold cross-validation: 4/5 of the data is used to learn the
dictionary. For the remaining 1/5, the top 2 octaves (192
frequency bins) are removed as a held-out set. We encode
the low-frequency content with the corresponding part of
the learned dictionary and predict the high-frequency con-
tent by reconstructing the full frequency band with the whole
dictionary on the encoded activation.

Here we use predictive likelihood as a metric. We com-
pare BP-NMF with GaP-NMF and EUC-NMF. The reason
for not including IS-NMF is that it has been compared on
the exactly same task with GaP-NMF in [7] and GaP-NMF
has comparably better performance.

Unlike BP-NMF and GaP-NMF, EUC-NMF needs to
specify the number of components K. Given the rela-
tionship between BP-NMF and EUC-NMF, we set K to
the average number of dictionary components inferred by
BP-NMF. Since both BP-NMF and EUC-NMF assume the
noise is Gaussian distributed while GaP-NMF assumes the
noise is exponential distributed, the predictive likelihood
should be computed differently. However, this would give
the exponential model an advantage, as the Gaussian dis-
tribution assigns very low probability to outcomes far from
its mean, while the exponential distribution can give mod-
erately high likelihood to values close to 0 even if they are
far from the mean. To adjust for this, we evaluate the pre-
dictive likelihood under an exponential distribution for all
three models. This may arguably still favor GaP-NMF as
it is trained using the exponential model that it is tested on.

Geometric mean of predictive likelihood with standard
error under exponential model is reported in Figure 3. Con-
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Figure 3: The geometric mean of the predictive likelihood
under an exponential model for Pink Moon and Funky
Kingston on a 5-fold cross-validation with standard error.
In general, there is no significant difference among EUC-
NMEF, BP-NMF, and GaP-NMF. However, BP-NMF gives
more stable results with smaller standard error.

trary to the results in [7], GaP-NMF does not dominate.
This is partially due to the adjustment for Gaussian mod-
els. But the lower sampling rate of 22.05 kHz also helps
the Gaussian model, since a fixed-variance Gaussian dis-
tribution has trouble modeling low-energy signals such as
those that tend to appear at very high frequencies.

The results in Figure 3 show that there is no significant
difference among EUC-NMF, BP-NMF, and GaP-NMF.
However, BP-NMF gives more stable results with smaller
standard error, while its parametric counterpart EUC-NMF
has much larger standard error compared with both BP-
NMF and GaP-NMF.

4.3 Blind Source Separation

As with GaP-NMF, BP-NMF can also be applied to blind
source separation. The model formulation of BP-NMF can
be directly adopted for blind source separation, where each
dictionary component can be considered as all or part of
the source.

We evaluate BP-NMF for blind source separation and
compare with GaP-NMF using MIREX Fj estimation data,



Table 1: Instrument-level bss_eval results. The last col-
umn lists the number of components K inferred by the
models.

SDR SIR SAR | K
BP-NMF | 0.65 7.46 4.81 | 46
GaP-NMF | -1.86 3.89 6.12 | 31

which is a woodwind quintet recording, consisting of bas-
soon, clarinet, flute, horn, and oboe. This piece has rich
content across frequencies and various sound textures. The
goal is to separate the signal on the instrument level. We
compute DFTs of 1024 samples with 50% overlap.

To separate out different instruments, we need to filter
out the audio signals belonging to different dictionary com-
ponents. As in [5], given the complex spectrogram X°¢, to
reconstruct the estimated complex spectrogram for the kth
component X*), we can apply Wiener filtering:

D1 Skt 2

X = xo, IORIR
I d leil DS 2y

(16)

There is no direct information to determine how the
sources and instruments correspond. The heuristic in [7]
is adopted: for each instrument, we pick the single compo-
nent whose corresponding activation s; ®zj, has the largest
correlation with the power envelope of the single-track in-
strument signal. Note that the number of components in-
ferred is larger than the number of instruments, thus the
selected components only represent part of sources.

Bss_eval [14] is used to quantitatively evaluate the
blind source separation. Table 1 lists the average SDR
(Source to Distortion Ratio), SIR (Source to Interferences
Ratio), and SAR (Sources to Artifacts Ratio) across instru-
ments for BP-NMF and GaP-NMF (higher ratios are bet-
ter). BP-NMF performs comparably well. BP-NMF de-
composes the piece into 46 components, and GaP-NMF
decomposes the piece into 31 components. We attribute
this to the sparsity induced by BP-NMF’s binary mask Z;
one needs a richer dictionary to explain the data with a
sparse activation matrix.

4.4 Dictionary Quality Evaluation

The evaluation of latent component discovery and source
separation is always difficult. We propose an evaluation
mechanism similar to music transcription and provide sta-
tistically significant results.

To evaluate the model’s ability to discover latent com-
ponents from mixed signals, we can instead work on mono-
phonic signals, which is a substantially simpler problem.
We can then compare the results with those from mixed
signal. If there is significant similarity, it indicates that
the model can do equally well as it would have even if the
problem were made artificially easier.

Since we have the single-track recordings for each in-
strument in the woodwind quintet recording from Section
4.3, we can apply BP-NMF to each of them separately and

we will expect the learned dictionaries to be of high qual-
ity. We compute DFTs of 512 samples with no overlap.
The number of learned components from each instrument
is larger than the number of distinct notes V/, thus only
the top V' components are selected according to the cor-
responding importance 7,. The selected components are
shown in Figure 4a. The blocks are grouped according to
instruments and sorted by approximated fundamental fre-
quency. In the original piece, the bassoon is mostly play-
ing low-pitch notes, while flute is playing high-pitch notes,
both of which are reflected in the learned dictionaries.

Now we would like to see if the results from BP-NMF
on the mixed signal are similar to those from single-track
recordings. Again there is no explicit information about
the correspondence between the components learned from
the mixed signal and the single-track signals. Thus, we
adopt a greedy search which tries to match the dictionary
components based on their correlation. BP-NMF discovers
29 components to describe the data 4 which is less than the
number of distinct notes. Thus we only match the top 29
from components in Figure 4a.

After obtaining a one-to-one matching between dictio-
naries, we compute the correlations between the correspond-
ing activations s ® 2. A box-and-whisker plot of correla-
tions is shown in Figure 4b. As comparison, we also show
the correlations from random matchings. Random match-
ing has correlation close to 0, indicating there is no linear
dependence. The minimum of the correlation from BP-
NMF matching is close to 0 due to the fact that a few of
the activations on the mixed signal are fairly sparse. But
the overall quantiles do not overlap.

To formally test if the results from BP-NMF matching
and random matching are significantly different, we apply
hypothesis testing. Since we do not assume the correla-
tions are normally distributed, a paired Wilcoxon signed-
rank test [17], instead of a Student’s t-test, is performed
between the correlations from BP-NMF matching and ran-
dom matching. The null hypothesis is that the correlations
from BP-NMF matching and random matching come from
the same population and we get p-value less than 0.01,
which indicates that their difference is statistically signif-
icant. This gives a solid evidence that BP-NMF is able to
learn dictionary components equally well in mixed signal,
when compared with dictionaries learned from single-track
instrument recordings.

We also apply the same procedures to IS-NMF and GaP-
NMF. For IS-NMF, as we need to specify the number of
components K, each single-track recording is decomposed
with K equals the number of distinct notes. For the mixed
signal, we set K € {5,10,20,---,70}. When K is be-
tween 10 and 30, the Wilcoxon signed-rank test shows that
the difference is significant at p = 0.05 level. For the
rest of the K’s, we get larger p-values and cannot reject
the null hypothesis. GaP-NMF decomposes the data into
20 components and the test results show significant differ-
ence between GaP-NMF matching and random matching.

4 This number is smaller than that in Section 4.3 because a smaller
DFT size with no overlap is used, which leads to less data.
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Figure 4: The results from the proposed evaluation.

Therefore, this evaluation mechanism can also be applied
to determine a range for the “proper” number of compo-
nents to describe the data.

S. CONCLUSION

In this paper, we propose BP-NMF, a Bayesian nonpara-
metric extension of nonnegative matrix factorization, which
can automatically infer the number of latent components.
BP-NMF explicitly assumes that some of the components
are often completely silent. BP-NMF performs well under
existing metrics and under a novel evaluation mechanism.
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