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ABSTRACT

The predominant approach to computing document sim-
ilarity in web scale applications proceeds by encoding task-
specific invariance in a vectorized representation, such that
the relationship between items can be computed efficiently
by a simple scoring function, e.g. Euclidean distance. Here,
we improve upon previous work in large-scale cover song
identification by using data-driven projections at different
time-scales to capture local features and embed summary
vectors into a semantically organized space. We achieve
this by projecting 2D-Fourier Magnitude Coefficients (2D-
FMCs) of beat-chroma patches into a sparse, high dimen-
sional representation which, due to the shift invariance prop-
erties of the Fourier Transform, is similar in principle to
convolutional sparse coding. After aggregating these local
beat-chroma projections, we apply supervised dimension-
ality reduction to recover an embedding where distance is
useful for cover song retrieval. Evaluating on the Million
Song Dataset, we find our method outperforms the current
state of the art overall, but significantly so for top-k met-
rics, which indicate improved usability.

1. INTRODUCTION

Cover song identification is a well-established task in the
MIR community, motivated by both theoretical and practi-
cal interest. On one hand, a “cover” is an abstract form of
musical variation and presents a challenging computer au-
dition problem. Alternatively, music collections continue
to expand to unprecedented volumes, particularly in terms
of amateur and user-generated content. As evidenced by
even a brief review of websites like YouTube 1 , Vimeo 2 ,
or Soundcloud 3 , a considerable portion of online musical
content now consists of covers.

In light of this, previous research in cover song iden-
tification explores a variety of approaches, including the

1 http://youtube.com
2 http://vimeo.com
3 http://soundcloud.com
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cross-correlation of beat-synchronous chroma features [4],
dynamic time warping on binary chroma similarities [10],
cross-recurrence quantification [11], etc. For a compre-
hensive review, the reader is referred to [9]. Over time, it
has been shown that these methods can achieve robustness
to specific kinds of musical variation, e.g., tempo changes,
differences in structure, or key transpositions. In practice
however, making use of these non-trivial operations yields
complex systems that are computationally prohibitive to
evaluate, let alone deploy, on large music databases.

Recognizing this limitation, recent work in cover song
retrieval explores a slightly different approach to the task
[1]. Rather than attempting to resolve irrelevant musical
variation in the process of comparing two tracks, this par-
ticular system tries to encode this invariance directly with a
multi-stage, feed-forward architecture. Local beat-chroma
patterns are efficiently transformed into shift-invariant fea-
tures via the 2D-Fourier Transform, median-pooled over
time into a summary representation, and projected into a
PCA subspace. Having transformed a collection of tracks
into a much lower dimensional space, pairwise compar-
isons can be efficiently computed by Euclidean distance.
As a result, this approach scales well to large collections
like the Million Song Dataset 4 (MSD), and offers a promis-
ing research direction for pursuing general web-scale mu-
sic similarity.

Here, we seek to advance this initial work by improv-
ing the feed-forward architecture to yield better represen-
tations for cover song retrieval. After fine-tuning the pre-
viously developed system, we propose two major modifi-
cations: sparse, high-dimensional data driven component
estimation to improve separability, and supervised dimen-
sionality reduction to recover a cover-similarity space. Our
initial analysis on a training subset shows how the com-
bination of sparse projections and supervised embeddings
can lead to better organized spaces and improve cover song
retrieval. Interestingly, evaluating on the MSD results in
two notable findings: one, that our approach significantly
improves performance at top-k metrics; and two, though
our supervised embedding can be prone to over-fitting, PCA
subspaces help alleviate this issue.

The remainder of this paper is organized as follows.
Section 2 formally motivates and introduces the approach
in [2] upon which our work is based, while Section 3 de-

4 http://labrosa.ee.columbia.edu/millionsong/



tails our proposed modifications. In Section 4 we present
results on the development set and give detailed analy-
ses on the impact of each proposed modification. Sec-
tion 5 discusses results on the MSD and tests strategies
for minimizing the generalization error. Finally, Section
6 draws conclusions and advances a number of ideas for
future work.

2. SCALABLE COVER SONG RETRIEVAL

2.1 Problem Formulation

Expressed symbolically, cover song retrieval proceeds by
determining the relationship Si,j between a query Ai and
reference track Bj via the composite of feature extraction
f and a pairwise comparison 5 function g:

Si,j = g(f(Ai), f(Bj)) (1)

Note then that computing the full comparison matrix S be-
tween a set ofQ queries against a collection ofR reference
tracks requires a double-for loop, and the total computa-
tional cost CS is expressed as QRC̄Si,j

, where C̄Si,j
is the

expected cost of computing a single pairwise relationship.
However, when f and g are independent, feature extraction
can be performed separately, and the total computational
load can be re-written as follows:

CS = QRC̄g + (Q+R)C̄f (2)

Importantly, though the average comparison cost C̄g scales
quadratically, the start-up cost of feature extraction C̄f is
linear. The intuition for this trick is a common optimiza-
tion in software engineering —minimize the amount of
computation inside for-loops— and pinpoints the funda-
mental deficiency of many cover song retrieval systems:
comparison functions often rely on expensive operations
like cross-correlation or dynamic time warping, which must
remain inside a nested for-loop. Thus, scalable cover song
retrieval necessitates choosing an efficient comparison func-
tion g; the challenge then becomes one of designing the
feature extraction stage f so as to maximize the accuracy
of the rankings according to S.

2.2 Relating to Previous Work

To these ends, the authors of [1] propose an astute solu-
tion to this challenge. Intuitively, cover song retrieval al-
gorithms are designed to be invariant to time and key trans-
positions. One cleverly efficient way of achieving this be-
havior is by computing the 2-dimensional Discrete Fourier
Transform (2D-DFT) of local patches of beat-synchronous
chroma features and keeping only the magnitude coeffi-
cients. Whereas the phase component of the 2D-DFT en-
codes circular rotations in time and pitch class, 2D-Fourier
Magnitude Coefficients (2D-FMC) capture these patterns
regardless of absolute position. As shown by [8] in the
context of rhythm analysis, the DFT is sensitive to the or-
der of events in a sequence, where the addition of different

5 The choice of similarity or distance is only a matter of preference.

sinusoids results in patterns of cancellations that affect the
magnitude coefficients.

Describing holistically, the system presented in [1] de-
fines f as a feed-forward embedding function that operates
at multiple time scales. First, 2D-FMC are computed on a
moving window of 75 beat-synchronous chroma vectors,
with a 1 beat hop size. A track is then pooled over time
by taking the coefficient-wise median across all 2D-FMC
vectors and L2-normalized. Having sampled a collection
of summary 2D-FMC vectors, PCA is performed and used
to embed tracks in a low dimensional subspace; the au-
thors experimentally found that preserving anywhere be-
tween 50 and 200 principal components returns better re-
sults. Importantly, once tracks are embedded in this fea-
ture space via f , they define g as Euclidean distance to
efficiently compute pairwise comparisons.

3. IMPROVING FEATURE EXTRACTION

Starting from the work presented in [1], we now propose a
series of modifications to make the feature extraction pro-
cess more robust and improve cover song retrieval, out-
lined in its entirety in Figure 1. First, we discuss various
data pre-processing strategies, including non-linear scal-
ing and normalization. Next, we describe our approach
to data driven component estimation, addressing its mo-
tivation and conceptual parallels to recent developments
in information processing strategies. Lastly, a supervised
learning stage is introduced to realize an embedding where
summary representations of covers are significantly closer.

3.1 Data Pre-processing

As an initial step, here we apply three operations to the
2D-FMC representation preparing it for further process-
ing: logarithmic compression, vector normalization, and
dimensionality reduction via PCA. Expressed formally, the
first two are achieved by

X̂ = log
(
CX

‖X‖2
+ 1

)
(3)

where C is a constant hyperparameter, X is a 2D-FMC
vector, and ‖ · ‖2 is the L2-norm. We empirically observed
that L2-normalization followed by log-scaling with C = 5
yields slightly better results than the inverse order with
C = 100. Intuitively speaking, while log-compression
scales all coefficients independently, unit normalization ad-
justs the dynamic range of each vector relative to the other
dimensions, and can be viewed as a form of adaptive gain
control. This contrast adjustment turns out to be quite nec-
essary, as certain coefficients, e.g., the DC component, are
prone to dominating the overall representation and unfa-
vorably biasing distance calculations downstream.

Finally, PCA is applied for two reasons. First, as we
will see, it is important to center the representation such
that each coefficient has zero mean. Additionally, we dis-
card the redundant components of the Fourier transform,
reducing the dimensionality from 900 to 450 coefficients.
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Figure 1. Diagram of the proposed method.

3.2 Sparse Component Estimation

Previous work used 2D-FMCs as a clever way to repre-
sent meaningful, rotation-invariant beat-chroma patterns.
While this is, strictly speaking, an accurate insight, the
Fourier bases themselves do not necessarily make for good
feature extraction. Generally speaking, when the bases of a
projection are unlike the data to which it is applied, it is un-
able to compactly represent this information. As a result,
the noise floor of the resulting representation is higher and
most coefficients tend to be active; furthermore, this be-
havior becomes especially problematic when pooling fea-
tures. This observation is quite relevant to this particu-
lar instance, as the data being projected —non-negative
chroma— is not sinusoidal.

Alternatively, data driven transformations learn a set of
bases 6 , or a dictionary, from a sampling of data, and are
often able to encode meaningful behavior with a small num-
ber of active components. This is typically realized by the
dot-product of an input X with a dictionary W , followed
by an activation function h(·), expressed as follows:

Z = h(W ·X) (4)

Interestingly, this formulation draws strong parallels to pre-
vious work both neural networks and sparse coding. Re-

6 These are not strictly bases in the orthogonal, linear algebra sense,
but it is a commonly used term in the literature.

cent research in these areas has emphasized the importance
of h(·) being defined as the shrinkage operator, hθ(x) =
sgn(x) ∗ max(‖x‖ − θ, 0), where θ controls the knee or
threshold of the function [5]. This non-linearity exhibits
the desirable behavior of suppressing low-level activations
while passing sufficiently large ones. Such a process in-
herently leads to sparser outputs, with the rationale being
that only the most representative attributes are encoded.

Additionally, convolutional variants [7] apply this dic-
tionary, also referred to as kernels, at all translations over
an input to achieve shift-invariant feature extraction, given
by the following:

Z = h(W ~X) (5)

Reusing these kernels at all positions, known as weight
sharing, results in fewer parameters to learn, reduced over-
fitting, and thus better generalization. Despite these advan-
tages, convolution is a computationally expensive opera-
tion. Therefore, to reap the benefits of data driven trans-
formations while still learning shift-invariant features, we
leverage the convolution-multiplication duality of the DFT
and operate on the Fourier magnitude representation:

Z = h(W ~X) = h(W · ‖F(X)‖) (6)

Note that it is unnecessary to also take the Fourier trans-
form of W , as Eq (6) is now equivalent to Eq (4) and the
dictionary can be learned directly on the pre-processed 2D-
FMC representation. Additionally, by first centering the
data, a bias term is unnecessary and both W and Z will
also be approximately zero-mean.

3.3 Semantically Organizing the Space

Having designed a transform to project 2D-FMCs into a
sparse representation, we subsequently pool features over
a track by taking the median over each coefficient. How-
ever, while discriminative power can be achieved by pro-
jecting into higher dimensional spaces, it is often necessary
to recover a lower dimensional embedding where distance
encodes the desired semantic relationship between vectors,
i.e. covers are near-neighbors. There are at least two con-
ceptual justifications motivating an embedding transform.
First, high dimensional representations are known to suffer
from the curse of dimensionality, i.e. distance is not well
behaved. Second, and more specific to this approach, the
dictionary used in the previous stage is learned as an unsu-
pervised process. As a result, there are no guarantees that
the representation it produces provides the latent organiza-
tion necessary for this task.

Therefore, using known relationships between songs in
a training set, we can treat covers as distinct classes in
a large, multi-class problem, and apply supervised learn-
ing to recover an embedding that tries to preserve these
relationships. The resulting projection can then be used
to transform unseen data into a cover-similarity space for
computing distances between tracks.



4. EXPERIMENTAL DESIGN

4.1 Methodology

Having introduced our main contributions, we now turn
our attention to a discussion of implementation details and
explore various hyperparameters. To quantitatively nav-
igate this space, we use the training split of the Second
Hand Song (SHS) dataset 7 for development and save the
test split for our final evaluation. The SHS is a collection
of 18,196 tracks from 5,854 “cliques”, or distinct classes,
with 12,960 from 4,128, respectively, set aside for training;
the remainder constitutes the test set. Importantly, the SHS
is also a subset of the MSD, which allows for large scale
evaluation by using the entire MSD as background noise in
a cover song retrieval task.

In line with previous work, the primary metrics of in-
terest here are mean average precision (MAP) and average
rank (AR). MAP is computed as the mean of the average
precision over a set of queries, and reflects not only accu-
racy but also the order of correct documents in a ranked
list. As an additional statistic, AR is computed as the av-
erage position of relevant documents, and measures where
relevant documents fall in a ranked list. For evaluating per-
formance in the training condition, each track in the train-
ing set is treated as a query and ranked relative to the re-
maining items in the training set, i.e. 1-vs-12,959; alter-
natively, in the test condition, each track in the test set is
treated as a query and ranked relative to all other tracks in
the MSD, i.e. 1-vs-999,999.

4.2 Impact of Sparse Projections

Here, we propose using the k-means algorithm to learn var-
ious dictionaries, inspired by recent work in [3]. While we
acknowledge that there are alternative methods that could
be applied to learn the bases of this transform, k-means
is particularly attractive being unsupervised and relatively
simple, having a single hyperparameter k. Noting that k-
means is a batch, as opposed to on-line, learning algo-
rithm, we first draw 50,000 2D-FMC vectors randomly
from the SHS training set. This subset is used for both
fitting PCA in the pre-processing set as well as learning
dictionaries for various values of k; at this stage, we con-
sider k ∈ [128, 512, 1024, 2048]. It is worth mentioning
that due to the nuances of the algorithm —we use the Scipy
implementation 8 — only 2045 elements were returned for
k = 2048, as three of the centroids did not change. Addi-
tionally, after inspecting the data to determine a reasonable
knee for the shrinkage function, we set θ = 0.2 for our ex-
periments.

Shown in Table 1, we find that applying learned k-means
dictionaries as sparse projections, followed by median pool-
ing and L2-normalization, leads to slightly worse perfor-
mance than the baseline system. This negative result illus-
trates that a sparse, higher dimensional feature space does
not necessarily exhibit the organization necessary for dis-
tance to be meaningful. However, the goal of a sparse pro-

7 http://labrosa.ee.columbia.edu/millionsong/secondhand
8 http://docs.scipy.org/doc/scipy/reference/cluster.vq.html

k 128 512 1024 2045 Baseline
MAP 3.44% 4.54% 4.92% 5.51% 8.91%
AR 3,248 3,154 3,112 3,026 3,097

Table 1. Exploring values of k on the Training set.

jection is only to make the information more separable, and
this behavior must be explored further to determine its true
impact on system performance.

4.3 Semantically Organizing the Space

In light of this, we now seek to better encode semantic re-
lationships with distance measures. Linear Discriminant
Analysis (LDA) is a natural choice for learning a super-
vised embedding that jointly minimizes intra-class vari-
ance and inter-class discrimination. This approach also has
a single hyperparameter N , the dimensionality of the pro-
jection, and we explore N ∈ [50, 100, 200].

As shown in Table 2, the combination of sparse pro-
jections and supervised dimensionality reduction leads to
considerably better performance on the training set. While
this result says nothing about generalization, it more than
demonstrates that the representation produced by project-
ing onto a learned dictionary is indeed significantly more
separable. It is interesting to note how performance de-
grades sharply as a function of decreasing k, and less so
with decreasing N . The interpretation of this is two-fold:
one, because the dictionary learning is unsupervised, it re-
quires an over-complete set of bases to adequately cap-
ture the “right” information for LDA to recover; and two,
model complexity can be constrained by limiting N , and
therefore serve as a type of regularization.

Before proceeding, it is necessary to ensure that this in-
crease in performance is in fact due to the sparse projec-
tion and not just the supervised embedding. To test this
hypothesis, we apply LDA to the baseline system, with the
2D-FMC pre-processing pipeline discussed in Section 3.1.
Table 3 clearly shows that, though there is some improve-
ment to be had via LDA alone, projecting into a higher di-
mensional space first is indeed significant, almost doubling
MAP as a linear function of N .

Mean Average Precision
k \N 200 100 50
128 5.34% 4.82% 4.19%
512 9.30% 7.38% 4.95%
1024 13.99% 9.63% 5.63%
2045 28.51% 17.35% 9.05%

Average Rank
k \N 200 100 50
128 2,915 3,116 3,345
512 2,719 3,153 3,688
1024 2,420 2,980 3,665
2045 1,844 2,539 3,249

Table 2. Exploring impact of both k-means and LDA on
the Training set.



Method MAP AR
Baseline + LDA(50) 5.35% 3,666
Baseline + LDA(100) 9.85% 3,034
Baseline + LDA(200) 14.31% 2,434
k-means(2045) + LDA(50) 9.05% 3,249
k-means(2045) + LDA(100) 17.35% 2,539
k-means(2045) + LDA(200) 28.51% 1,844

Table 3. Results for the SHS Training set applying LDA to
the baseline, versus the best performing sparse projection.

5. LARGE-SCALE EVALUATION

So far, we have focused exclusively on the SHS training
set, both as a computational simplification and an approach
to system development. We now turn our evaluation to
the test split of the SHS dataset to investigate how our ap-
proach generalizes to unseen data. Based on the results
of the previous section, we reduce the parameter space by
fixing k = 2045 but continue to observe performance as a
function of N .

First, evidenced by the results given in Table 4, the com-
bined k-means and LDA projections —which we contract
here on as k-LDA for brevity— observe radically differ-
ent behavior based on the dimensionality of the embed-
ding. In fact, k-LDA(200), the best performing system on
the training set, seemingly fails to generalize at all; MAP
and AR are over two-times worse than the baseline system,
and these results clearly indicate extreme over-fitting. Set-
ting this observation aside for a moment though, something
even more curious occurs with k-LDA(50). While the AR
is also much worse than baseline, the MAP improves by a
factor of 6. This behavior begs an obvious question: what
is occurring under the surface such that these metrics move
in drastically different directions?

On closer inspection, a rather surprising observation pre-
cipitates: despite a significantly worse AR, the k-LDA(50)
projection actually produces a remarkable number of cor-
rect nearest neighbors, i.e. the top-ranked item in the list
is an accurate match. This intuitively explains the discrep-
ancy between these metrics, as MAP weights precision as
a function of rank position, e.g. being correct at the top
matters more than being correct lower in the list. Further-
more, despite pulling relevant tracks to the top of the list,
the k-LDA(50) system also pushes some to the very bot-
tom. As a result, the distribution of relevant items in the
ranked list is bimodal, and AR is at a loss to characterize
this behavior.

To get a better sense of this behavior, we investigate
precision-@-k, defined simply as the precision over the
top-k items in a ranked list. Figure 2 clearly illustrates
how our proposed method not only yields better perfor-
mance overall, but offers improved usability as well. For
this particular test set, the system gets the top result correct
nearly 25% of the time, out of a space of one million possi-
ble items. Considering the top 10 results, or approximately
the first page of a web search, about 5% of the documents
are correct; in other words, there is a 50% chance that a
true cover will appear on the first page of a search.

Method MAP AR
Random ∼ 0.001% 500,000
2DFTM + PCA(50) [1] 1.99% 173,117
2DFTM + PCA(200) [1] 2.95% 180,304
k-LDA(50) 13.41% 343,522
k-LDA(200) 0.83% 398,005
k-PCA(200) + LDA(200) 12.76% 338,882

Table 4. Results for the SHS Test set over the full MSD.
Note that we contract k-means(2045) here simply as “k-”.

Turning back to the k-LDA(200) projection, the ques-
tion now becomes how to reduce such substantial over-
fitting. Fortunately, projecting into a PCA subspace be-
fore fitting LDA has been shown to reduce over-fitting in
the image processing and pattern recognition communities,
notably for face recognition [6]. This is because PCA di-
mensionality reduction avoids singularities or near singu-
larities in any of the scatter matrices used in LDA; this
problem is exacerbated for small datasets or high dimen-
sional feature spaces, of which this application is both.
Furthermore, the cascade of PCA and LDA has been shown
to be a general case of other LDA variations like uncorre-
lated LDA (ULDA), which are also used to avoid the sin-
gularity issue. Most importantly, how much PCA allevi-
ates LDA over-fitting depends on the dimensionality of the
intermediate PCA subspace. Therefore, selecting the right
number of principal components is both crucial for good
results, and non-trivial.

In lieu of a more extensive exploration, we perform an
initial inquiry into the potential of PCA to address this par-
ticular problem. Here, we fit a 200 dimensional PCA sub-
space by transforming the SHS training set into its mid-
level, 2045-dimensional representation, just before the ap-
plication of LDA. In an effort to help minimize potential
singularities and other such problems, we take two addi-
tional steps when fitting LDA to encourage better gener-
alization; however, the true impact of such decisions are
admittedly uncertain. First, we subsample the training set,
only using cliques with 9 or more tracks each. Then, we
include an arbitrarily large number of tracks that do not
belong to any clique. This resulting embedding, dubbed
k-PCA(200)+LDA(200), is then evaluated on the MSD,
and we again recover performance roughly on par with k-
LDA(50), e.g. relatively low AR, but a significantly higher
MAP than baseline.

Finally, in terms of computation time, our method takes
three more times to compute than baseline. In a machine
with plenty of RAM, 16 cores, and splitting the process
into 10 different threads, the baseline takes 8.7 hours to
compute the features of 50, 100 and 200 PCA components.
However, as our method produces features with the same
output dimensionality as the baseline, our distance calcu-
lations —the prohibitive computation— requires the same
amount of time. More specifically, it takes 0.4, 0.9, and 1.5
hours using 50, 100, and 200 components respectively.



Figure 2. Comparison of Precision@k on the Test set for
k-LDA(50), versus the best baseline result.

6. CONCLUSIONS

In this work we have presented an improved system for
large-scale cover song retrieval, demonstrating how sparse,
high-dimensional projections can be combined with low-
dimensional embeddings to achieve greater performance
than either piece alone. This semantically organized space
is recovered by efficiently capturing shift-invariant features
by effectively performing convolutional sparse coding in
the Fourier magnitude domain, and learning a supervised
cover-similarity space where distance is meaningful. Our
system not only achieves state-of-the-art performance with
respect to previously used evaluation metrics (MAP), but
greatly improves precision-at-k for k less than 10, indica-
tive of a more useful system. This encourages the addi-
tional observation that top-k, as opposed to full-list, met-
rics may be more informative for characterizing the usabil-
ity of large scale information retrieval systems.

Looking toward future work, we identify several areas
with the potential for improvement. As mentioned, there
are a variety of ways the sparse dictionary could be learned;
and, depending on the temporal pooling strategy defined, it
would be possible to fine-tune the overall architecture like
a deep network via backpropagation. Additionally, there
are other pooling strategies that could be employed, lever-
aging structural knowledge to summarize the information
over a full track in more musically meaningful ways. Lastly,
the challenge of realizing a semantically organized space
for computing distances between tracks is hardly a solved
problem. Over-fitting seems to be a problem in higher di-
mensions, but the PCA-subspace trick discussed offers en-
couraging results, complementing those obtained directly
from low-dimensional LDA.

Finally, to facilitate reproduction of results and encour-
age future work, we provide an open source implementa-
tion of our method in a public repository 9 .
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Karol Gregor, Michaël Mathieu, and Yann LeCun.
Learning convolutional feature hierachies for visual
recognition. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2010.

[8] Geoffroy Peeters. Spectral and temporal periodicity
representations of rhythm for the automatic classifica-
tion of music audio signal. Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, 19(5):1242–
1252, 2011.
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