
VIRTUALBAND: INTERACTING WITH STYLISTICALLY CONSISTENT
AGENTS

Julian Moreira
Sony CSL

julian.moreira.fr@gmail.com

Pierre Roy
Sony CSL

roy@csl.sony.fr

François Pachet
Sony CSL

pachetcsl@gmail.com

ABSTRACT

VirtualBand is a multi-agent system dedicated to live
computer-enhanced music performances. VirtualBand en-
ables one or several musicians to interact in real-time with
stylistically plausible virtual agents. The problem add-
ressed is the generation of virtual agents, each represent-
ing the style of a given musician, while reacting to hu-
man players. We propose a generation framework that re-
lies on feature-based interaction. Virtual agents exploit a
style database, which consists of audio signals from which
a set of MIR features are extracted. Musical interactions
are represented by directed connections between agents
through these features. The connections are themselves
specified as mappings and database filters. We claim that
such a connection framework allows to implement mean-
ingful musical interactions and to produce stylistically con-
sistent musical output. We illustrate this concept through
several examples in jazz improvisation, beatboxing and in-
teractive mash-ups.

1. INTRODUCTION

Collective improvisation is a group practice in which sev-
eral musicians contribute their part to produce a coherent
musical whole. Each musician typically brings in musi-
cal knowledge, taste, and technical skills, more generally
a style, which makes him or her unique and recognizable.
However, good improvisations are not only about putting
together the competence of several individuals. Listening
and interacting to each other is crucial, as it enables each
musician to adapt to the global musical output in terms of
rhythm, intensity, harmony, etc. The combination of indi-
vidual styles with the definition of their interaction defines
the quality of a music band. In short, group improvisation
can be seen as principled interactions between stylistically
consistent agents.

Many works have attempted to model and simulate the
behavior of a real musician. A MIDI-based model of an
improviser’s personality is proposed in [6], to build a vir-
tual trio system, but no explicit interactions between vir-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2013 International Society for Music Information Retrieval.

tual agents and real musicians are proposed. Improtek [11]
is a system for live improvisation that generates musical
sequences built in real-time from a live source using con-
catenative synthesis. Improtek plays along with a musi-
cian improvising on harmonic and beat-based music, in
the style of this musician, but interactions with him are
based on feature similarity measures, thereby limiting the
scope of man-machine interactions. The Jambot [4] infers
in real-time various features from an audio signal and then
produces percussive responses, following alternatively pre-
defined behaviors, but the style of the Jambot itself is not
clearly defined. Beatback [7] generates a MIDI signal based
on rhythmic patterns and using Markov models. Besides
the limitations of MIDI, interactions are limited to rhyth-
mic elements only. This limitation also applies to the Chi-
mera Architecture [3], a system that infers rhythmical in-
formation from an audio input, and generates percussive
sounds depending on scenarios that fit with the current mu-
sical context. [9] presents a system that learns rhythmic
patterns from drum audio recording and synthesizes musi-
cal variations from the learnt sequence. In addition to be-
ing dedicated to percussive sounds only, this system has no
real-time live application. [16] presents an interactive mu-
sic system driven by syncopation measurements, but also
addresses rhythmical features only. [10] describes a system
that interacts in real-time with a human musician, by adapt-
ing its behavior both on prior knowledge (database of mu-
sical situations) and parameters extracted during the cur-
rent session, but this system forces the musician to manip-
ulate a graphical interface during the improvisation, which
makes the system hardly usable in a live performance for a
solo musician.

In this paper we revisit the issue of musical interac-
tion with stylistically consistent agents by taking a feature-
based approach to the problem. We introduce VirtualBand
(VB), a reactive music multi-agent system in which human
musicians can control and interact with virtual musicians
that retain their own style.

In VB, both human and virtual musicians are repre-
sented by agents that interact together through feature-based
interactions. Human agents extract their features at ev-
ery beat from the audio input of their corresponding musi-
cian. Virtual agents use features of audio chunks stored in a
database. Interactions are modeled by connections, which
are the core contribution of our approach. A connection
is a directed link from a master (human or virtual) agent
to a slave virtual agent. In reaction to a feature value pro-

vided by the master agent, the connection specifies to the
slave agent which audio chunk to play from its database.
VB can be seen as a reactive rather than deliberative multi-
agent system [8]. Its potential lies in the seemingly infinite
possibilities provided by feature interaction, as illustrated
in this paper.

In Section 2, we describe the main components of VB.
In Section 3, we illustrate feature interaction with several
configurations of the system for jazz improvisation. Sec-
tion 4 describes applications of VB in two other musical
contexts: beatboxing and automatic mash-up.

2. SYSTEM DESCRIPTION

The core of VB consists of 1) a clock that establishes the
tempo and sends notifications at each beat to every agent -
we consider fixed tempos in the current version, 2) a set of
agents that receives these notifications and generate audio
and 3) an audio playback engine.

2.1 Agents

There are two types of agents: human and virtual agents,
representing respectively actual and virtual musicians. Hu-
man agents are responsible for extracting acoustic features
from the audio signal of real musicians in real-time. These
features are the main controlling device for virtual agents
via connections, as explained below.

Virtual agents are designed to play in the style of the
musicians they represent. To build a virtual agent, we record
the musician in a musical situation that fits with the tar-
geted performance context. The recorded audio is stored
in a style database, organized in musically relevant chunks
(usually beats and bars). The musician is asked to play
so as to fully express his musical style, i.e., cover a large
range of musical situations (e.g., playing with different in-
tensities, in different moods, staccato or legato, using var-
ious patterns). Of course, it is difficult to express one’s
style exhaustively, so style databases are limited to specific
musical situations, e.g., defined by musical genre such as
Bossa Nova, Swing, etc. and a tempo. Note that the subject
of individual style capture is still in its infancy and further
studies should refine this concept.

In the database each chunk is associated to a set a fea-
ture values. A set of MIR features are automatically ex-
tracted from the audio signal of the chunk, e.g., RMS,
numbers of onsets, spectral centroid, harmonic to noise
ratio, or chroma. Contextual features are also associated
to each chunk such as the harmony. Note that the har-
mony can either be extracted automatically or be imposed
by a chord sequence. During performance, each virtual
agent uses concatenative synthesis [15] to generate music
streams as seamless concatenations of database chunks.

2.2 Connections as a Combination of Mappings

A connection between two agents models the intention un-
derlying a musical interaction between two musicians. Con-
nections are directed from a master agent AM to a slave

agent AS , and relate a master feature FM of AM to a slave
feature FS of AS .

At every beat, the connection selects the audio chunk
that AS is going to play, among the available chunks of
its associated database DS . To perform this task, the con-
nection applies two successive mappings: 1) a feature-to-
feature mapping from the domain XM of FM to the do-
main XS of FS , and 2) a feature-to-chunk mapping from
XS to DS .

2.2.1 The feature-to-feature (f2f) mapping

Figure 1. Illustration of a percentile mapping (in red) be-
tween two distributions. 1) RMS values extracted from a
guitar track (top) and 2) hit-counts extracted from a drum
track (bottom). Both tracks come from a recording of the
jazz standard Body and Soul.

FM and FS may take their values in different domains
(for instance integers or floating points) and with differ-
ent value distributions. Normalizing the values of FM and
FS allows to define a simple feature-to-feature (f2f) map-
ping, that maps any value xM of FM onto the same value
xM of FS . However, with such a mapping, the distribution
of the virtual agent’s actual output doesn’t match the dis-
tribution of the database, i.e., the virtual agent doesn’t play
consistently in the style of the musician it represents.

Instead we use a percentile-based f2f mapping, which
preserves this distribution. If D is the domain of a variable
x, the percentile function is defined by:

percentile(x,D) =
|{d ∈ D | d < x} |

|D|
(1)

The f2f mapping is then defined as:

f2f(xM) = percentile−1(percentile(xM , DM), DS)
(2)

Suppose a guitarist wants a virtual drummer to adapt its
density to the guitar’s energy. As a proxy of energy, we use
master feature FM = RMS for the guitar. Drums’ density
is represented by slave feature FS = hit-count (i.e., number
of onsets in the chunk). Fig. 1 shows the distribution of
the RMS values of a typical guitar recording, and of the

hit-count values of a typical drum recording. The distribu-
tions strongly differ, by their total number of values (257
values for the RMS, 157 for the hit-count), ranges (RMS
values range from 0.03 to 0.16 whereas hit-count values
range from 0 to 19) and number of bins (for the RMS, there
are 50 different bins, and only 19 for the hit-count). The
f2f mapping selects the hit-count value xS with the same
percentile as the RMS value xM . A value xM = 0.076,
corresponds to a percentile of 0.067. The hit-count value
with the same percentile is 2, as shown in Fig. 1.

2.2.2 The feature-to-chunk (f2c) mapping

Eventually, the connection selects which chunk to play,
given xS . This is implemented by the feature-to-chunk
(f2c) mapping, which represents the musical intention be-
hind the connection. We specify this mapping operationally,
by composing various filters. Given xS and a subset C ⊆
DS of chunks, each filter selects a subset of C that satisfies
a specific rule. Filters are defined once for all, as illustrated
in the following examples:

• ClosestChunks(C, xS)
def
= argmin

c∈C
| FS(c)− xS |

• FarthestChunks(C, xS)
def
= argmax

c∈C
| FS(c)− xS |

• MatchingChunks(C, xS)
def
= {c ∈ C | FS(c) = xS}

• UnmatchingChunks(C, xS)
def
= {c ∈ C | FS(c) 6= xS}

• ChordMatchingChunks(C, xS)
def
= {c ∈ C | chord(c)

is substitutable to xS}

• At a given beat b,
AdaptiveClosestChunks(C, xS)

def
=

ClosestChunks(C, xS) if b is the first beat

of a bar

{c} where c is the chunk that follows in DS

the chunk currently playing otherwise

• RandomChunk(C)
def
= random(C)

The f2c mapping of a connection is a composition of
filters, such as:

RandomChunk(fn(. . . f2(f1(DS , xS), xS) . . . , xS))

where f1, . . . , fn are filters.
In our example of the guitar controlling the drums, we

use a ClosestChunks filter. A value of xM = 0.076 for
the guitar RMS will trigger a drum chunk with a hit-count
value closest to 2.

When the composition of filters yields an empty sub-
set, specific procedures are applied, such as using a default
style database for the instrument.

2.2.3 Multiple masters for one slave

To better approximate the complexity of interaction occur-
ring in a real band, a slave agent may be connected to sev-
eral master agents. In this case, the f2f mappings are first
computed independently and then intersected.

2.3 Representing Harmony as a Connection

In tonal music, such as jazz, musicians improvise on a
chord sequence that is known to all beforehand. VB im-
plements such shared harmonic information by a specific
agent that represents the chord sequence.

The chord sequence agent AC provides a unique feature
whose value xC is the name of the next chord in the se-
quence. AC is typically connected to harmony-dependent
agents, such as pitched instruments (e.g., piano, guitar).
For such a virtual agent A, the connection is defined as
follows: the master agent is AC , the master feature value
is xC , and the slave agent is A.

Depending on the expected behavior of the virtual agent,
with respect to harmony, various slave features and map-
pings may be used.

The most typical example is that of a piano comping
agent AP that is expected to play chords in the same har-
mony as xC . Each audio chunk of the database DP is as-
sociated to a feature value xP which represents the corre-
sponding chord name. In this case, the slave feature value
is xP , the f2f mapping is the identity: xP = xC , and the
filter is ChordMatchingChunks. Note that the matching is
not necessarily strict, but can use substitution rules, as ex-
plained in the next section.

2.4 Reflexive Style Databases

VB also features a memoryless mode, i.e., which doesn’t
require pre-recorded style databases. One motivation is to
avoid “canned music” effects caused by the audience being
unaware of the content of the style databases. In this mode,
databases are built on-the-fly, typically like interactive sys-
tems such as Continuator [12] or Omax [11]. Reflexive
style databases are used to generate various species of self-
accompaniments such as duos or trios with oneself [13].

Conceptually, reflexive style databases do not differ from
pre-recorded ones. Technically, they raise various real-
time issues (segmentation and feature extraction must be
performed in real-time without interfering with the main
VB loop) that are not discussed in this paper.

More interestingly, reflexive style databases raise spar-
sity issues. Because a database contains only what the mu-
sician has played so far, its size will typically be much
smaller than that of pre-recorded databases. As a conse-
quence, the system has far fewer possibilities for genera-
tion. This is particularly annoying in contexts using pre-
determined chord grids. In principle, the system requires
a long feeding phase, to accumulate at least one chunk for
every chord of the sequence before it can start playing back
relevant audio material. Such a feeding phase is usually
boring for the musician as well as for the audience.

In order to reduce feeding, we propose to automati-
cally expand style databases by using audio transforma-
tions, such as transpositions, implemented with pitch shift-
ing algorithms [14]. In VB, the audio chunks of a database
can be pitch-shifted so that the transposed bars can be used
in new harmonic situations.

We also use so-called substitution rules to further ex-
pand the style database. Substitution rules consist in re-

Figure 2. The feeding phase reduction using (a) transposi-
tions, (b) substitutions, and (c) a combination of both.

placing a chord by another one with an equivalent har-
monic function. This operation is widely used in jazz to
bring variety in performance [1]. VB uses chord substi-
tutions to play in a certain harmonic context audio that
was recorded in another harmonic context, provided the
two contexts may be substituted.

By combining transpositions and substitutions, the feed-
ing phase is drastically reduced. The three examples of
Fig. 2 show how to harmonize the song Solar from a lim-
ited number of input chords, using transpositions (a), sub-
stitutions (b), and a combination of both (c). The input
chords (highlighted) generate the remaining chords of So-
lar (marked in the same color). Without substitutions or
transpositions, 12 input chords would be required in the
feeding phase. In contrast, (a) requires 5 input chords, (b)
requires 8, and (c) only 2. For instance in (c), G min 7 can
be substituted for C 7 using substitution “G min 7 : C 7”,
but also F min 7 using a 1 tone downward transposition,
and Bb 7 with a combination of these two operations.

3. APPLICATION TO JAZZ IMPROVISATION

The following examples illustrate various configurations of
VB with one human guitarist and one or two reflexive vir-
tual agents. In the first and second examples, we present
duos in which the virtual agent is controlled respectively
by a spectral centroid feature and by a rhythm pattern fea-
ture extracted from the human guitarist. Then, we extend
the example to a guitar trio configuration. An accompany-
ing web site illustrates all these configurations with videos
of the corresponding performances 1 .

3.1 Spectral Centroid-Based Duo

Two jazz guitarists improvising together commonly use a
question-answer interaction scheme: one of the guitarists
plays a melody; as soon as he finishes, the other guitarist
plays another melody that borrows elements from the first
one. Typically the answering melody is in the same pitch
range or shares similar rhythm patterns with the original
melody. While a guitarist proposes a melody, the other one
either stops playing or accompanies the first one with, e.g.,
chord comping.

1 http://francoispachet.fr/virtualband/virtualband.html

Figure 3. Score of a spectral-centroid based duo: a human
agent (AH) plays the melody of Solar. A virtual agent AV

matches the spectral centroid of AH , with a one-bar delay.
At bar 11 (Db maj7) AV uses a transposition of bar 5 (F
maj7) of AH to match the spectral centroid of bar 10 of
AH . At bar 8 (Bb 7), substitution “F min 7 : Bb 7” allows
AV to play bar 7 of AH (F min 7).

We simulate these scenarios with various configurations
of VB based on pitch features of audio content. A reflexive
style database records the incoming audio of a human gui-
tarist AH and extracts the spectral centroid of each bar. We
chose the spectral centroid as an approximation of pitch,
but more refined descriptors could be used interchange-
ably. A virtual agent AV , associated to the database, is
connected to AH . At each bar, this connection is specified
by the following elements:

• master feature FH = spectral centroid of AH ; slave
feature FV = spectral centroid of AV ;

• f2f = percentile from a value FH to a value of FV

(details in Section 2.2.1);

• f2c = ClosestChunks (details in Section 2.2.2).

Note that in the meantime, another connection ensures that
AV also plays according to the harmonic constraints (see
Section 2.3 for details).

In this configuration, the system behaves as a self har-
monizer: AV follows the spectral centroid of AH with
a one-bar delay (see Fig. 3), using music material that
sounds like what the guitarist just played.

Replacing the filter in the configuration above by:

• f2c = FarthestChunks

implements another musical intention: the agent plays au-
dio that is far away pitch-wise to the human’s input. In this
configuration, the two outputs (human and virtual guitar)
are clearly distinct.

3.2 Rhythm-Based Duo

Question-answer musical dialogues can also be based on
rhythmical similarities. A guitarist plays a rhythm pattern
for a few bars, and the other one responds by playing a
similar pattern. We introduce a feature that represents the
rhythm pattern: the RMS profile. This profile is obtained

by computing the RMS 12 times per beat over one bar.
The agent plays back chunks with a similar profile, with
a systematic one-bar delay. Technically, the connection is
specified by:

• master feature FH = RMS profile of AH ; slave fea-
ture FV = RMS profile of AV ;

• f2f = identity, i.e., for a value xH of FH and a value
xV of FV : xV = xH ;

• f2c = ClosestChunks. The distance between two RMS
profiles is the scalar product of the two vectors.

This mode is fun and lively as the interaction is easily per-
ceived by the musician and the audience. However, it re-
quires larger databases, so it should be used when the sys-
tem has accumulated enough rhythm samples to play back
interesting variations.

As before, changing the filter to:

• f2c = FarthestChunks.

implements a very different musical interaction: the virtual
agent plays chunks that are dissimilar to the input of the
musician, which is more difficult to anticipate for a human
than similar patterns.

3.3 Trio

In a typical jazz guitar trio, one of the guitarists impro-
vises melodies on a harmonic grid, while the other two pro-
vide respectively chordal and bass accompaniments. These
roles (melody, chords, and bass) represent different guitar
playing modes. During an improvisation, guitarists typi-
cally shift roles in turn. When a musician takes the lead
(solo), the other guitarists adapt their behavior so that each
mode is always played by someone. With VB, we rep-
resent this configuration so that a guitarist can be self-
accompanied by two reflexive virtual agents, sharing the
same reflexive database.

In addition to the RMS profile, we extract the play-
ing mode from each recorded beat, among four possible
modes: melody, chord, bass and silence [2]. Each virtual
agent is associated to a unique playing mode (one to the
bass, one to the chords), and agents follow a mutually ex-
clusive rule, i.e., they play only if the human guitarist is
not playing in the same mode, following [13]. Given a vir-
tual agent AV (virtual bass or virtual chords), such a rule
is easily modeled by a connection:

• master feature FH = playing mode of AH ; slave fea-
ture FV = playing mode of AV ;

• f2f = identity;

• f2c = UnmatchingChunks.

Furthermore, like in the previous example, each agent fol-
lows the rhythmical patterns of the guitarist. For instance,
a walking bass, or chord comping (a lot of notes per bar,
regularly spaced) can be triggered by playing a fast and
regular melody. This configuration provides the feeling of
a standard jazz guitar trio to a solo musician.

4. OTHER APPLICATIONS

In this section, we describe applications of VB in two other
musical contexts: beatboxing and mash-ups; also illus-
trated by videos on our web site.

4.1 Reflexive Beatboxing

Beatboxing is a music style where musicians use their mouth
to simulate percussion. Beatboxing also involves hum-
ming, speech or singing (see [17]). Common beatboxers
typically alternate between modes, but some great beat-
boxers are able to play two modes at the same time (e.g.,
percussion and humming).

Beatboxing with VB aims at augmenting the perfor-
mance of a moderately good beatboxer by allowing him
or her to play, via reflexive virtual agents, several modes
at the same time. Using the same connection settings as
in Section 3.3, the system records and stores in a reflexive
database the incoming audio of the real beatboxer. From
this audio, the database distinguishes between two play-
ing modes: the percussion mode and the humming mode.
Then two virtual agents are connected to this database, one
representing the percussion mode and the other the hum-
ming mode. The classification is performed following a
similar scheme to [2], except for the set of features se-
lected by the classifier (here harmonic-to-noise ratio, spec-
tral centroid and Yin). Following a mutually exclusive
principle, virtual agents play alternatively, depending on
the mode of the human beatboxer, and following his or her
rhythmic patterns. Table 4 illustrates a typical session with
such an augmented beatboxer.

Figure 4. A 16-bar performance of the beatboxing system:
t and k are percussive sounds, O and A are hummed vow-
els. AP is the percussive agents, and AH is the humming
agent. Agents follow a mutually exclusive principle and
try to match the human’s rhythm with a one-bar delay.

4.2 Mash-up

A mash-up is created by blending two or more songs, usu-
ally by overlaying a track of one song over the tracks of an-
other [5]. Mash-ups exploit multi-track songs whose tracks
are available as separated audio files. A straightforward
way to implement mash-up with VB is to represent each

track of each song as a virtual agent. The database of each
agent consists of all the audio chunks obtained by segment-
ing the corresponding track. The mash-up is obtained by
muting and replacing one agent by a track agent represent-
ing the same instrument of another song. The virtual agent
representing the replacing track is connected to the muted
agent of the original song.

For instance, one can replace the drums in song Rox-
anne (The Police) by another drummer. The muted agent
that represents the original drum track controls the substi-
tute drummer through rhythm patterns. Technically, the
settings of the connection are the same as presented in the
first example of Section 3.2. On the accompanying web
site we provide mash-ups of Roxanne with the drummer of
1) Smells Like Teen Spirit (Nirvana), 2) Hey (Pixies), 3)
Bossa Nova and 4) Funk drums played by Jeff Boudreaux.

We can hear in the provided example each drummer
playing in his style while seemingly following the song’s
structure by, e.g., playing breaks at the right time, or play-
ing more intensively on choruses and bridges.

5. CONCLUSION

We revisit the problem of interacting with stylistically con-
sistent agents from a MIR viewpoint. In VirtualBand, in-
teractions are specified using features pairs, taken from
the vast library of features developed in MIR. VB agents
are reactive but not deliberative, i.e., they do not attempt
to exhibit autonomy, make goals, or plan ahead. But the
examples show that even with only reactive agents, rich
and complex interactions can take place, by exploiting the
complex correlations that typically occur between pairs of
features computed on human audio signals.

However, VB only scratches the surface of the new field
of individual style modeling. Current work focuses on is-
sues like how to “saturate” a style database, or how to pre-
dict the emergence of long-term structure from low-level
feature interaction.

6. ACKNOWLEDGEMENT

This research is conducted within the Flow Machines project
which received funding from the European Research Coun-
cil under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / ERC Grant Agreement n. 291156.

7. REFERENCES

[1] J. Coker. Elements of the Jazz Language for the Devel-
oping Improvisor. Alfred Music Publishing, 1997.

[2] R. Foulon, F. Pachet, and P. Roy. Automatic classifica-
tion of guitar playing modes. Proc. of the CMMR Sym-
posium, 2013.

[3] T. Gifford and A.R. Brown. Do androids dream of elec-
tric chimera? In Proc. of the ACMC, pages 56–63,
2009.

[4] T. Gifford and A.R. Brown. Beyond reflexivity: Me-
diating between imitative and intelligent action in an
interactive music system. In Proc. of the HCI Confer-
ence, 2011.

[5] J. Grobelny. Mashups, sampling, and authorship:
A mashupsampliography. Music Reference Services
Quarterly, 11(3-4):229–239, 2008.

[6] M. Hamanaka, M. Goto, H. Asoh, and N. Otsu.
A learning-based jam session system that imitates a
player’s personality model. In Proc. of the IJCAI, vol-
ume 18, pages 51–58, 2003.

[7] A. Hawryshkewich, P. Pasquier, and A. Eigenfeldt.
Beatback: A real-time interactive percussion system
for rhythmic practise and exploration. In Proc. of the
NIME Conference, pages 100–105, 2011.

[8] L. Iocchi, D. Nardi, and M. Salerno. Reactivity and
deliberation: A survey on multi-robot systems. In
M. Hannebauer, J. Wendler, and E. Pagello, editors,
Balancing Reactivity and Social Deliberation in Multi-
Agent Systems, volume 2103 of Lecture Notes in Com-
puter Science, pages 9–34. Springer, 2000.

[9] M. Marchini and H. Purwins. Unsupervised generation
of percussion sound sequences from a sound example.
In Proc. of the SMC Conference, 2010.

[10] A. Martin, A. McEwan, C.T. Jin, and W. L. Martens. A
similarity algorithm for interactive style imitation. In
Proc. of the ICMC, pages 571–574, 2011.

[11] J. Nika and M. Chemillier. Improtek: integrating har-
monic controls into improvisation in the filiation of
OMax. In Proc. of the ICMC, pages 180–187, 2012.

[12] F. Pachet. The continuator: Musical interaction with
style. Journal of New Music Research, 32(3):333–341,
2003.

[13] F. Pachet, P. Roy, J. Moreira, and M. d’Inverno. Reflex-
ive loopers for solo musical improvisation. In Proc. of
the SIGCHI Conference, CHI ’13, pages 2205–2208.
ACM, 2013. Best paper honorable mention award.

[14] C. Schörkhuber and A. Klapuri. Pitch shifting of audio
signals using the constant-q transform. In Proc. of the
DAFx Conference, 2012.

[15] D. Schwarz. Current research in concatenative sound
synthesis. In Proc. of the ICMC, pages 9–12, 2005.

[16] G. Sioros, A. Holzapfel, and C. Guedes. On measur-
ing syncopation to drive an interactive music system. In
Proc. of the ISMIR Conference, pages 283–288, 2012.

[17] D. Stowell and M. D. Plumbley. Characteristics of the
beatboxing vocal style. Dept. of Electronic Engineer-
ing, Queen Mary, University of London, Technical Re-
port, Centre for Digital Music C4DMTR-08-01, 2008.

