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ABSTRACT

Musical expression is the creative nuance through which
a musician conveys emotion and connects with a listener.
In un-pitched percussion instruments, these nuances are a
very important component of performance. In this work,
we present a system that seeks to classify different expres-
sive articulation techniques independent of percussion in-
strument. One use of this system is to enhance the orga-
nization of large percussion sample libraries, which can be
cumbersome and daunting to navigate. This work is also a
necessary first step towards understanding musical expres-
sion as it relates to percussion performance. The ability to
classify expressive techniques can lead to the development
of models that learn the the functionality of articulations
in patterns, as well as how certain performers use them
to communicate their ideas and define their musical style.
Additionally, in working towards understanding expressive
percussion, we introduce a publicly available dataset of ar-
ticulations recorded from a standard four piece drum kit
that captures the instrument’s expressive range.

1. INTRODUCTION

In music, it is the human component of expression that im-
parts emotion and feeling within a listener. Expression re-
lates to the nuances in technique that a human performer
imparts on a piece of music. Musicians creatively vary tim-
ing, dynamics, and timbre of the musical performance, in-
dependent from the score, in order to communicate some-
thing of deeper meaning to the listener [1]. For example,
a musician can alter tempo or change dynamics slightly
to impart tension or comfort. Similarly, they can alter the
timbre of their instrument to create different tonal colors.
All of these parameters add an additional level of intrigue
to the written pitches, rhythms, and dynamics being per-
formed.

In studying percussion, one of the fundamental ways of
communicating a musical idea is through expressive artic-
ulation. Differences in articulation are created by the cre-
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Figure 1. Expression: Creative alterations in timing, dy-
namics, and instrument timbre can define a musician’s ex-
pressive style.

ative combination of dynamics and excitation timbre. This
simple relationship is outlined in Figure 1. There are an al-
most infinite number of ways that a percussionist can strike
a drum. While the strike itself is restricted to being a sin-
gle discrete event, there exists a vast range of articulations
that make each of those seemingly discrete actions sit in a
continuous and highly dimensional space.

In percussion, there are four main techniques of excita-
tion: strikes, rim shots, cross sticks, and buzz strokes. An
explanation of these techniques is outlined in Table 1. This
simple set of excitation techniques become the building
blocks of the standard rudiments that define most aspects
of percussion music [2]. Each expressive articulation has
meaning in the context of a rudiment, and many individual
performers have unique ways of expressing and combining
them. This defines their style and identity as a musician.
In this initial work, we seek to quantify and understand
differences in excitation techniques. It is important in the
context of percussion that a bottom up approach be taken to
expressive performance analysis. Percussion performance
is built on the rudimentary combination of unique artic-
ulations, so this is a logical place to start. In the music
information retrieval community, it has been a large aspect
of percussion performance and expression that has been
ignored.

In working towards this understanding of expressive per-
cussion, we have compiled a comprehensive new public
dataset of expressive samples recorded from a standard
four piece drum kit. The dataset includes samples varied
by intensity of stroke (staccato vs legato), height of stroke,
and strike position over a variety of excitation techniques
for each instrument of the drum kit. Using this dataset we
train a simple four class support vector machine (SVM)
to distinguish these expressive articulations both depen-



Articulation  Description

Strike The drumhead is struck with the tip of the
stick.

Rim Shot Both the drumhead and rim are struck with
the tip and shaft of the stick simultaneously.

Cross Stick  The butt of the stick strikes the rim while
the tip rests on the head.

Buzz Stroke  The stick is pressed into the drum to create

multiple, rapid strokes.

Table 1. Excitation Techniques: There are four basic drum
excitation techniques.

dent on and independent of percussion instrument type.
In the context of this paper, we will investigate the three
drums commonly struck with sticks (snare drum, rack tom,
and floor tom) and the four excitations that become the
building blocks of rudiments. Excitation classification is
only a small aspect of percussion expression, but the abil-
ity to recognize these differences in articulation is a neces-
sary first step in understanding percussion performance as
a whole.

2. BACKGROUND

There are a few areas of research tangentially related to ex-
pressive percussion performance. The first and most widely
studied is the task of instrument identification. Earlier stud-
ies in instrument recognition have focused mainly on the
ability to classify a wide range of traditional instrument
tones, but more recently, a greater effort has been made
to classify instruments specific to the realm of percussion.
In [3], a set of systems using a wide range of feature se-
lection and classification techniques performed well at dis-
criminating percussion instruments. However, this study
only took into account a standard drum strike and pur-
posely did not include alternative articulations, such as rim
shots or buzz strokes.

Some studies take the instrument identification approach
a step further and attempt to transcribe drum patterns. One
such transcription study presented in [4] used non-negative
spectrogram factorization and onset detection techniques
in order to separate drum sounds and classify them as ei-
ther a snare drum, bass drum, or hi-hat. This shows promise
in the ability to retrieve drum sounds directly from pat-
terns. In [5], Battenberg and Wessel used deep learning
approaches in order to learn beat sequence timings of the
snare drum, bass drum, and hi-hat in different drum pat-
terns. Understanding a drum’s context within a perfor-
mance can lead to models that can inform musical style.
This was a step in the right direction for the analysis of
percussion expression.

There has also been an evolving volume of work study-
ing musical performance analysis and expression specifi-
cally. Mion and Poli in [1] stated that musical expression
is best represented with score independent descriptors that
model intricacies in timing, dynamics, and timbre. They
showed that a simple set of features can be used to cap-

ture and classify the expressive intent of a performer in
both affective and sensorial domains. Other work in mu-
sic expression focuses on the intricacies of specific instru-
ments. In [6], an analysis-by-synthesis experiment was
performed to model, synthesize, and evaluate the expres-
sive characteristics of a clarinet performance. The authors
identified feature dynamics that relate to expressive perfor-
mance. They then forced the dynamic features to be static,
creating a less expressive re-synthesis. A listening test was
then performed which asked if subjects preferred the origi-
nal or altered recordings. Results from the test showed that
listeners preferred the original musically expressive per-
formance. It also showed that expression is captured in
the evolution of features over time, and removing this as-
pect effectively removes musical expression. This demon-
strated that the dynamic nature of instrument timbre is an
important aspect of music expression. In order to capture
feature dynamics, simple polynomial expressions can be
fit to the time varying process. This provides a compact
representation of sequential data in both the time and fre-
quency domains [7].

A vast majority of prior work in musical expression
analysis has revolved around understanding the timbral char-
acteristics of pitched instruments. A detailed analysis of
expressive percussion is also necessary, yet it is largely ig-
nored. However, some sparse examples of these studies do
exist. The work in [8] focuses on snare drum expression
and attempts to distinguish playing position on the head
as well as excitation techniques, such as using brushes or
playing a rim shot. These experiments, however, were very
limited in scope, with models being only applicable to one
drum. Additionally, all training and testing examples were
performed at a single volume and intensity level.

In this paper, we perform the task of percussion artic-
ulation classification similar to the work found in [8]. In
our study however, it is important for the models to gener-
alize over multiple pieces of the drum kit. Secondly, our
models incorporate additional excitation techniques (buzz
strokes and cross stick strokes) as well as a dataset con-
taining many different ways of performing these articula-
tions. Using compact representations of timbral character-
istics over time, we train classifiers to distinguish excita-
tion techniques independent of drum, stick height, inten-
sity of stroke, and head strike position.

3. DATASET OF EXPRESSIVE PERCUSSION

In domains outside of percussion, there exist large datasets
that can be used for expressive performance analysis. A
comprehensive, well-labeled set of expressive percussion
samples is less common. The presented work makes use
of a newly recorded dataset that encompasses a vast array
of percussion performance expressions on a standard four
piece drum kit. In the context of this paper, only the snare
drum, rack tom, and floor tom samples are used. Each
drum used has samples that span the following range:

e stick heights: 8cm, 16cm, 24cm, and 32cm

e stroke intensities: light, medium, heavy



Feature Feature Feature

Names Abbreviation  Description Source
RMS energy RMS root-mean-squared energy n/a
roughness R energy of beating frequencies [9]
brightness B description of spectral brightness [9]

2 bin ratio (bottom half) SRA ratio of spectral energy below 1000Hz to the full spectrum [1]

3 bin ratio (low) SRL ratio of spectral energy below 534Hz to the full spectrum [1]

3 bin ratio (med) SRM ratio of spectral energy between 534Hz and 1805Hz to the full spectrum  [1]

3 bin ratio (high) SRH ratio of spectral energy above 1805Hz to the full spectrum [1]

Table 2. Basic Features: Single dimensional time and frequency domain features are used as the basis for the evolution

features.

o strike positions: center, halfway, edge
e articulations: strike, rim shot, buzz stroke, cross stick

This subset includes 1804 individual examples across
the four articulations over the three drums. Additionally,
there are at least 4 examples of each expressive combi-
nation. Recordings include samples with the snare wires
both touching (snares on) and not touching (snares off) the
bottom head of the snare drum. The division of sample
variety is not completely uniform across the entire set, but
it was designed to allow for the most complete coverage
of each instrument’s expressive range. That being said,
no one combination of expressive parameters vastly out-
weighs another and all are adequately represented.

The full dataset also includes a complete array of ex-
pressive bass drum, hi-hat, and cymbal samples as well.
Each articulation example has monophonic and stereo ver-
sions with multiple mixes using direct (attached) and in-
direct (room) microphone positioning techniques. This is
the first publication where this dataset appears and it can
be made freely available to others upon request.

4. PREDICTING EXPRESSIVE ARTICULATION

In expressive performance, the evolution of timbre over
time is an important component on both a micro and macro
level. This work investigates expression at the micro level
by attempting to model the evolution of percussion articu-
lations. Using the sequential evolution of features derived
from time domain and frequency domain components of
the signal, a set of classifiers is trained to predict percus-
sion articulations within subsets containing only individual
drums (only snare, only rack tom, etc.) as well as within
the superset of all drum samples.

4.1 Feature Design

The aural differences in percussion articulations are de-
fined by the short time evolution of their spectral compo-
nents. For example, a buzz stroke evolves very differently
than a rim shot. These differences are apparent in both
their time domain and frequency domain characteristics.
In order to capture this evolution, a set of compact fea-
tures was implemented that model the envelope of single
dimensional features over time. This compact representa-
tion is derived from the coefficients of a polynomial fit to
the time varying feature data similar to [7]. This compact
polynomial representation was calculated for the features

outlined in Table 2. Descriptions of the new polynomial
coefficient features are described in Table 3.

Feature Feature

Names Description

RMSs RMSs 39 and 6™ order coefficients of RMS
R3z Rg 3 and 6™ coefficients of R

B3 Bg 3 and 6™ coefficients of B

SR3 SR¢ 3" and 6™ aggregated coefficients of

SRA, SRL, SRM, and SRH

Table 3. Evolution Features: New features are derived
from the coefficients of polynomials fit to the the single
dimensional features in Table 2 over time.

Figure 2 shows the time evolution of selected features
and their polynomial representations for a snare drum across
each of the articulation examples. It is easy to qualitatively
discriminate the differences in shape for each of the ar-
ticulations. Polynomials fit to the feature data are able to
capture this shape in a compact manner. It was found in
early experimentation that the third and sixth degree poly-
nomial fits were optimal for representation. In order to
evaluate the salience of these newly implemented features,
Mel-Frequency Cepstral Coefficients (MFCCs) and their
first and second derivatives were also used in the classifi-
cation tasks for comparison.

4.2 Experiments

The main focus of the work presented is to classify the
excitation techniques of expressive drum strike articula-
tions. The articulations observed and their descriptions
are shown in Table 1. Using the polynomial coefficient
features from Table 3, a four class support vector machine
(SVM) using aradial basis function (RBF) kernel was trained
to discriminate excitation. In all experiments, five-fold
cross validation was performed for both parameter tuning
and training/testing. The classification task was run for
each drum individually as well as for all drums in combi-
nation. This tested the effectiveness of the system to under-
stand expression on individual drums as well as throughout
the entire drum kit. For example, in a robust system a rim
shot should be classified as such regardless of the instru-
ment on which it was performed. In order to compare the
effectiveness of each of the new features, the classification
task was also performed using the means of the MFCCs
and their first and second derivatives over the duration of
the sample.
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Figure 2. Feature Evolution Example: Sixth order polynomials are fit to the temporal feature data of four snare drum

articulations.

The first experiment involved classifying excitation on
the each drum individually. Features were used both alone
and in aggregation. In order to aggregate the features, each
dimension was normalized to have zero mean and unit vari-
ance. The testing data was transformed using the mean and
variance derived from the training data. This allowed each
feature to be simply concatenated for training and testing.
The raw features and projections via a principal compo-
nents analysis (PCA) were also explored, but in practice,
the simple normalization transformation yielded the best
results. The second experiment classified excitation over
the set of all drum samples. Again, the features were used
both individually and in aggregation with the simple nor-
malization. In both experiments, the new features and their
combinations were also used in conjunction with MFCCs.
This MFCC aggregation shows their ability to add time do-
main information to an already salient, yet static, feature
and improve its performance.

4.3 Results

The first experiment classifies excitation for each drum in-
dependently using the features individually as well as in
selected aggregations. Table 4 shows the accuracies for
the features individually. MFCCs averaged over the ex-
ample are the best single performing feature for both the
snare drum and rack tom. The floor tom, however, shows
better performance with the 3rd and 6th order polynomial
coefficients of the spectral ratios (SR3 SRg) than it does
with the MFCCs. While standard MFCCs do not take into
account any information about time evolution, each artic-
ulation does have an inherently different average timbre.
Because MFCCs are designed to provide an estimate of
the spectral envelope and capture this timbre, they per-
form reasonably well. However, when the samples have
a greater length and therefore a longer timbre evolution,
such as that of a floor tom, MFCCs start to degrade in per-
formance while some of the evolution features start to im-
prove.

Individual Feature = Snare Rack Tom Floor Tom

MFCC 0.956 + 0.012 0.914 + 0.037 0.872 £+ 0.027
A MFCC 0.771 £0.015 0.661 +£0.029 0.834 £+ 0.015
A2 MFCC 0.646 £ 0.031 0.544 +£0.061 0.637 &+ 0.020
SR3 0.897 £ 0.016 0.835£0.017 0.907 + 0.045
SRg 0.776 £ 0.023 0.838 £ 0.033  0.896 + 0.025
B3 0.736 +£0.032 0.846 +0.031 0.859 4+ 0.036
Bg 0.713 £0.013 0.755 £ 0.032 0.845 £+ 0.009
R3 0.407 £0.017 0.670 £ 0.017 0.523 4+ 0.022
Rg 0.514 +£0.021 0.822 £0.017 0.578 £+ 0.050
RMS; 0.637 £0.013 0.696 + 0.039 0.795 4+ 0.039
RMSg¢ 0.773 £0.014 0.893 +£0.030 0.845 +0.018

Table 4. Classification Accuracies: Excitation techniques
were classified using each feature on each drum individu-
ally.

Table 5 shows the performance of features in combina-
tion on the individual drums. The feature combinations
with the highest classification accuracies for each drum
are displayed along with the best performing individual
features for comparison. In all cases, the aggregated fea-
ture combinations had a higher classification accuracy than
each of the best performing individual features. This shows
that combining an estimation of general timbre with certain
features that capture that timbre’s evolution can improve
classification accuracy. In Table 5 only the top five per-
forming feature combination accuracies for each drum are
shown. Those that appear in multiple lists show they are
better at generalizing over the different drum types. The
6™ order brightness feature in combination with MFCCs
(Bg MFCC) was the only aggregation to appear within the
top five best performing combinations over all three drum

types.

In the second experiment, a single classifier was trained
on articulation samples from all three drums. The classi-
fiers were again trained on each feature individually and in
combination. The accuracies for the classification of per-
cussion articulations, independent of drum, are shown in
Table 6. In the classification of excitation over the superset



Feature Aggregation  Snare Drum Rack Tom Floor Tom
SR3 R3 B3 MFCC 0.987 + 0.001 - 0.982 + 0.010
SR3 B3 MFCC 0.982 £0.005 - 0.972 4+ 0.007
B3z MFCC 0.982 +0.007 0.956 £0.013 -

Bs MFCC 0.978 £ 0.005 0.963 +0.015  0.974 &+ 0.019
SR3 R3 MFCC 0977 £0.012 - -

SR¢ Rg B¢ MFCC 0.9712 + 0.009 0.982 £+ 0.014
SR¢MFCC 0.955 +£0.020 -

R¢ MFCC - 0.955+0.012 -

SR¢ Bg MFCC - - 0.984 +0.005
Best Individual 0.956 £0.012 0914 +£0.037  0.907 &+ 0.045

(MFCC) (MFCC) (SR3)

Table 5. Classification Accuracies: Excitation techniques
were classified using selected feature aggregations on each
drum individually. Results are shown for the top five per-
forming features on each drum. Feature combinations that
are outside the top five best performing aggregations for a
single drum type are marked with *-’.

of all drums, MFCCs were shown to be the best perform-
ing feature. However, when the polynomial envelope fea-
tures were used in combination with MFCCs, accuracy was
again improved. The 6 order brightness feature in combi-
nation with MFCCs (Bg MFCC) was the best performing
feature for over the superset of all drums. This is likely
due to the fact that this combination was also the only one
contained within the top performing combinations of all
individual experiments from Table 5.

Table 6. Classification Accuracies: Excitation techniques
were classified using features individually and in aggrega-

Feature All Drums

MECC 0.930 £+ 0.011
A MFCC 0.745 £+ 0.021
A% MFCC 0.534 +0.016
SR3 0.847 £ 0.010
SR 0.744 £ 0.020
Bs 0.734 £ 0.024
Bs 0.719 £ 0.018
R3 0.498 £ 0.020
Rg 0.514 £ 0.006
RMS3 0.731 £ 0.017
RMSs 0.590 £ 0.008
B¢ MFCC 0.972 £ 0.004
SR3 R3 B3 MFCC  0.969 + 0.011
SRe Bg MFCC 0.967 £ 0.008
SRe Rg B MFCC  0.965 + 0.006
SR3 B3 MFCC 0.963 £ 0.004

tion over the superset of all drum types.

In all cases, for each individual drum and the superset
of all drums, MFCCs performed rather well on their own.
However, they do not take into account any information
regarding the temporal evolution of the signal. The deriva-
tives of MFCCs were also used, but they provide only a
static picture of the amount of change present when aver-
aged over the example. They still lack information as to
how those changes evolve. Additionally, in the presented
experiments, MFCCs were shown to be better at model-
ing articulations than were their derivatives. However, by
using the polynomial coefficients of simple time varying
features along with standard MFCCs, the system was able
to gain temporal context, leading to better performance.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, it was shown that the coefficients of polyno-
mials fit to model feature evolution can provide a compact
representation with the ability to quantify percussive ar-
ticulation. These features in conjunction with popular fea-
tures, such as MFCCs, can improve performance by adding
temporal context. In this paper, we also introduced a new
comprehensive dataset of expressive percussion articula-
tions. This presented work only scratches the surface of
this dataset’s applicability to problems involving expres-
sion in musical performance. Classifying articulation is a
small, yet very necessary step in the understanding of per-
cussion performance and expression in general. Moving
forward, more work must be done towards understanding
the micro and macro evolution of expression.

On the micro level, this work can be expanded upon by
using more sophisticated systems to improve the modeling
of feature evolution. It was shown in [10] that linear dy-
namical systems (LDS) are a compact way of representing
and synthesizing pitched percussive instrument tones. This
introduces the possibility of training an LDS for each ar-
ticulation example and training a classifier that uses system
parameters as features. Secondly, an LDS is a generative
model, so it may also be possible generate or alter learned
sets of percussive articulation. Understanding this micro
evolution can greatly assist in the navigation and organi-
zation of large humanly expressive sample libraries, which
are usually cumbersome for percussion instruments.

In future work, we look to model not only the micro
evolution, but the macro evolution of expression as well.
If we are able to classify percussion articulations, we can
look further into its meaning by developing models that
learn the functionality of articulation in patterns and per-
formance. The articulation classification along with statis-
tics of their usage, dynamics, and time onsets can lead
to models that contain information about human playing
style. This performance style can be used to model indi-
vidual percussionists or larger populations of similar per-
cussionists. With these performance models in conjunc-
tion with the ability to classify articulation, we can inves-
tigate the possibility of expressive performance generation
using unlabeled sets of any custom sample library that a
producer or composer wishes to use. This may seem like
a lofty goal in relation to this work’s present state, and in
most respects, it is. However, expressive articulation is one
of the most important parameters of a percussionist’s per-
formance. The ability to classify expressive excitation, in-
dependent of percussion instrument, is the necessary first
step towards understanding the unique intricacies and nu-
ances of percussion performance and its relation to human
expression in general.
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