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Preface 
Welcome to the 15th ISMIR (International Society for Music Information Retrieval) 
Conference in Taipei, the capital city of Taiwan where you’ll enjoy a mild sub-tropical 
climate, a multitude of exotic fruits, gourmet cuisine, easy and informal hospitality and a 
thriving and fascinating cultural scene. 

The present volume contains all the peer-reviewed papers presented at ISMIR 2014.  

� 252 papers were received, of which 222 were complete and well-formatted. These 222 
papers were subjected to a double-blind review process in which both the authors and 
reviewers remained anonymous.  

� 106 papers were accepted based on reviews and meta-reviews provided by 267 
reviewers and 37 PC members. The overall acceptance rate is 47.7% (=106/222).  

� 33 papers were selected for oral presentations based on both research quality and 
topic; the remainder 73 were selected for poster presentations.  

The following table summarizes the publication statistics over the past ISMIRs:  
 

Location Oral Poster Total 
Papers 

Total 
Pages 

Total 
Authors 

Unique 
Authors 

Pages/ 
Paper 

Authors/ 
Paper 

U. Authors/ 
Paper 

Plymouth 19 16 35 155 68 63 4.4 1.9 1.8 
Indiana 25 16 41 222 100 86 5.4 2.4 2.1 
Paris 35 22 57 300 129 117 5.3 2.3 2.1 
Baltimore 26 24 50 209 132 111 4.2 2.6 2.2 
Barcelona 61 44 105 582 252 214 5.5 2.4 2 
London 57 57 114 697 316 233 6.1 2.8 2 
Victoria 59 36 95 397 246 198 4.2 2.6 2.1 
Vienna 62 65 127 486 361 267 3.8 2.8 2.1 
Philadelphia 24 105 105 630 296 253 6 2.8 2.4 
Kobe 38 85 123 729 375 292 5.9 3 2.4 
Utrecht 24 86 110 656 314 263 6 2. 2.4 
Miami 36 97 133 792 395 322 6 3 2.4 
Porto 36 65 101 606 324 264 6 3.2 2.6 
Curitiba 31 67 98 587 395 236 5.9 3 2.4 
Taipei 33 73 106 635 343 271 6 3.2 2.6 
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As in past ISMIR conferences, the selected papers will be presented over a period of 3.5 
days, preceded by a day of tutorials and followed by a half-day late-breaking/demo & 
unconference sessions. Moreover, we have two satellite events, including a music hack day of 
Hacking Audio and Music Research (HAMR) on Oct. 25 and 26, and Workshop on 
Computer Music and Audio Technology (WOCMAT) on Oct. 28 and 29. Highlights of the 
conference include:  

Tutorials 

Four tutorials will take place on Monday, with two on ethnic music and two on music 
analysis, providing a good balance between culture and technology. 

Morning sessions:  

� “Why is Greek music interesting? Towards an ethics of MIR” by Andre Holzapfel 
and George Tzanetakis  

� “Musical structure analysis” by Meinard Müller and Jordan Smith  

Afternoon sessions:  

� “Jingju music: Concepts and computational tools for its analysis” by Rafael Caro 
Repetto, Ajay Srinivasamurthy, Sankalp Gulati and Xavier Serra  

� “MiningSuite, a comprehensive framework for music analysis, articulating audio 
(MIRtoolbox 2.0) and symbolic approaches” by Olivier Lartillot  

Keynote Speakers 

We are honored to have two distinguished keynote speakers, Dr. Axel Roebel from IRCAM 
and Prof. Ye Wang from the National University of Singapore. Dr. Roebel will talk about 
audio music transcription, a challenging task and one of the ultimate goals of MIR, while 
Prof. Wang will describe innovative applications using music for exercise and rehabilitation.  

� Axel Roebel: Automatic Music Transcription: From Music Signals to Music Scores  
� Ye Wang: Sound and Music Computing for Exercise and (Re-)habilitation  

MIREX 

Music Information Retrieval Evaluation eXchange (MIREX) is a collective effort to evaluate 
cutting-edge methods for various MIR tasks, which is an integral part of ISMIR. This year we 
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are celebrating the 10th anniversary of MIREX with the following events on Friday morning:  

� Prof. J. Stephen Downie’s talk on “Ten Years of MIREX: Reflections, Challenges and 
Opportunities”  

� A poster session on 20 MIREX tasks, including the Grand Challenge 2014 for user 
experience, and several other new tasks related to audio downbeat estimation, audio 
fingerprinting, and singing voice separation.  

Late-breaking/Demo & Unconference 

Friday afternoon is dedicated to late-breaking papers and MIR system demonstrations. 
Abstracts for these presentations will be available online. Moreover, after the late-
breaking/demo session, we have a special “unconference” session (following the late-
breaking sessions in ISMIR 2012 and 2013) in which participants can break into groups to 
discuss MIR issues of particular interest. This will be an informal and informative 
opportunity to get to know your peers and colleagues from around the world.  

Music Program 

On Wednesday night, a 2.5-hour concert will be held in the main conference hall. The goal of 
this year’s music program is not only to encourage the use of MIR techniques in creating new 
music, but also to promote the composition of music that reflects Asian philosophy. The 
concert will feature 10 pieces selected from participant submissions, and 6 pieces specially-
commissioned for the conference.  

Social Events 

As in past ISMIRs, a reception will be held on Monday night and a banquet on the following 
Thursday night. Moreover, we have “Women in MIR meeting” (for connecting female 
researchers in MIR) on Wednesday early morning, and “Mixer” (for people to get to know 
one another) on Wednesday late afternoon.  

Get to know Taipei 

The Bureau of Foreign Trade has kindly provided all foreign participants vouchers for 
English-language half- and whole-day local tours, including an all-around tour of Taipei 
(including visits to National Palace Museum, Shilin Night Market, Taipei 101, etc), a sky 
lantern tour in the mountains outside Taipei, a tea culture tour (including Maokong Gondola), 
a luxurious foot massage (with dinner at world-famous Michelin-starred Din Tai Fung), and a 
spa in Taipei’s famous hot springs. More tour options can be found at ISMIR-2014 website. 
Be sure to take the chance to explore Taipei City and enjoy your stay at Taiwan! 

The proceedings of ISMIR 2014 were made possible by the hard work of the organizing 
team, the PC members, the reviewers, and the authors, to whom we would like to express our 
deep gratitude. Specials thanks also go to this year’s sponsors and supporters, including 
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MediaTek, KKBox, Pandora, Shazam, FormosaSoft, Merry, Realtek, Gracenote, iKala, 
Dolby, Samsung, Deansoft, Google, Doreso, Terasoft, III, ITRI, iNDIEVOX, and ACLCLP.  

We hope you all have a wonderful and unforgettable stay at Taipei!  

 

General Chairs 

Jyh-Shing Roger Jang 
National Taiwan University, Taiwan 
 
Masataka Goto 
National Institute of Advanced Industrial Science and Technology (AIST), Japan 
 
Xiao Hu 
University of Hong Kong, Hong Kong S.A.R., China 

Program Chairs 

Hsin-Min Wang 
Academic Sinica, Taiwan 
 
Yi-Hsuan Yang 
Academic Sinica, Taiwan 
 
Jin Ha Lee 
University of Washington, USA 
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Keynote 1: Automatic Music Transcription: From Music Signals to 
Music Scores 

 
Axel Roebel  
Analysis/Synthesis Team, IRCAM 
Paris, France 
 

Abstract 

Deriving the symbolic annotation of a piece of music form the audio signal is one of the 
important long term objectives of research in music information retrieval. The related signal 
processing task is denoted in short as: Automatic Music Transcription. It consists of deriving 
a complete score including the timing and frequency information of the notes (instruments 
and drums) present, and the instruments that have produced each note. A solution of this task 
would have an important impact on the research on MIR because it would open the door to 
use a symbolic music representation for the analysis of arbitrary audio signals. On the other 
hand one may note that the solution of the AMT task may benefit from results of many 
individual MIR tasks: e.g. tonality, chords, tempo, structure (notably repetitions), 
instrumentation. 

The present talk aims to situate today’s research related to the AMT problem. It will start 
with an introduction into the problem and the main obstacles to be resolved. Then a brief 
summary of the history of research related to Automatic Music Transcription will be 
presented leading to a description of the state of the art. An overview of the algorithms that 
are currently employed will be given together with a few examples using existing software 
implementations. Finally, potential directions for improving the state of the art AMT 
algorithms will be discussed covering instrument models (ANR project SOR2), multi channel 
audio analysis (EU FP7 project 3DTVS), as well as music theoretic constraints. 

Biography 

Axel Roebel is the head of the research team analysis/synthesis of sound at IRCAM. He 
received the Diploma in electrical engineering from Hannover University in 1990 and the 
Ph.D. degree (summa cum laude) in computer science from the Technical University of 
Berlin in 1993. In 1994 he joined the German National Research Centre for Information 
Technology (GMD-First) in Berlin where he continued his research on adaptive modeling of 
time series of nonlinear dynamical systems. In 1996 he became assistant professor for digital 
signal processing in the communication science department of the Technical University of 
Berlin. Since 2000 he is working at IRCAM doing research on spectral domain algorithms for 
sound analysis, synthesis and transformation. In summer 2006 he was Edgar-Varese guest 
professor for computer music at the Electronic studio of the Technical University of Berlin 
and in 2011 he became the head of the analysis/synthesis team. 
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His research centers around problems in audio signal analysis, synthesis and transformation 
covering music and speech. His recent research projects are related to spectral modeling of 
musical instruments (ANR project Sample Orchestrator II), audio to midi transcription 
(industrially funded project Audio2Note), detection and classification of sound events in 
multi channel audio (EU FP7 project 3DTVS), modeling and transformation of sound 
textures (ANR project PHYSIS), synthesis of singing voice (ANR project CHANTER). He is 
the main author of IRCAM's SuperVP software library for sound analysis and transformation. 
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Keynote 2: Sound and Music Computing for Exercise and (Re-)Habilitation 
 
 
Ye Wang 
Sound and Music Computing Lab, National University of Singapore 
Singapore 
 
Abstract 

The use of music as an aid in healing body and mind has received enormous attention over 
the last 20 years from a wide range of disciplines, including neuroscience, physical therapy, 
exercise science, and psychological medicine. We have attempted to transform insights 
gained from the scientific study of music and medicine into real-life applications that can be 
delivered widely, effectively, and accurately. We have been trying to use music in evidence-
based and/or preventative medicine. In this talk, I will describe three clinically-focused tools 
to facilitate the delivery of established music-enhanced therapies, harnessing the synergy of 
sound and music computing (SMC), mobile computing, and cloud computing technologies to 
promote healthy lifestyles and to facilitate disease prevention, diagnosis, and treatment in 
both developed countries and resource-poor developing countries. I will present some of our 
past and ongoing research projects that combine wearable sensors, smartphone apps, and a 
cloud-based therapy delivery system to facilitate music-enhanced physical and speech 
therapy, as well as the joys and pains working in such a multidisciplinary environment. 

Biography 

Ye Wang is an Associate Professor in the Computer Science Department at the National 
University of Singapore (NUS) and NUS Graduate School for Integrative Sciences and 
Engineering (NGS). He established and directed the sound and music computing (SMC) Lab 
(www.smcnus.org). Before joining NUS he was a member of the technical staff at Nokia 
Research Center in Tampere, Finland for 9 years. His research interests include sound 
analysis and music information retrieval (MIR), mobile computing, and cloud computing, and 
their applications in music edutainment and e-Health, as well as determining their 
effectiveness via subjective and objective evaluations. His most recent projects involve the 
design and evaluation of systems to support 1) therapeutic gait training using Rhythmic 
Auditory Stimulation (RAS), and 2) Melodic Intonation Therapy (MIT). He is also affiliated 
with the School of Computer Science of Fudan University and Harvard Medical School. 
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Tutorial 1: Why is Greek Music Interesting? Towards an Ethics of MIR  

 
Andre Holzapfel 
Department of Computer Science 
University of Crete 
Crete, Greece 
 
George Tzanetakis 
Department of Computer Science 
University of Victoria  
Victoria, BC, Canada 
 
The initial goal of this tutorial is to provide an overview of musical styles in Greek culture, 
and to indicate various features of these musics that make them challenging and interesting 
for research in Music Information Retrieval (MIR). This tutorial is addressed to everybody 
interested in extending the diversity of her/his evaluation data, this way targeting generality 
of MIR approaches. On the other hand, the tutorial is aimed to provide a lively overview over 
a range of styles, that we hope will be informative and inspiring for any music listener. The 
tutorial will initially provide an overview of various styles of rural and urban music styles in 
the various areas of Greece. Then, we will focus on some styles we are particularly familiar 
with, and point out a variety of research tasks that is apparently quite challenging for those 
musics, such as beat tracking, mood estimation, transcription and chord estimation. In 
conclusion, inspired by the diversity of Greek music and the problems such diversity poses 
for our research, we reflect on the possibility of universal approaches to music processing, 
and discuss ethical implications for our work on recommendation systems for the musics of 
the world. 
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Tutorial 2: Musical Structure Analysis   

 
Meinard Mueller  
International Audio Laboratories Erlangen 
Erlangen, Germany 
 
Jordan Smith 
Centre for Digital Music  
Queen Mary University of London 
London, UK 
 
One of the attributes distinguishing music from other sound sources is the hierarchical 
structure in which music is organized. On the lowest level, one may have sound events such 
as individual notes, which are characterized by the way they sound, their timbre, pitch and 
duration. Such sound events combine to form larger structures such as motives, phrases, and 
chords, and these elements again form larger constructs that determine the overall layout of 
the composition. This higher structural level is specified in terms of musical parts and their 
mutual relations. For example, in popular music such parts can be the intro, chorus, and verse 
sections of the song. Or, in classical music, it can be the exposition, development, and 
recapitulation of a sonata movement. The goal of music structure analysis is to divide a given 
music representation into temporal segments that correspond to musical parts and to group 
these segments into musically meaningful categories. 

In this tutorial, we review the most important segmentation and structure analysis principles 
and then discuss state-of-the-art techniques—many published in just the last few years—that 
exploit specific characteristics of music. The goals of this tutorial are: first, to explicitly 
discuss the simplifying model assumptions that each computational procedure is based on; 
second, to present recent research directions within music structure analysis and to show how 
the various principles can be applied and combined; and third, to discuss problems involving 
the evaluation of automated procedures and the use of so-called "ground-truth" reference 
annotations. 
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Tutorial 3: Jingju Music: Concepts and Computational Tools for Analysis 

 
Rafael Caro Repetto, Ajay Srinivasamurthy, Sankalp Gulati, and Xavier Serra 
Music Technology Group  
University of Pompeu Fabra 
Barcelona, Spain 
  
Jingju (also known as Peking or Beijing opera) is one of the most representative genres of 
Chinese traditional music. From an MIR perspective, jingju music offers interesting research 
topics that challenge current MIR tools. The singing/acting characters in jingju are classified 
into predefined role-type categories with characteristic singing styles. Their singing is 
accompanied by a small instrumental ensemble, within which a high pitched fiddle, the 
jinghu, is the most prominent instrument within the characteristic heterophonic texture. The 
melodic conventions that form jingju modal systems, known as shengqiang, and the 
percussion patterns that signal important structural points in the performance offer interesting 
research questions. Also the overall rhythmic organization into pre-defined metrical patterns 
known as banshi makes tempo tracking and rhythmic analysis a challenging problem. Being 
Chinese a tonal language, the intelligibility of the text would require the expression of tonal 
categories in the melody, what offers an appealing scenario for the research of lyrics-melody 
relationship. The role of the performer as a core agent of the music creativity gives jingju 
music a notable space for improvisation. The lyrics and scores cannot be taken as 
authoritative sources, but as transcriptions of particular performances. 

In this tutorial we will give an overview of Jingju music, of the relevant problems that can be 
studied from an MIR perspective and of the use of specific computational tools for its 
analysis. The tutorial will be organized in three parts. The first will be an introduction to 
Jingju from a musicological perspective, the second will cover diverse audio analysis tools of 
relevance to the study of Jingju (using http://essentia.upf.edu), and finally in the last part we 
will present and discuss specific examples of analyzing Jingju arias using those tools (work 
done in the context of http://compmusic.upf.edu). 
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Tutorial 4: MiningSuite, a Comprehensive Framework for Music Analysis, 
Articulating Audio (MIRtoolbox 2.0) and Symbolic Approaches  

 
Olivier Lartillot 
Department of Architecture, Design and Media Technology 
Aalborg University 
Aalborg, Denmark 
 
This tutorial presents an in-depth introduction to MiningSuite, a continuation of MIRtoolbox, 
an innovative environment featuring a large range of audio and music analysis tools. Thanks 
to an adaptive syntactic layer on top of Matlab, complex design of audio or music analysis 
operations can be written in a very concise way through a simple assemblage of operators 
featuring a large set of options. The integration of expertise developed in separate areas of 
study into common modules encourages further reuse of these individual methods and their 
intermingling into a common framework. The MiningSuite features an innovative and 
integrative set of symbolic-based musicological tools related to, among others, segmentation 
in the form of hierarchical grouping, melodic reduction and modal analysis. An innovative 
method for exhaustive pattern mining allows detailed motivic and metrical analyses. Audio 
and symbolic representations (in MIDI and score-like formats) and processes are tightly 
interconnected: Operators dedicated to high-level musical features extraction (tonal, metrical, 
structural analyses) integrate signal processing, statistical and symbolic-based methods, and 
accept both symbolic and audio input. 

The tutorial, suitable for both novices and experts, will give an overview of these different 
audio and symbolic approaches available in the framework, and will explain how to take 
benefit of the capabilities of the environment via the user-friendly syntax. At the last part of 
the tutorial, we will dwell a little into the description of the architecture of the MiningSuite 
(significantly different from the previous MIRtoolbox project) and of the core classes that 
govern the general capabilities of the framework. Will be described for instance the rich 
format of the output results, or a syntactic layer within the operators’ Matlab code that 
simplifies and clarifies the code while taking care of the matrix optimisations in the 
background. We will explain how you can write new modules, and will present the open-
source collaborative platform hosting the MiningSuite project, with versioning control, 
integrated source code browsing and code review, issue tracker and user’s manual available 
in a wiki environment. 
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ON CULTURAL, TEXTUAL AND EXPERIENTIAL ASPECTS 
OF MUSIC MOOD 

             Abhishek Singhi  Daniel G. Brown 
 University of Waterloo

Cheriton School of Computer Science
{asinghi,dan.brown}@uwaterloo.ca

 

ABSTRACT 

We study the impact of the presence of lyrics on music 
mood perception for both Canadian and Chinese listeners 
by conducting a user study of Canadians not of Chinese 
origin, Chinese-Canadians, and Chinese people who have 
lived in Canada for fewer than three years.  While our 
original hypotheses were largely connected to cultural 
components of mood perception, we also analyzed how 
stable mood assignments were when listeners could read 
the lyrics of recent popular English songs they were hear-
ing versus when they only heard the songs. We also 
showed the lyrics of some songs to participants without 
playing the recorded music.  We conclude that people as-
sign different moods to the same song in these three sce-
narios. People tend to assign a song to the mood cluster 
that includes “melancholy” more often when they read the 
lyrics without listening to it, and having access to the lyr-
ics does not help reduce the difference in music mood 
perception between Canadian and Chinese listeners sig-
nificantly. Our results cause us to question the idea that 
songs have “inherent mood”. Rather, we suggest that the 
mood depends on both cultural and experiential context. 

1. INTRODUCTION 

Music mood detection has been identified as an important 
Music Information Retrieval (MIR) task. For example, 
there is a MIREX audio mood classification task [12].
Though most automatic mood classification systems are 
solely based on the audio content of the song, some sys-
tems have used lyrics or have combined audio and lyrics 
features (e.g., [3-5] and [6-7]) Previous studies have 
shown that combing these features improves classification 
accuracy (e.g., [6-7] and [9]) but as mentioned by Downie 
et al. in [3], there is no consensus on whether audio or lyr-
ical features are more useful. 

Implicit in “mood identification” is the belief that 
songs have “inherent mood,” but in practice this assign-
ment is unstable.  Recent work has focused on associating 
songs with more than one mood label, where similar 

mood tags are generally grouped together into the same 
label (e.g., [2]), but this still tends to be in a stable listen-
ing environment.   

Our focus is instead on the cultural and experiential 
context in which people interact with a work of music.  
People's cultural origin may affect their response to a 
work of art, as may their previous exposure to a song, 
their perception of its genre, or the role that a song or 
similar songs has had in their life experiences.

We focus on people's cultural origin, and on how they 
interact with songs (for example, seeing the lyrics sheet or 
not). Listening to songs while reading lyrics is a common 
activity: for example, there are “lyrics videos” (which on-
ly show lyrics text) on YouTube with hundreds of mil-
lions of views (e.g. “Boulevard of Broken Dreams”), and 
CD liner notes often include the text of lyrics.  Our core 
hypothesis is that there is enough plasticity in assigning 
moods to songs, based on context, to argue that many 
songs have no inherent “mood”. 

Past studies have shown that there exist differences in 
music mood perception among Chinese and American lis-
teners (e.g., [8]). We surmised that some of this differ-
ence in mood perception is due to weak English language 
skills of Chinese listeners: perhaps such listeners are una-
ble to grasp the wording in the audio. We expected that 
they might more consistently match the assignments of 
native English-speaking Canadians when shown the lyrics 
to songs they are hearing than in their absence. We ad-
dressed the cultural hypothesis by exploring Canadians of 
Chinese origin, most of whom speak English natively but
have been raised in households that are at least somewhat 
culturally Chinese. If such Chinese-Canadians match Ca-
nadians not of Chinese origin in their assignments of 
moods to songs, this might at least somewhat argue 
against the supposition that being Chinese in culture had 
an effect on mood assignment, and would support our be-
lief that linguistic skills account for at least some of the 
differences. Our campus has many Chinese and Chinese-
Canadians, which also facilitated our decision to focus on 
these communities. 

In this study we use the same five mood clusters as are 
used in the MIREX audio mood classification task and 
ask the survey participants to assign a song to only one 
mood cluster. A multimodal mood classification could be 
a possible extension to our work here. Earlier works in 
MIR [11] had used Russell’s valence-arousal model 
where the mood is determined by the valence and arousal 
scores of the song; we stick to the simpler classification 
here. 

© Abhishek Singhi, Daniel G. Brown.
Licensed under a Creative Commons Attribution 4.0 International 
License (CC BY 4.0). Attribution: Abhishek Singhi, Daniel G. 
Brown. “On Cultural, Textual And Experiential Aspects Of Music 
Mood”, 15th International Society for Music Information Retrieval 
Conference, 2014.
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In practice, our hypotheses about language expertise 
were not upheld by our experimental data.  Rather, our 
data support the claim that both cultural background and 
experiential context have significant impact on the mood 
assigned by listeners to songs, and this effect makes us 
question the meaningfulness of “mood” as a category in 
MIR. 

2. RELATED WORK 

Mood classification is a classic task in MIR, and is one 
of the MIREX challenges. Several projects have used lyr-
ics as part of the mood prediction task. Lu et al. [1] and 
Trohidis et al. [2] come up with an automatic mood clas-
sification system solely based on audio. Several projects 
like Downie et al. [3], Xiong et al. [4] and Chen et al. [5], 
have used lyrics as part of the mood prediction task. 
Downie et al. [3] show that features derived from lyrics 
outperform audio features in 7 out of the 8 categories. 
Downie et al. [6], Laurier et al. [7] and Yang et al. [9] 
show that systems which combine audio and lyrics fea-
tures outperform systems using only audio or only lyrics 
features. Downie et al. [6] show that using a combination 
of lyrics and audio features reduces the need of training 
data required to achieve the same or better accuracy lev-
els than only-audio or only-lyrics systems. 

Lee et al. [8] study the difference in music mood per-
ception between Chinese and American listeners on a set 
of 30 songs and conclude that mood judgment differs be-
tween Chinese and American participants and that people 
belonging to the same culture tend to agree more on mu-
sic mood judgment. That study primarily used the com-
mon Beatles data set, which may have been unfamiliar to 
all audiences, given its age. Their study collected mood 
judgments solely based on the audio; we also ask partici-
pants to assign mood to a song based on its lyrics or by 
presenting both audio and lyrics together. To our 
knowledge no work has been done on the mood of a song 
when both audio and lyrics of the song is made available 
to the participants, which as we have noted is a common 
experience. Kosta et al. [11] study if Greeks and non-
Greeks agree on arousal and valence rating for Greek 
music. They conclude that there is a greater degree of 
agreement among Greeks compared to non-Greeks pos-
sibly because of acculturation to the songs.   

Downie et al. [3], Laurier et al. [7] and Lee et al. [8] 
use 18 mood tags derived from social tags and use mul-
timodal mood classification system. Trohidis et al. [2] 
use multi modal mood classification into six mood clus-
ters. Kosta et al. [11] use Russell’s valence-arousal mod-
el which has 28 emotion denoting adjectives in a two di-
mensional space. Downie et al. [10] use the All Music 
Guide datasets to come up with 29 mood tags and cluster 
it into five groups. These five mood clusters are used in 
the MIREX audio music mood classification task. We 

use these clusters where each song is assigned a single 
mood cluster. 
Mood Clusters Mood Tags
Cluster 1 passionate, rousing, confident, boister-

ous, rowdy
Cluster 2 rollicking, cheerful, fun, sweet, amia-

ble/good natured
Cluster 3 literate, poignant, wistful, bittersweet, 

autumnal, brooding
Cluster 4 humorous, silly, campy, quirky, whim-

sical, witty, wry
Cluster 5 aggressive, fiery, tense/anxious, in-

tense, volatile, visceral

Table 1. The mood clusters used in the study. 

3. METHOD 

3.1 Data Set

We selected fifty very popular English-language songs of 
the 2000’s, with songs from all popular genres, and with 
an equal number of male and female singers. We verified 
that the selected songs were international hits by going to 
the songs' Wikipedia pages and analyzing the peak posi-
tion reached in various geographies.

We focus on English-language popular music in our 
study, because it is the closest to “universally” popular 
music currently extant, due to the strength of the music 
industry in English-speaking countries. Our data set in-
cludes music from the US, Canada and the UK and Ire-
land. 

3.2 Participants 

The presence of a large Chinese and Canadian population 
at our university, along with obvious cultural differences 
between the two communities, convinced us to use them 
for the study. We also include Canadians of Chinese 
origin; we are unaware of any previous MIR work that 
has considered such a group.  We note that the Chinese-
Canadian group is diverse: while some speak Chinese 
languages, others have comparatively little exposure to 
Chinese language or culture. 

We recruited 100 participants, mostly university stu-
dents, from three groups: 

� 33 Chinese, living in Canada for less than 3 
years. 

� 33 Canadians, not of Chinese origin, born and 
brought up in Canada, with English as their 
mother tongue. 

� 34 Canadians, of Chinese origin, born and 
brought up in Canada. 

3.3 Survey 

Each participant was asked to assign a mood cluster to 
each song in a set of 10 songs. For the first three songs 
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they saw only the lyrics; for the next three songs they only 
heard the first 90 seconds of the audio; and for the last 
four songs they had access to both the lyrics and the first 
90 seconds of the audio simultaneously. They assigned 
each song to one of the five mood clusters shown in Table 
1. We collected 1000 music mood responses for 50 songs, 
300 each based solely either on audio or lyrics and 400 
based on both audio and lyrics together. We note that due 
to their high popularity, some songs shown only via lyrics 
may have been known to some participants. We did not 
ask participants if this was the case. 

4. RESULTS 

We hypothesized that the difference in music mood per-
ception between American and Chinese listeners demon-
strated by Hu and Lee [8] is because of the weak spoken 
English language skills of Chinese students, and that this 
might give them some difficulty in understand the word-
ing of songs; this is why we allowed our participants to 
see the lyrics for seven out of ten songs. 

We had the following set of hypotheses before our 
study: 

� People often assign different mood to the same 
song depending on whether they read the lyrics, 
or listen the audio or both simultaneously. 

� Chinese-born Chinese listeners will have less 
consistency in the assignment of moods to songs 
than do Canadian-born non-Chinese when given 
only the recording of a song. 

� Chinese-born Chinese will more consistently 
match Canadians when they are shown the lyrics 
to songs. 

� Just reading the lyrics will be more helpful in 
matching Canadians than just hearing the music 
for Chinese-born Canadians. 

� Canadian-born Chinese participants will be in-
distinguishable from Canadian-born non-Chinese 
participants. 

� A song does not have an inherent mood: its 
"mood" depends on the way it is perceived by 
the listener, which is often listener-dependent. 

4.1 Lyrics and music mood perception between cul-
tures 

We started this study with the hypothesis that difference 
in music mood perception between Chinese and Canadian 
cultures is partly caused by English language skills, and 
that if participants are asked to assign mood to a song 
based on its lyrics, we will see much more similarity in 
judgment between two different groups.  

We used the Kullback-Leibler distance between the 
distribution of responses from one group and the distribu-
tion of responses from that group and another group to 

identify how similar the two groups' assignments of 
moods to songs were, and we used a permutation test to 
identify how significantly similar or different the two 
groups were.  In Table 2, we show the number of songs 
for which different population groups are surprisingly 
similar. What we find is that the three groups actually 
agree quite a bit in uncertainty of assigning mood to 
songs when they are presented only with the recording: if 
one song has uncertain mood assignment for Canadian 
listeners, our Chinese listeners also typically did not con-
sistently assign a single mood to the same song. 

Our original hypothesis was that adding presented lyr-
ics to the experience would make Chinese listeners agree 
more with the Canadian listeners, due to reduced uncer-
tainty in what they were hearing.  In actuality, this did not 
happen at all: in fact, presence of both audio and lyrics 
resulted in both communities having both more uncertain-
ty and disagreeing about the possible moods to assign to a 
song. 

This confusion in assigning a mood might be because 
a lot of hit songs (“Boulevard of Broken Dreams”, “Viva 
La Vida”, “You’re Beautiful”, etc.) use depressing words 
with very upbeat tunes. It could also be that by presenting 
both lyrics and audio changes the way a song is perceived 
by the participants and leads to a completely new experi-
ence. (We note parenthetically that this argues against us-
ing lyrics only features in computer prediction of song 
mood.) 

The number of songs with substantial agreement be-
tween Chinese and Canadian, not of Chinese origin, par-
ticipants remains almost the same with lyrics only and au-
dio only, but falls drastically when both are presented to-
gether. (Note again: in this experiment, we are seeing how 
much the distribution of assignments differs for the two 
communities.) This contradicts our hypothesis that the 
difference in music mood perception between Chinese 
and Canadians is because of their difference in English 
abilities. It could of course be the case that many Chinese 
participants did not understand the meaning of some of 
the lyrics. 

We had hypothesized that Canadians, of Chinese and 
non-Chinese origin would have very similar mood judg-
ments because of similar English language skills but they 
do tend to disagree a lot on music mood. The mood 
judgment agreement between Chinese and Canadian, of 
Chinese and non-Chinese origin seem to be similar and 
we conclude that we can make no useful claims about the 
Chinese-Canadian participants in our sample. 

On the whole we conclude that the presence of lyrics 
does not significantly increase the music mood agreement 
between Chinese and Canadian participants: in fact, being 
able to read lyrics while listening to a recording seems to 
significantly decrease the music mood agreement between 
the groups. 
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lyrics audio audio+lyrics
Chinese Canadians 25 22 14
Chinese Canadian-

Chinese
36 31 27

Chinese non-Chinese 
Canadians

31 32 23

non-
Chinese 
Canadians

Canadian-
Chinese

36 29 31

Table 2. The number of statistically significantly similar 
responses between the different cultures for the three dif-
ferent ways they interact with the songs. “Canadians” re-
fer to Canadians of both Chinese and non-Chinese origin. 

4.2 Stability across the three kinds of experiences 

We analyze the response from participants when they are 
made to listen to the lyrics, hear the audio or both simul-
taneously across all the three groups. We calculate Shan-
non entropy of this mood assignment for each of the 50 
songs for the three ways we presented a song to the par-
ticipants: some songs have much more uncertainty in how 
the participants assign mood cluster to them.  We then see 
if this entropy is correlated across the three kinds of expe-
rience, using Spearman’s rank correlation coefficient of 
this entropy value between the groups. A rank correlation 
of 1.0 would mean that the song with the most entropy in 
its mood assignment in one experience category is also 
the most entropic in the other, and so on.  

Spearman’s rank correlation 
coefficient

only lyrics & only audio 0.0504
only lyrics & audio+lyrics 0.1093
only audio & audio+lyrics 0.0771

Table 3. Spearman’s rank correlation coefficient between 
the groups. The groups "only lyrics" and "only audio" 
identify when participants had access to only lyrics and 
audio respectively while “audio+lyrics” refers to when 
they had access to both simultaneously. 

The low value of the correlation analysis suggests that 
there is almost no relationship be-tween "certainty" in 
music mood across the three different kinds of experienc-
es: for songs like “Wake Up” by Hillary Duff and “Maria 
Maria” by Santana, listeners who only heard the song 
were consistent in their opinion that the song was from 
the second cluster, “cheerful”, while listeners who heard 
the song and read the lyrics were far more uncertain as to 
which class to assign the song to. 

4.3 “Melancholy” lyrics

For each song, we identify the mood cluster to which it 
was most often assigned, and show these in Table 4. 

Mood Clusters only lyrics only audio audio+lyrics 
Cluster 1 8 9 13
Cluster 2 5 15 11
Cluster 3 28 14 18
Cluster 4 4 6 3
Cluster 5 5 6 5

Table 4. The most commonly assigned mood clusters for 
each experimental context. Most songs are assigned to the 
third mood cluster when participants are shown only the 
lyrics. 

Songs experienced only with the lyrics are most often 
assigned to the third mood cluster, which includes the 
mood tags similar to "melancholy". In the presence of au-
dio or both audio and lyrics there is a sharp decline in the 
number of songs assigned to that cluster; this may be a 
consequence of "melancholy" lyrics being attached to 
surprisingly cheery tunes that cause listeners to assign 
them to the first two clusters. The number of songs as-
signed to the fourth and fifth cluster remains more similar 
across all experiential contexts.  Even between the two 
contexts where the listener does hear the recording of the 
song, there is a good deal of inconsistency in assignment 
of mood to songs: for 27 songs, the most commonly iden-
tified mood is different between the "only audio" and 
“audio+lyrics” data. 

4.4 Rock songs 

We explored different genres in our test set, to see if our 
different cultural groups might respond in predictable 
ways when assigning moods to songs.  

Things that might be considered loud to Chinese lis-
teners could be perceived as normal to Canadian listeners. 
Thus, we examined how responses differed across these 
two groups for rock songs, of which we had twelve in our 
data set. We calculate the Shannon entropy of the re-
sponse of the participants and present the result in table 5.

We see that for many rock songs, there is high diver-
gence in the mood assigned to the song by our listeners 
from these diverse cultures.  For seven of the twelve rock 
songs, the most diversity of opinion is found when listen-
ers both read lyrics and hear the audio, while for three 
songs, all participants who only read the lyrics agreed ex-
actly on the song mood (zero entropy). 

We see that for 3 of 12 cases all the participants tend 
to agree on the mood for the song when they are given 
access to the lyrics. The data for lyrics only have lower 
entropy than audio for 5 of 12 cases and all five of these 
songs are "rebellious" in style. For the five cases where 
the audio-only set has lower entropy than lyrics-only, the 
song has a more optimistic feel to it. This is consistent 
with our finding in the last section about melancholy song 
lyrics. 

For example, the lyrics of “Boulevard of Broken 
Dreams”, an extremely popular Green Day song, evoke 
isolation and sadness, consistent with the third mood clus-
ter. On the other hand the song's music is upbeat which 
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may give the increased confusion when the participant has 
access to both the audio and lyrics for the song. 

Song only lyr-
ics

only 
audio

audio+lyrics 

“Complicated” 1.0 0.918 1.148
“American Idiot” 1.792 1.459 1.792
“Apologize” 1.0 1.25 1.0
“Boulevard of Bro-
ken Dreams”

0.0 1.792 2.155

“Bad Day” 1.792 1.459 1.061
“In the End” 0.65 1.459 1.061
“Viva La Vida” 0.0 1.5849 1.75
“It’s My life” 0.0 0.65 1.298
“Yellow” 1.792 0.65 1.351
“Feel” 0.918 0.650 1.148
“Beautiful Day” 1.584 1.459 1.836

“Numb” 1.25 1.918 0.591

Table 5. Entropy values for rock songs for the three dif-
ferent categories. 

4.5 Hip-Hop/ Rap 

Lee et al. [8] show that mood agreement among Chinese 
and American listeners is least for dance songs.  Our test 
set included five rap songs, and since this genre is often 
used at dance parties, we analyzed user response for this 
genre. Again, we show the entropy of mood assignment 
for the three different experiential contexts in Table 6.

What is again striking is that seeing the lyrics (which 
in the case of rap music is the primary creative element of 
the song) creates more uncertainty among listeners as to 
the mood of the song, while just hearing the audio record-
ing tends to yield more consistency. Perhaps this is be-
cause the catchy tunes of most rap music pushes listeners 
to make a spot judgment as to mood, while being remind-
ed of lyrics pushes them to evaluate more complexity. 

In general we see that there is high entropy in mood 
assignment for these songs, and so we confirm the previ-
ous claim that mood is less consistent for “danceable”
songs. 

5. DOES MUSIC MOOD EXIST?

For music mood classification to be a well-defined task, 
the implicit belief is that songs have “inherent mood(s),”
that are detectable by audio features. Our hypothesis is 
that many songs have no inherent mood, but that the per-
ceived mood of a song depends on cultural and experien-
tial factors. The data from our study supports our hypoth-
esis. 

We have earlier shown that the mood judgment of a 
song depends on whether it is heard to or its lyrics is read 
or both together, and that all three contexts produce mood 
assignments that are strikingly independent.  

We have shown that participants are more likely to as-
sign a song to the “melancholic” mood cluster when only 
reading its lyrics, and we have shown genre-specific cul-
tural and experiential contexts that affect how mood ap-
pears to be perceived. Together, these findings suggest 
that that the concept of music mood is fraught with uncer-
tainty. 

The result of the MIREX audio mood classification 
task has had a maximum classification accuracy of less 
than 70% [12], with no significant recent improvements. 
Perhaps, this suggests that the field is stuck at a plateau, 
and we need to redefine “music mood” and change our 
approach to the music mood classification problem. Mu-
sic mood is highly affected by external factors like the 
way a listener interacts with the song, the genre of the 
song, the mood and personality of the listener, and future 
systems should take these factors into account. 

Song only lyr-
ics

only 
audio

audio+lyrics 

“London Bridge” 1.459 0.918 1.405
“Don’t Phunk With 
My Heart”

1.459 1.251 1.905

“I Wanna Love 
You”

0.918 1.459 1.905

“Smack That” 1.918 1.792 1.905
“When I’m Gone” 1.251 0.918 1.448

Table 6. Entropy values for hip-hop/ rap songs for the 
three different categories. 

6. CONCLUSION 

Our experiment shows that the presence of lyrics has a 
significant effect on how people perceive songs.  To our 
surprise, reading lyrics alongside listening to a song does 
not significantly reduce the differences in music mood 
perception between Canadian and Chinese listeners. Also, 
while we included two different sets of Canadian listeners 
(Canadian-Chinese, and Canadians not of Chinese origin), 
we can make no useful conclusions about the Chinese-
Canadian group. 

We do consistently see that presence of both audio and 
lyrics reduces the consistency of music mood judgment 
between Chinese and Canadian listeners. This phenome-
non may be because of irony caused by negative words 
presented in proximity to upbeat beats, or it could be that 
presenting both audio and lyrics together might be a com-
pletely different experience for the listener. This is an ob-
vious setting for further work. 

We have shown that the mood of a song depends on its 
experiential context. Interestingly, songs where listeners 
agree strongly about the mood of the song when only lis-
tening to the recording are often quite uncertain in their 
mood assignments when the lyrics are shown alongside 
the recording.  Indeed, there is little correlation between 
the entropy in mood assignment between the different 
ways we presented songs to participants.
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We also show that many “melancholy” lyrics are found 
in songs assigned to a more cheerful mood by listeners, 
again suggesting that for such songs, the extent to which 
listeners focus on the lyrics may influence how sad they 
view a song to be. We analyzed the mood assignments of 
participants on rock and hip-hop/rap songs. We see that 
people tend to agree much more to the mood of a hip-
hop/rap song when they are made to listen to the song.
We found that for rebellious/negative rock songs lyrics 
leads to more agreement in music mood but audio is bet-
ter for positive songs. In both the genres we found that 
hearing audio while reading lyrics lead to less agreement 
on music mood of songs. 

Our results suggest that music mood is so dependent 
on cultural and experiential context to make it difficult to 
claim it as a true concept. With the classification accuracy 
of mood classification systems reaching a plateau with no 
significant improvements we suggest that we need to re-
define the term “music mood” and change our approach 
toward music mood classification problem. 

A possible extension to our work could be running a 
similar study using a larger set of songs and more partici-
pants, possibly from more diverse cultures than the ones 
we studied. Future studies could focus on multi-modal 
music mood classification where a song could belong to 
more than one mood, to see if even in this more robust 
domain there is a stable way to assign songs to clusters of 
moods when they are experienced in different contexts.  
We also wonder if other contextual experiments can show 
other effects about mood: for example, if hearing music 
while in a car or on public transit, or in stores, makes the 
“mood” of a song more uncertain.

We fundamentally also wonder if “mood” as an MIR 
concept needs to be reconsidered.  If listeners disagree 
more or less about the mood of a song when it is present-
ed alongside its lyrics, that suggests a general uncertainty 
in the concept of “mood”. We leave more evidence gath-
ering about this concept to future work as well. 
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ABSTRACT

Automatic recognition of guitar playing techniques is chal-

lenging as it is concerned with subtle nuances of guitar

timbres. In this paper, we investigate this research problem

by a comparative study on the performance of features

extracted from the magnitude spectrum, cepstrum and

phase derivatives such as group-delay function (GDF) and

instantaneous frequency deviation (IFD) for classifying

the playing techniques of electric guitar recordings. We

consider up to 7 distinct playing techniques of electric

guitar and create a new individual-note dataset comprising

of 7 types of guitar tones for each playing technique. The

dataset contains 6,580 clips and 11,928 notes. Our eval-

uation shows that sparse coding is an effective means of

mining useful patterns from the primitive time-frequency

representations and that combining the sparse represen-

tations of logarithm cepstrum, GDF and IFD leads to

the highest average F-score of 71.7%. Moreover, from

analyzing the confusion matrices we find that cepstral and

phase features are particularly important in discriminating

highly similar techniques such as pull-off, hammer-on

and bending. We also report a preliminary study that

demonstrates the potential of the proposed methods in

automatic transcription of real-world electric guitar solos.

1. INTRODUCTION

The use of various instrumental techniques is essential in

music. A practical, interpretable automatic transcription

system should provide information about playing tech-

niques in addition to information about pitch or onset. For

example, various fingering styles of the guitar, such as

pull-off, hammer-on or bending, are all important elements

of a guitar performance. A novice guitar player might

be eager to learn the playing techniques employed in

a musical excerpt of interest. Similar to some popular

online automatic chord recognizer (e.g. Chordify 1 ), a tool

transcribing the note-by-note playing techniques of a guitar

recording enhances the interactivity of music learning

1 http://chordify.net/

c© Li Su, Li-Fan Yu and Yi-Hsuan Yang.

Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: Li Su, Li-Fan Yu and

Yi-Hsuan Yang. “Sparse cepstral and phase codes for guitar

playing technique classification”, 15th International Society for Music

Information Retrieval Conference, 2014.

or listening experiences, and thereby offers important

educational, recreational and even cultural values.

While extracting the pitch, onset, chord and instru-

ment information from a musical excerpt has received

great attention in the music information retrieval (MIR)

community [3, 5, 16–18, 24], relatively little effort has

been invested in transcribing the playing technique of

instruments [23]. In addition, due to the use of various

guitar tones (i.e. audio effects such as distortion, reverb,

delay, and chorus effect) in everyday guitar performances,

conventional timbre descriptors extracted from the spec-

trum might not be enough in modeling the electric guitar

playing techniques. For instance, as the chorus effect is

usually implemented by temporal delay [6], information

about the phase spectrum might be important. On the other

hand, for distortions that involve a filtering effect, cepstral

features might be useful to characterize the respective

source and filter components [8].

Motivated by the above observations, we present in

this paper a comparative study evaluating the accuracy

of playing technique classification of electric guitar using

a variety of spectral, cepstral and phase features. The

contribution of the paper is three-fold. First, to investigate

more subtle variation of musical timbre, we compile an

open dataset of 7 playing techniques of electric guitar,

covering a variety of pitches and 7 tones (cf. Section 4).

We have made the full dataset and its detailed information

available online. 2 Second, as feature learning tech-

niques such as dictionary learning and deep learning have

garnered increasing attention in audio signal processing

[12, 18, 22, 25], we evaluate the performance of sparse

representations of audio signals using a dictionary adapted

to the signals of interest (Section 5). Our evaluation shows

that, to better model the playing techniques, it is useful

to combine the sparse representation of different types of

features, such as logarithm cepstrum and phase derivatives

(Section 6). Finally, a preliminary study using a guitar

solo demonstrates the potential of the proposed methods

in automatic guitar transcription (Section 7).

2. RELATED WORK

Designing useful musical timbre descriptors has been a

long-studied topic, and has achieved high performance in

some fundamental problems such as instrument classifica-

2 http://mac.citi.sinica.edu.tw/
GuitarTranscription
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tion of monophonic signals [13]. Nowadays, researchers

turn to more challenging problems like multiple instru-

ment recognition, which deals with a highly complicated

timbre space [10]. Besides the complexity of multiple

instruments, another challenge in timbre classification is

to identify all the styles of timbre that one instrument can

produce, such as to identify the playing techniques of an

instrument. For exmaple, Abeßer et al. and Reboursière

et al. [1, 21] pioneered the problem of automatic guitar

playing technique classification, and used timber descrip-

tors such as spectral flux, weighted phase divergence,

spectral crust factors, brightness, and irregularity, amongst

others. Most of these features are physically related to

the characteristics of a plucked, vibrating string. However,

these studies were not evaluated using a dataset comprising

of various playing techniques and guitar tones.

In addition to larger and more realistic datasets, novel

feature learning techniques might be helpful for modeling

subtle timbre variations. Recently, sparse coding (SC)

as a feature learning technique has been shown effec-

tive for MIR. This approach uses a predefined dictionary

(codebook) to encode the prominent information of a

given low-level feature representation of an input signal.

One can encode any sensible audio representation by SC

to capture different signal characteristics. For instance,

Nam et al. [17] applied SC on short-time mel-spectra

for music auto-tagging; Yu et al. [25] applied SC on

logarithm cepstra and power-scale cepstra for predominant

instrument recognition. Our work goes one step further

and exploits phase information for SC.

3. ELECTRIC GUITAR PLAYING TECHNIQUE

Table 1 lists the 7 playing techniques we consider in

this work. Most guitar solos are constructed with these

techniques. For example, muting is widely used alterna-

tively in place of normal in guitar riffs for rhythmic and

punched phrases in rock and metal music, and bending is

commonly considered to be the most important technique

for expressing emotion.

To gain more insights into the signal-level properties of

the playing techniques, in Fig. 1 we show the spectrograms

(the first row) and the short-time cepstra (the second row)

of the individual-note examples played with the 7 playing

techniques. The first three columns are individual notes

F4 of normal, vibrato and mute, the fourth column the

consecutive notes F4–E4 of pull-off, and the last three

columns the consecutive notes F4–#F4 of hammer-on,

sliding and bending. The length of all samples is 0.6s.

The window size is 46ms and the hop size is 10ms. From

the spectrograms and the short-time cepstra, we see that

muting has a ‘noisier’ attack and a faster decay comparing

to normal. Moreover, hammer-on, sliding and bending

have quite different transition behaviors, although they

have the same note progression. The transition is sharp

for hammer-on; smooth for bending; and there is a two-

stage transition for sliding. Therefore, it seems that both

the spectrogram and the cepstra contain useful information

that can be exploited for automatic classification.

Technique Description # clips

Normal Normal sound 2,009

Muting Sounds muted (by right hand) to

create great attenuation

385

Vibrato Trilled sound produced by twisting

left hand finger on the string

637

Pull-off Sound similar to normal but with the

smoother attack created by pulling

off the string by left hand finger

525

Hammer-

on

Sound similar to normal but with the

smoother attack created by hammer-

ing on the string by left hand finger

581

Sliding Discrete change to the target note

with a smooth attack by left hand

finger sliding through the string

1,162

Bending Continuous change to the target note

without an apparent attack by bend-

ing the string by left hand fingers

1,281

Table 1. Description of the playing techniques considered.

4. DATASET

While there is no publicly available dataset for guitar

playing technique classification across different tones, we

establish our own one with the aforementioned 7 playing

techniques. The dataset is recorded by a professional

guitarist using a recording interface, PreSonus’ AudioBox

USB, with bit depth of 24 bits and frequency response from

14 Hz to 70 kHz. We directly line-in the guitar to recording

interface to catch every nuance of sound and exclude

environmental noise. The guitar for recording is ESP’s MII

with Seymour Duncan’s pickup and Ebony finger board,

which is a high-quality guitar especially for metal and

rock music. To make the quality of the sound recordings

akin to that of real-world performance, we augment the

single clean tone source to different guitar tones, which is

done in the post-production stage using music production

software Cubase. In addition, we assign each audio clips

to 7 different guitar tones, which involve different levels

of distortion, reverb, delay and chorus. Such tones may

represent different genres such as rock, metal, funk, and

country music solos. Moreover, the tones are carefully

tuned to meet the quality for listening.

Because of the different characteristics of the tech-

niques, the clips are recorded in slightly different ways.

All the clips of sliding and bending have 2 notes for each

clip with both whole step (2 semitones) and half step (1

semitone); all the clips of hammer-on and pull-off have

2 notes with only half step; and the clips of vibrato and

muting have only one note for each clip. As for normal, we

record whole steps, one steps, and single notes to cover all

possible cases which might occur in the other 6 techniques.

For sliding and bending, we record the clips only with the

first three strings of the guitar since these techniques are

less frequently applied on the last 3 strings. Similarly, we

record muting clips with only the last 3 strings because it

is commonly used in rhythm guitar with low pitch. Other
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Figure 1. Spectrograms (the first row) and short-time cepstra (the second row) of the seven playing techniques considered

in this study. From left to right: normal, muting, vibrato, pull-off, hammer-on, sliding, bending.

playing techniques are recorded with all the 6 strings. As a

result, we can see from Table 1 that the numbers of clips of

the 7 techniques are different, where normal has the largest

number of 2,009 notes and muting has the smallest number

of 385 notes. In total there are 6,580 clips.

5. METHODS

5.1 Feature representation

Our feature processing procedures have two steps: low-

level feature extraction and sparse coding. In low-level

feature extraction, we select spectrogram (SG), group-

delay function (GDF), instantaneous frequency deviation

(IFD), logarithm cepstrum (CL) and power cepstrum (CP),

all of which are derived quantities from the short-time

Fourier transformation (STFT):

Sh(t, ω) =

∫
x (τ)h (τ − t) e−jωτdτ = Mh (t, ω) ejΦ

h(t,ω) ,

(1)

where x(t) ∈ R is the input signal, Sh (t, ω) ∈ C

stands for the two-dimensional STFT representation on

time-frequency plane, and h (t) refers to the window

function. SG is the magnitude part of the STFT repre-

sentation: SGh(t, ω) = |Sh(t, ω)|. Phase spctrum is the

imaginary part of the logarithm spectrum: Φh (t, ω) =
Im

(
log Sh (t, ω)

)
. IFD and GDF are the derivative of

phase Φ over time and frequency, respectively:

IFDh (t, ω) =
∂Φh

∂t
= Im

(
SDh (t, ω)

Sh (t, ω)

)
, (2)

GDFh (t, ω) = −∂Φh

∂ω
− t = Re

(
−ST h (t, ω)

Sh (t, ω)

)
, (3)

where D and T represent operators on window functions:

Dh (t) = h′ (t) and T h (t) = t · h (t). Detailed derivation

procedures of GDF and IFD can be found in [2]. On the

other hand, CL and CP are calculated as

CLh(t, q) = (Sh)−1
(
log |Sh(t, ω)|

)
, (4)

CPh(t, q) = (Sh)−1
(
|Sh(t, ω)|1/3

)
, (5)

where (Sh)−1(·) denotes the inverse STFT and q denotes

quefrency [19]. Features derived from CL, such as the

Mel-frequency cepstral coefficients (MFCCs), are often

employed in audio signal processing [8, 16].

5.2 Sparse coding and dictionary learning

For any one of the aforementioned low-level features,

denoted as y ∈ R
m, we further convert it to a sparse

representation α ∈ R
k by SC. Specifically, SC involves

the following l1-regularized LASSO problem [7] to encode

y over a given dictionary D ∈ R
m×k.

α̂ = fSC(D,y) = argmin
α

‖y −Dα‖22 + λ‖α‖1 . (6)

The LASSO problem can be efficiently solved by for

example the least angle regression (LARS) algorithm [7].

Moreover, the dictionary D is learned by the online dictio-

nary learning (ODL) [15] implemented by the open-source

package SPAMS (http://spams-devel.gforge.
inria.fr/). The SC result when the input y is CL has

been referred to as the sparse cepstral code [25].

6. EXPERIMENT

6.1 Experimental setup of individual notes

As Fig. 1 illustrates, the playing techniques can be better

identified around the onsets for most cases. Therefore,

our system starts from detecting the onset of each clip

and then extracts features from each segment starting from

the time before the onset by ta second to the time after

the onset by tb second. We use the well-known spectral

flux method [11] for onset detection, and empirically set

ta = 0.1 and tb = 0.2 for all the clips. For STFT, we use

Hanning window of window size 46 ms (1,024 samples)

and hop size of 10 ms (441 samples). Under the sampling

rate of 44.1 kHz, the dimension of all the low level features

is 512 (i.e. considering only positive frequency).

We adopt a five-fold jack-knife cross-validation (CV)

scheme for the evaluation. For all the fold partitions,

the distribution of clips over the playing techniques is

balanced. We learn both the classifier and the ODL

dictionary from the training folds only, without using the

test fold. The number of atoms k of each dictionary is set to
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Figure 2. Average accuracies (in F-scores) of playing

technique classification using various feature combination.

Left part: RAW features; right part: SC features.

512. 3 After obtaining the frame-level sparse codeword α,

a clip-level feature representation is constructed by mean

pooling. Finally, the features, either with or without sparse

coding, are fed into linear support vector machine (SVM)

[9], with the parameter C optimized through an inside CV

on the training data from the range {2−10, 2−9, · · ·, 210}.
The evaluation results on the test set are reported in terms

of F-score, which is the harmonic mean of precision and

recall. All the evaluation is done at the clip-level.

We consider a number of baseline approaches for com-

parison. First, we use the MIRtoolbox (version 1.3.4) [14]

to compute a total number of 41 features covering the tem-

poral, spectral, cepstral and harmonic aspects of music sig-

nals (denoted as ‘TIMB’ in Fig. 2) as an implementation

of a prior art on guitar playing technique classification [1].

Second, the conventional MFCC, ΔMFCC and ΔΔMFCC

are also used for their popularity (denoted as ‘MFCC’).

Third, we try the early fusion of MFCC and TIMB (i.e. by

concatenating the corresponding clip-level representations

to form a longer feature vector). Finally, for the features

learned by SC, we note that the sparse representation of

the mel-spectra (denoted as ‘MEL’) was used in [17],

and the sparse representations of CL and CP were used

in [25]. However, please note that the focus here is to

compare the performance of using different features for

the task, so our implementation does not faithfully follow

the ones described in the prior arts. For example, Nam

et al. uses automatic gain control as a pre-processing and

uses multiple frame representation instead of frame-level

features as input to feature encoding [17]. For simplicity

the feature extraction and classification pipelines have been

kept simple in this study.

We apply SC to all the five low-level features described

in Section 5.1 and consider a number of early fusion of

them. No normalization is performed for SC features.

However, for non-SC features (referred to as ‘RAW’), it is

useful to apply a z-score normalization so that each feature

dimension has zero mean and unit variance.

3 Using an over-complete dictionary (i.e. k � m) usually improves
the performance of SC features [25], but we leave this as a future work.

(a) SC+SG

predicted class
F-score

nor mut vib pul ham sli ben

ac
tu

al
cl

as
s

nor 92.6 3.26 1.07 1.01 0.85 0.90 0.38 55.2

mut 44.0 43.7 6.94 1.13 0.32 0.97 2.90 56.1

vib 31.0 4.93 63.8 0.27 0.00 0.00 0.00 74.1

pul 21.0 1.75 0.00 21.8 16.9 34.2 4.47 29.7

ham 31.4 0.36 0.18 12.6 25.8 25.6 4.14 33.1

sli 11.9 0.94 0.00 7.92 10.9 52.7 15.6 46.1

ben 3.56 0.92 0.11 2.18 1.26 14.5 77.5 75.6

(b) SC+CL

predicted class
F-score

nor mut vib pul ham sli ben

ac
tu

al
cl

as
s

nor 95.6 1.01 0.41 0.82 0.63 1.20 0.30 58.6

mut 38.9 54.4 4.35 0.16 0.00 0.65 1.45 66.3

vib 14.3 6.03 79.7 0.00 0.00 0.00 0.00 86.3

pul 27.2 0.58 0.19 28.2 14.6 25.6 3.69 38.9

ham 31.4 0.00 0.00 9.55 38.2 18.2 2.70 47.2

sli 14.9 1.42 0.00 4.43 7.26 61.8 10.2 56.7

ben 3.79 0.69 0.00 1.84 1.03 10.5 82.2 81.9

(c) SC+{CL,GDF,IFD}
predicted class

F-score
nor mut vib pul ham sli ben

ac
tu

al
cl

as
s

nor 95.6 1.59 0.33 0.55 0.79 0.79 0.36 64.1

mut 35.0 57.9 4.52 0.32 0.16 0.32 1.77 68.7

vib 12.3 6.85 80.8 0.00 0.00 0.00 0.00 86.9

pul 19.6 0.58 0.19 41.2 11.7 22.5 4.27 52.0

ham 24.3 0.18 0.00 10.5 45.8 17.5 1.80 55.2

sli 10.2 1.13 0.19 5.66 6.60 70.4 5.85 65.0

ben 1.38 0.23 0.00 0.23 0.80 5.17 92.2 89.4

Table 2. Confusion matrix (in %) of playing technique

classification of electric guitar individual notes using

different feature combinations.

6.2 Experiment results

From the left hand side of Figure 2, we find that both

RAW+TIMB [1] and RAW+MFCC perform worse than

RAW+SG, RAW+CL and RAW+CP, possibly because the

feature dimension of the latter three is larger. However,

after fusing TIMB and MFCC, the F-score is improved

to 57.4%, which is not significantly worse than the result

of RAW+CL (i.e. 59.0%) under the two-tailed t-test. It

turns out that using sophisticated features such as those

computed by the MIRtoolbox does not offer gain for this

task. Note that the F-score of random guess would be

1/7=14.3%, because each fold is balanced across the 7

techniques. The performance of most RAW features is

greatly better than the chance level.

In contrast, from the right hand side of Figure 2, we

find that SC features usually performs much better than the

non-SC (i.e. RAW) counterparts. For example, SC+SG,

SC+CL and SC+CP are better than RAW+SG, RAW+CL

and RAW+CP, respectively. These improvements are all

significant under the two-tailed t-test (p<0.01, d.f.=8).

Similar observations have been made in existing works that
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apply SC features to MIR tasks (e.g. [17, 25]). We also

find that using SC+CL already leads to significantly better

F-score than RAW+{TIMB,MFCC} (p<0.0001, d.f.=8).

Moreover, from the data of SC features we see that fusing

GDF and IFD generally improves the accuracy, and that

the best F-score 71.7% is obtained by fusing sparse-coded

cepstral and phase features (i.e. SC+{CL,GDF,IFD}).
The F-score of SC+{SG,GDF,IFD} is worse (66.1%) than

SC+{CL,GDF,IFD}, but is still significantly better than

SC+SG. We also note that SC does not improve the per-

formance for MEL, MFCC, TIMB and IFD. This implies

that sophisticated features like TIMB are not suitable for

SC. Although SC+IFD is worse than IFD, its fusion with

other SC features still results in better performance. In a

nutshell, this evaluation shows that it is promising to use

SC for playing technique classification, especially when

we fuse multiple features derived from STFT.

Table 2 displays the confusion matrices for three dif-

ferent feature combinations with sparse coding. Table

2(a) shows the result of SC+SG, from which we see

that normal and bending have relatively high F-scores of

74.1% and 75.6% (see the rightmost column), yet the

other five techniques have F-scores lower. We see that

many playing techniques can be easily misclassified as

normal. We also see ambiguities between for example pull-

off versus sliding and hammer-on versus sliding, showing

that such techniques are difficult to be discriminated from

one another in the logarithm-scale spectrogram.

In contrast, we see from Table 2(b) that SC+CL leads

to consistent improvement in F-score for all the playing

techniques, comparing to SC+SG. The largest performance

gain (+14.1%) is obtained for hammer-on. We also see that

the ambiguity between normal and vibrato is mitigated.

Finally, comparing Tables 2 (b) and (c) we see that

SC+{CL,GDF,IFD} consistently improves the F-score for

all the playing techniques. More interestingly, it seems

that adding phase derivatives effectively alleviate the afore-

mentioned confusions without compromising the discrim-

inability of other classes. The F-scores of all the playing

techniques are now above 50.0%.

7. REAL-WORLD MUSIC

The automatic transcription flow contains frame-level pitch

detection, onset detection, and playing technique classifi-

cation, one after another. We adopt the method proposed

by Peeters [20] and use spectral and cepstral features for

pitch detection. For onset detection, we use again the

spectral flux method [4, 11]. Finally, we apply the playing

technique classifier trained from the individual note dataset

to classify the playing techniques of the guitar solo.

We present a qualitative evaluation of a real-world

electric guitar solo excerpt performed by same professional

guitarist. It is an interpretation of Sonata Artica’s Tallulah

released in 2001, for the fragment 3:59–4:08. We show

in the first two subfigures of Fig. 3 its scoresheet and

spectrogram. In the third subfigure we show the pitch and

onset, using black horizontal bars, gray horizontal bars,

and vertical dashed lines to denote the estimated frame-

level pitches, ground truth pitches, and estimated onsets,

respectively. We see that the estimated pitches and onsets

match the ground truth quite well, except for some cases

such as the mismatch between the onset at 7.70s and the

change of pitch at 7.84s, which probably results from the

ambiguity of the onset of bending.

The last subfigure of Fig. 3 compares the result of

SC+SG and SC+{CL,GDF,IFD} for playing technique

classification. Since our classification is performed with

respect to the detected onsets, the errors in the stage of on-

set detection will fully propagate into the stage of playing

technique classification. Therefore, the techniques which

are not characterized by onset (e.g., a long-sustaining

vibrato) cannot be transcribed. A true positive of onset

is defined as an onset position which is detected within

100ms of the ground truth onset time. A true positive

of playing technique is accordingly defined as a correct

prediction of playing technique at a true positive of onset.

We can see that the performance of playing classification

degrades a lot in comparison to the case of individual notes.

Specifically, we have 7 true positives (4 normal and 3

bending) for SC+{CL,GDF,IFD} and 5 true positives (2

sliding, 2 bending and 1 normal) for SC+SG, while there

are in total 17 targets in the ground truth. The 2 muting at

2.38s and 4.60s and the hammer-on at 9.24 second are not

recalled by both methods. Although SC+{CL,GDF,IFD}
fails to recall sliding, SC+SG recalls 2 sliding. While

SC+{CL,GDF,IFD} has many false positives of vibrato,

SC+SG has many false positives of sliding. In general,

SC+{CL,GDF,IFD} performs better.

The two estimated events at 4.11s and 5.80s are interest-

ing. Although the two events do not present in the ground

truth, the prediction of SC+{CL,GDF,IFD} is musically

correct as the two false alarms of onset indeed occur in a

long-sustaining vibrato. In contrast, SC+SG misclassifies

the two events as pull-off and sliding, respectively.

8. CONCLUSION

In this study, we have reported a comparative study on the

performance of a number of timbre modeling methods for

the relatively unexplored task of guitar playing technique

classification. The evaluation is performed on a large-

scale individual-note dataset comprising of 6,580 clips and

a real-world guitar solo recording. Our evaluation shows

that sparse coding works well in learning features that

are useful for the task, and that using features extracted

from the cepstra and phase derivatives helps resolve the

confusion among similar playing techniques. We also

report a qualitative evaluation on guitar solo transcription.

We are currently collecting more individual notes and

solos to deeply understand the signal-level characteristics

for these playing techniques. Although the present study

might be at best preliminary, we hope it can call for more

attention towards playing technique modeling.
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Figure 3. Result of transcribing a real-world guitar solo excerpt. From top to bottom: scoresheet, guitar tab, spectrogram,

pitch and onset (gray bar: ground truth; black bar: estimated pitch; vertical dashed line: estimated onset), and result

of playing technique classification by using SC+SG and SC+{CL,GDF,IFD}. Abbreviation: N=normal, V=vibrato,

M=muting, P=pull-off, H=hammer-on, S=sliding, B=bending.
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ABSTRACT

This paper presents an automatic system for the detection

of single- and multi-note ornaments in Irish traditional flute

playing. This is a challenging problem because ornaments

are notes of a very short duration. The presented orna-

ment detection system is based on first detecting onsets

and then exploiting the knowledge of musical ornamenta-

tion. We employed onset detection methods based on sig-

nal envelope and fundamental frequency and customised

their parameters to the detection of soft onsets of possibly

short duration. Single-note ornaments are detected based

on the duration and pitch of segments, determined by ad-

jacent onsets. Multi-note ornaments are detected based on

analysing the sequence of segments. Experimental evalua-

tions are performed on monophonic flute recordings from

Grey Larsen’s CD, which was manually annotated by an

experienced flute player. The onset and single- and multi-

note ornament detection performance is presented in terms

of the precision, recall and F -measure.

1. INTRODUCTION

Within Irish traditional music, ornaments are used exten-

sively by all melody instruments. They are central to the

style of the music, adding to its liveliness and expression.

Amongst traditional players, the melody is merely a frame-

work [3, 4] – dynamics, ornamentation and context will be

added in real time. This is often different from classical

music where a standard notation for each piece of music

usually includes ornaments as written by the composer.

Ornaments are notes of a very short duration. They can

be categorised into single-note and multi-note ornaments.

Single-note ornaments are amongst the most common in

Irish traditional music. Multi-note ornaments consist of a

specific sequence of note and single-note ornaments.

c© Münevver Köküer1,2, Peter Jančovič2, Islah Ali-

MacLachlan1, Cham Athwal1.
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DETECTION OF SINGLE- AND MULTI-NOTE ORNAMENTS IN

IRISH TRADITIONAL FLUTE PLAYING”, 15th International Society

for Music Information Retrieval Conference, 2014.

Methods for ornament detection are typically based on

detection of note onsets. Note onsets may be categorised

as hard or soft. A hard onset, typical in percussive instru-

ments, is characterised by a sudden change in energy. A

soft onset shows a more gradual change in energy and it

occurs in wind instruments, like flute. A variety of meth-

ods have been proposed for the detection of note onsets

in music recordings, e.g., [1, 8, 11, 13, 17]. The methods

typically exploit the change in the energy of the signal,

which may be estimated in temporal or spectral domain.

The use of phase has also been investigated, e.g., [1, 11],

and combined with the fundamental frequency in [11]. It

has been reported that reliable note onset detection for non-

percussive instruments is more difficult to obtain due to the

soft nature of the onsets [11].

An automated detection of ornaments is a challenging

problem. This is because ornaments are of very short du-

rations, which may cause them being easily omitted or

falsely detected. Unlike note onset detection, this research

area has received relatively little attention. An automatic

location of ornaments for flute recordings based on MPEG-

7 features was investigated in [5]. Transcription of baroque

ornaments in two piano recordings by analysing rhythmic

groupings and expressive timing was studied in [2]. This

work used onset values from manually edited time-tagged

audio. Several works employed spectral-domain energy-

based onset detection, e.g., [9, 10, 16]. The work in [16]

analysed ornamentation from Bassoon recordings. The work

of a group from Dublin Institute of Technology, summarised

in [9], is the only study on the detection of ornaments in

Irish traditional flute music. This provided only some ini-

tial results and on a considerably smaller dataset.

In this paper, we extend our recent work presented in [14]

and investigate automatic detection of single- and multi-

note ornaments in flute playing. The presented ornament

detection system is based on first detecting onsets and then

exploiting knowledge of musical ornamentation. We ex-

plore the use of several different methods for onset detec-

tion and customisation of their parameters to detection of

soft onsets of notes which may be also of very short du-

ration. The detected onsets provide segmentation of the

signal, where a segment is defined by the adjacent detected

onsets. This segmentation, together with the musical knowl-

edge of ornamentation is then used for the detection of

single- and multi-note ornaments. Experimental evalua-
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tions are performed using recordings of Irish traditional

tunes played by flute from Grey Larsen’s CD [15]. Re-

sults of ornament detection are presented in terms of the

precision, recall and F -measure. The average F -measure

performance for single- and multi-note ornaments is over

76% and 67%, respectively.

2. SINGLE- AND MULTI-NOTE ORNAMENTS IN
IRISH TRADITIONAL FLUTE PLAYING

Ornaments are used as embellishments in Irish traditional

music [15]. They are notes of a very short duration, created

through the use of special fingered articulations.

Single-note ornaments, namely ‘cut’ and ‘strike’, are

pitch articulations. The ‘cut’ involves quickly lifting and

replacing a finger from a tonehole, and corresponds to a

higher note than the ornamented note. The ‘strike’ is per-

formed by momentarily closing an open hole, and corre-

sponds to a lower note than the ornamented note.

Multi-note ornaments are successive use of single-note

ornaments. To simplify the description, we refer to the

ornamented note as the base note throughout the rest of

this paper. The ‘roll’ consists of the base note, a ‘cut’,

base note, a ‘strike’ and then returning to the base note. A

shorter version of the roll, referred to as short-roll, omits

the starting base note. The ‘crann’ consists of the base note

that is cut three times in rapid succession and then return-

ing to the base note. The short-crann omits the starting

base note. The ‘shake’ commences with a ‘cut’, followed

by a base note and a second ‘cut’ and then returning to the

base note.

A schematic visualisation of the single- and multi-note

ornaments is given in Figure 1. In the multi-note orna-

ments figure, the proportions of the length of the individ-

ual parts aim to approximately indicate the typical duration

proportions. For instance, in theory, a roll would be split

equally into three parts by the cut and the strike but in real-

ity different players will time this differently according to

the ‘swing’ of the tune, their muscle control and a host of

other attributes that make up their personal style.

3. AUTOMATIC DETECTION OF ORNAMENTS

This section presents the developed automatic ornament

detection system. We first give a brief description of the

onset detection methods we employed and then describe

how the detected onsets are used for the detection of single-

and multi-note ornaments.

3.1 Methods for detection of onsets

Here we briefly describe three onset detection methods we

employed. Two of the methods exploit the change of the

signal amplitude over time, with processing performed in

the temporal and spectral domain [1, 8]. The third method

is based on the fundamental frequency [6, 11]. Each of

the method requires several parameters to be set and their

values are explored during experimental evaluations and

presented later in Section 4.3. The implementation of the
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Figure 1. A schematic representation of single-note (a)

and multi-note (b) ornaments.

temporal domain energy-based method used in parts some

functions from the MIRtoolbox.

3.1.1 Signal energy: spectral domain

This method, also sometimes referred to as spectral-flux

method, performs onset detection in the spectral domain.

The signal is segmented into overlapping frames. Each

signal frame is multiplied by Hamming window. The win-

dowed frames are then zero padded and the Fourier trans-

form is applied to provide the short-term Fourier spectrum.

For each frequency bin, the differences between the short-

term magnitude spectra of successive signal frames is com-

puted. This is then half-wave rectified and the L2 norm is

calculated to provide the value of the detection function

at the current frame. The peaks of the detection function,

whose amplitude is above a threshold are used as the de-

tected onsets. We explored the use of a fixed threshold

value as well as computing the value adaptively based on

the median of the detection function values around the cur-

rent frame. Finally, if two consecutive peaks are found

within a given time distance, only the first peak is used.

3.1.2 Signal energy: temporal domain

Another method we employed performs the detection in

temporal domain. The signal is passed through a bank of

fourteen band pass filters, each tuned to a specific note on

the flute in the range from D4 to B5. The filters have

non-overlapping bands, with the lower and the upper fre-

quency being half way between the adjacent note frequen-

cies. These fourteen notes are readily playable on an un-

keyed concert flute. The signal in each band is full-wave

rectified and then smoothed, resulting in amplitude enve-

lope. The time derivative of the amplitude envelope is cal-

culated in each band and this is smoothed by convolving
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it with a half-Hanning window. We explored several ways

of making decision about detected onsets. The information

from all bands can be combined by summing together their

smoothed derivative signals. Alternatively, a single band

can be chosen as a representative at each time based on as-

sessment of amplitudes of peaks around that time across

all bands. Onsets are obtained by comparing the values of

peaks to a threshold, which may be fixed or adaptive over

time.

3.1.3 Fundamental frequency

In addition to methods exploiting the signal envelope, we

also explore the use of the fundamental frequency (F0).

This has been reported to be beneficial for soft onset de-

tection in [11]. Among a large variety of existing F0 esti-

mation algorithms, we employed the YIN algorithm [7] in

this work. The F0 estimation may result in so called dou-

bling / halving errors. To help dealing with these errors, the

F0 estimates are postprocessed using a median filter. The

length of this filter needs to be set sensitively – a longer fil-

ter may be preferable to deal with the F0 estimation errors

but this may also cause filtering out ornaments, which are

characterised by their short duration.

The detection function at the frame time n, denoted as

Rn, is based on calculating the change of F0 over time.

This can be performed by taking the difference between

the F0 estimate at the frame (n+Θ) and (n−Θ). The on-

set is detected as the first frame for which abs(Rn) > αF0 ,

where the value of the threshold αF0
relates to the differ-

ence between frequencies of the closest possible notes.

3.2 Ornament detection

The detected onsets, as obtained using the methods de-

scribed in Section 3.1, provide a segmentation of the sig-

nal, where each segment is formed based on the adjacent

detected onsets.

We characterise each detected segment by some fea-

tures, specifically, here we use the duration of the segment

and its segmental fundamental frequency. For a given seg-

ment, its duration, denoted by Dseg , is obtained based on

the detected onsets and its fundamental frequency, denoted

by F seg
0 , is calculated as the median value of the F0s corre-

sponding to all signal frames assigned to that segment. Fi-

nally, these segment features are used to determine whether

the detected segment corresponds to a note or a single-

note ornament and whether the sequence of segments cor-

responds to a multi-note ornament, and if single- or multi-

note ornament is detected, then to determine its type.

3.2.1 Single-note ornament detection

As single-note ornaments are expected to be of a shorter

duration than notes, we examined whether the duration of

the detected segments can be used to discriminate these

ornaments from notes. We conducted statistical analysis

of the duration of notes and single-note ornaments in our

recordings. This was performed using the manual onset

annotations. The obtained distributions of the durations

are depicted in Figure 2 – these indicate that the duration

can indeed provide a good discrimination between notes

and ornaments. Based on these results, we consider that

a segment is classified as a single-note ornament when its

duration is below 90 ms, otherwise it is classified as a note.
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Figure 2. The distribution of the duration of single-note

ornaments (a) and notes (b) obtained using the develop-

ment set.

The decision whether the detected single-note ornament

is a ‘cut’ or ‘strike’ can be made based on comparing the

values of the F seg
0 of the current and the following seg-

ment. This reflects the musical knowledge of ornamenta-

tion. If F seg
0 of the segment detected as ornament is higher

than F seg
0 of the following segment, the ornament is clas-

sified as ‘cut’ and as ‘strike’ otherwise.

3.2.2 Multi-note ornament detection

The detection of multi-note ornaments, namely ‘crann’,

‘roll’ and ‘shake’, is based on analysing the features of a

sequence of detected consecutive segments. We used a set

of rules to determine whether the sequence corresponds to

one of the multi-note ornament types or not. These rules

reflect the definition of the multi-note ornaments as pre-

sented in Section 2 and for each ornament type are de-

scribed below. Let us consider that r denotes the index of

the first segment in the sequence of detected segments we

are currently analysing. Let us denote by ΔF seg
0 (j, j + 2)

the difference between the F seg
0 for the segment (r + j)

and F seg
0 for the segment (r + j + 2), where j is an index

to be set.

‘Crann’ is detected if the following is fulfilled: i) the

sequence of F seg
0 follows the pattern ‘BHBHBHB’, where

‘B’ stands for a base note and ‘H’ for a note higher than the

base note; ii) the segmental F seg
0 is similar for segments

corresponding to the base note, i.e., the ΔF seg
0 (j, j +2) is

within the given tolerance range βF0
when j is individually

set to 0, 2, and 4; and iii) the segment duration Dseg is

below βD for segments given by setting j from 1 to 5 and

is above βD for j set to 0 and 6. The ‘Short-Crann’ is using

the same rules but taking into account that the starting base

note is omitted.

‘Roll’ is detected if the following is fulfilled: i) the se-

quence of F seg
0 follows the pattern ‘BHBLB’, where ‘L’

stands for a note lower than the base note; ii) the value of

ΔF seg
0 (j, j +2) is within the tolerance range βF0 for j set
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to 0 and 2; and iii) the segment duration Dseg is above βD

for j being 0 and 2 and is below βD when j is 1 and 3.

Again, the ‘Short-Roll’ is using the same rules but taking

into account that the starting base note is omitted.

‘Shake’ is detected if the following is fulfilled: i) the

sequence of notes follows the pattern ‘HBHB’; ii) the value

of ΔF seg
0 (j, j + 2) is within a given tolerance range βF0

for j set to 1; and iii) the segment duration Dseg is below

βD when j is 1 and 2, and is above βD when j is 3.

The parameters βF0
and βD were set to 20 Hz (except

for ‘crann’ when 30 Hz was used) and 90 ms, respectively.

4. EXPERIMENTAL RESULTS

4.1 Data description

Evaluations are performed using recordings of Irish tra-

ditional tunes and training exercises played by flute from

Grey Larsen’s CD which accompanied his book “Essential

Guide to Irish Flute and Tin Whistle” [15]. The tunes are

between 20 sec and 1 min 11 sec long. All recordings are

monophonic and are sampled at 44.1 kHz sampling fre-

quency. Manual annotation of the recordings to indicate

the times of onsets and offsets and the identity of notes

and ornaments was performed by the third author of this

paper, who is a highly experienced musician with over 10

years of flute playing. The manual annotation is used as

the ground truth in evaluations. The data was split into

separate development and evaluation sets. The develop-

ment set, consisting of 6 tunes (namely ‘Study5’, ‘Study6’,

‘Study17’, ‘Lady on the Island’, ‘The Lonesome Jig’, ‘The

Drunken Landlady’), was used for finding the best param-

eter values of onset detection methods. The evaluation set,

consisting of 13 tunes, was used to obtain the presented

results. The list of the tunes from the evaluation set, with

the number of notes and ornaments, is given in Table 1. In

total, this set contains 3025 onsets, including notes and or-

naments. Out of these there are 301 single-note ornaments,

consisting of 257 cuts and 44 strikes, and 152 multi-note

ornaments, consisting of 117 rolls (including short-rolls),

19 cranns (including short-cranns), and 16 shakes.

4.2 Evaluation measures

Performance of the onset and ornament detection is evalu-

ated in terms of the precision (P ), recall (R) and F -measure.

The definition of these measures is the same as used in

MIREX onset detection evaluations, specifically,

P =
Ntp

Ntp +Nfp
, R =

Ntp

Ntp +Nfn
, F =

2PR

P +R

where Ntp is the number of correctly detected onsets / or-

naments and Nfp and Nfn is the number of inserted and

deleted onsets / ornaments, respectively. The onset de-

tection is considered as correct when it is within ±50 ms

around the onset annotation.

The single-note and multi-note ornaments are consid-

ered to be detected correctly when the onsets, correspond-

ing to the start and to the end of the ornament are within

±50 ms and ±100 ms range, respectively.

Tune Title Number of Time

Notes Ornaments (sec.)

(C-S-Ro-Cr-Sh)

Study 11 76 20–0–0–0–0 26

Study 22 127 0–28–0–0–0 47

Maids of Ardagh 98 23–0–5–0–0 32

Hardiman the .. 112 12–0–7–1–0 28

The Whinny Hills .. 117 15–1–5–2–4 30

The Frost is All .. 151 27–2–12–0–0 41

The Humours of .. 289 59–7–12–14–0 82

The Rose in the .. 152 22–2–11–0–0 39

Scotsman over .. 153 18–0–9–2–0 38

A Fig for a Kiss 105 17–3–6–0–2 28

Roaring Mary 176 15–1–21–0–3 44

The Mountain Road 105 8–0–6–0–3 25

The Shaskeen 181 21–0–23–0–4 42

Table 1. The list of tunes contained in the evaluation set,

with the number of onsets and ornaments and duration of

each tune. The notation ‘C’, ‘S’, ‘Ro’, ‘Cr’ and ‘Sh’ stands

for ‘cut’, ‘strike’, ‘roll’, ‘crann’ and ‘shake’, respectively.

4.3 Results of onset detection

We have performed extensive evaluations on the develop-

ment set with different parameter values for each of the

onset detection method. The best values of parameters for

each of the method are given in Table 2. The achieved

performance on the evaluation set using these parameters

for each method is presented in Table 3. Note that these

results include the onsets corresponding to both notes and

ornaments. Performance difference of less than 1% was

observed when the parameters were tuned specifically for

the evaluation set. It can be seen that all methods pro-

vide good onset detection performance, with the F0-based

method being slightly better than the energy-based meth-

ods. A method based on F0 was shown to perform best for

wind instruments also in [11], where it was also shown that

its combination with other methods provided only slight

improvement at similar P and R values. As such, in the

following, we use only the F0-based method for evaluat-

ing the ornament detection performance. An example of a

signal extract from one of the tune and the corresponding

F0 estimate and the detection function, with indicated true

label and detected onsets, are depicted in Figure 3.

4.4 Results of single-note ornament detection

The results of single-note ornament detection are presented

in Table 4 separately for ‘cut’ and ‘strike’. The achieved

detection performance is significantly higher than that pre-

sented in previous flute studies using similar data [9]. The

performance for ‘cut’ is close to the overall onset detection

performance as presented in Table 3. The performance for

‘strike’ is considerably lower than for ‘cut’. This has also

been observed in previous research and may be due to the

nature the ‘strike’ is created. There was 5 substitutions of
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Onset detection method with best values of the parameters

sig-energy (spectral):

– frame length of 1024 samples (23.2 ms)

– frame shift of 896 samples (20.3 ms)

– threshold set as fixed at 2% of the maximum of the

normalised detection function

– minimum distance between peaks set to 10 ms

sig-energy (temporal):

– half-Hanning window of 35 ms

– threshold set as fixed at 15% of the maximum of the

normalised detection function

– minimum distance between peaks set to 20 ms

F0:

– frame length of 1024 samples (23.2 ms)

– frame shift of 128 samples (2.9 ms)

– median filter of length 9 frames

– parameter Θ set to 6 frames (17 ms)

– parameter αF0 set to 10 Hz

Table 2. Parameters of each onset detection method and

their best values obtained based on the development set.

Algorithm Evaluation performance (%)

Precision Recall F -measure

sig-energy (spectral) 94.9 85.0 89.7

sig-energy (temporal) 87.9 88.6 88.3

F0 89.1 92.9 91.0

Table 3. Results of onset detection obtained by each of the

employed method.

cut for strike and 1 substitution of strike for cut. These

errors were contributed by slight inaccuracies in onset de-

tection and F0 misestimation.

Single-note Ornament Detection

Precision (%) Recall (%) F -measure (%)

Cut 88.4 86.4 87.4

Strike 63.8 68.2 65.9

Table 4. Results of single-note ornament detection ob-

tained by employing the F0-based onset detection method.

4.5 Results of multi-note ornament detection

Experiments for multi-note ornament detection were per-

formed by analysing all the possible sequence patterns re-

sulting from the detected segments – this consisted here

of 3020 sequence pattern candidates. The results of multi-

note ornament detection are presented in Table 5 separately

for ‘roll’, ‘crann’ and ‘shake’. These results include also

the short versions for ‘roll’ and ‘crann’. It can be seen that
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Figure 3. An extract from the tune ‘The Lonesome Jig’,

depicting (from top to bottom) the waveform, spectrogram,

F0 estimation (unfiltered (red) and filtered (dashed black))

and the detection function with indicated detected onsets

(blue �) and true label (magenta∇).

the performance for ‘shake’ is considerably lower than that

for ‘roll’ and ‘crann’. This is due to the short sequence pat-

tern of ‘shake’, consisting of only 4 parts, which makes it

more likely to be accidentally match with other note se-

quence. We have also analysed the performance separately

for the short and normal versions of the ‘roll’ and ‘crann’

ornaments. This showed that the F -measure performance

for ‘roll’ was approximately 17% better than for ‘short-

roll’. This trend was not observed for ‘short-crann’, which

may be due its longer note sequence.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented work on detection of single-

and multi-note ornaments in Irish traditional flute music.

We employed three different methods for onset detection

and customised their parameter values to detecting soft on-

sets of possibly very short notes. The method based on

the fundamental frequency (F0) achieved around 91% on-

set detection performance in terms of the F -measure and
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Multi-note Ornament Detection

Precision (%) Recall (%) F -measure (%)

Roll 87.5 67.0 75.9

Crann 86.7 68.4 76.5

Shake 50.0 50.0 50.0

Table 5. Results of multi-note ornament detection ob-

tained by employing the F0-based onset detection method.

outperformed slightly the other two energy-based meth-

ods. The F0-based method was then used for evaluating

the ornament detection performance. The discrimination

between notes and single-note ornaments was based on

the duration of segments defined by the adjacent detected

onsets. The F0 information of the current and the fol-

lowing segment was used to distinguish between ‘cut’ and

‘strike’ single-note ornaments. The achieved F -measure

performance for ‘cut’ was over 87%, while for ‘strike’ over

65%. The multi-note ornament detection system was based

on analysing the properties of a sequence of detected seg-

ments. This included the sequential pattern of segmental

F0’s, the duration of each segment, and the relationship

of the segmental F0’s among the segments. The average

F -measure performance over all types of multi-note orna-

ments was over 67%.

There are several points we are currently considering to

extend this work. First, we plan to analyse the errors made

by each of the onset detection methods and accordingly

explore whether their combination could lead to detection

performance improvements. This would also include ex-

ploration of the use of other onset detection methods, in-

cluding other F0 estimation algorithms and possible incor-

poration of the sinusoidal detection method we presented

in [12]. Second, we will explore a compensation for vari-

ations in tempo across the recordings. Finally, we plan to

employ probabilistic rules for detection of multi-note orna-

ments which should allow for better handling of the varia-

tions due to player’s style.
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ABSTRACT

We propose the “Kiki-Bouba Challenge” (KBC) for the re-

search and development of content-based music informa-

tion retrieval (MIR) systems. This challenge is unencum-

bered by several problems typically encountered in MIR

research: insufficient data, restrictive copyrights, imper-

fect ground truth, a lack of specific criteria for classes (e.g.,

genre), a lack of explicit problem definition, and irrepro-

ducibility. KBC provides a limitless amount of free data, a

perfect ground truth, and well-specifiable and meaningful

characteristics defining each class. These ideal conditions

are made possible by open source algorithmic composition

— a hitherto under-exploited resource for MIR.

1. INTRODUCTION

Before attempting to solve a complex problem, one should

approach it by first demonstrably solving simpler, well-

defined, and more restricted forms, and only then increase

the complexity. However, there are key problems of re-

search in content-based music information retrieval (MIR)

[8] where this has yet to be done. For example, much of

the enormous amount of research that attempts to address

the problem of music genre recognition (MGR) [26] has

started with genre in the “real world” [30]. The same is

seen for research in music mood recognition [28, 29, 37],

and music autotagging [6]. On top of this, the problem of

describing music using genre, mood, or tags in general, has

rarely, if ever, been explicitly defined [32].

In lieu of an explicit definition of the problem, the most

common approach in much of this research is to implic-

itly define it via datasets of real music paired with “ground

truth.” The problem then becomes reproducing as much

of the “ground truth” as possible by pairing feature ex-

traction and machine learning algorithms, and comparing

the resulting numbers to those of other systems (includ-

ing humans). Thousands of numerical results and pub-

lications have so far been produced, but it now appears

as if most of it has tenuous relevance for content-based
MIR [3, 27, 30, 31, 34]. The crux of the argument is that

the lack of scientific validity in evaluation in much of this

c© Bob L. Sturm, Nick Collins.
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work [3, 27, 30] has led to the development of many MIR

systems that appear as if they are “listening” to the music

when they are actually just exploiting confounded charac-

teristics in a test dataset [31]. Thus, in order to develop

MIR systems that address the goal of “making music, or

information about music, easier to find” [8] in the real-

world, there is a need to first demonstrably solve simple,

well-defined and restricted problems.

Toward this end, this paper presents the “Kiki-Bouba

Challenge” (KBC), which is essentially a simplification

of the problem of MGR. On a higher level, we propose

KBC to refocus the goals in content-based MIR. We de-

vise KBC such that solving it is unencumbered by six sig-

nificant problems facing content-based MIR research and

development: 1) the lack of formal definition of retriev-

ing information in recorded music; 2) the large amount

of data necessary to ensure representativeness and gen-

eralization for machine learning; 3) the problem of ob-

taining “ground truth”; 4) the stifling affect of intellectual

property (e.g., music copyright) on collecting and sharing

recorded music; 5) the lack of validity of standard evalua-

tion approaches of systems; and 6) a lack of reproducible

research. KBC employs algorithmic composition to gener-

ate a limitless amount of music from two categories, named

Kiki and Bouba. Music from each category are thereby

free from copyright, are based in well-defined programs,

and have a perfect ground truth. Solving KBC represents a

veritable contribution of content-based MIR research and

development, and promises avenues for solving parallel

problems in less restricted and real-world domains.

Instead of being merely the reproduction of a “ground

truth” of some dataset, the MIR “flagship application” of

MGR [4] — and that which KBC simplifies — has as its

principal goals the imitation of the human ability to or-
ganize, recognize, distinguish between, and imitate gen-
res used by music [28]. To “imitate the human ability” is

not necessarily to replicate the physiological processes hu-

mans use to hear, process and describe a piece of music, but

merely to describe as humans do a piece of music accord-
ing to its content, e.g., using such musically meaningful at-

tributes as rhythm, instrumentation, harmonic progression,

or formal structure. Solving the problem of MGR means

creating an artificial system that can work with music like

humans, but unencumbered by human limitations.

The concept of genre [12,13,16] is notoriously difficult

to define such that it can be addressed by algorithms [23].

Researchers building MGR systems have by and large posed
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the problem, implicitly or explicitly, from an Aristotelean

viewpoint, i.e., “genre” is a categorization of music just as

“species” is a categorization of living things, e.g., [5,33]. 1

The problem then is to automatically learn the characteris-

tics that place a piece of music on one branch of a taxon-

omy, distinguish it from a piece of music on a different

branch, and avoid contradiction in the process [7]. Re-

searchers have combined signal processing and machine

learning with datasets of real music recordings in hopes

that the resulting system can discover Aristotelean criteria

by which music can be categorized according to genre. The

majority of the resulting work, however, documents how

much “ground truth” an algorithm replicates in benchmark

datasets [26], but rarely illuminates the criteria a system

has learned and is using to categorize music [27]. The for-

mer quantity is meaningless when the latter is senseless.

In the next section, we discuss the use of algorithmic

music composition for data generation. Then we present

KBC in its most general form. We follow this with a con-

crete and specific realisation of KBC, available at the rele-

vant webpage: http://composerprogrammer.com/
kikibouba.html. We present an unacceptable solution

to KBC, and discuss aspects of an acceptable solution. We

conclude this paper with a discussion of KBC, and how it

relates to content-based MIR in the “real world.”

2. ALGORITHMIC MUSIC COMPOSITION FOR
GENERATING DATA

Algorithmic composition [1,9,19,21,22,25,36] has a long

history back to mainframe computer experiments in the

mid 1950s, predating by a decade MIR’s first explicit pa-

per [17]. Ames and Domino [2] differentiate empirical
style modeling (of historic musical styles) and active style
synthesis (of novel musical style). In the practical work

of this article we concentrate more on the latter, but there

is a rich set of techniques for basing generation of music

on models trained on existing musical data. Many musi-

cal models deployed to capture regularities in data sets are

generative, in that a model trained from a corpus can gen-

eralise to production of new examples in that style [11].

Though anticipated by some authors, it is surprising

how few studies in computer music have utilised algorith-

mic composition to create the ground truth. Although [24]

present a four category taxonomy of algorithmic compo-

sition, they do not explicitly discuss the option of using

algorithmic composition to produce data sets. The closest

category is where “theories of a musical style are imple-

mented as computer programs” [24], essentially empirical

style modeling as above.

Sample CD data, especially meta-data on splices, have

also rarely been used. But the advantage of algorithmic

composition techniques are the sheer volume of data which

can potentially be generated, and appropriately handled

should be free of the copyright issues that plague databases

of music recordings and hinder research access.

We believe that algorithmic generation of datasets within

1 This of course belies the profound issues that biologists face in rec-
ognizing “speciation” events [10].

a framework of open source software has the following po-

tential benefits to MIR and computer music analysis:

• Limitless data set generation, with perfect ground truth

(the originating program is fully accessible, and can

be devised to log all necessary elements of the ground

truth during generation. Random seeds can be used to

recover program runs exactly as necessary)

• A fully controlled musical working space, where all as-

sumptions and representational decisions are clear

• Copyright free as long as license free samples or pure

synthesis methods are utilised, under appropriate soft-

ware licensing

• Established data sets can be distributed free of the origi-

nating software once accepted by the community, though

their origins remain open to investigation by any inter-

ested researcher

The greatest issue with dependence on algorithmic gen-

eration of music is the ecological validity of the music be-

ing generated. A skeptic may question the provenance of

the music, especially with respect to the established cul-

tural and economically proven quality of existing human

driven recorded music production. Nonetheless, humans

are intimately involved in devising algorithmic composi-

tion programs. We believe that there is place for expert

judgement here, where experts in algorithmic composition

can become involved in the process of MIR evaluation.

The present paper serves as one humble example; but ul-

timately, a saving grace of any such position is that the

generation code is fully available, and thus accessible to

reproduction and evaluation by others.

3. THE KIKI-BOUBA CHALLENGE

We now present KBC in its most general form: develop a
system that can organize, recognize, distinguish between,
and imitate Aristotelean categories of “music.” We de-

fine these in the subsections below, after we specify the

domain.

3.1 Domain

The music universe of KBC is populated by “music” be-

longing to either one of two categories, Kiki and Bouba. 2

In KBC, music from either category is algorithmically com-

posed such that there is available a limitless number of

recordings of music from both categories, and which are

entirely unencumbered by copyrights. A music recording

from this universe therefore embeds music from Kiki and

not from Bouba, or vice versa, for several reasons that are

neither ambiguous nor disputable, and which can be com-

pletely garnered from the music recording. The ground

truth of a dataset of recordings of music from the music

universe then is absolute. Note that a music recording need

not be an audio recording, but can be a notated score, or

other kind of representation. Now, given that this is ideal

2 Shapes named “Kiki” and “Bouba” (the two are spiky and rounded,
respectively) were originally introduced in gestalt psychology to inves-
tigate cross-cultural associations of visual form and language [18, 20].
Our example realization of KBC involves two distinctive artificial musi-
cal “genres” meant to illustrate in sonic terms a similar opposition.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

22



Attribute Kiki Bouba
Form Alternating accelerando rises and crazy section (“freak

out”)
Steady chorale

Rhythm Accelerando and complex “free” rhythm, fast Limited set of rhythmic durations, slow
Pitch Modulo octave tuning system Recursive subdivision tuning system
Dynamics Fade ins and outs during accelerando and close of

“freak out” sections
Single dynamic

Voicing All voices in most of the time Arch form envelope of voice density, starting and ending with
single voice

Timbre Percussive sounds alongside fast attack and decay
bright pitched sounds. Second rise has an additional
siren sound.

Slow attack and decay sounds with initial portamento and vi-
brato, with an accompanying dull thud

Harmony Accidental coincidences only, no overall precepts System of tonality, with a harmonic sequence built from rela-
tively few possible chords

Texture More homophonic in accelerando, heterogenous with
independent voices in “freak out” sections

Homophonic, homogenous

Expression Ensemble timing loose on accelerando, independent
during “freak out” sections

Details of vibrato, portamento and “nervousness” (chance of
sounding on a given chord) differ for each voice in the texture

Space Little or no reverb Very reverberant

Table 1. Musical attributes of our realization of Kiki and Bouba.

for toolboxes of algorithms in an Aristotelean world, we

pose the following tasks.

3.2 The discrimination task (unsupervised learning)

Given an unlabelled collection of music recordings from

the music universe, build a system that determines there

exist two categories in this music universe, and high-level

(content) criteria that discriminate them. In machine learn-

ing, this can be seen as unsupervised learning, but ensuring

discrimination is caused by content and not criteria that are

irrelevant to the task.

3.3 The identification task (supervised learning)

Given a labelled collection of music recordings from the

music universe, build a system that can learn to identify,

using high-level (content) criteria, recordings of music (ei-

ther from this music universe or from others) as being from

Kiki, Bouba, or from neither. In machine learning, this can

be seen as supervised learning, but ensuring identification

is caused by content and not criteria that are irrelevant to

the task.

3.4 The recognition task (retrieval)

Given a labelled collection of music recordings from this

music universe, build a system that can recognize content

in real world music recordings as being similar to contents

in music from Kiki, Bouba, both, or neither. In information

retrieval, this can be seen as relevance ranking.

3.5 The composition task (generation)

Given a labelled collection of music recordings from this

music universe, build a system that composes music hav-

ing content similar to music from Kiki, and/or music from

Bouba. The rules that the system uses to create the mu-

sic must themselves be meaningful. For example, a mu-

sic analyst would find the program that generates the mu-

sic to provide a high-level breakdown of the characteristics

of a category. In one sense, this challenge is a necessary

precursor to those above, in that a human composer must

design the ground truth of the music universe. The pro-

duction of a dataset of music recordings with algorithmic

composition necessitates creation in real musical terms.

The machine challenge here is to backwards engineer, or

to learn in short, the compositional ability to work in the

pre-established music universe. However, backwards en-

gineering the compositional mechanisms of such a system,

as an expert human musician can potentially do when en-

countering a musical style unfamiliar to them, is itself an

important challenge of high-level musical understanding.

4. AN EXAMPLE REALIZATION OF KBC

We now present an example realization of KBC. We spec-

ify Kiki and Bouba via computer programs for algorithmic

composition, which we use to create unlimited recordings

of music from Kiki and Bouba, each varying subtly in the

fine details (we discuss the practical range of this variation

further below). Our computer program is written in the

SuperCollider audio programming language [35], with Su-

perCollider used here in non-realtime mode for fast synthe-

sis of music recordings (which in this case are monophonic

digital audio files). We measure the speed of generation of

music recordings to be around 60×real-time, so that one

piece of around one minute can be created every second

by our code. With this we easily created a multi-gigabyte

dataset of ten hours, and could very easily create far more.

As Kiki and Bouba are designed here by humans, they

are not independent of “real” music, even though they are

fully specified via open source code. 3 Table 3 outlines

properties of music from Kiki and Bouba with respect to

some high and low level musical properties. This conveys

a sense of why Kiki and Bouba are well-differentiated in

musically meaningful ways. Figure 1 further attempts to

illustrate the formal structure of the two styles, again as a

demonstration of their distinctiveness. Although the musi-

cal description is not as simple as the visual manifestation

of the original shapes of “kiki” and “bouba” [18,20], it was

designed to avoid too much overlap of musical character-

istics. Each output piece is around 40-60 seconds, since

3 We make available this source code, as well as a few repre-
sentative sound examples at the accompanying webpage: http://
composerprogrammer.com/kikibouba.html.
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Figure 1. Comparative musical forms of our realization of

music from Kiki and Bouba (labeled).

the actual length of sections is itself generative. It is be-

yond the scope of this article to discuss every detail of the

code and the variability of output allowed, but this gives

some idea. To anthropomorphise and allow a little liter-

ary conceit, our realization envisages music from Kiki to

be ecstatic, chaotic and ritualistic, characterised by alter-

nating build-ups (accelerando rises) and cathartic “freak-

outs.” Our realization envisages music from Bouba as an

abstract choral funeral march, steady and affected.

4.1 An unacceptable solution

A typical approach to attempt to address an identification

task is by computing a variety of low-level and short-time

features from music recordings, modelling collections of

these by probability distributions (bags of frames), and spec-

ifying criteria for classification, such as maximum likeli-

hood. To this end, we use supervised learning to build

a single nearest neighbor classifier trained with features

computed from a dataset consisting of 250 recordings of

music from Kiki and 250 from Bouba. As features, we first

compute the number of zero crossings for 46.3 ms Hann-

windowed audio frames, overlapped 50% across the en-

tire recording. We then compute the mean and variance

of the number of zero crossings from texture windows of

129 consecutive frames. Finally, we normalize the feature

dimensions in the training dataset observations, and use

the same normalization parameters to transform input ob-

servations. Figure 2 shows a scatter plot of these training

dataset observations. To classify an input music recording

as being of music from Kiki or Bouba, we use majority

vote from the nearest neighbor classification of the first 10

consecutive texture windows.

We test the system using a stratified test dataset of 500

music recordings from Kiki or Bouba. For each input, we

compare the system output to the ground truth. Our sys-

tem produces a classification error of 0.00! It has thus suc-

cessfully labeled all observations in the test dataset with

the correct answer. However, this system is not a solu-

tion to the identification task of KBC, let alone the three

other KBC tasks, simply because it is not using high-level
criteria (content). Of course, the statistics of low-level

zero crossings across short-time frames has something to

do with content [15], but this relationship is quite far re-

moved and ambiguous. In other words, people listen to

and describe music in terms related to key, tempo and tim-

bre, but not zero crossings. Statistics of zero crossings are
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Figure 2. Scatter plot of features extracted from recordings

of music from Kiki and Bouba.

not meaningful musical information for solving any task

of KBC. That this feature contributes to the perfect figure

of merit of this system, it does not illuminate what makes

music Kiki, and what makes music Bouba.

4.2 An acceptable solution

As of the current time, we have yet to find any acceptable

solution to our realization of KBC, or any of its tasks —

which motivates this challenge. (Furthermore, as discussed

below, the goal of KBC is not “a solution” but “solving.”)

We can, however, describe aspects of solutions acceptable

for our specific realization of KBC. An acceptable solution

to the discrimination task determines that in a set of music

recordings from the music universe, there exist two differ-

ent kinds of music, which are discriminable by high-level

content, some of which are listed in Table 3, and shown in

Fig. 1. An acceptable solution to the identification task de-

termines for any given music recording whether its high-

level contents are or are not consistent with all the musi-

cal attributes of Kiki or Bouba. An acceptable solution to

the recognition task might recognize as Bouba characteris-

tics the slow plodding rhythm, wailing timbre, and homo-

phonic texture of some jazz funeral music. It might recog-

nize as Kiki characteristics the glissando siren of some rave

music, or the complex, unpredictable and ametrical rhythm

of some free improvisation. It would recognize as not char-

acteristic of either Kiki or Bouba the form of 12-bar blues.

Finally, an acceptable solution to the composition task gen-

erates music that mimics particular characteristics of music

from Kiki and Bouba.

5. DISCUSSION
In essence, KBC is a general exercise, of which we have

provided one realization. KBC simplifies MGR — and

music description in general — to the degree that many

problems typically encountered in MIR research are not

an issue, i.e., lack of data, copyright restrictions, cost and

inaccuracy of ground truth, poor problem definition, and

evaluations that lack validity with respect to meaningful

musical understanding by machine. While most research

in MGR searches for an Aristotelean categorization of real

music (or the reverse engineering of the categorization used

to create benchmark music datasets like GTZAN [30,33]),
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it sustains most of the complexity inherent to the problem

of MGR. KBC simplifies it to be Aristotelean and well-

defined. Essentially, KBC defines categories of music as

well-specified and open-source programs, which comports

with an Aristotelean conception of music genre. This al-

lows us to benefit from algorithmic composition since we

can generate from these programs any quantity of data, free

of copyright, and with a perfect ground truth and specified

classification criteria.

It can be speculated that KBC is too much of a simpli-

fication of MGR, that defining music using programs has

little “ecological validity,” and thus that a solution to KBC

will be of little use for music in the “real world.” To the

first claim, the tasks of KBC are much more complex than

reproducing ground truth labels of datasets by any means

— the implicit goal of the majority of work addressing

MGR [27, 30] — because solving the tasks requires ma-
chine listening, i.e., “intelligent, automated processing of

music” [8]. To the second claim, our realizations of music

from Kiki and Bouba actually originate in higher-level mu-

sical processes defined by humans trained and practiced

in music composition. Fundamentally, “algorithmic mu-

sic” and “non-algorithmic music” is a false dichotomy; but

this is not to say all algorithms create equally “valid” mu-

sic. One non-sensical realization of KBC is defining music

from Kiki and Bouba as 50 ms long compositions, each

consisting of a single sine, but with frequencies separated

by 1 Hz between the two categories. To the final claim, we

emphasize an important distinction between “a solution to

KBC” and “solving KBC.” We are not claiming that, e.g.,

a system that has learned to discriminate between music

from Kiki and Bouba will be useful for discriminating be-

tween “real” music using any two “real” genres. The sys-

tem (the actual finished product and black box [29]) will

likely be useless. Rather, solving KBC is the goal because

this requires developing a system that demonstrates a ca-

pacity to listen to acoustic signals in ways that consider

high level (musical) characteristics.

If one desires more complexity than KBC offers, one

can conceive of a music universe with more than two cate-

gories, and/or various mixings of “base” categories, e.g.,

giving rise to cross-genres Bouki and Kiba (the code at

our link already has the capacity to generate these hybrid

forms). However, we contend the best strategy is to first

demonstrably solve the simplest problems before tackling

ones of increased difficulty. If the components of a pro-

posed MGR system result in a system that does not solve

KBC, then why should they be expected to result in a sys-

tem that can discriminate between, or identify, or recog-

nize, or compose music using “real” genres of music from

a limited amount of data having a ground truth output by

a complex culturally negotiated system that cannot be as

unambiguously specified as Kiki and Bouba?

6. CONCLUSION

Simply described, content-based MIR research and devel-

opment aims to design and deploy artificial systems that

are useful for retrieving, using or making music content.

The enormous number of published works [6, 14, 26, 38],

not to mention the participation during the past ten years

of MIREX, 4 show many researchers are striving to build

machine listening systems that imitate the human ability to

listen to, search for, and describe music. Examples of such

research include music genre recognition, music mood recog-

nition, music retrieval by similarity, cover song identifica-

tion, and various aspects of music analysis, such as rhyth-

mic and harmonic analysis, melody extraction, and seg-

mentation. These pursuits, however, are hindered by sev-

eral serious problems: a limited amount of data, the shar-

ing of which is restricted by copyright; the problematic na-

ture of obtaining “ground truth,” and explicitly defining its

relationship to music content; and a lack of validity in the

evaluation of content-based MIR systems with respect to

the task they are supposedly addressing. We are thus left to

ask: Have the simplest problems been demonstrably solved
yet?

In this paper, we show how algorithmic music com-

position facilitates limitless amounts of data, with perfect

ground truth and no restricting copyright, thus holding ap-

preciable potential for MIR research and development We

propose the “Kiki-Bouba Challenge” (KBC) as a simpli-

fication of the problem of MGR, and produce an exam-

ple realization of it facilitated by algorithmic composition.

We do not present an acceptable solution to our realiza-

tion of KBC, but discuss aspects of such a solution. We

also illustrate an unacceptable solution, which fails to re-

veal anything relating to musical meaning even though it

still perfectly labels a test dataset. We emphasize, the goal
of KBC is not the system itself, but in solving the challenge.
Solving KBC changes the incentive of research and devel-

opment in content-based MIR from one of developing sys-

tems obtaining high figures of merit by any means, to one

of developing systems obtaining high figures of merit by

relevant means.
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ABSTRACT

Very few large-scale music research datasets are publicly

available. There is an increasing need for such datasets, be-

cause the shift from physical to digital distribution in the

music industry has given the listener access to a large body

of music, which needs to be cataloged efficiently and be

easily browsable. Additionally, deep learning and feature

learning techniques are becoming increasingly popular for

music information retrieval applications, and they typically

require large amounts of training data to work well. In this

paper, we propose to exploit an available large-scale music

dataset, the Million Song Dataset (MSD), for classifica-

tion tasks on other datasets, by reusing models trained on

the MSD for feature extraction. This transfer learning ap-

proach, which we refer to as supervised pre-training, was

previously shown to be very effective for computer vision

problems. We show that features learned from MSD audio

fragments in a supervised manner, using tag labels and user

listening data, consistently outperform features learned in

an unsupervised manner in this setting, provided that the

learned feature extractor is of limited complexity. We eval-

uate our approach on the GTZAN, 1517-Artists, Unique

and Magnatagatune datasets.

1. INTRODUCTION

With the exception of the Million Song Dataset (MSD) [3],

public large-scale music datasets that are suitable for re-

search are hard to come by. Among other reasons, this

is because unwieldy file sizes and copyright regulations

complicate the distribution of large collections of music

data. This is unfortunate, because some recent develop-

ments have created an increased need for such datasets.

On the one hand, content-based music information re-

trieval (MIR) is finding more applications in the music in-

dustry, in a large part due to the shift from physical to

digital distribution. Nowadays, online music stores and

streaming services make a large body of music readily

available to the listener, and content-based MIR can fa-
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cilitate cataloging and browsing these music collections,

for example by automatically tagging songs with relevant

terms, or by creating personalized recommendations for

the user. To develop and evaluate such applications, large

music datasets are needed.

On the other hand, the recent rise in popularity of

feature learning and deep learning techniques in the do-

mains of computer vision, speech recognition and natu-

ral language processing has caught the attention of MIR

researchers, who have adopted them as well [13]. Large

amounts of training data are typically required for a fea-

ture learning approach to work well.

Although the initial draw of deep learning was the abil-

ity to incorporate large amounts of unlabeled data into the

models using an unsupervised learning stage called unsu-
pervised pre-training [1], modern industrial applications of

deep learning typically rely on purely supervised learning

instead. This means that large amounts of labeled data are

required, and labels are usually quite costly to obtain.

Given the scarcity of large-scale music datasets, it

makes sense to try and leverage whatever data is available,

even if it is not immediately usable for the task we are try-

ing to perform. We can use a transfer learning approach to

achieve this: given a target task to be performed on a small

dataset, we can train a model for a different, but related

task on another dataset, and then use the learned knowl-

edge to obtain a better model for the target task.

In image classification, impressive results have recently

been attained on various datasets by reusing deep convo-

lutional neural networks trained on a large-scale classifi-

cation problem: ImageNet classification. The ImageNet

dataset contains roughly 1.2 million images, divided into

1,000 categories [5]. The trained network can be used to

extract features from a new dataset, by computing the ac-

tivations of the topmost hidden layer and using them as

features. Two recently released software packages, Over-
Feat and DeCAF, provide the parameters of a number of

pre-trained networks, which can be used to extract the cor-

responding features [7,20]. This approach has been shown

to be very competitive for various computer vision tasks,

sometimes surpassing the state of the art [18, 26].

Inspired by this approach, we propose to train feature

extractors on the MSD for two large-scale audio-based

song classification tasks, and leverage them to perform

other classification tasks on different datasets. We show

that this approach to transfer learning, which we will refer

to as supervised pre-training following Girshick et al. [9],
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consistently improves results on the tasks we evaluated.

The rest of this paper is structured as follows: in Section

2, we give an overview of the datasets we used for training

and evaluation. In Section 3 we describe our proposed ap-

proach and briefly discuss how it relates to transfer learn-

ing. Our experiments and results are described in Section

4. Finally, we draw conclusions and point out some direc-

tions for future work in Section 5.

2. DATASETS

The Million Song Dataset [3] is a collection of meta-

data and audio features for one million songs. Although

raw audio data is not provided, we were able to obtain

30 second preview clips for almost all songs from 7digi-

tal.com. A number of other datasets that are linked to the

MSD are also available. These include the Taste Profile
Subset [15], which contains listening data from 1 million

users for a subset of about 380,000 songs in the form of

play counts, and the last.fm dataset, which provides tags

for about 500,000 songs. We will use the combination of

these three datasets to define two source tasks: user listen-

ing preference prediction and tag prediction from audio.

We will evaluate four target tasks on different datasets:

• genre classification on the GTZAN dataset [22], which

contains 1,000 audio clips, divided into 10 genres.

• genre classification on the Unique dataset [21], which

contains 3,115 audio clips, divided into 14 genres.

• genre classification on the 1517-artists dataset [21],

which contains 3,180 full songs, divided into 19 genres.

• tag prediction on the Magnatagatune dataset [14],

which contains 25,863 audio clips, annotated with 188

tags.

3. PROPOSED APPROACH

3.1 Overview

There are many ways to transfer learned knowledge be-

tween tasks. Pan and Yang [17] give a comprehensive

overview of the transfer learning framework, and of the

relevant literature. In their taxonomy, our proposed super-

vised pre-training approach is a form of inductive transfer
learning with feature representation transfer: target labels

are available for both the source and target tasks, and the

feature representation learned on the source task is reused

for the target task.

In the context of MIR, transfer learning has been ex-

plored by embedding audio features and labels from vari-

ous datasets into a shared latent space with linear transfor-

mations [10]. The same shared embedding approach has

previously been applied to MIR tasks in a multi-task learn-

ing setting [24]. We refer to these papers for a discussion

of some other work in this area of research.

For supervised pre-training, it is essential to have a

source task that requires a very rich feature representation,

so as to ensure that the information content of this repre-

sentation is likely to be useful for other tasks. For com-

puter vision problems, ImageNet classification is one such

task, since it involves a wide range of categories. In this pa-

per, we will evaluate two source tasks using the MSD: tag

prediction and user listening preference prediction from

audio. The goal of tag prediction is to automatically de-

termine which of a large set of tags are associated with a

given song. User listening preference prediction involves

predicting whether users have listened to a given song or

not.

Both tasks differ from typical classification tasks in a

number of ways:

• Tag prediction is a multi-label classification task: each

song can be associated with multiple tags, so the classes

are not disjoint. The same goes for user listening pref-

erence prediction, where we attempt to predict for each

user whether they have listened to a song. The listening

preferences of different users are not disjoint either, and

one song is typically listened to by multiple users.

• There are large numbers of tags and users; orders of

magnitude larger than the 1,000 categories of ImageNet.

• The data is weakly labeled: if a song is not associated

with a particular tag, the tag may still be applicable to

the song. In the same way, if a user has not listened to

a song, they may still enjoy it (i.e. it would be a good

recommendation). In other words, some positive labels

are missing.

• The labels are redundant: a lot of tags are correlated, or

have the same meaning. For example, songs tagged with

disco are more likely to also be tagged with 80’s. The

same goes for users: many of them have similar listening

preferences.

• The labels are very sparse: most tags only apply to a

small subset of songs, and most users have only listened

to a small subset of songs.

We will tackle some of the problems created by these

differences by first performing dimensionality reduction in

the label space using weighted matrix factorization (WMF,

see Section 3.2), and then training models to predict the

reduced label representations instead.

We will first use the spherical K-means algorithm (see

Section 3.3) to learn low-level features from audio spectro-

grams, and use them as input for the supervised models that

we will train to perform the source tasks. Feature learning

using K-means is very fast compared to other unsupervised

feature learning methods, and yields competitive results. It

has recently gained popularity for content-based MIR ap-

plications [6, 19, 25].

In summary, our workflow will be as follows: we will

first learn low-level features from audio spectrograms, and

apply dimensionality reduction to the target labels. We will

train supervised models to predict the reduced label rep-

resentations from the extracted low-level audio features.

These models can then be used to perform the source tasks.

Next, we will use the trained models to extract higher-level

features from other datasets, and use those features to train

shallow classifiers for different but related target tasks. We

will compare the higher-level features obtained from dif-

ferent model architectures and different source tasks by
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Figure 1: Schematic overview of the workflow we will use for our supervised pre-training approach. Dashed arrows

indicate transfer of the learned feature extractors from the source task to the target task.

evaluating their performance on these target tasks. This

workflow is visualized in Figure 1. The key learning steps

are detailed in the following subsections.

3.2 Dimensionality reduction in the label space

To deal with large numbers of overlapping labels, we first

consider the matrix of labels for all examples, and perform

weighted matrix factorization (WMF) on it [12]. Given a

binary m× n-matrix A (m examples and n labels), WMF

will find an m×f -matrix U and an n×f -matrix V , so that

A ≈ UV T . The hyperparameter f controls the rank of the

resulting approximation. This approximation is found by

optimizing the following weighted objective function:

J(U, V ) = C ◦ (A− UV T )2 + λ(||U ||2F + ||V ||2F ),

where C is a m× n confidence matrix, ◦ represents el-

ementwise multiplication, the squaring is elementwise as

well, and λ is a regularization parameter. If the confidence

values in C are chosen to be 1 for all zeroes in A, an effi-

cient alternating least squares (ALS) method exists to op-

timize J(U, V ), provided that A is sparse. For details, we

refer to Hu et al. [12].

After optimization, each row of U can be interpreted as

a reduced representation of the m labels associated with

the corresponding example, which captures the latent fac-

tors that affect its classification. We can then train a model

to predict these f factors instead, which is much easier

than predicting m labels directly (typically f � m). We

have previously used a similar approach to do content-

based music recommendation with a convolutional neural

network [23]. In that paper, we showed that these factors

capture a lot of relevant information and can also be used

for tag prediction. We use the same settings and hyperpa-

rameter values for the WMF algorithm in this work.

Our choice for WMF over other dimensionality reduc-

tion methods, such as PCA, is motivated by the particular

structure of the label space described earlier. WMF al-

lows for the sparsity and redundancy of the labels to be

exploited, and we can take into account that the data is

weakly labeled by choosing C so that positive signals are

weighed more than negative signals.

The original label matrix for the tag prediction task

has 173,203 columns, since we included all tags from the

last.fm dataset that occur more than once. The matrix for

the user listening preference prediction task has 1,129,318

columns, corresponding to all users in the Taste Profile

Subset. By applying WMF, we obtain reduced represen-

tations with 400 factors for both tasks. These factors will

be treated as ground truth target values in the supervised

learning phase.

3.3 Unsupervised learning of low-level features

We learn a low-level feature representation from spectro-

grams in an unsupervised manner, to use as input for the

supervised pre-training stage. First, we extract log-scaled

mel-spectrograms from single channel audio signals, with

a window size of 1024 samples and a hop size of 512. Con-

version to the mel scale reduces the number of frequency

components to 128. We then use the spherical K-means

algorithm (as suggested by Coates et al. [4]) to learn 2048
bases from randomly sampled PCA-whitened windows of

4 consecutive spectrogram frames. This is similar to the

feature learning approach proposed by Dieleman et al. [6].

To extract features, we divide the spectrograms into

overlapping windows of 4 frames, and compute the dot

product of each base with each PCA-whitened window.

We then aggregate the feature values across time by com-

puting the maximal value for each base across groups of

consecutive windows corresponding to about 2 seconds of

audio. Finally, we take the mean of these values across the

entire audio clip to arrive at a 2048-dimensional feature

representation for each example. This two-stage temporal

pooling approach turns out to work well in practice.
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3.4 Supervised learning of high-level features

For both source tasks, we train three different model archi-

tectures to predict the reduced label representations from

the low-level audio features: a linear regression model,

a multi-layer perceptron (MLP) with a hidden layer with

1000 rectified linear units (ReLUs) [16], and an MLP

with two such hidden layers. The MLPs are trained us-

ing stochastic gradient descent (SGD) to mimize the mean

squared error (MSE) of the predictions, and dropout reg-

ularization [11]. The training procedure was implemented

using Theano [2].

We trained all these models on a subset of the MSD,

consisting of 373,855 tracks for which we were able to ob-

tain audio samples, and for which listening data is avail-

able in the Taste Profile Subset. We used 308,443 tracks

for training, 18,684 for validation and 46,728 for testing.

For the tag prediction task, the set of tracks was further

reduced to 253,588 tracks, including only those for which

tag data is available in the last.fm dataset. For this task, we

used 209,218 tracks for training, 12,763 for validation and

31,607 for testing.

The trained models can be used to extract high-level

features simply by computing predictions for the reduced

label representations and using those as features, yielding

feature vectors with 400 values. For the MLPs, we can al-

ternatively compute the activations of the topmost hidden

layer, yielding feature vectors with 1000 values instead.

The latter approach is closer to the original interpretation

of supervised pre-training as described in Section 1, but

since the trained models attempt to predict latent factor

representations, the former approach is viable as well. We

will compare both.

To evaluate the models on the source tasks, we compute

the predicted factors U ′ and obtain predictions for each

class by computing A′ = U ′V T . This matrix can then

be used to compute performance metrics.

3.5 Evaluation of the features for target tasks

To evaluate the high-level features for the target tasks out-

lined in Section 2, we train linear L2-norm support vector

machines (L2-SVMs) for all tasks with liblinear [8], us-

ing the features as input. Although using more powerful

classifiers could probably improve our results, the use of a

shallow, linear classifier helps to assess the quality of the

input features.

4. EXPERIMENTS AND RESULTS

4.1 Source tasks

To assess whether the models trained for the source tasks

are able to make sensible predictions, we evaluate them by

computing the normalized mean squared error (NMSE) 1

of the latent factor predictions, as well as the area under the

ROC curve (AUC) and the mean average precision (mAP)

1 The NMSE is the MSE divided by the variance of the target values
across the dataset.

User listening preference prediction

Model NMSE AUC mAP
Linear regression 0.986 0.750 0.0076

MLP (1 hidden layer) 0.971 0.760 0.0149

MLP (2 hidden layers) 0.961 0.746 0.0186

Tag prediction

Model NMSE AUC mAP
Linear regression 0.965 0.823 0.0099

MLP (1 hidden layer) 0.939 0.841 0.0179

MLP (2 hidden layers) 0.924 0.837 0.0179

Table 1: Results for the source tasks. For all three models,

we report the normalized mean squared error (NMSE) on

the validation set, and the area under the ROC curve (AUC)

and the mean average precision (mAP) on a separate test

set.

of the class predictions 2 . They are reported in Table 1.

Note that the latter two metrics are computed on a separate

test set, but the former is computed on the validation set

that we also used to optimize the hyperparameters for the

dimensionality reduction of the labels. This is because the

ground truth latent factors, which are necessary to compute

the NMSE, are not available for the test set.

It is clear that using a more complex model (i.e. an

MLP) results in better predictions of the latent factors in

the least-squares sense, as indicated by the lower NMSE

values. However, when using the AUC metric, this does

not always seem to translate into better performance for the

task at hand: MLPs with only a single hidden layer perform

best for both tasks in this respect. The mAP metric seems

to follow the NMSE on the validation set more closely.

Although the NMSE values are relatively high, the class

prediction metrics indicate that the predicted factors still

yield acceptable results for the source tasks. In our prelimi-

nary experiments we also observed that using fewer factors

tends to result in lower NMSE values. In other words, as

we add more factors, they become less predictable. This

implies that the most important latent factors extracted

from the labels are also the most predictable from audio.

4.2 Target tasks

We report the L2-SVM classification performance of the

different feature sets across all target tasks in Figure 2. For

the GTZAN, Unique and 1517-Artists datasets, we report

the average cross-validation classification accuracy across

10 folds. Error bars indicate the standard deviations across

folds. We optimize the SVM regularization parameter us-

ing nested cross-validation with 5 folds. Magnatagatune

comes divided into 16 parts; we use the first 11 for training

and the next 2 for validation. After hyperparameter opti-

mization, we retrain the SVMs on the first 13 parts, and

the last 3 are used for testing. We report the AUC aver-

2 The class predictions are obtained by multiplying the factor predic-
tions with the matrix V T , as explained in the previous section.
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Figure 2: Target task performance of the different feature sets. The dashed line represents the performance of the low-level

features. From left to right, the five bars in the bar groups represent high-level features extracted with linear regression,

an MLP with 1 hidden layer, an MLP with 2 hidden layers, the hidden layer of a 1-layer MLP, and the topmost hidden

layer of a 2-layer MLP respectively. Error bars for the first three classification tasks indicate the standard deviation across

cross-validation folds. For Magnatagatune, no error bars are given because no cross-validation was performed.

aged across tags for the 50 most frequently occuring tags

(Figure 2d), and for all 188 tags (Figure 2e).

The single bar on the left of each graph shows the per-

formance achieved when training an L2-SVM directly on

the low-level features learned using spherical K-means.

The two groups of five bars show the performance of the

high-level features trained in a supervised manner for the

user listening preference prediction task and the tag pre-

diction task respectively.

Across all tasks, using the high-level features results in

improved performance over the low-level features. This

effect is especially pronounced for Magnatagatune, when

predicting all 188 tags from the high-level features learned

on the tag prediction source task. This makes sense, as

some of the Magnatagatune tags are quite rare, and features

learned on this closely related source task must contain at

least some relevant information for these tags.

Comparing the performance of different source task

models for user listening preference prediction, model

complexity seems to play a big role. Across all datasets,

features learned with linear regression perform much better

than MLPs, despite the fact that the MLPs perform better

for the source task. Clearly the MLPs are able to achieve a

better fit for the source task, but in the context of transfer

learning, this is actually a form of overfitting, as the fea-

tures generalize less well to the target tasks – they are too

specialized for the source task. This effect is not observed

when the source task is tag prediction, because this task is

much more closely related to the target tasks. As a result, a

better fit for the source task is more likely to result in better

generalization across tasks.

For MLPs, there is a limited difference in performance

between using the predictions or the topmost hidden layer

activations as features. Sometimes the latter approach

works a bit better, presumably because the feature vectors

are larger (1000 values instead of 400) and sparser.

On GTZAN, we are able to achieve a classification ac-

curacy of 0.882 ± 0.024 using the high-level features ob-

tained from a linear regression model for the tag predic-

tion task, which is competitive with the state of the art. If

we use the low-level features directly, we achieve an ac-

curacy of 0.851 ± 0.034. This is particularly interesting

because the L2-SVM classifier is linear, and the features

obtained from the linear regression model are essentially

linear combinations of the low-level features.

5. CONCLUSION AND FUTURE WORK

We have proposed a method to perform supervised fea-

ture learning on the Million Song Dataset (MSD), by train-

ing models for large-scale tag prediction and user listening

preference prediction. We have shown that features learned

in this fashion work well for other audio classification tasks

on different datasets, consistently outperforming a purely

unsupervised feature learning approach.

This transfer learning approach works particularly well

when the source task is tag prediction, i.e. when the source

task and the target task are closely related. Acceptable re-

sults are also obtained when the source task is user listen-

ing preference prediction, although it is important to re-

strict the complexity of the model in this case. Otherwise,

the features become too specialized for the source task,
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which hampers generalization to other tasks and datasets.

In future work, we would like to investigate whether we

can achieve transfer from more complex models trained

on the user listening preference prediction task, and other

tasks that are less closely related to the target tasks. Since

a lot of training data is available for this task, using more

powerful models than linear regression to learn features is

desirable, especially considering the complexity of mod-

els used for supervised pre-training in the computer vision

domain. This will require a different regularization strat-

egy that takes into account generalization to other tasks

and datasets, and not just to new examples within the same

task, as it seems that these two do not always correlate. We

will also look into whether using different dimensionality

reduction techniques instead of WMF can lead to represen-

tations that enable better transfer to new tasks.
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ABSTRACT

Even though originally developed for exchanging control

commands between electronic instruments, MIDI has been

used as quasi standard for encoding and storing score-

related parameters. MIDI allows for representing musi-

cal time information as specified by sheet music as well

as physical time information that reflects performance as-

pects. However, in many of the available MIDI files the

musical beat and tempo information is set to a preset value

with no relation to the actual music content. In this pa-

per, we introduce a procedure to determine the musical

beat grid from a given performed MIDI file. As one main

contribution, we show how the global estimate of the time

signature can be used to correct local errors in the pulse

grid estimation. Different to MIDI quantization, where

one tries to map MIDI note onsets onto a given musical

pulse grid, our goal is to actually estimate such a grid.

In this sense, our procedure can be used in combination

with existing MIDI quantization procedures to convert per-

formed MIDI files into semantically enriched score-like

MIDI files.

1. INTRODUCTION

MIDI (Music Instrument Digital Interface) is used as a

standard protocol for controlling and synchronizing elec-

tronic instruments and synthesizers [10]. Even though

MIDI has not originally been developed to be used as a

symbolic music format and imposes many limitation of

what can be actually represented [11, 13], the importance

of MIDI results from its widespread usage over the last

three decades and the abundance of MIDI data freely avail-

able on the web. An important feature of the MIDI for-

mat is that it can handle musical as well as physical on-

set times and note durations. In particular, the header of

a MIDI file specifies the number of basic time units (re-

ferred to as ticks) per quarter note. Physical timing is then

given by means of additional tempo messages that deter-

mine the number of microseconds per quarter note. On the

one hand, disregarding the tempo messages makes it pos-

c© Harald Grohganz, Michael Clausen, Meinard Müller.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Harald Grohganz, Michael Clausen,

Meinard Müller. “Estimating Musical Time Information from Performed

MIDI Files”, 15th International Society for Music Information Retrieval

Conference, 2014.

(a)

(b)

(c)

Figure 1. The first measure of the prelude BWV 888 by

J. S. Bach. (a) Original score. (b) Score from P-MIDI of

a performed version without musical pulse grid. (c) Score

from S-MIDI based on an estimated musical pulse grid.

sible to generate a mechanical version of constant tempo,

which closely relates to the musical time axis (given in

beats) of a score. On the other hand, by including the

tempo messages, one may generate a performed version

with a physical time axis (given in seconds). However,

many of the available MIDI files do not follow this conven-

tion. For example, MIDI files are often generated by freely

performing a piece of music on a MIDI instrument with-

out explicitly specifying the tempo. As a result, neither the

ticks-per-quarter-note parameter nor the tempo messages

are set in a musically meaningful way. Instead, these pa-

rameters are given by presets, which makes it possible to

derive the physical but not the musical time information.

In the following, we distinguish between two types of

MIDI files. When the musical beat and tempo messages

are set correctly in a MIDI file, then a musical time axis as

specified by a score can be derived. In this case, we speak

of a score-informed MIDI file or simply S-MIDI. When

the actual tempo and beat positions are not known (using

some presets), we speak of a performed MIDI file or sim-

ply P-MIDI. This paper deals with the general problem of

converting a P-MIDI into a reasonable approximation of

an S-MIDI file. The main step is to estimate a musically

informed beat or pulse grid from which one can derive the

musical time axis. The general problem of estimating beat-

and rhythm-related information from music representation

(including MIDI and audio representations) is a difficult

problem [1, 7]. Typically approaches are based on Hidden
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Figure 2. Overview of algorithmic pipeline.

Markov Models [12] and dynamic programming [6, 15].

Even when knowing the note onset positions explicitly (as

is the case for MIDI files), finding beats and measure is by

far not trivial—in particular when dealing with performed

MIDIs having local tempo fluctuations. In [2], an approach

based on salience profiles of MIDI notes is used for esti-

mating the time signature and measure positions. Based on

a trained dictionary of rhythmical patterns, a more general

approach for detecting beat, measure, and rhythmic infor-

mation is described in [14]. Note that the extraction of such

musical time information from MIDI files is required be-

fore software for MIDI quantization and score generation

can be applied in a meaningful way. This is demonstrated

by Figure 1, which shows the original score, the score gen-

erated from a P-MIDI, and a score generated from an esti-

mated S-MIDI.

In this paper, we introduce a procedure for estimating

the musical beat grid as well as the time signature from

a given P-MIDI file, which can then be converted into an

approximation of an S-MIDI file. 1 The main idea is to

adapt a beat tracking procedure originally developed for

audio representations to estimate a first pulse grid. Despite

of local errors, this information suffices to derive an esti-

mate of a global time signature. This information, in turn,

is then used to correct the local pulse irregularities. In Sec-

tion 2, we describe the algorithmic details of our proposed

method. Then, in Section 3, we evaluate our method and

discuss a number of explicit examples to illustrate bene-

fits and limitations. We conclude the paper with Section 4

with possible applications and an outlook on future work.

Further related work is discussed in the respective sections.

2. ALGORITHMIC PIPELINE

In this section, we describe our procedure for converting P-

MIDI files into (approximations of) S-MIDI files by map-

ping the physical time axis of the P-MIDI to an appropri-

ate musical time axis. As shown in Figure 2, we extract

an onset curve from the P-MIDI, and perform periodicity

1 Our implementation in Java with GUI is available at http://
midi.sechsachtel.de
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Figure 3. Computation of pulse salience for a 5-second

excerpt of BWV 888: (a) MIDI onset curve Δ, (b) PLP

curve Γ with pulse region boundaries b, (c) Onset curve Δ
with boundaries b, (d) Pulse salience sequence σ.

analysis by adapting a pulse tracking method to obtain a

sequence of pulse candidates (Section 2.1). In Section 2.2

we introduce a method to estimate the global time signa-

ture by analyzing the stress distribution of the pulses. This

information is used for detecting and resolving inconsis-

tencies in the pulse sequence.

In the following we use the notation [a : n : b] :=
(�a	+ nN0) ∩ [a, b], where [a, b] := {t ∈ R | a ≤ t ≤ b}
for a, b ∈ R and n ∈ N. If n = 1, we use the notation

[a : b] := [a : 1 : b].

2.1 Pulse Detection

For pulse tracking, we build upon the method introduced

by [9] which detects the local predominant periodicity in

onset curves, and generates a pulse curve indicating the

most likely positions for a pulse-grid. The peaks of this

curve are then interpreted as pulse candidates. Although

this method was originally developed for audio data like

other beat tracking methods (see, e. g., [4,6]), it also works

for onset curves derived from MIDI files.

We assume that the MIDI file is already converted to a

physical time axis [0, T ], where T denotes the end of the

last MIDI note, and we have a MIDI note list for a suitable

finite index set I ⊂ N:

M := (ti, di, pi, vi)i∈I ,

where ti ∈ [0, T ) describes the start time of the ith MIDI

note, di its duration (also in seconds), pi ∈ [0 : 127] its

pitch, and vi ∈ [0 : 127] its note onset velocity. Based

on these notes, we define for a weighting parameter w =
(w1, w2, w3) ∈ R

3, a MIDI onset curve

Δw(t) :=
∑

i∈I(w1 + w2 · di + w3 · vi) · h(t− ti),

for t ∈ [0, T ], with h describing a Hann window centered
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at 0 of length 50ms, cf. Figure 3a. Thus the components

of the parameter w corresponds to weights of the presence

of an onset, the duration, and the velocity, respectively. In

our procedure, we fix w :=
(
1, 20, 50

128

)
to balance the

components of each MIDI note, so it will be omitted in

the notation. Experiments have shown that the method is

robust to slight changes of these values.

Using a short-time Fourier transform, we compute from

Δ a tempogram T : [0, T ] × Θ → C for a given set Θ
of considered BPM values as explained in [9], using pa-

rameters for smoothness (window length) and time granu-

larity (step size). First, we compute a coarse tempogram

T coarse using the tempo set Θ = [40 : 4 : 240], win-

dow length 8 sec, and step size 1 sec. The dominant global

tempo T0 is derived by summing up the absolute values of

T coarse row-wise and by detecting the maximum. Next,

we compute a second tempogram T fine based on the new

set Θ =
[

1√
2
· T0,

√
2 · T0

]
∩ N, which is the tempo oc-

tave around T0. For this tempogram, the window length

is set to 5 · 60
T0

sec, and we use a finer step size of 0.2 sec.

Choosing the BPM range in such a manner prevents unex-

pected jumps between multiples of the detected tempo; the

window length corresponds to five expected pulses based

on the assumption that a stable tempo remains almost con-

stant for at least five beats.

Following [9], we estimate the predominant tempo for

each time position from the tempogram T fine, and use this

information to derive sinusoidal kernels which best de-

scribe local periodicity of the underlying onset curve Δ.

These kernels are combined to a predominant local pulse
(PLP) curve Γ : [0, T ] → [0, 1], which indicates positions

of pulses on the physical time axis, see Figure 3b. The

points in time corresponding to the local maxima of Γ form

a pulse candidate sequence P = (P1, . . . ,PN ) , which is

suitable to estimate the beats in a first approximation. But

this sequence may contain additional pulses (not describ-

ing a musical beat) or missing pulses. Thus we introduce

a post-processing method in the next section which detects

and corrects these errors.

2.2 Optimizing the pulse sequence

The main idea of the method described in this section relies

on finding a global time signature and using it for resolv-

ing inconsistencies of the detected pulse sequence. Here,

we assume that the measure type of the considered musi-

cal piece is not changed throughout the piece. The time

signature can be estimated by periodicity analysis of pulse

stress using short-time autocorrelation. In a second step,

we compare the relative position of each pulse candidate

to a measure grid induced by the time signature and detect

deviations to correct isolated erroneous pulses. Finally, the

pulses are interpreted as a new musical time axis, and the

tick position of all MIDI events are mapped to this axis.

Now we describe our optimization procedure in more

detail. First, we accumulate the onset strength for the nth

pulse candidate by defining its pulse salience

σ(n) :=
∫ b(n)

b(n−1)
Δ(t) dt (n ∈ [1 : N ]), (1)

where the pulse region boundaries are given by b(n) =
1
2 · (Pn+Pn+1) for 1 ≤ n < N , b(0) = 0, and b(N) = T .

The boundaries b are illustrated in Figures 3b and 3c, and

for the salience values σ see Figures 3d and 4a.

Our next goal is to compute an estimation of the time

signature K0/K1. To this end we perform a salience anal-

ysis via autocorrelation. However, to ensure that errors in

P and σ have only a local influence, we use short-time au-

tocorrelation. For a fixed window size K > 12 (K = 32
in our implementation), we consider the K ×N matrix

A(k, n) := | Ik |−1
∑
i∈Ik

σ(n+ i) · σ(n+ i+ k),

where Ik := [0 : k : K − k − 1] and σ(n) := 0 for

n ∈ Z \ [1 : N ]. Thus A(k, n) quantifies the plausibil-

ity of period length k around the nth pulse candidate. Our

predominant salience period K0, the nominator of the esti-

mated time signature, is obtained by row-wise summation

and maximum picking of parts of A:

K0 := argmax
k∈[3:12]

∑N
n=1A(k, n).

For robustness and musical reasons we have excluded the

cases k < 3 and k > 12, respectively. (Excluding the case

k = 2 is not a serious problem as we can use, e. g., 4/8
as surrogate for 2/4.) The relevant rows of the matrix A
are illustrated in Figure 4b where K0 = 6. The denom-

inator K1 is not necessary for further computation. It is

chosen accordingly to the main tempo T0 to ensure a value

between 70 and 140 quarter notes per minute.

With the help of K0 we are now able to perform the in-

consistency analysis. For now, we primarily consider the

case where all detected pulse candidates are actually cor-

rect beats. In this idealized scenario, the restriction of P to

the nth K0-congruence class [n : K0 : N ], n ∈ [1 : K0],
describes the nth position within the measures in a se-

mantically meaningful way. In particular, the first class

(n = 1) corresponds to all downbeat positions if the con-

sidered piece does not start with an upbeat. An analogous

decomposition applied to σ leads to salience patterns of

each position in the measure. Due to rhythmic variations,

we expect that the first class of σ mostly shows the high-

est salience value. To enhance robustness, σ is smoothed

locally within the K0-congruence classes

σ̄(n) := σ(n) +

�K/K0�∑
k=1

σ(n± k ·K0),

as illustrated in Figure 4c. Since the restriction to a con-

gruence class is reminiscent of a comb, we call σ̄ the K0-
combed version of σ.

Erroneously detected pulse candidates disturb the as-

signment of all downbeats to a specific class. In such

cases, the class containing highest salience values changes

at some points of time. To make this visible, a K0×N ma-

trix S is defined which shows the local salience distribution

of the congruence classes. More precisely, we define

S(k, n) := σ̄(k) · δ(k ≡K0 n),
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Figure 4. Step-by-step illustration how to detect inconsistencies in the stress sequence for BWV 888: (a) Pulse salience

sequence σ as in Figure 3d. (b) Excerpt of short-time autocorrelation matrix A of σ showing maximal energy in 6th row.

(c) 6-combed salience sequence σ̄ if all pulse candidates are correctly detected. (d) 6-combed salience sequence σ̄ if two

pulses are additionally inserted. (e) Stressgram showing maximal salience in 1st congruence class. (f) Stressgram showing

two stress changes and path of highest salience.

where δ(A) := 1 if statement A holds and 0 else. Smooth-

ing S along the temporal axis using a Hann window of

length 2 ·K0 yields a so-called stressgram S. Such stress-

grams are visualized for the ideal scenario (Figure 4e) as

well as under presence of two additional pulses (Figure 4f).

Now we discuss this last case in more detail. First, the

estimation of K0 is only locally disturbed which does not

lead to a change of the estimated time signature. However,

the decomposition into K0-congruence classes does no

longer coincide semantically with the position in the mea-

sures, since all pulses after the additional one are shifted by

one beat position. In the stressgram S this is indicated by

changes of the rows showing high salience. To enhance ro-

bustness, we switch to a more global point of view by com-

puting a path of highest energy through S using dynamic

programming. Each point in this path shows the congru-

ence class with the highest coincidence of representing the

downbeats at a specific time. More precisely, if the down-

beats are in the class having index i, then a change to index

i+1 near the additional pulse can be noticed, see Figure 4f.

The case of a missing pulse is similar, here the row index

of the maximal salience changes to i− 1.

These detected irregularities can now be solved by

choosing either falsely added pulse candidates or finding

positions to insert an apparently missing pulse. For lack

of space, we only sketch our correction procedure. To re-

move a candidate, one can delete the pulse having lowest

salience σ or lowest PLP score (for this, replace Δ by Γ in

Equation 1). For adding an additional pulse, one may look

for two adjacent relatively low values of the PLP curve.

Finally, this corrected pulse sequence defines a beat grid

in the P-MIDI file, which allows to detect a sequence of

tick positions corresponding to beats. By mapping them

to equally distributed new tick positions, adding appropri-

ate tempo change MIDI messages, and performing linear

interpolation between the beat positions, the previous time

axis of the P-MIDI is replaced by a musical time axis. In

case of an upbeat, additional beats are added to the begin-

ning of the piece such that the first K0-congruence class

corresponds to the estimated downbeats. Lastly, the time

signature K0/K1 is added to the new MIDI file.

3. EXPERIMENTS AND DISCUSSION

Evaluating the output of a beat tracking procedure is a non-

trivial task due to the vague definition of beat times as

described in [5]. Particularly determining the beat gran-

ularity, i. e., the decision between similar time signatures

like 6/8 and 3/4, or multiples such as 4/4 or 8/4, appears

as an ill-posed and negligible problem. Even for humans,

beat and measure tracking can be challenging especially in

the presence of rhythmic variations and expressive timing.

Our evaluation is inspired by [14], where among others the

visual impression of the computed score is considered, and

by [5], where comparison to a ground truth annotation by

a human and listening tests for a perceptual evaluation are

suggested.

Because of its modeling, our procedure is not suitable

for all kinds of P-MIDI files. The PLP approach described

in Section 2.1 has some constraints like a stable rhythm or

an almost stable tempo for a certain amount of time (in our
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Figure 5. Prelude No. 4 from Chopin (Op. 28). The score excerpts show the detected pulses (upper row) and post-processed

measure grid (lower row). Downbeats are indicated by bold lines. (a) Correctly detected upbeat. (b) Joint correction of

two subsequent errors. (c) Stressgram with path of highest salience. (d) Short-time autocorrelation matrix.

implementation, this time window is roughly five seconds).

In addition, tempo octave confusions are not considered

here. For the optimization step described in Section 2.2, a

global time signature is required. Furthermore, downbeats

must be detectable by their length or stress. In the follow-

ing, we discuss in detail two typical examples of P-MIDI

files, and then perform an automatic analysis on a small

test set of artificially distorted MIDI files.

3.1 Qualitative Evaluation

The performance of the proposed procedure for Bach’s

Prelude BWV 888 is already indicated in Figures 1, 3, and

4. Two insertions of additional pulses caused by ritardandi

are corrected well, and also the erroneous rests at the be-

ginning are eliminated. The estimated time signature 6/8
is perceptually similar to the notated time signature 12/8.

Our second example is the Prelude No. 4 from Chopin’s

romantic Piano Preludes. Figure 5 shows two score ex-

cerpts together with the detected pulse candidates and the

estimated measure structure as well as the corresponding

stressgram and the short-time autocorrelation matrix for

the whole piece. 2 Prelude No. 4 contains some long notes

at downbeat positions leading to a good measure track-

ing result. Because of their strong presence, an eighth

note pulse grid was detected, see Figure 5d. This piece

of music starts with an upbeat of a quarter note. Since the

MIDI format does not support upbeat information directly,

our method adds enough additional pulses such that the

first pulse lies in the congruence class of the downbeats as

shown in Figure 5a.

Noticeable tempo changes together with short appog-

giatura and a triplet around pulse No. 90 causes the PLP

procedure to detect two additional pulses in consecutive

measures (Fig. 5b). In the stressgram this is indicated by

2 The examples are recordings on a MIDI piano taken from Saar-
land Music Data (http://www.mpi-inf.mpg.de/resources/
SMD/), and the scores are picked from Mutopia (http://www.
mutopiaproject.org/).

a jump of the salience path across two classes (Fig. 5c).

Note that this error has only little influence on the estima-

tion of the time signature (Fig. 5d). As indicated by the

stressgram, two pulses are removed in this region during

our post-processing. Although the deletion of a correctly

detected pulse in the 2nd measure of Figure 5b leads to a

wrong downbeat position in the subsequent measure, the

global measure grid is restored in the 4th measure. This

shows how our method optimizes the measure grid with-

out having to correct each single pulse error.

3.2 Automatic Evaluation

Furthermore, we evaluated our method on score-like MIDI

files which have been automatically disturbed by adding

additional tempo change events. A similar approach was

used in [8] to show that smooth tempo changes are detected

well by the PLP method.

In particular, the goal of our procedure is to recognize

measure positions correctly, therefore we use standard pre-

cision (P), recall (R), and F-measure (F) on the set of the

MIDI notes. A note is considered relevant if it starts at a

downbeat position in the S-MIDI file, and it is “retrieved”

if it was mapped by our method to a downbeat position of

the distorted MIDI file. Since no quantization step is in-

cluded, we allow a tolerance of ±5% of each measure as

its downbeat position.

By neglecting the musical time axis and using only the

physical time position (in milliseconds) of all MIDI events,

we simulate a performed MIDI of an S-MIDI file. The

systematic distortion is done by adding a tempo change of

±20% around the normal tempo each 10 seconds.

As test set, we consider the Fifteen Fugues by

Beethoven from IMSLP 3 . Here, the note durations are suf-

ficient for a good estimation of the PLP pulses. Adding

note velocity information from real performed MIDI files

suggests an further improvement of the results.

3 Petrucci Music Library, http://imslp.org/wiki/15_
Fugues_(Beethoven,_Ludwig_van)
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Piece Full method PLP only # Corrections
F P R F P R add delete upbeat

No. 1 0.477 0.587 0.402 0.372 0.509 0.293 0 2 0
No. 2 0.978 1 0.956 0.397 0.56 0.308 1 0 1
No. 3 0.656 0.663 0.649 0.144 0.196 0.113 1 0 0
No. 4 0.945 0.984 0.909 0.738 0.804 0.682 2 0 0
No. 5 0.966 0.971 0.962 0 0 0 0 0 2
No. 6 0.996 1 0.993 0.996 1 0.993 0 0 0
No. 7 0.826 0.832 0.82 0.324 0.386 0.28 1 4 1
No. 8 0.953 0.985 0.923 0.821 0.945 0.725 0 1 0
No. 9 0.896 0.916 0.876 0.787 0.855 0.73 1 0 1
No. 10 0.581 0.579 0.582 0.008 0.013 0.005 2 2 1
No. 11 1 1 1 1 1 1 0 0 0
No. 12 0.994 1 0.988 0.792 0.842 0.748 3 1 0
No. 13 0.656 0.884 0.522 0.245 0.393 0.178 0 2 2
No. 14 0.975 0.995 0.957 0.432 0.75 0.303 1 3 0
No. 15 0.692 0.98 0.535 0.633 0.992 0.465 0 0 4

Mean 0.839 0.892 0.805 0.513 0.616 0.455 0.8 1 0.8

Table 1. Evaluation results for 15 Fugues from Beethoven

for full method and PLP-based beat tracking only

The results for the automatic evaluation are shown in

Table 1. We evaluated both the original pulse sequence

derived from the PLP pulse tracking method introduced

in Section 2.1, and the post-processed version. In both

cases, the detected time signature was used to locate the

downbeats. For all pieces except No. 11, the annotated 2/2
signature was mostly detected as 4/4, sometimes as 8/4.

Compared to the results of the PLP pulse tracker, which is

not designed for detecting downbeats, the results for some

pieces were improved significantly by our method. For ex-

ample, in Fugue No. 7 our post-processing method added

one pulse and removed four other pulses. At the begin-

ning, another single pulse was inserted to prevent upbeat

shifts. These changes lead to an increase of the F-measure

from 0.324 to 0.826, which has major consequences, e. g.,

on the amount of additional work for a human importing

this MIDI file into a score notation software to optimize

the score manually.

4. CONCLUSION

We presented a bottom-up method to derive a musically

meaningful time axis for performed MIDI files, and con-

verting them into semantically enriched score-like MIDI

files. Our proposed procedure optimized an estimated

pulse sequence by insertion of missing pulses as well as

removal of spurious pulses to derive an overall consistent

measure grid.

Since the output of the presented method is another

MIDI file, our procedure can be used in combination with

any MIDI quantization software by using it for preprocess-

ing performed MIDI files having no musically meaningful

time information. Essentially, the physical time axis re-

mains unchanged, so it can be used further in combination

with rhythm transcription approaches. Deriving a musical

time axis without quantization is also meaningful for real-

time interaction with MIDI synthesizers, e. g., as a varia-

tion of [3]. Because of its generality, our procedure can be

simply extended by including other rhythmic or harmonic

aspects.
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ABSTRACT

Whenever a chord is played in a musical instrument, the
notes are not commonly played at the same time. Actu-
ally, in some instruments, it is impossible to trigger mul-
tiple notes simultaneously. In others, the player can con-
sciously select the order of the sequence of notes to play to
create a chord. In either case, the notes in the chord can be
played very fast, and they can be played from the lowest to
the highest pitch note (upstroke) or from the highest to the
lowest pitch note (downstroke).

In this paper, we describe a system to automatically es-
timate the direction of strokes and arpeggios from audio
recordings. The proposed system is based on the analy-
sis of the spectrogram to identify meaningful changes. In
addition to the estimation of the up or down stroke direc-
tion, the proposed method provides information about the
number of notes that constitute the chord, as well as the
chord playing speed. The system has been tested with four
different instruments: guitar, piano, autoharp and organ.

1. INTRODUCTION

The design and development of music transcription sys-
tems has been an open research topic since the first at-
tempts made by Moorer in 1977 [15]. Since then, many
authors have worked in different aspects of the transcrip-
tion problem [12], [17]. A common task in this context is
automatic chord transcription [13], [1], [3], [7], [14], but
also, other aspects beyond the mere detection of the notes
played are nowadays considered, shifting the focus of the
research to different pieces of information related to the
way in which these notes are played, i.e. musical expres-
siveness [18], [4], [7], [11].

A chord can be defined as a specific set of notes that
sound at the same time. Often, when a chord is played, not
all the notes in the chord start at the same time. Because

c© Isabel Barbancho1 , George Tzanetakis2 , Lorenzo J.
Tardón1, Peter F. Driessen2 , Ana M. Barbancho1 .
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Isabel Barbancho1 , George
Tzanetakis2 , Lorenzo J. Tardón1, Peter F. Driessen2 , Ana M.
Barbancho1 . “ESTIMATION OF THE DIRECTION OF STROKES
AND ARPEGGIOS”, 15th International Society for Music Information
Retrieval Conference, 2014.

of the mechanics of actuation of some instruments like the
guitar, the mandolin, and the autoharp [20], it is hard to
excite different strings at the same time. Instead the per-
former typically actuates them sequentially in a stroke. A
stroke is a single motion across the strings of the instru-
ment. The stroke can have two different directions: UP,
when the hand moves from the lowest to the highest note,
and DOWN, when the hand moves from the highest to the
lowest note. A strum is made up of several strokes com-
bined in a rhythmic pattern. In other instruments like the
piano or the organ, all the notes that belong to a certain
chord can be played at the same time. However, the mu-
sician can still choose to play the chord in arpeggio mode,
i.e., one note after another. Again, the arpeggio direction
can be up or down.

In this paper, we propose a new chord related analysis
task focused on the identification of the stroke or arpeggio
direction (up or down) in chords. Because the movement
can be fast it is not feasible to look for onsets [6] to detect
each note individually. Therefore, a different approach will
be proposed. In addition to the detection of the stroke di-
rection, our proposed method also detects the speed with
which the chord has been played as well as the number
of notes. The estimation of the number of notes played
in a chord is a problem that has not been typically ad-
dressed, although some references can be found related to
the estimation of the number of instruments in polyphonic
music [16], which constitutes a related but different prob-
lem. Regarding the chord playing speed, to the best our
knowledge there are no published works to identify this
parameter except when specific hardware is used for the
task [19], [9]. The paper is organized as follows: in Sec-
tion 2, the proposed system model is explained. Section
3 presents some experimental results and Section 4 draws
some conclusions.

2. STROKE AND ARPEGGIO ANALYSIS

The main goal of this work is the analysis of audio ex-
cerpts to detect if a chord has been played from lower to
higher notes (UP) or vice versa (DOWN). The movement
to play a chord may be quite fast and all the information
about the movement is contained at the very beginning of
the chord waveform. After all the strings of the chord have
been played, it is no longer possible to know whether the
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movement was up or down because the resulting sound
contains all the component pitches. This means that any
feature that may provide information about how the spec-
trum varies when the chord is being played has to be calcu-
lated at the very beginning of the chord. We will consider
that the time needed to complete a stroke varies from 1 s
(relatively slow) to less than 0.2 s, when the chord is played
fast.

Let x denote the samples of the played chord under
study. In order to calculate a spectrogram, the samples
x are divided into segments xm = [xm[1], ..., xm[M ]]T ,
where M is the selected window size for the spectrogram
calculation. LetPSDm denote the Power Spectral Density
of each segment xm and Lm the logarithm of the PSDm

i.e Lm = 10 log10(PSDm). In Fig. 1, the log spectrogram
of an ‘F Major’ guitar chord played from the lowest to the
highest string is shown (up stroke). The exact fret posi-
tion employed to play this chord is frets = [2, 2, 3, 4, 4, 2]
where the vector frets represents the frets pressed to play
the chord from string 1 (highest string) to string 6 (low-
est string). This chord has been generated synthetically to
control the exact delay between each note in the chord (in
this case the delay is τ = 4ms). The guitar samples have
been extracted from the RWC database [10]. As it can be
observed in Fig. 1, the information about the stroke direc-
tion is not directly visible in the spectrogram. Therefore, in
order to detect the stroke direction, the spectrogram needs
to be further analysed.

Figure 1. Spectrogram of an F Major chord UP stroke in a
classic guitar (upper figure) and an E Major chord DOWN
stroke. Audio file is sampled with fs = 44100 Hz. For
the spectrogram, the selected parameters are window size
M = 1024, overlapp = 512 with a Hamming window.
The DFT size is K = 4096. For convenience, the MIDI
numbers are shown in the y-axis instead of the frequency
bins: MIDI = 69 + 12 log2(f/440).

2.1 Detection of new spectral components

Whenever a new note is played, it is expected that new
spectral components corresponding to the new note will
be added to the existing components of the previous note
(if any). In auditory scene analysis [8] this is termed the
‘old+new heuristic’. The main idea is to take advantage
of this heuristic by detecting whether the current spectrum
contains new components or, conversely, whether it simply
retains the components from the previous spectrum. As we
are frequently dealing with sounds that decay quickly our
model of sustained notes will also contain a decay compo-
nent. In order to detect ‘old+new’ changes we minimize
the following equation:

ε[m] = min
α[m]

[
K∑

k=1

|Lm[k]− α[m]Lm−1[k]|

]
(1)

The goal is to find a local α[m] (decay factor) that mini-
mizes ε[m] for two consecutive windowsm and m−1. The
minimization is carried out by means of the unconstrained
nonlinear minimization Nelder-Mead method [21]. The
idea is to remove from window m all the spectral compo-
nents that were also present in window m− 1 with a gain
adjustment so that any new spectral component becomes
more clearly visible. Thus, if there are no new played notes
in window m with respect to window m − 1, ε[m] will be
small, otherwise ε[m] will become larger because of the
presence of the new note.

In Fig. 2 (a) and (b), the normalized evolutions of α[m]
and ε[m] respectively are displayed for the F Major UP
chord shown in Fig.1 (a). The vertical lines represent the
instants when new notes appear in the chord. When a new
note is played in the chord, α[m] attains a minimum and
ε[m] a maximum. In order to automatically detect the in-
stants when the new notes appear, the following variables
are defined:

ε′[m] =

{
ε[m]−ε[m− 1] if ε[m]−ε[m−1] > 0.5

0 otherwise
(2)

α′[m] = α[m]− α[m− 1] (3)

fα,ε[m] =
ε′[m]

max(ε′)
·

∣∣∣∣ α′[m]

max(α′)

∣∣∣∣ (4)

Fig. 2 (c) shows the behaviour of fα,ε, where if becomes
easy to identify the presence of new notes. In addition, it
is also possible to estimate the number of notes played in
the chord (in this case 6), as well as the stroke speed.

2.2 Estimation of number of notes and stroke speed

After a measure that highlights the presence of new notes
has been defined, the next step is to find the peaks of fα,ε.
Each sample of the function fα,ε(m) is compared against
fα,ε(m − 1) and fα,ε(m + 1). If fα,ε(m) is larger than
both neighbors (local maximum) and fα,ε(m) > 0.1, then
a candidate local peak is detected. Finally, if there are two
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Figure 2. F Major chord UP stroke in classic guitar: (a) Evolution of α[m] that minimizes equation (1) , (b) Evolution
of the error ε[m] as defined in equation (1) and (c) Evolution of fα,ε[m] (equation (4)) where the presence of new notes
becomes apparent.

peaks less than two points apart, the smallest one is not
considered. Once these selected peaks have been localized,
the final step is to determine which ones belong to played
notes so that the number of played notes can be estimated
together with the speed of the stroke. The key observation
is that the time difference between the note onsets that be-
long to the same stroke or arpeggio will be approximately
constant. The reason is that, because of human physiology,
in most cases the stroke is performed with fixed speed.

Let flocs stand for a function that contains the positions
where the selected peaks of fα,ε are located. The objective
is to detect sets of approximately equispaced peaks which
will correspond to the played notes in a chord or arpeggio.
Then, the number of played notes NPNe will be estimated
as follows:

NPNe = nneq + 2 (5)

where nneq represents the minimum value of n such that
the distance between the positions of peaks contained in
flocs is no longer kept approximately constant. nneq is
defined as:

nneq = argmin
n

(
|f ′′

locs(n)| > 3

)
(6)

where f ′′

locs(n) stands for the second order difference of
flocs(n).

Finally, the stroke speed estimate in notes per second is
given by:

V =
flocs(NPNe − 3) · (windowsize− overlapp)

fs · NPN
(7)

Once the location of every new note is estimated using
the method described, the feature to detected the stroke di-
rection is computed.

2.3 Feature to detect stroke direction

In Fig. 3, the details of the windows in which the spectral
changes occur are depicted for the two guitar chords that
are being analysed. The stroke direction can be guessed
from those figures, but we still need to derive a meaning-
ful computational feature that can be used for automatic
classification.

In order to reduce the amount of information to be pro-
cessed by the classifier that will decide the stroke direction,
a meaningful feature must be considered. Thus, the spec-
tral centroid in each of the windows in which the changes
have been detected is calculated.

The spectral centroid is the centre of gravity of the spec-
trum itself [22], [24] and, in our case, it is estimated in each
of the windows xm where the change has been detected.
This feature will be denoted SPCm (Spectral Centroid of
window m) and it is calculated as follows:

SPCm =

(
K∑

k=1

fm(k)PSDm(k)

/
K∑

k=1

PSDm(k)

)
(8)

where PSDm is the power spectral density of the window
xm and fm is the corresponding frequency vector.

Note that we will use SPCs-KD when the SPCs are es-
timated with the delays known beforehand and SPCs-ED
when the delays are estimated according to the procedure
described in section 2.1.
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Figure 3. Windows of the spectrogram of the UP F Major
chord and the DOWN E Major chord in which new notes
appear.

Fig. 4 illustrates the behaviour of the SPC in the se-
lected windows in which a change of the spectral content
is detected for the UP F Major chord and the DOWN E
Major chord shown in the previous illustrations.
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Figure 4. Spectral centroid evolution for the UP F Major
chord and the DOWN E Major chord in the windows of the
spectrogram in which the changes happen.

3. CLASSIFICATION RESULTS OF UP AND
DOWN STROKES

The proposed scheme has been tested with four different
instruments: guitar, piano, organ and autoharp. The gui-
tar and organ samples have been extracted from the RWC
database [10], the piano recordings have been extracted
from [2] and the autoharp recordings have been specifi-
cally made by the research team.

A subset of the chords used in the experiment contains
chords artificially assembled so that all the information re-
garding the number of notes played and the delay is avail-
able for assessing the proposed system performance. All

audio file are sampled with fs = 44100 Hz. The delay
between consecutive notes in a chord ranges between 1000
samples (11 ms) and 5000 samples (55 ms).

With the guitar and the autoharp, the natural way of
playing a chord is by adding the sound of one string af-
ter another. The guitar is a well known instrument [5], but
the autoharp is not. The autoharp is an American instru-
ment invented in 1881 by Charles F. Zimmerman. It was
very popular in Canada and the USA for teaching music
fundamentals because it is easy to play and introduces in
a very intuitive way harmony concepts. Briefly, the instru-
ment has 36 strings and the musician can select which ones
can vibrate by pressing buttons corresponding to different
chords. The buttons in the autoharp mute the strings corre-
sponding to the notes that do not belong to the chord to be
played. Then, the musician actuates the strings by strum-
ming with the other hand. In the guitar, the decay of each
string is exponential and very fast. In the case of the auto-
harp, due to the resonance box, the decay of the sound is
slower. In the piano and in the organ, the musician can play
the chords arpeggiated. In the piano the decay is also ex-
ponential but in the organ the sound of a note is sustained
and decays slowly.

In Tables 1 and 1, the UP and DOWN classification re-
sults are summarized for the artificially assembled chords.
In all the cases, 100 chords have been used for training (50
UP and 50 DOWN) and a total of 500 chords equally dis-
tributed among UP and DOWN have been used to evaluate
the classification performance. The chord recordings used
for training and testing purposes are separate and different.

The performance of the proposed feature is compared
against a baseline that makes use of MFCCs (Mel Fre-
quency Cepstral Coefficients) calculated as explained in
[22]. More specifically, 15 coefficients are considered with
the first one, corresponding to the DC component, removed.

A Fisher Linear Discriminant and a linear Support Vec-
tor Machine (SVM) classifier [23] have been evaluated.

Looking at Tables 1 and 2, we observe that the results
of the proposed method and feature are satisfactory. In al-
most all the cases, the performance of the proposed scheme
is better than the one achieved by the baseline based on
MFCCs.

The error in the determination of the number of played
notes is estimated as follows:

ErrorNPN = A

(
|NPNe −NPNr|

NPNr

)
· 100 (9)

where A() is the averaging operator, NPNe stands for the
estimated Number of Played Notes in (5) and NPNr repre-
sents the the actual number of notes.

The error in the estimated delay between consecutive
notes is evaluated as follows:

ErrorW = A

(
|We −Wr|

NPNe ·Wd

)
· 100 (10)

where We represents the windows in which a significant
spectral change has been found,Wr stands for the windows
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Instrument stroke
Fisher

SPCs-KD SPCs-ED MFCCs

Guitar
up 93.88 78.88 72.22
down 96.11 97.22 60.55
overall 95.00 88.05 66.38

Piano
up 91.95 79.31 77.85
down 97.81 84.36 81.42
overall 94.88 81.83 79.64

Organ
up 90.00 89.16 78.33
down 90.00 86.66 56.66
overall 90.00 87.91 67.50

Autoharp
up 100 94.44 97.91
down 100 86.80 79.86
overall 100 90.62 88.88

Table 1. Success Rate (%) of UP and DOWN stroke clas-
sification using a Fisher linear classifier [23]. The features
used by the classifier are: SPCs-KD (Spectral Centroid of
selected Windows with known-delay), SPCs-ED (Spectral
Centroid of selected Windows with estimated delay) and
MFCCs (15 Mel Frequency Cepstral Coefficients).

Instrument stroke
SVM

SPCs-KD SPCs-ED MFCCs

Guitar
up 91.57 87.77 58.44
down 95.01 95.55 98.78
overall 93.29 91.66 78.61

Piano
up 90.12 81.22 77.25
down 96.45 82.84 83.63
overall 93.28 82.03 80.44

Organ
up 89.16 90.52 90.83
down 88.66 87.98 51.66
overall 88.91 89.25 71.25

Autoharp
up 99.30 90.97 91.27
down 97.91 95.14 90.89
overall 98.61 93.05 91.08

Table 2. Success Rate (%) of UP and DOWN stroke clas-
sification using a linear SVM classifier [23]. The features
used by the classifier are: SPCs-KD (Spectral Centroid of
selected Windows with known-delay), SPCs-ED (Spectral
Centroid of selected Windows with estimated delay) and
MFCCs (15 Mel Frequency Cepstral Coefficients).

where the changes actually happen and Wd is number of
windows between two consecutive Wr windows. Table 3
shows the obtained results.

The proposed method for the estimation of the number
of notes and delays can be improved. This is a first ap-
proach to solve this problem. Our main goal has been to
detect the up or down stroke direction which is useful to
complete the transcription of the performance of certain
instruments, specifically the autoharp. The performance
attained in the detection of the stroke direction is satisfac-
tory according to the results shown.

It is important to note, that even though ErrorW seems
to be quite high, this error is in most of cases positive, i.e.,
the change is detected one or two windows after the first

Instrument stroke ErrorNPN ErrorW

Guitar
up 37.65 10.49
down 33.33 15.92
overall 35.49 13.20

Piano
up 30.72 28.38
down 33.65 18.10
overall 32.18 23.24

Organ
up 24.54 29.72
down 36.52 26.12
overall 30.53 27.92

Autoharp
up 53.06 10.46
down 42.88 13.96
overall 47.97 12.21

Table 3. Error (%) in the estimation of the number of notes
played and in the estimation of the delay between consec-
utive played notes in chords.

Instrument stroke
Fisher

SPCs-ED MFCCs

Autoharp

up 65.21 43.47
down 86.44 94.91
overall 75.10 69.19

SVM
SPCs-ED MFCCs

up 73.77 62.84
down 89.83 81.52
overall 77.52 72.18

Table 4. Success Rate (%) of UP and DOWN stroke clas-
sification for real autoharp chords.

window that actually contains the change. This issue is not
critical for the feature employed by the classifier because
it is possible to observe the difference in the estimation of
the SPCm in (8).

Finally, Table 4 presents the results obtained for real
chords played in an autoharp. We have used 100 chords
for training and 230 chords for testing. The 330 autoharp
chords recorded are equaly distributed between UP and
DOWN chords and in different tessituras. It can be ob-
served that the proposed feature outperforms the baseline
proposed based on the usage of MFCCs.

4. CONCLUSIONS

In this paper, a new feature to detect the up or down direc-
tion of strokes and arpeggios has been presented. The de-
veloped method also provides information about the num-
ber of played notes and the stroke speed.

The system have been tested with four different instru-
ments: classic guitar, piano, autoharp and organ and it has
been shown how the new proposed feature outperforms the
baseline defined for this task. The baseline makes use of
the well known MFCCs as classification features so that
the baseline scheme can be easily replicated. The Matlab
files used to generate the data-set for piano, guitar and or-
gan, the audio files of the autoharp and the ground truth are
available upon request for reproducible research.
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ABSTRACT

This paper presents a model for predicting expressive

accentuation in piano performances with neural networks.

Using Restricted Boltzmann Machines (RBMs), features

are learned from performance data, after which these fea-

tures are used to predict performed loudness. During

feature learning, data describing more than 6000 musical

pieces is used; when training for prediction, two datasets

are used, both recorded on a Bösendorfer piano (accurately

measuring note on- and offset times and velocity values),

but describing different compositions performed by differ-

ent pianists. The resulting model is tested by predicting

note velocity for unseen performances. Our approach dif-

fers from earlier work in a number of ways: (1) an ad-

ditional input representation based on a local history of

velocity values is used, (2) the RBMs are trained to re-

sult in a network with sparse activations, (3) network con-

nectivity is increased by adding skip-connections, and (4)

more data is used for training. These modifications result

in a network performing better than the state-of-the-art on

the same data and more descriptive features, which can be

used for rendering performances, or for gaining insight into

which aspects of a musical piece influence its performance.

1. INTRODUCTION

Music is not performed exactly the way it is described in

score: a performance in which notes occur on a regular

temporal grid and all notes are played equally loud is often

considered dull. Depending on the instrument, perform-

ers have different parameters they use for modulating ex-

pression in their music [14]: time (timing, tempo), pitch,

loudness and timbre. For some of these parameters com-

posers add annotations to musical score describing how

they should be varied, but for a large part performers are

expected render the score according to tacit knowledge,

and personal judgment. This allows performers to imbue

on a performance their personal style, but this is not to say

that music performance is arbitrary—it is often clear which

c© S. van Herwaarden, M. Grachten, W.B. de Haas.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Sam van Herwaarden, Maarten

Grachten, W. Bas de Haas. “Predicting expressive dynamics in piano per-

formances using neural networks”, 15th International Society for Music

Information Retrieval Conference, 2014.

interpretations are (not) musically appropriate.

This article describes a number of modifications to the

method for modeling expressive dynamics proposed by

Grachten & Krebs [7], and is based on the MSc thesis

work described in [17]. We show that, with an additional

input representation and a different set-up of the machine

learning approach, we achieve a statistically significant im-

provement on the prediction accuracy achieved in [7], with

more descriptive features. Our achieved performance is

also comparable with the work in [8]. In the following sec-

tions we first summarize previous work in this area, fol-

lowed by an overview of the used machine learning archi-

tecture. We then describe the experiments, the results and

the relevance of the findings.

2. PREVIOUS WORK

Two important aspects of music that affect the way it is to

be performed are the musical structure, and the emotion

that the performance should convey [13]. The last decades

different methods for analyzing the structural properties of

a piece of music have been proposed (e.g. [12, 15]), where

the analysis tends to stress the relationship between struc-

ture on a local level (elements of pitch and rhythm) and

their effect on the melodic expectancy of a listener. Emo-

tional charge conveyed by a piece is more abstract and vari-

able: trained musicians can play the same piece conveying

different emotions, and in fact these emotions can be iden-

tified by listeners [5].

Because musical structure can be studied through in-

spection of the musical score, computational models of

musical expression tend to focus on this. A number of

different computational models of expression have been

developed earlier, studying different expressive parame-

ters (e.g. [1, 4]). Many models are rule-based, where the

rules describing how expression should be applied are of-

ten hand-designed. Other models still focus on rules, but

automatically extract them from performance data (e.g. [11,

18]). A performance model can also be based on the score

annotations for the relevant parameter provided by the com-

poser, as in [8] which uses information on note pitch, loud-

ness annotations and other hand-crafted features.

Some recent studies model regularities in musical se-

quences using unsupervised techniques [2, 16], in the con-

text of musical sequence prediction. Grachten & Krebs [7]

apply unsupervised learning techniques to learn features

from a simple input representation based on a piano roll
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representation of the symbolic score, in the context of pre-

dicting musical expression. The resulting learned features

then describe common patterns occurring in the input data,

which can be related to concepts from music theory and

used for prediction of expressive dynamics. By using a

simple input representation and network, the model re-

mains relatively transparent with regard to its inner work-

ings. It is shown that Restricted Boltzmann Machines

(RBMs) learn the most effective model, and in this paper,

we build on that approach.

An RBM is a type of artificial neural network, particu-

larly suitable for unsupervised learning from binary input

data. During training it learns a set of features that can ef-

ficiently encode the input data. The features are used to

transform the input data non-linearly, which can be useful

for further (supervised) learning. For a detailed explana-

tion of RBMs the reader is referred to for example [9, 10].

3. ARCHITECTURE

Figure 1 illustrates the setup of the network we use. As

input the network sees the music data in two different

representations: the score-based note-centered represen-

tation first developed by [7] and the new loudness-based

velocity-history representation. The input data is trans-

formed through a series of hidden unit activations (RBM

feature activations) in L1, L2 and L3. These feature ac-

tivations are then used to estimate the output (normalized

velocity). As is typical with neural networks, the model

is blind to the meaningful ordering of the input nodes (we

could change the ordering without affecting the results).

The set-up is different from that in [7] in a number of

ways: (1) an additional input representation based on a lo-

cal history of velocity values is used, (2) the RBMs are

trained for sparse activations, (3) network connectivity is

increased with skip-connections (i.e. w1 and w2 in Figure

1 can be used simultaneously), and (4) more data is used

for training. The following sections cover these changes in

more detail. First, we describe the data available for devel-

oping the model. We then describe the way these data are

presented to our model as input and output, and finally the

process of training and evaluating our model.

3.1 Available data

Data from a number of sources is used for the exper-

iments in this paper. We have score data, which de-

scribes musical score in a piano-roll fashion, and we have

performance data, based on recordings from a computer-

controlled Bösendorfer piano. For the performance data,

accurate note on- and offsets are available as well as ve-

locity values, and these values have been linked to corre-

sponding score data. For all available performance data,

score data is also available, the converse does not hold.

A number of (MIDI) score datasets is used: the

JSB Chorales, 1 some MuseScore pieces, 2 the Mutopia

1 www.jsbchorales.net
2 www.musescore.org

velocity-history

note-centered

L3

L1

L2

vt

w1

w2 w3

Figure 1: The used architecture. The rounded squares

correspond to in- and outputs, the circles to layers of hid-

den units trained as Restricted Boltzmann Machines. w1

through w3 are the weights used to predict vt based on the

hidden unit activations in hidden layers L1 through L3.

w1 through w3 are determined with a least-squares fit.

database, 3 the Nottingham database, 4 the Piano-midi

archive 5 and the Voluntocracy dataset 6 . These datasets

are used during unsupervised learning with the note-

centered representation only. The performance datasets

we use have been developed at the Austrian Research In-

stitute for AI (OFAI). One dataset contains performance

data of all Chopin’s piano music played by Nikita Maga-

loff [3] (∼ 300.000 notes in 155 pieces), the other contains

all Mozart piano sonatas, performed by Roland Batik [18]

(∼ 100.000 notes in 128 pieces). These datasets have been

used both for unsupervised and supervised learning.

3.2 Note-centered representation

Score data is input into the network in one form in the

note-centered representation, which is based on a piano-

roll representation. For every note in a musical score, an

input sample is generated with this note in the center, as

illustrated in Figure 2b. The horizontal axis corresponds

to score time and covers a span of 3 beats before the onset

of the central note to 3 beats after the onset. Each beat is

further divided into 8 equal units of time (effectively each

column in the input corresponds to a 32nd note), and longer

notes are wider. The vertical axis corresponds to relative

pitch compared to the central note, and covers a span of

−55 to +55 semi-tones. To allow the representation to dis-

tinguish between separate notes of the same pitch played

consecutively, and a single long note at that pitch, note du-

rations are represented as their score duration minus 32nd

note duration (this was also done in [7]).

This approach is the same as the duration coding ap-

proach used in [7] with two exceptions: they experimented

with time-spans of 1, 2 and 4 beats (with very small dif-

3 www.mutopiaproject.org
4 www.chezfred.org.uk/University/music/

database.htm
5 www.piano-midi.de
6 www.voluntocracy.org
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(a)

(b)

(c)

Figure 2: A short piece of score, and resulting network input for the note indicated by the arrow: (a) shows the score,

where the annotations should be interpreted as performed loudness, not as annotated loudness directives, (b) shows the

note-centered representation and (c) the velocity-history representation.

ferences in results between the 2 and 4 beats experiments),

and used a pitch range of −87 to +87 semi-tones (so that

always the entire piano keyboard is covered). In practice,

the large pitch range is likely unnecessary and only in-

creases the length of the network input vector (note com-

binations with such intervals are very rare and do not no-

ticeably affect the learned features).

This choice of representation makes our system insen-

sitive to absolute pitch: if all input notes are transposed by

a few semi-tones in the same direction, the generated in-

put samples will be identical. This also allows the system

to learn about harmony based on relative pitch: for exam-

ple certain chords will typically be represented in the same

way regardless of their root tone. No additional informa-

tion on absolute note pitch was included, to keep the model

simple.

3.3 Velocity-history representation

When analyzing expressive parameters in existing perfor-

mances, it is interesting to not only take into account direct

harmonic and rhythmic structure around a note as is done

with the note-centered representation, but also effects in

continuity of musical phrases: for example, in many cases

note loudness increases or decreases gradually over a num-

ber of notes. The precise accentuation of a note is than

affected by the accentuation of preceding notes.

Our velocity-history representation is designed to en-

code this kind of information. Figure 2c illustrates this rep-

resentation. Conceptually, it is similar to the note-centered

representation, with a few differences: the vertical axis

now represents relative velocity (normalized with respect

to the mean μ and standard deviation σ of the velocity in

a piece, where the range from μ − 2σ to μ + 2σ is quan-

tized into 12 discrete values), and the horizontal axis cor-

responds to the time preceding the current note (ranging

from note onset −3 beats to note onset +0).

The velocity-history representation uses information

from an actual performance during prediction. In a sense,

the system is asked to predict the continuation of a musical

phrase: given that the last notes were played in a certain

way, how will the next note be played? When using this

representation, experiments with our model aim to explain

how a note is performed in an existing performance, rather

than predict it for a new piece of bare score (an actual per-

formance needs to be available).

3.4 Velocity normalization

Since we use semi-supervised learning, at some point we

need target values accompanying our input representations.

We have exactly one sample for each note, and we are

studying dynamics, so the logical parameter to base these

target values on is note velocity. However, the different

pieces described in our data have fairly diverse character-

istics when it comes to dynamics. Some pieces are per-

formed louder on average, or have stronger variations in

dynamics. In this study we have chosen to focus on lo-

cal effects within a single piece, and not so much on dif-

ferences between pieces. For this reason we normalize

our velocity target values so they have zero-mean and unit

standard-deviation within a piece (we use these values both

for supervised learning and for generating the velocity-

history representation). This is slightly different from the

normalization used in [7], where normalization was only

used to obtain zero-mean within a piece.

3.5 Training and evaluation

The process of developing and testing the network can be

separated into three phases: unsupervised learning, super-

vised learning and performance evaluation. We will now

describe these in more detail.

3.5.1 Unsupervised learning

During unsupervised learning, we train only hidden layers

L1 through L3. The layers are trained as RBMs on the full

set of score data in the note-centered and velocity-history

representations, where L1 and L3 are trained on the input

representations directly, and L2 is trained on the feature

activations in L1.

In the note-centered representation samples consist of

5280 binary input values. L1 is trained with 512 hidden

units (ensuring a significant bottleneck in the network),

and L2 contains fewer hidden units again: 200 units. In

the velocity-history representation samples consist of 288

input values, these are encoded in 120 hidden units in L3.
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We enforce sparse coding in the network, using the

method proposed in [6], which allows us to not only con-

trol the average activation of hidden units in the network,

but also the actual distribution of activations: we can force

the RBM to represent each sample as a number of highly

active features, improving inspectability.

3.5.2 Supervised learning

For supervised learning we use a simple approach: given

the transformation of an input sample by L1 to L3, we

fit the hidden unit activations in these layers to the corre-

sponding vt (normalized velocity) values using least-squares.

Exploratory experiments suggested that more advanced tech-

niques do not yield much better results. Thus, w1 through

w3 simply define a linear transformation from the features

activations to a prediction of the normalized velocity.

3.5.3 Performance evaluation

To evaluate the performance of our model we use a leave-

one-out approach: we cycle through all the pieces in the

performance data, where every time a particular piece is

left out during supervised learning, after which the trained

network is used to predict the expressive dynamics of the

left-out piece. The quality of the prediction is then quan-

tified using the R2 measure (coefficient of determination).

As mentioned before, the full set of data is used during

unsupervised learning – because the objective function op-

timized during this phase has no relation to the velocity

targets, we believe that this is an acceptable approach. As

the final score after cycling through the whole dataset in

this fashion, we use the weighted average R2, where the

number of notes in a piece is used as its weight.

4. EXPERIMENTS

In our experiments we vary two parameters: network con-

nectivity, and training/testing datasets. Other experiments

were also done but are not described in this paper, for these

the interested reader is referred to [17].

4.1 Network connectivity

Different parts of our model describe information con-

cerning different aspects of the input data. The note-

centered representation corresponds to rhythmic and har-

monic structure of the score surrounding a note, while the

velocity-history representation relates more closely to ex-

pressive phrases. This distinction continues through the

layers of feature activations. To get an impression of how

strongly the expressive variation in velocity data corre-

sponds to these different aspects, we experimented with

the different layers in isolation and together. We will re-

fer to the network configurations by the layers that were

used during training and prediction, i.e. L1,2 means both of

the layers on top of the note-centered representation were

used, and L3 was not. Another way to see this would be

that w3 is constrained to be a matrix of only 0’s.

no vel. inf. with vel. inf.
L1 L1,2 L2 L3 L1,2,3

M.→M. .202 .207 .191 .315 .470

B.→ B. .366 .376 .357 .236 .532

B.→M. .132 .126 .125 .286 .386

M.→ B. .291 .295 .283 .209 .457

All→M. .198 .203 .186 .313 .466

All→ B. .341 .350 .329 .222 .503

Table 1: R̄2 scores obtained on the test data. X → Y
indicates the model was trained on X and tested on Y ,

where M. is the Magaloff and B. the Batik dataset. Experi-

ments with velocity information (vel. inf.) use the velocity-

history representation as input. We use the underlined re-

sult for comparison with previous work ( [7] and [8]).

4.2 Training datasets

Experimenting with different sets of training data is inter-

esting for several reasons. One is that from a musicological

perspective, the structure of music of different styles can be

quite different. As an extreme example, a system trained

on Jazz music would not be expected to reliably predict

performances of piano music by Bach. Another reason is

that we can use combinations of datasets to test the valid-

ity of our model: if a model trained on music from one set

of recordings, still performs well on another set of record-

ings, this can give us some confidence that our model has

learned something about music in a general sense, and not

just about the particular dataset.

As mentioned before, we use two datasets: one describ-

ing performances of Chopin music and the other Mozart

music. In all cases, during testing we kept the datasets

separate. However, we varied the set of data used for train-

ing: we trained on the same dataset as used for testing,

we trained on one dataset and tested on the other, and we

tested a model trained on all data.

5. RESULTS

Table 1 lists the results obtained with our model. The

model is more successful explaining the variance in the

Batik (Mozart) data than in the Magaloff (Chopin) data –

one possible explanation for this is that Chopin’s music

(from the Romantic period) has much more extreme varia-

tions in expression than Mozart’s music (from the Classical

period). It seems reasonable that a performance with more

dynamic variation is harder to predict.

When comparing the different architectures, most in-

formation used by our model is encoded in L1 and L3.

L2 has less predictive value than L1, and the score only

improves by a little bit when these two layers are used to-

gether (suggesting there is a large amount of overlap in

the information they encode). L3, which is based on the

velocity-history representation (which was not used in [7])

clearly contains a lot of information.

Interestingly, L3 contains most relevant information for
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Figure 3: Some hand-selected features from L1 that are representative for the types of patterns learned from the note-

centered representation (see Figure 2b). Dark values correspond to negative weights, light values to positive weights.

the Magaloff data, and L1 for the Batik data. This could be

due to the difference between music from the Romantic pe-

riod and that from the Classical period: L1 contains more

information about harmony, whereas L3 contains more in-

formation about the expressive ‘flow’ of the piece.

Training on a single dataset has a positive effect on

the prediction scores. This is likely due to the fact that

the datasets are of a different nature in terms of musical

style, and if we would want to predict performance param-

eters for a Mozart piece, training on Chopin music will

not provide our model with the relevant ‘know-how’. This

is also illustrated by the cross-training experiments, where

we trained on one dataset and tested on the other: a drop in

performance of around 0.08 in all cases is observed. Still,

also a relatively large amount of the predictive capability

remains, providing some confidence that our model gener-

alizes over different datasets to some extent.

Because the velocity-history representation requires de-

tailed performance data for predictions, we use the results

from our L1,2 experiments when comparing our results to

earlier work which does not use performance data. In [7]

the best obtained R̄2 score on the Magaloff data is .139,

using a single dense RBM layer with 1000 hidden units

(similar to our L1 model). Our L1,2 model achieved an

R̄2 of .207 on the same dataset. To keep statistical test-

ing simple, we tested the statistical significance of the dif-

ference in unweighted average R2 of our model and the

model in [7] using a Wilcoxon signed rank test. We chose

the Wilcoxon test because the underlying distribution of

the R2 data is unknown. We found that the unweighted av-

erage R2 of .199 of our L1,2 model is significantly differ-

ent from the unweighted average R2 of .121 of the model

in [7] (W = 11111, p < 2.2 · 10−16). In [8], the maximal

obtained prediction accuracy on the Magaloff dataset is an

R̄2 of .188. This model uses information our models have

no access to, most importantly dynamic score annotations.

Nevertheless, with an R̄2 of .207 our L1L2 model again

seems more successful even though it does not take such

annotations into account. 7 When we do use performance

7 To perform the statistical test, detailed results from [7] were kindly
provided by the authors. For the work in [8] these results were unfor-
tunately unavailable, meaning we could not perform the same statistical
analysis with this result.

data, the difference becomes more pronounced: our L1,2,3

model obtains an R̄2 of .470 on the Magaloff data.

Something interesting to mention here is that in [17] we

also experimented with limiting training data to a particu-

lar genre (i.e. training only on Nocturnes). These exper-

iments suggested that the velocity-history representation

encodes some genre-specific information, however due to

space constraints we do not cover these results further here.

6. DISCUSSION

We discuss two properties of our model: the features that

were learned from the musical data, and the performance

achieved during prediction. Figure 3 illustrates a number

of hand-selected features that have been learned from the

note-centered representation, which were chosen to give an

impression of the variety of learned features. Compared

to the features learned by [7], there is a larger variety of

features, where features represent sharper patterns.

6.1 Learned features

Figure 3 illustrates some of the learned features. The dis-

played features were selected so as to give the reader an

impression of the diversity of the learned features . From a

musicological perspective, it is interesting to see that there

seem to be some remarkable patterns relating the features

to music theory. The features learned from the velocity-

history representation are harder to interpret musicologi-

cally, these are not further discussed in this paper.

Figure 3a shows clear horizontal banding, where inter-

estingly the bands are exactly 12 rows apart – this corre-

sponds to octaves. The feature in some locations displays a

strong contrast between pitches one semi-tone apart, which

is related to dissonance.

A common pattern is illustrated in Figure 3b, with a

dark (inhibitive) band above or below a lighter region. This

type of feature is also described by Grachten & Krebs [7],

who argue this can be regarded as an accompaniment ver-

sus melody detector: the illustrated feature is strongly in-

hibited by notes in a sample that are below the central note,

meaning that the feature activates more readily for bass

notes. The opposite type of feature, with inhibitive regions

above and excitatory regions below the central note (not
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shown here), is active with a high probability for melody

notes, where surrounding notes have lower pitch.

Another common pattern is the vertical banding illus-

trated by Figure 3c. There is some variation in the offset

of the vertical bands from the edges (their phase) and how

close they are together (their period). These features can

convey information on the pace in the current part of the

piece (predominantly short or long notes) and the temporal

position of the note with respect to the beat.

A few features also display diagonal banding as illus-

trated by Figure 3d, although these are relatively rare.

Still, we hypothesize that with these our model can deduce

whether the central note is in an ascending or descending

sequence.

A final common pattern is that in Figure 3e, with a sharp

white band corresponding to a note at a certain relative

pitch and time from the central note. It seems reasonable

to suggest that these can be related to particular melodic

steps – changes from one note to another with a particular

relative pitch and timing.

6.2 Model performance

The performance of our model is an improvement com-

pared to earlier work, particularly when the goal is to ex-
plain the structure of an existing performance rather than

predict a performance for a new piece of score – in the

former situation the velocity-history representation can be

used to good effect. Still, when considering a purely pre-

dictive context (using no velocity information), an R2 of

around 0.2 leaves room for improvement. There is of course

a practical limit in terms of what score can be obtained:

even the same pianist might not play a piece in exactly the

same way on different occasions, meaning that an R2 close

to 1.0 cannot be expected. A factor that limits our model is

that it considers score structure at a local level only – struc-

ture at larger timescales is not considered, nor are loudness

annotations, which of course also convey a lot of infor-

mation about how loudly a particular piece of score is to

be played. These omissions are opportunities for further

work: including these components could improve perfor-

mance further, for example loudness annotations could be

included similarly to what was done in [8].

7. CONCLUSIONS

We showed that neural networks trained on relatively raw

representations of musical score and musical performances

can be used to predict expressive dynamics in piano per-

formances. This was done before in [7], but we changed

the learning architecture (using sparse RBMs and skip-

connections), and developed a new input representation,

resulting in better predictions and clearer features. We

also showed that our model generalizes well to datasets on

which it was not trained.
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ABSTRACT

In this paper, we investigate the use of Music Language
Models (MLMs) for improving Automatic Music Transcrip-
tion performance. The MLMs are trained on sequences of
symbolic polyphonic music from the Nottingham dataset.
We train Recurrent Neural Network (RNN)-based models,
as they are capable of capturing complex temporal struc-
ture present in symbolic music data. Similar to the func-
tion of language models in automatic speech recognition,
we use the MLMs to generate a prior probability for the oc-
currence of a sequence. The acoustic AMT model is based
on probabilistic latent component analysis, and prior infor-
mation from the MLM is incorporated into the transcrip-
tion framework using Dirichlet priors. We test our hybrid
models on a dataset of multiple-instrument polyphonic mu-
sic and report a significant 3% improvement in terms of F-
measure, when compared to using an acoustic-only model.

1. INTRODUCTION

Automatic Music Transcription (AMT) involves automat-
ically generating a symbolic representation of an acoustic
musical signal [4]. AMT is considered to be a fundamental
topic in the field of music information retrieval (MIR) and
has numerous applications in related fields in music tech-
nology, such as interactive music applications and compu-
tational musicology. The majority of recent transcription
papers utilise and expand spectrogram factorisation tech-
niques, such as non-negative matrix factorisation (NMF)
[18] and its probabilistic counterpart, probabilistic latent
component analysis (PLCA) [25]. Spectrogram factori-
sation techniques decompose an input spectrogram of the
audio signal into a product of spectral templates (that typ-
ically correspond to musical notes) and component activa-
tions (that indicate whether each note is active at a given

c© S. Sigtia, E. Benetos, S. Cherla, T. Weyde, A. S. d’Avila
Garcez, and S. Dixon.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: S. Sigtia, E. Benetos, S. Cherla, T.
Weyde, A. S. d’Avila Garcez, and S. Dixon. “An RNN-based Music
Language Model for Improving Automatic Music Transcription”, 15th
International Society for Music Information Retrieval Conference, 2014.

time frame). Spectrogram factorisation-based AMT sys-
tems include the work by Bertin et al. [7], who proposed a
Bayesian framework for NMF, which considers each pitch
as a model of Gaussian components in harmonic positions.
Benetos and Dixon [3] proposed a convolutive model based
on PLCA, which supports the transcription of multiple-
instrument music and supports tuning changes and frequency
modulations (modelled as shifts across log-frequency).

In terms of connectionist approaches for AMT, Nam et
al. [20] proposed a method where features suitable for tran-
scribing music are learned using a deep belief network con-
sisting of stacked restricted Boltzmann machines (RBMs).
The model performed classification using support vector
machines and was applied to piano music. Böck and Schedl
used recurrent neural networks (RNNs) with Long Short-
Term Memory units for performing polyphonic piano tran-
scription [8], with the system being particularly good at
recognising note onsets.

There is no doubt that a reliable acoustic model is im-
portant for generating accurate symbolic transcriptions of
a given music signal. However, since music exhibits a fair
amount of structural regularity much like language, it is
natural for one to think of the possibility of improving tran-
scription accuracy using a music language model (MLM)
in a manner akin to the use of a language model to improve
the performance of a speech recognizer [21]. In [9], the
predictions of a polyphonic MLM were used to this end,
which was further developed in [10], where an input/output
extension of the RNN-RBM was proposed that learned to
map input sequences to output sequences in the context of
AMT. Both in [9] and [10], evaluations were performed us-
ing synthesized MIDI data. In [22], Raczyński et al. utilise
chord and key information for improving an NMF-based
AMT system in a post-processing step. A major advantage
of using a hybrid acoustic + language model system is that
the two models can be trained independently using data
from different sources. This is particularly useful since an-
notated audio data is scarce while it is relatively easy to
find MIDI data for training robust language models.

In the present work, we integrate a MLM with an AMT
system, in order to improve transcription performance. Specif-
ically, we make use of the predictions made by a Recur-
rent Neural Network (RNN) and a RNN-Neural Autore-

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

53



gressive Distribution Estimator (RNN-NADE) based poly-
phonic MLM proposed in [9] to refine the transcriptions
of a PLCA-based AMT system [2, 3]. Information from
the MLM is incorporated into the PLCA-based acoustic
model as a prior for pitch activations during parameter es-
timation. It is observed that combining the two models
in this way boosts transcription accuracy by +3% on the
Bach10 dataset of multiple-instrument polyphonic music
[13], compared to using the acoustic AMT system only.

The outline of this paper is as follows. The PLCA-based
transcription system is presented in Section 2. The RNN-
based polyphonic music prediction system that is used as a
music language model is described in Section 3. The com-
bination of the two aforementioned systems is presented in
Section 4. The employed dataset, evaluation metrics, and
experimental results are shown in Section 5; finally, con-
clusions are drawn in Section 6.

2. AUTOMATIC MUSIC TRANSCRIPTION
SYSTEM

For combining acoustic and music language information in
an AMT context, we employ the model of [3], which sup-
ports the transcription of multiple-instrument polyphonic
music and also supports pitch deviations and frequency
modulations. The model of [3] is based on PLCA, which is
a latent variable analysis method which has been used for
decomposing spectrograms. For computational efficiency
purposes, we employ the fast implementation from [2],
which utilized pre-extracted note templates that are also
pre-shifted across log-frequency, in order to account for
frequency modulations or tuning changes. In addition, as
was shown in [24], PLCA-based models can utilise priors
for estimating unknown model parameters, which will be
useful in this paper for informing the acoustic transcription
system with symbolic information.

The transcription model takes as input a normalised log-
frequency spectrogram Vω,t (ω is the log-frequency index
and t is the time index) and approximates it as a bivariate
probability distribution P (ω, t). P (ω, t) is decomposed
into a series of log-frequency spectral templates per pitch,
instrument, and log-frequency shifting (which indicates de-
viation with respect to the ideal tuning), as well as proba-
bility distributions for pitch, instrument, and tuning.

The model is formulated as:

P (ω, t) = P (t)
∑
p,f,s

P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)

(1)
where p denotes pitch, s denotes the musical instrument
source, and f denotes log-frequency shifting. P (t) is the
energy of the log-spectrogram, which is a known quantity.
P (ω|s, p, f) denotes pre-extracted log-spectral templates
per pitch p and instrument s, which are also pre-shifted
across log-frequency. The pre-shifting operation is made
in order to account for pitch deviations, without needing to
formulate a convolutive model across log-frequency. Pt(f |p)
is the time-varying log-frequency shifting distribution per
pitch, Pt(s|p) is the time-varying source contribution per

pitch, and finally, Pt(p) is the pitch activation, which es-
sentially is the resulting music transcription. As a time-
frequency representation in the log-frequency domain we
use the constant-Q transform (CQT) with a log-spectral
resolution of 60 bins/octave [23].

The unknown model parameters (Pt(f |p), Pt(s|p), and
Pt(p)) can be iteratively estimated using the expectation-
maximisation (EM) algorithm [12]. For the Expectation
step, the following posterior is computed:

Pt(p, f, s|ω) =
P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)∑

p,f,s P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)
(2)

For the Maximization step (without using any priors)
unknown model parameters are updated using the posterior
computed from the Expectation step:

Pt(f |p) ∝
∑
ω,s

Pt(p, f, s|ω)Vω,t (3)

Pt(s|p) ∝
∑
ω,f

Pt(p, f, s|ω)Vω,t (4)

Pt(p) ∝
∑
ω,f,s

Pt(p, f, s|ω)Vω,t (5)

We consider the sound state templates to be fixed, so no
update rule for P (ω|s, p, f) is applied. Using fixed tem-
plates, 20-30 iterations using the update rules presented in
the present section are sufficient for convergence. The out-
put of the system is a pitch activation which is scaled by
the energy of the log-spectrogram:

P (p, t) = P (t)Pt(p) (6)

After performing 5-sample median filtering for note smooth-
ing, thresholding is performed on P (p, t) followed by min-
imum note duration pruning set to 40ms in order to convert
P (p, t) into a binary piano-roll representation, which is the
output of the transcription system, and is also used for eval-
uation purposes.

3. POLYPHONIC MUSIC PREDICTION SYSTEM

Taking inspiration from speech recognition, it has been
shown that a good statistical model of symbolic music can
help the transcription process [11]. However there are 2
main reasons for the use of MLMs in AMT not being more
common.

1. Training models that capture the temporal structure
and complexity of symbolic polyphonic music is not
an easy task. In speech recognition, often simple
language models like n-grams work extremely well.
However, music has a more complex structure and
simple statistical models like n-grams and HMMs
fail to model these characteristics accurately even for
music with simple structure [9].

2. There is no consensus on how to incorporate this
prior information within the transcription system. How-
ever, recently there have been some successful at-
tempts at using this prior information to improve the
accuracy on AMT tasks [9, 10].
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In this section we discuss the details of the music pre-
diction system and the models used. In the next section
we discuss how we incorporate the predictions from these
models in a PLCA-based music transcription system.

3.1 Recurrent Neural Networks

A recurrent neural network (RNN) is a powerful model for
time-series data which can account for long-term temporal
dependencies, over multiple time-scales when trained ef-
fectively. Given a sequence of inputs v1, v2, . . . , vT each
in R

n, the network computes a sequence of hidden states
ĥ1, ĥ2, . . . , ĥT each in R

m, and a sequence of predictions
ŷ1, ŷ2, . . . , ŷT each in R

k by iterating the equations

ĥt = e(W
ĥx
vt +W

ĥĥ
ĥt−1 + b

ĥ
) (7)

ŷt = g(W
yĥ
) (8)

where W
yĥ

, W
ĥx

, W
ĥĥ

are the weight matrices, b
ĥ

is the
bias and e and g are activation functions which are typi-
cally non-linear and applied element-wise.

An RNN can be trained using the gradient-based Back-
Propagation Through Time algorithm [27] using the ex-
actly computable error gradients in the network. However,
1st order gradient methods fail to correctly train RNNs for
many real-world problems. This difficulty has been associ-
ated with what is known as the vanishing/exploding gradi-
ents phenomenon [6], where the errors exhibit exponential
decay/growth as they are back-propagated through time.
years [15, 16, 19].

However, recent work in the field of neural networks
and deep learning has led to several improvements in gra-
dient based optimization methods that make training of
RNNs possible. Most notably, the Hessian Free (HF) opti-
mization algorithm has been used to train RNNs success-
fully on several real world datasets, including symbolic
polyphonic music data [19]. Apart from second order meth-
ods like HF, several modifications to first-order gradient
based methods exist that currently form the state of the art
in training RNNs [5].

3.2 Recurrent Neural Network-based models

One of the drawbacks of using RNNs to predict polyphonic
symbolic music is that any output of the network, ŷi at time
step t, is conditionally independent of ŷj ,∀j �= i given
the sequence of input vectors v1, v2, . . . , vT . This is a se-
vere constraint when used for modelling polyphonic mu-
sic, where notes often appear in very correlated patterns
within a frame. In order to overcome this limitation, mod-
els derived from RNNs have been proposed which are bet-
ter at modelling high-dimensional sequences [9, 26].

The first RNN-based model that tried to model high-
dimensional sequences is the Recurrent Temporal Restricted
Boltzmann Machine (RTRBM) [26]. This model was ex-
tended to the more general RNN-RBM model, where the
hidden states for the RBM and RNN were not constrained
to be the same. For our prediction system, we make use of
a variant of the RNN-RBM, called the RNN-NADE. The
only difference is that the conditional distributions at each

step are modelled by a Neural Autoregressive Distribution
Estimator (NADE) [17] as opposed to an RBM. As dis-
cussed in the next section, to combine the predictions with
the transcription system, we need individual pitch activa-
tion probabilities at each time-step. Obtaining these proba-
bilities from an RBM is intractable as it requires summing
over all possible hidden states. However the NADE is a
tractable distribution estimator and we can easily obtain
these probabilities from the NADE. The NADE models the
probability of occurrence of a vector p as:

P (p) =
D∏
i=1

P (pi|p<i) (9)

where p ∈ R
D,pi is the pitch activation and p<i is the

vector containing all the pitch activations pj such that j <
i.

In our system we utilise each of the conditional proba-
bilities p(pi|p<i) as probabilities of the pitch activations.
Although the pitch activation probabilities are only con-
ditioned on p<i, we hypothesize that this will be a better
model than the RNN, where the pitch activation probabil-
ities are completely independent. Another motivation for
using the NADE is that the gradients can be computed ex-
actly, and therefore we can employ HF optimization for
training the RNN-NADE.

4. COMBINING TRANSCRIPTION AND
PREDICTION

In this section, we describe the process for combining the
acoustic model with the music language model for deriving
an improved transcription. Firstly, the input music signal is
transcribed using the process described in Section 2. The
resulting piano-roll representation of the transcription sys-
tem is considered to be a sequence p1, p2, . . . , pT that is
placed as input to the MLM presented in Section 3. For
the RNN-NADE, we compute the probability P (pi|p<i)
for all time frames, and use that as prior information for
the combined model, with the prior information denoted
as PMLM (p, t), where PMLM (p = i, t) = P (pi|p<i).
For the RNN, the prediction output is directly denoted as
PMLM (p, t), since pitch probabilities are independent.

As shown in [24], PLCA-based models use multinomial
distributions; since the Dirichlet distribution is conjugate
to the multinomial, a Dirichlet prior can be used to en-
force structure on the pitch activation distribution Pt(p).
Following the procedure of [24], we define the Dirichlet
hyperparameter for the pitch activation as:

αt(p) ∝ Pt(p)PMLM (p, t) (10)

where αt(p) essentially is a pitch activation probability
which is filtered through a pitch indicator function com-
puted from the symbolic prediction step (the denominator
is simply for normalisation purposes).

The recording is then re-transcribed, using as additional
information the prior computed from the transcription step.
The modified update for the pitch activation which replaces
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(5) is given by:

Pt(p) ∝
∑
ω,f,s

Pt(p, f, s|ω)Vω,t + καt(p) (11)

where κ is a weight parameter expressing how much the
prior should be imposed; as in [24], the weight decreases
from 1 to 0 throughout the iterations. To summarize, the
transcription creates a symbolic prediction, which in turn
improves the subsequent re-transcription of the music sig-
nal. An overview of the complete transcription-prediction
system architecture can be seen in Fig. 1.

5. EVALUATION

5.1 Dataset

For testing the transcription system, we employ the Bach10
dataset [13], which is a freely available multi-track collec-
tion of multiple-instrument polyphonic music. It consists
of ten recordings of J.S. Bach chorales, performed by vi-
olin, clarinet, saxophone, and bassoon. Pitch ground truth
for each instrument is also provided. Due to the tonal and
homogeneous content of the dataset (single composer, sin-
gle music language), it is suitable for testing the incorpo-
ration of music language models in a multiple-instrument
transcription system. For training the transcription sys-
tem, pre-extracted and pre-shifted spectral templates are
extracted for the instruments present in the dataset, using
isolated note samples from the RWC database [14].

For training the MLMs we use the Nottingham dataset 1 ,
a collection of 1200 music pieces in symbolic ABC format,
which contain simple chord combinations and tunes. We
trained the RNN and the RNN-NADE models using both
Stochastic Gradient Descent (SGD) and HF to compare
performance. The inputs to both the models are sequences
of length 200 where each frame of the sequence is a binary
vector of length 88 which covers the full piano note range.
We train both the RNN and the RNN-NADE to predict the
next vector given a sequence of input vectors. We train
the models by minimizing the negative log-likelihood of
the sequences using the cross-entropy

∑
i ti log pi + (1 −

ti) log(1− pi) where i sums over all the dimensions of the
binary vector and ti is the pitch target.

5.2 Metrics

For evaluating the performance of the proposed system for
multi-pitch detection, we employ the precision (Pre), re-
call (Rec), and F-measure (F ) metrics, which are com-
monly used in transcription evaluations [1]. As in the pub-
lic evaluations on multi-pitch detection carried out through
the MIREX framework [1], a detected note is considered
correct if its pitch is the same as the ground truth pitch and
its onset is within a 50ms tolerance interval of the ground-
truth onset.

1 ifdo.ca/∼seymour/nottingham/nottingham.html

Model Pre

RNN (SGD) 67.89%
RNN (HF) 69.61%
RNN-NADE (SGD) 68.89%
RNN-NADE (HF) 70.61%

Table 1. Validation results for MLMs

5.3 Results

To validate the performance of the MLMs, we calculate the
prediction precision on unseen sequences of music from
the Nottingham dataset of folk melodies. We utilise 694
tracks for training, 173 tracks for validation and 170 for
testing 2 . For both the RNN and RNN-NADE models we
sample 10 vectors from the conditional distribution at each
time-step and calculate the expected precision against the
ground truth. The reported precision is found by find-
ing the mean over the predictions of every frame. Table
1 shows the results of the validation experiments. These
results are of the same order as the prediction accuracies
reported in [9]. We found that for both the models, HF op-
timization gave better precision than SGD. Training with
HF was also easier as there were less hyper parameters
to be tuned when compared to SGD, where learning rate
needs to be updated to make sure training is effective. The
RNN models had a hidden layer of size 150, while the
RNN-NADE models had a hidden layer of size 100 and
the NADE consisted of a hidden layer of size 150.

Multi-pitch detection experiments are performed using
the proposed system, with various configurations. A first
configuration only considers the transcription system from
Section 2. A second configuration takes the output of the
transcription system and gives it as input to the prediction
system of Section 3, where the final piano-roll is the out-
put of the prediction step. A third configuration (presented
in Section 4), re-transcribes the recording, having the pre-
diction as a prior information for estimating the pitch acti-
vations. For the prediction system, experiments were per-
formed using both the RNN-NADE and the RNN.

Results using the various system configurations are dis-
played in Table 2. It can be seen that the best perfor-
mance is achieved by the 3rd configuration when using
the NADE-HF model for prediction, which surpasses the
acoustic-only transcription system by more than 3%. In
general, it can be seen that using the prediction system as
a post-processing step (2nd configuration) always leads to
an improvement over the acoustic-only model (1st config-
uration). A similar trend can be observed when integrat-
ing the prediction information as a prior in the transcrip-
tion system (configuration 3) compared to just using the
prediction system as post-processing (configuration 2); an
improvement is always reported. Another observation can
be made when comparing the RNN-NADE with the RNN,
with the former providing a clear improvement. For com-
parative purposes, we also trained MLMs using 500 MIDI
files of J.S. Bach chorales 3 and tested the models on the

2 http://www-etud.iro.umontreal.ca/∼boulanni/icml2012
3 http://www.jsbchorales.net/sets.shtml
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AUDIO TIME-FREQUENCY

REPRESENTATION
TRANSCRIPTION PREDICTION

PIANO-ROLL

DICTIONARY

Figure 1. Proposed system diagram.

Configuration F Pre Rec

Configuration 1 62.02% 58.51% 66.12%
Configuration 2 - NADE 62.62% 59.70% 65.92%
Configuration 3 - NADE 64.08% 61.96% 66.44%
Configuration 2 - RNN 62.29% 59.08% 65.98%
Configuration 3 - RNN 63.85% 61.14% 66.90%
Configuration 2 - NADE-HF 62.20% 59.14% 65.68%
Configuration 3 - NADE-HF 65.16% 62.80% 67.78%
Configuration 2 - RNN-HF 62.44% 59.28% 66.07%
Configuration 3 - RNN-HF 62.87% 60.03% 66.11%

Table 2. Transcription results using various system con-
figurations.

Bach10 recordings. Using the Bach MLMs, the system
reached F = 63.58%, which is an improvement over the
acoustic-only system, but is outperformed by the Notting-
ham language model.

Qualitatively, the MLMs are able to improve transcrip-
tion performance by providing a rough estimate of which
pitches are expected to appear in the recording (and which
pitches are not expected to appear). The language mod-
els were trained using simple chord sequences (from the
Nottingham dataset) that are representative of simple tonal
music and are applicable as language models to the more
complex Bach chorales. We believe that the reason for the
J.S. Bach MLMs not performing as well as the Notting-
ham MLMs is due to the fact that predicting Bach’s music
is a complex task (many exceptions, key changes, modula-
tions), whereas a simple tonal model like the Nottingham
dataset can work as a general-purpose language model in
many types of music (this is also verified in [9]).

By comparing with the method of [13] (where the Bach10
dataset was first introduced), the proposed method using
the frame-based accuracy metric reaches 74.3% for the NADE-
HF using the 3rd configuration, whereas the method of [13]
reaches 69.7% (with unknown polyphony). As an exam-
ple of the proposed system’s performance, the spectrogram
and raw output of the system using the 3rd configuration is
displayed for a Bach10 recording Fig. 2, whereas the post-
processed transcription output along with the ground truth
for the same recording is shown in Fig. 3.

6. CONCLUSIONS

In this paper, we proposed a system for automatic music
transcription which incorporated prior information from
a polyphonic music prediction model based on recurrent
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Figure 2. (a) The spectrogram Vω,t for recording “Ach
Lieben Christen” from the Bach10 dataset. (b) The pitch
activation P (p, t) using the transcription-prediction system
using the 3rd configuration, with the NADE-HF.

neural networks. The acoustic transcription model was
based on probabilistic latent component analysis, and in-
formation from the prediction system was incorporated us-
ing Dirichlet priors. Experimental results using the multiple-
instrument Bach10 dataset showed that there is a clear and
significant improvement (3% in terms of F-measure) by
combining a music language model with an acoustic model
for improving the performance of the latter. These results
also demonstrate that the MLM can be trained on symbolic
music data from a different source as the acoustic data, thus
eliminating the need to acquire collections of symbolic and
corresponding acoustic data (which are scarce).

In the current system, the language models are trained
on only one dataset. In the future, we would like to eval-
uate the proposed system using language models trained
from different sources to see if this helps the MLMs gener-
alize better. We will also investigate different system con-
figurations, to test whether iterating the transcription and
prediction steps leads to improved performance. We will
also investigate the effect of using different RNN archi-
tectures like Long Short Term Memory (LSTM) and bi-
directional RNNs and LSTMs. Finally, we would like to
extend the current models for high-dimensional sequences
to better fit the requirements for music language modelling.
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Figure 3. Transcription example for recording “Ach
Lieben Christen” from the Bach10 dataset. (a) The post-
processed output of the transcription-predicton system us-
ing the 3rd configuration, with the NADE-HF. (b) The
pitch ground truth of the recording.
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ABSTRACT

Studying texture is a part of many musicological analy-

ses. The change of texture plays an important role in the

cognition of musical structures. Texture is a feature com-

monly used to analyze musical audio data, but it is rarely

taken into account in symbolic studies. We propose to for-

malize the texture in classical Western instrumental music

as melody and accompaniment layers, and provide an al-

gorithm able to detect homorhythmic layers in polyphonic

data where voices are not separated. We present an evalua-

tion of these methods for parallel motions against a ground

truth analysis of ten instrumental pieces, including the first

movements of the six quatuors op. 33 by Haydn.

1. INTRODUCTION

1.1 Musical Texture

According to Grove Music Online, texture refers to the
sound aspects of a musical structure. One usually differen-

tiates homophonic textures (rhythmically similar parts) and

polyphonic textures (different layers, for example melody

with accompaniment or countrapuntal parts). Some more

precise categorizations have been proposed, for example

by Rowell [17, p. 158 – 161] who proposes eight “textural

values”: orientation (vertical / horizontal), tangle (inter-

weaving of melodies), figuration (organization of music in

patterns), focus vs. interplay, economy vs. saturation, thin

vs. dense, smooth vs. rough, and simple vs. complex. What

is often interesting for the musical discourse is the change
of texture: J. Dunsby, recalling the natural tendency to con-

sider a great number of categories, asserts that “one has
nothing much to say at all about texture as such, since all
depends on what is being compared with what” [5].

Orchestral texture. The term texture is used to describe or-

chestration, that is the way musical material is layed out on

different instruments or sections, taking into account regis-

ters and timbres. In his 1955 Orchestration book, W. Piston

presents seven types of texture: orchestral unison, melody

and accompaniment, secondary melody, part writing, con-

trapuntal texture, chords, and complex textures [15].

c© Mathieu Giraud, Florence Levé, Florent Mercier, Marc

Rigaudière, Donatien Thorez. Licensed under a Creative Commons At-

tribution 4.0 International License (CC BY 4.0). Attribution: Math-

ieu Giraud, Florence Levé, Florent Mercier, Marc Rigaudière, Donatien

Thorez. “Towards modeling texture in symbolic data”, 15th International

Society for Music Information Retrieval Conference, 2014.

In 1960, Q. R. Nordgren [13] asks: “Is it possible to
measure texture?”. He proposes to quantify the horizontal

and vertical relationships of sounds making up the texture

beyond the usual homophonic/polyphonic or light/heavy

categories. He considers eight features, giving them nu-

merical values: the number of instruments, their range,

their register and their spacing, the proportion and reg-

ister of gap, and doubling concentrations with their reg-

ister. He then analyzes eight symphonies by Beethoven,

Mendelssohn, Schumann and Brahms with these criteria,

finding characteristic differences between those composers.

Non-orchestral texture. However, the term texture also re-

lates to music produced by a smaller group of instruments,

even of same timbre (such as a string quartet), or to mu-

sic produced by a unique polyphonic instrument such as

the piano or the guitar. As an extreme point of view, one

can consider texture on a monophonic instrument: a sim-

ple monophonic sequence of notes can sound as a melody,

but also can figure accompaniment patterns such as arpeg-

giated chords or Alberti bass.

Texture in musical analysis. Studying texture is a part

of any analysis, even if texture often does not make sense

on its own. As stated by J. Levy, “although it cannot ex-
ist independently, texture can make the functional and sign
relationships created by the other variables more evident
and fully effective” [10]. Texture plays a significant role

in the cognition of musical structures. J. Dunsby attributes

two main roles to texture: the illusion it creates and the

expectation it arouses from the listeners towards familiar

textures [5]. J. Levy shows with many examples how tex-

ture can be a sign in Classic and Early Romantic music,

describing the role of accompaniment patterns, solos and

unison to raise the attention of the listener before impor-

tant structural changes [10].

1.2 Texture and Music Information Retrieval

Texture was often not as deeply analyzed and formalized

as other parameters (especially melody or harmony). In

the field of Music Information Retrieval (MIR), the notion

of texture is often used in audio analysis, reduced to tim-

bral description. Any method dealing with audio signals is

somewhat dealing with timbre and texture [3, 9]. Based on

audio texture, there were for example studies on segmenta-

tion. More generally, the term “sound texture” can be used

to describe or synthesize non-instrumental audio signals,

such as ambient sounds [18, 19].
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Among the studies analyzing scores represented by sym-

bolic data, few of them take texture into account. In 1989,

D. Huron [7] explains that the three common meanings

about the texture term are the volume, the diversity of el-

ements used and the “surface” description, the first two

being more easily formalizable. Using a two-dimensional

space based on onset synchronization and similar pitch mo-

tion, he was able to capture four broad categories of tex-

tures: monophony, homophony, polyphony and heteropho-

ny. He found also that different musical genres occupy a

different region of the defined space.

Some of the features of the jSymbolic library, used for

classification of MIDI files, concern musical texture [11,

12]. “[They] relate specifically to the number of indepen-
dent voices in a piece and how these voices relate to one
another.” [11, p. 209]. The features are computed on MIDI

files where voices are separated, and include statistical fea-

tures on choral or orchestral music organization: maxi-

mum, average and variability of the number of notes, vari-

ability between features of individual voices (number of

notes, duration, dynamics, melodic leaps, range), features

of the loudest voice, highest and lowest line, simultane-

ity, voice overlap, parallel motion and pitch separation be-

tween voices.

More recently, Tenkanen and Gualda [20] detect articu-

lative boundaries in a musical piece using six features in-

cluding pitch-class sets and onset density ratios. D. Rafai-

lidis and his colleagues segment the score in several textu-

ral streams, based on pitch and time proximity rules [2,16].

1.3 Contents

As we saw above, there are not many studies on modeling

or automatic analysis of texture. Even if describing musical

texture could be done on a local level of a score, it requires

some high-level musical understanding. We thus think that

it is a natural challenge, both for music modeling and for

MIR studies.

In this paper, we propose some steps towards the mod-

eling and the computational analysis of texture in West-

ern classical instrumental music. We choose here not to

take into account orchestration parameters, but to focus on

textural features given by local note configurations, taking

into account the way these may be split into several lay-

ers. For the same reason, we do not look at harmony or at

motives, phrases, or pattern large-scale repetition.

The following section presents a formal modeling of the

texture and a ground truth analysis of first movements of

ten string quartets. Then we propose an algorithm discov-

ering texture elements in polyphonic scores where voices

are not separated, and finally we present an evaluation of

this algorithm and a discussion on the results.

2. FORMALIZATION OF TEXTURE

2.1 Modeling Texture as Layers

We choose to model the texture, by grouping notes into sets

of “layers”, also called “streams”, sounding as a whole

grouped by perceptual characteristics. Auditory stream seg-

regation was introduced by Bregman, who studied many

parameters influencing this segregation [1]. Focusing on

the information contained on a symbolic score, notes can

be grouped in such layers using perceptual rules [4, 16].

The number of layers is not directly the number of ac-

tual (monophonic) voices played by the instruments. For

instance, in a string quartet where all instruments are play-

ing, there can be as few as only one perceived layer, several

voices blending in homorhythmy. On the contrary, some

figured patterns in a unique voice can be perceived as sev-

eral layers, as in a Alberti bass.

More precisely, we model the texture in layers accord-
ing to two complementary views. First, we consider two

main roles for the layers, that is how they are perceived by

the listeners: melodic (mel) layers (dominated by contigu-

ous pitch motion), and accompaniment (acc) layers (dom-

inated by harmony and/or rhythm). Second, we describe

how each layer is composed.

• A melodic layer can be either a monophonic voice

(solo), or two or more monophonic voices in ho-

morhythmy (h), or within a tighter relation, such as

(from most generic to most similar) parallel motion

(p), octave (o) or unison (u) doubling. The h/p/o/u

relations do not need to be exact: for example, a par-

allel motion can be partly in thirds, partly in sixths,

and include some foreign notes (see Figure 1).

• An accompaniment layer can also be described by

h/p/o/u relations, but it is often worth focusing on its

rhythmic component: for example, such a layer can

contain sustained, sparse or repeated chords, Alberti

bass, pedal notes, or syncopation.

The usual texture categories can then be described as:

• mel/acc – the usual accompanied melody;

• mel/mel – two independent melodies (counterpoint,

imitation...);

• mel – one melody (either solo, or several voices in

h/p/o/u relation), no accompaniment;

• acc – only accompaniment, when there is no notice-

able melody that can be heard (as in some transitions

for example).

The formalism also enables to describe more layers,

such as mel/mel/mel/mel, acc/acc, or mel/acc/acc.

Limitations. This modeling of texture is often ambigu-

ous, and has limitations. The distinction between melody

and accompaniment is questionable. Some melodies can

contain repeated notes, arpeggiated motives, and strongly

imply some harmony. Limiting the role of the accompani-

ment to harmony and rhythm is also over-simplified. More-

over, some textural gestures are not modeled here, such as

upwards or downwards scales. Finally, what Piston calls

“complex textures” (and what is perhaps the most inter-

esting), interleaving different layers [15, p. 405], can not
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1, 75 : mel/acc (SAp / TB)
8, 82 : mel/acc (SA / TBp)
9, 83 : mel/acc (SAp / T syncopation, B)

13, 87 : mel/acc (SAp / TB imitation)
19, 93 : mel/acc (SAo / TBh)
20, 94 : mel/acc (SAp / TBhr)
21, 95 : imitation/acc (SA / TB)
25, 99 : imitation/acc (SA / TB)

102 : mel/acc (S / ATB)
29, 103 : mel/acc (S / ATBhr)
30 : mel/acc (S / ATBh)

104 : mel/acc (SAh/ TBh)
31, 105 : mel/acc (S / ATBh sparse chords)
33, 107 : acc/mel/acc (S / ATp / B)
...

Figure 1. Beginning of the string quartet K. 157 no. 4 by W. A. Mozart, with the ground truth analysis describing textures.

We label as S / A / T / B (sopran / alt / tenor / bass) the four instruments (violin I / violin II / viola / cello). The first

eight measures have a melodic layer “SAp” made by a parallel motion (with thirds), however the parallel motion has some

exceptions (unison on c, strong beat on measures 1 and 8, and small interruption at the beginning of measure 5).

always be modeled by this way. Nevertheless, the above

formalization is founded for most music of the Classical

and of the Romantic period, and corresponds to a way of

melody/accompaniment writing.

2.2 A Ground Truth for Texture

We manually analyzed the texture on 10 first movements

of string quartets: the six quartets op. 33 by Haydn, three

early quartets by Mozart (K. 80 no. 1, K. 155 no. 2 and

K. 157 no. 4), and the quartet op. 125 no. 1 by Schubert.

These pieces covered the textural features we wanted to

elucidate. We segmented each piece into non-overlapping

segments based only on texture information, using the for-

malism described above.

It is difficult to agree on the signifiance on short seg-

ments and on their boundaries. Here we choose to report

the texture with a resolution of one measure: we consider

only segments during at least one measure (or filling the

most part of the measure), and round the boundaries of

these segments to bar lines.

We identified 691 segments in the ten pieces, and Ta-

ble 1 details the repartition of these segments. The ground

truth file is available at www.algomus.fr/truth, and

Figure 1 shows the analysis for the beginning of the string

quartet K. 157 no. 4 by Mozart.

The segments are further precised by the involved voices

and the h/p/o/u relations. For example, focusing on the

most represented category “mel/acc”, there are 254 seg-

ments labelled either “S / ATB” or “S / ATBh” (melodic

layer at the first violin) and 81 segments labelled “SAp /

TB” or “SAp / TBh” (melodic layer at the two violins, in a

parallel move). Note that h/p/o/u relations were evaluated

here in a subjective way. The segments may contain some

small interruptions that do not alter the general perception

of the h/p/o/u relation.

3. DISCOVERING SYNCHRONIZED LAYERS

We now try to provide a computational analysis of tex-

ture starting from a polyphonic score where voices are not

separated. A first idea is to first segment the score into

layers by perception principles, and then to try to qual-
ify some of these layers. One can for example use the

algorithm of [16] to segment the musical pieces into lay-

ers (called “streams”). This algorithm relies on a distance

matrix, which tells for each possible pair of notes whether

they are likely to belong to the same layer. The distance

between two notes is computed according to their syn-

chronicity, pitch and onset proximity (among others cri-

teria); then for each note, the list of its k-nearest neigh-

bors is established. Finally, notes are gathered in clusters.

A melodic stream can be split into several small chunks,

since the diversity of melodies does not always ensure co-

herency within clusters; working on larger layers encom-

pass them all. Even if this approach produces good re-

sults in segmentation, many layers are still too scattered

to be detected as full melodic or accompaniment layers.

Nonetheless, classification algorithms could label some of

these layers as melodies or accompaniments, or even detect

the type of the accompaniment.

The second idea, that we will develop in this paper, is

to detect directly noteworthy layers from the polyphonic
data. Here, we choose to focus on perceptually significant

relations based on homorhythmic features. The following

paragraphs define the notion of synchronized layers, that is

sequences of notes related by some homorhythmy relation

(h/p/o/u), and show how to compute them.

3.1 Definitions: Synchronized Layers

A note n is given as a triplet (n.pitch, n.start, n.end),
where n.pitch belongs to a pitch scale (that can be defined

diatonically or by semitones), and n.start and n.end are

two positions with n.start < n.end. Two notes n and m
are synchronized (denoted by n ≡h m) if they have the

same start and the same end.

A synchronized layer (SL) is a set of two sequences

of consecutive synchronized notes (in other words, these

sequences correspond to two “voices” in homorhythmy).

Formally, two sequences of notes n1, n2...nk and m1,m2...mk

form a synchronized layer when:

• for all i in {1, . . . , k}, ni.start = mi.start
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tonality length mel/acc mel/mel acc/mel/acc acc/mel mel acc others h p o u
Haydn op. 33 no. 1 B minor 91m 38 0 8 1 0 0 5 19 21 1 0
Haydn op. 33 no. 2 E-flat major 95m 37 0 2 4 0 0 7 34 13 0 0
Haydn op. 33 no. 3 C major 172m 68 0 0 0 3 13 6 29 50 1 0
Haydn op. 33 no. 4 B-flat major 90m 25 0 1 0 0 0 6 16 6 0 0
Haydn op. 33 no. 5 G major 305m 68 0 3 4 7 0 5 56 45 6 0
Haydn op. 33 no. 6 D major 168m 58 0 1 3 15 0 29 43 42 0 2
Mozart K. 80 no. 1 G major 67m 36 4 6 0 2 0 3 5 33 3 0
Mozart K. 155 no. 2 D major 119m 51 0 0 0 1 0 0 21 32 4 1
Mozart K. 157 no. 4 C major 126m 29 0 3 6 2 0 7 18 22 2 0

Schubert op. 125 no. 1 E-flat major 255m 102 0 0 0 20 2 0 54 8 46 2
1488m 512 4 24 18 50 15 68 295 272 63 5

Table 1. Number of segments in the ground truth analysis of the ten string quartets (first movements), and number of

h/p/o/u labels further describing these layers.

• for all i in {1, . . . , k}, ni.end = mi.end

• for all i in {1, . . . , k − 1}, ni.end = ni+1.start

This definition can be extended to any number of voices.

As p/o/u relations have a strong musical signification, we

want to be able to enforce them. One can thus restrain the

relation ≡h, considering the pitch information:

• we denote n ≡δ m if the interval between the two

notes n and m is δ. The nature of the interval δ de-

pends on the pitch model: for example, the interval

can be diatonic, such as in “third” (minor or major),

or an approximation over the semitone information,

such as in “3 or 4 semitones”. Some synchronized

layers with ≡δ relations correspond to parallel mo-

tions;

• we denote n ≡o m if notes n and m are separated

by any number of octaves;

• we denote n ≡u m where there is an exact equality

of pitches (unison).

Given a relation ≡∈{≡h,≡δ,≡o,≡u}, we say that a

synchronized layer respects the relation ≡ if its notes are

pairwise related according to this relation. The relation≡h

is an equivalence relation, but the restrained relations do

not need to be equivalence relations: Some ≡δ relations

are not transitive.

For example, in Figure 1, there is between voices S and

A (corresponding to violins I and II), in the first two mea-

sures:

• a synchronized layer (≡h) on the two measures;

• and a synchronized layer (≡third) on the two mea-

sures, except the first note.

Note that this does not correspond exactly to the “musical”

ground truth (parallel move on at least the first four mea-

sures) because of some rests and of the first synchronized

notes that are not in thirds.

A synchronized layer is maximal if it is not strictly in-

cluded in another synchronized layer. Note that two maxi-

mal synchronized layers can be overlapping, if they are not

synchronized. Note also that the number of synchronized

layers may grow exponentially with the number of notes.

3.2 Detection of a Unique Synchronized Layer

A very noticeable textural effect is when all voices use the

same texture at the same time. For example, a sudden strik-

ing unison raises the listener’s attention. We can first check

if all notes in a segment of the score belong to a unique syn-

chronized layer (within some relation). For example, we

consider that all voices are in octave doubling or unison if

it lasts at least two quarters.

3.3 Detection of Maximal Synchronized Layers

In the general case, the texture has several layers, and the

goal is thus to extract layers using some of the notes. Re-

member that we work on files where polyphony is not sepa-

rated into voices: moreover, it is not always possible to ex-

tract voices from a polyphonic score, for example on piano

music. We want to extract maximal synchronized layers.

However, as their number may grow exponentially with

the number of notes, we will compute only the start and

end positions of maximal synchronized layers.

The algorithm is a kind of 1-dimension interval chain-

ing [14]. The idea is as follows. Recursively, two voices

n1, . . . , nk and m1, . . . ,mk are synchronized if and only if

n1, . . . , nk−1 and m1, . . . ,mk−1 are synchronized, nk and

mk are synchronized and finally nk−1.end = nk.start.
Formally, the algorithm is described by the following:

Step 1. Compute a table with left-maximal SL. Build the table
leftmost start≡[j] containing, for each ending position j, the left-
most starting position of a SL respecting ≡ ending in j. This can
be done by dynamic programming with the following recurrence:

leftmost start≡[j] =

⎧⎨
⎩

min{leftmost start≡[i] | i ∈ S≡(j)}
if S≡(j) is not empty

j if S≡(j) is empty

where S≡(j) is the set of all starting positions of synchronized
notes ending at j respecting the relation ≡:

S≡(j) =
{
n.start

∣∣∣∣ there are two different notes n ≡ m
such that n.end = j

}

Step 2. Output only (left and right) maximal SL. Output (i, j)
with i = leftmost start≡[j] for each j, such that j = max
{jo | leftmost start≡[jo] = leftmost start≡[j]}
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                  1                   2                   3                   4                   5                   6         
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 
SA- SA-  SA---  SA- SA- SA---- SA-  SB-                 AB             TB       AT        SB---- SA----              AB       AT
              TB              SA  SA                    AB-             SA                AT  SB-                               
                                    SB-                                                     ST--                                
          7                   8                   9                   10                  11                  12           
5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5        
    TB              SA- SA-  SA---  SA- SA- SA---- SA-  SB-  TB-  TB        AB              AT      AT        SB ST--------  
      TB--                        TB              SA  SA                    AB-                               SB- SB         
                                                        SB-                  SA                               ST  AT-         

Figure 2. Result on the parallel move detection on the first movement of the string quartet K. 157 no. 4 by Mozart. The top

lines display the measure numbers. The algorithm detects 52 synchronized layers respecting the≡p relation. 39 of these 52

layers overlap layers identified in the truth with p/o/u relations. The parallel motions are further identified by their voices

(S / A / T / B), but this information is not used in the algorithm which works on non-separated polyphony.

The first step is done in O(nk) time, where n is the

number of notes and k ≤ n the maximal number of simul-

taneously sounding notes, so in O(n2) time. The second

step is done in O(n) time by browsing from right to left

the table leftmost start≡, outputing values i when they are

seen for the first time.

To actually retrieve intervals, we can store in the ta-

ble leftmost start≡[j] a pair (i, 
), where 
 is the list of

notes/intervals from which the set of SL can be built (this

set may be very large, but not 
). The time complexity is

now O(n(k + w)), where w ≤ n is the largest possible

size of 
. Thus the time complexity is still in O(n2). This

allows, in the second step, to filter the SL candidates ac-

cording to additional criteria on 
.
Note finally that the definition of synchronized layer can

be extended to include consecutive notes separated with

rests. The same algorithm still applies, but the value of k
rises to the maximum number of notes that can be linked

in that way.

4. RESULTS AND DISCUSSION

We tested the proposed algorithm to look for synchronized

layers respecting ≡δ relation (constant pitch interval, in-

cluding parallel motion) on the ten pieces of our corpus

given as .krn Humdrum files [8]. Although the pieces are

string quartets, we consider them as non-separated poly-

phonic data, giving as input to the algorithm a single set of

notes. The algorithm finds 434 layers. Figure 2 shows an

example of the output of the algorithm. Globally, on the

corpus, the algorithm labels 797 measures (that is 53.6%

of the length) as synchronized layers.

Evaluation against the truth. There are in the truth 354

layers with p/o/u relations: mainly parallel moves, and

some octave doubling and unisons. As discussed earlier,

these layers reported in the truth correspond to a musical

interpretation: they are not as formalized as our definition

of synchronized layer. Moreover, less information is pro-

vided by the algorithm than in the ground truth: when a

parallel motion is found, the algorithm cannot provide at

which voice/instrument it appears, since we worked from

polyphonic data with no voice separation.

Nevertheless, we compared the layers predicted by the

algorithms with the ones of the truth. Results are summa-

rized on Table 2. A computed layer is marked as true pos-

itive (TP) as soon as it overlaps a p/o/u layer of the truth.

356 of the 434 computed synchronized layers are over-

lapping the p/o/u layers of the truth, thus 82.0% of the com-

puted synchronized layers are (at least partially) musically

relevant. These 356 layers map to 194 p/o/u layers in the

truth (among 340, that is a sensitivity of 58.0%): a major-

ity of the parallel moves described in the truth are found

by the algorithm.

Figure 3. Haydn, op. 33 no. 6, m. 28-33. The truth con-

tains four parallel moves.

Merged parallel moves. If one restricts to layers where

borders coincide with the ones in the truth (same start,

same end, with a tolerance of 2 quarters), the number of

truth layers found falls from 194 to 117. This is because

the algorithm often merge consecutive parallel moves. An

example of this drawback is depicted on Figure 3. Here a

melody is played in imitation, resulting in parallel moves

involving all voices in turn. The algorithm detects a unique

synchronized layer, which corresponds to a global percep-

tion but gives less information about the texture. We should

remember here that the algorithm compute boundaries of

synchronized layers and not actual instances, which would

require some sort of voice separation and possibly generate

a large number of instances.

False positives. Only 78 false positives are found by the

algorithm. Many false positives (compared to the truth) are

parallel moves detected inside a homorhythmy≡h relation

between 3 ou 4 voices. In particular, the algorithm detects

a parallel move as soon as there are sequences of repeated

notes in at least two voices. This is the case in in op. 33 no.

4 by Haydn which contains many homorhythmies in re-

peated notes, for which we obtain 30 false positives. Even

focusing on layers with a real “move”, false positive could

also appear between a third voice and two voices with re-

peated notes. Further research should be carried to discard

these false positives either in the algorithm or at a later fil-

tering stage.
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hits length hits TP FP truth-overlap truth-exact
Haydn op. 33 no. 1 40m (44%) 37 32 (86.5%) 5 14 / 22 (63.6%) 7 / 22
Haydn op. 33 no. 2 21m (22%) 17 15 (88.2%) 2 7 / 13 (53.9%) 7 / 13
Haydn op. 33 no. 3 73m (42%) 48 44 (91.7%) 4 27 / 51 (52.9%) 15 / 51
Haydn op. 33 no. 4 19m (21%) 47 17 (36.2%) 30 5 / 6 (83.3%) 3 / 6
Haydn op. 33 no. 5 235m (77%) 58 47 (81.0%) 11 27 / 51 (52.9%) 11 / 51
Haydn op. 33 no. 6 63m (37%) 24 21 (87.5%) 3 19 / 44 (43.2%) 11 / 44
Mozart K. 80 no. 1 45m (67%) 27 26 (96.3%) 1 20 / 36 (55.6%) 14 / 36
Mozart K. 155 no. 2 76m (64%) 46 44 (95.7%) 2 27 / 37 (73.0%) 15 / 37
Mozart K. 157 no. 4 62m (49%) 52 39 (75.0%) 13 15 / 24 (62.5%) 8 / 24

Schubert op. 125 no. 1 163m (64%) 78 71 (91.0%) 7 33 / 56 (58.9%) 20 / 56
797m (54%) 434 356 (82.0%) 78 194 / 340 (57.1%) 111 / 340

Table 2. Evaluation of the algorithm on the ten string quartets of our corpus. The columns TP and FP show respectively

the number of true and false positives, when comparing computed parallel moves with the truth. The columns truth-overlap

shows the number of truth parallel moves that were matched by this way. The column truth-exact restricts these matchings

to computed parallel moves for which borders coincide to the ones in the truth (tolerance: two quarters).

5. CONCLUSION AND PERSPECTIVES

We proposed a formalization of texture in Western classi-

cal instrumental music, by describing melodic or accom-

paniment “layers” with perceptive features (h/p/o/u rela-

tions). We provided a first algorithm able to detect some

of these layers inside a polyphonic score where tracks are

not separated, and tested it on 10 first movements of string

quartets. The algorithm detects a large part of the parallel

moves found by manual analysis. We believe that other al-

gorithms implementing textural features, beyond h/p/o/u

relations, should be designed to improve computational

music analysis. The corpus should also be extended, for

example with music from other periods or piano scores.

Finally, we believe that this search of texture, combined

with other elements such as patterns and harmony, will im-

prove algorithms for music structuration. The ten pieces of

our corpus have a sonata form structure. The tension cre-

ated by the exposition and the development is resolved dur-

ing the recapitulation, and textural elements contribute to

this tension and its resolution [10]. For example, the medial

caesura (MC), before the beginning of theme S, has strong

textural characteristics [6]. Textural elements predicted by

algorithms could thus help the structural segmentation.
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ABSTRACT

The present study investigates the mechanisms involved

in the perception of melodic similarity in the context of a

cappella flamenco singing performances. Flamenco songs

belonging to the same style are characterized by a com-

mon melodic skeleton, which is subject to spontaneous im-

provisation containing strong prolongations and ornamen-

tations. For our research we collected human similarity

judgements from naı̈ve and expert listeners who listened

to audio recordings of a cappella flamenco performances as

well as synthesized versions of the same songs. We further-

more calculated distances from manually extracted high-

level descriptors defined by flamenco experts. The suitabi-

lity of a set of computational melodic similarity measures

was evaluated by analyzing the correlation between com-

puted similarity and human ratings. We observed signifi-

cant differences between listener groups and stimuli types.

Furthermore, we observed a high correlation between hu-

man ratings and similarities computed from features from

flamenco experts. We also observed that computational

models based on temporal deviation, dynamics and orna-

mentation are better suited to model perceived similarity

for this material than models based on chroma distance.

1. INTRODUCTION

The task of modeling perceived melodic similarity among

music pieces is a multi-dimensional task whose complex-

ity increases when human judgements are influenced by

implicit knowledge about genre-specific musicological as-

pects and contextual information. Nevertheless, such com-

putational models are of utmost importance for automatic

similarity retrieval and recommendation systems in large

music databases. Furthermore, analysis of melodic sim-

c© N. Kroher, E. Gómez, C. Guastavino, F. Gómez, J.

Bonada.
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cense (CC BY 4.0). Attribution: N. Kroher, E. Gómez, C. Guastavino,

F. Gómez, J. Bonada. “Computational Models for Perceived Melodic

Similarity in A Cappella Flamenco Singing”, 15th International Society

for Music Information Retrieval Conference, 2014.

ilarity among large amounts of data can provide impor-

tant clues for musicological studies regarding style clas-

sification, similarity and evolution. In the past, numer-

ous approaches have focused on melodic similarity mea-

sures, mainly computed from automatically aligned score-

like representations. For a complete review of symbolic

note similarity measures we refer the reader to [1]. Sev-

eral previous studies have related computational measures

to human ratings. In an extensive study in [14], expert

ratings of similarity between western pop songs and gen-

erated variants were compared to 34 computational mea-

sures. The best correlation was observed for a hybrid method

combining various weighted distance measures, which is

successfully used to automatically retrieve variants of a

given melody from a folk song database. In similar studies,

human similarity ratings were compared to transportation

distances [16] and statistical descriptors related to tone, in-

terval and note duration distribution [17]. In order to gain a

deeper insight into the perception process of melodic sim-

ilarity, Volk and van Kranenburg studied the relationship

between musical features and human similarity-based cate-

gorization, where a large collection of folk songs was man-

ually categorized into tune families [15]. Furthermore, hu-

man similarity judgement based on various musical facets

were gathered. Results indicate that songs perceived as

similar tend to show strong similarities in rhythm, pitch

contour and contained melodic motifs, whereas the indi-

vidual importance of these criteria varies among the data.

When dealing with audio recordings for which no score

is available, it seems natural to focus on the alignment

and comparison of the time-frequency representation of the

melodic contour. In the context of singing voice assess-

ment, Molina et al. used dynamic time warping to align

fundamental frequency contours and calculate melodic and

rhythmic deviations between them [2].

Despite the growing interest in non-Western music tra-

ditions, most algorithms are designed and evaluated on West-

ern commercial music. In a first genre-specific approach to

melodic similarity in flamenco music, Cabrera et al. com-

puted melodic similarity among a cappella singing perfor-

mances from automatic descriptions [3]. The two stan-

dard distance measures implemented, the edit distance and
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the correlation between pitch and interval histograms, ob-

tained rather poor results when compared to expert judge-

ments. As proposed by Mora et al., better results for intra-

and inter-style similarity can be obtained for a similarity

measure based on manually extracted high-level features

(i.e., the direction of melodic movement in a specific part

of the performance) [4]. Such studies elucidate the need

for exploration of particular characteristics of non-Western

music genres and the adaptation of existing music infor-

mation retrieval systems to such styles.

The present study addresses perceived melodic similar-

ity in a cappella flamenco singing from different stand-

points: with the aim of gaining insight into the mecha-

nisms involved in perceiving melodies as more or less sim-

ilar, we gathered similarity ratings among performances of

the same style from naı̈ve listeners as well as flamenco

experts and analyzed them in terms of intra-subject and

intra-group agreement. In order to isolate the melody from

other variables such as lyrics, expression and dynamics,

we gathered the same ratings for synthesized melodic con-

tours. We furthermore evaluated three computational mod-

els for melodic similarity by analyzing the correlation be-

tween computed similarity and human ratings. We com-

pared the results to distances computed from manually ex-

tracted high-level features defined by experts in the field.

The rest of the paper is organized as follows. In Sec-

tion 2 we provide background information on flamenco

music and the martinete style, which is the focus of this

study. We give a detailed description of the database used

in the present experiment in Section 3. Section 4 sum-

marizes the methodology of the listening experiments, the

extracted high-level features and the implemented compu-

tational similarity models. We give the results of the cor-

relation analysis in Section 5 and conclude our study in

Section 6.

2. BACKGROUND

Flamenco is an oral tradition whose roots are as diverse as

the cultural influences of its area of origin, Andalusia, a

region in southern Spain. Its characteristics are influen-

ced by music traditions of a variety of immigrants and

colonizations that settled in the area throughout the past

centuries, among them Visigoths, Arabs, Jews and to a

large extend gipsies, who decisively contributed to shape

the genre as we know it today. For a comprehensive and

complete study on history and style, we refer to [5–7]. Fla-

menco germinated and nourished mainly from the singing

tradition and until now the singing voice represents its cen-

tral element, usually accompanied by the guitar and rhyth-

mic hand-clapping. In the flamenco jargon, songs, but also

styles, are referred to as cantes.

2.1 The flamenco singing voice

Flamenco singing performances are usually spontaneous

and highly improvisational. Songs are passed from gen-

eration to generation and only rarely manually transcribed.

Even though there is no distinct ideal for timbre and several

(a) Performance by Antonio Mairena

(b) Performance by Chano Lobato

Figure 1. Manual transcriptions of performances a debla
“En el barrio de Triana”; Transcription: Joaquin Mora

voice types can be identified, the flamenco singing voice

can be generally characterized as matt, breathy, and con-

taining few high frequency harmonics. Moreover, singers

usually lack the singer’s formant [13]. Melodic movements

appear mainly in conjunct degrees within a small pitch

range ( tessitura) of a major sixth interval and are char-

acterized by insistence on recitative notes. Furthermore,

singers use a large amount melisma, microtonal ornamen-

tation and pitch glides during note attacks [4].

2.2 The flamenco martinete

Martinete is considered one of the oldest styles and forms

part of the sub-genre of the tonás, a group of unaccompa-

nied singing styles, or cantes. As in other cantes, songs

belonging to martinete style are characterized by a com-

mon melodic skeleton, which is subject to strong sponta-

neous ornamentation and expressive prolongations. The

untrained listener might perceive two performances of the

same cante as very different and the fact that they belong to

the same style is not obvious at all. To illustrate this prin-

ciple, Figure 1 shows the transcription of two a cappella

performances in Western music notation, both belonging

to the same style (debla) [4].

Furthermore, the martinete is characterized by a solemn

performance in slow tempo with free rhythmic interpreta-

tion. Traditionally, the voice is accompanied by hammer

strokes on an anvil. The tonality corresponds mainly to the

major mode, whereas the third scale degree may be low-

ered occasionally, converting the scale to the minor mode.

3. MUSIC COLLECTION

In consultation with flamenco experts, we gathered 12 re-

cordings of martinete performances, covering the most re-

presentative singers of this style. This dataset represents
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Singer Percussion
Antonio Mairena No

Chano Lobato No

Chocolate Yes

Jacinto Almadén No

Jesus Heredia No

Manuel Simón Yes

Miguel Vargas No

Naranjito No

Paco de Lucia No

Talegon de Córdoba Yes

Tomás Pavón No

Turronero No

Table 1. Dataset containing 12 martinete performances.

a subset of the tonás 1 dataset, which contains a total of

56 martinete recordings. The average duration of the ex-

tracted excerpts containing the first verse is approximately

20 seconds. We limited our study to such a small set,

mainly due to the duration of the listening experiment. As

an additional stimuli for the listening experiments, we fur-

thermore created synthesized versions of all excerpts. We

used the method described in [8] to extract fundamental

frequency and energy envelopes and re-synthesize with a

sinusoid.

We selected the first verse of each recording, containing

the characteristic exposition of the melodic skeleton. Al-

though some martinete recordings contain additional ac-

companiment (guitar, bowing string or wind instruments),

we limited our selection to a cappella recordings without

rhythmic accompaniment or with very sparse one, as it is

found traditionally. We intentionally incorporated a wide

range of interpretation characteristics, regarding richness

in ornamentation, tempo, articulation and lyrics. Among

the singers listed in Table 1, Tomás Pavón is to be men-

tioned as the most influential artist in the a cappella singing

styles, performing the martinete in an exemplar way. Fur-

thermore, Antonio Mairena and Chocolate are thought to

be the main references for their singing abilities and knowl-

edge of the singing styles. Chano Lobato omits some of the

basic notes during the melodic exposition and the perfor-

mance has been included as an example of strong deviation

in the melodic interpretation.

4. METHODOLOGY

4.1 Human similarity ratings

In order to obtain a ground truth for perceived melodic

similarity among the selected excerpts, we conduct a lis-

tening experiment in Montreal (Canada) with 24 naı̈ve lis-

teners with little or no previous exposure to flamenco and

in Sevilla (Spain) with 3 experts, as described in [9]. After

evaluating various experiment designs (i.e. pair-wise com-

parison), we decided to collect the similarity ratings in a

1 http://mtg.upf.edu/download/datasets/tonas

free sorting task [19]. Using the sonic mapper 2 software,

subjects were asked to create groups of similar interpre-

tations, leaving the number of groups open. The partic-

ipants were explicitly instructed to focus on the melody

only, neglecting differences in voice timbre, lyrics, percus-

sion accompaniment and sound quality. Nevertheless, in

order to isolate the melodic line as a similarity criterion, the

experiment had also been conducted with the synthesized

versions of the excerpts described above. For each ex-

cerpt we extracted the fundamental frequency as described

in [8] with a window length of 33 ms and a hop size of

0.72 ms. The pitch contour was synthesized with a sin-

gle sine wave. A similarity matrix was computed based

on the number of times a pair of performances had been

grouped together. We compared individual participants’

similarity matrices using Mantel tests. The Mantel test can

be considered as the most widely used method to account

for distance correlations [12]. We used zt, a simple tool for

Mantel test, developed by Bonnet and Vande Peer [18].,

and measured the correlation between participant matri-

ces. We observed that the average correlation for novices

is μ = 0.0824, with a σ = 0.2109 and the average p-value:

μ = 0.3391, σ = 0.2139 (min=0.002). This indicates

a very low agreement among them, and indicates differ-

ences in perception of melodic similarity depending on the

listener’s background. Although we should take these re-

sults with caution given the small number of experts, we

found higher correlation values among them, with an av-

erage correlation μ = 0.1891, and σ = 0.1170. For a

detailed description of the procedure and the analysis, we

refer to [9].

4.2 Manually extracted high-level features

We manually extracted six high-level features defined by

experts in the field. As illustrated above, two cantes hav-

ing the same main notes and different ornamentation would

be perceived as the same cante by a flamenco aficionado.

This fact makes the automatic computation of the features

unfeasible. Because of that, we had to rely on manual ex-

traction.

The high-level features were the following.

1. Repetition of the first hemistich. A hemistich is half-

line of a verse; the presence of this repetition is im-

portant in these cantes.

2. Clivis/flexa at the end of the first hemistich. A clivis

is a descending melodic movement. Here it refers to

a descending melodic contour between main notes.

Again, the ornamentation is not taken into account

when detecting the presence of the clivis.

3. Highest scale degree in the two first hemistichs. The

highest scale degree reached during the cante is an

important feature.

4. Frequency of the highest degree in the second hemistich.

How many times that highest degree is reached is

also significant.

2 http://www.music.mcgill.ca/ gary/mapper/
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5. Final note of the second hemistich.

6. Duration (fast / regular / slow).

A distance matrix was obtained by calculating the Eu-

clidean distance among the feature vectors. The feature

vectors were mostly composed of categorical data and we

used a standardized Euclidean distance. For a detailed ex-

planation of the descriptors and their musicological back-

ground, the reader is referred to [4].

4.3 Computational similarity measures

We implemented three computational measures based on

fundamental frequency envelopes and automatic transcrip-

tions and evaluated their suitability for modeling the per-

ceived melodic similarity by analyzing the correlation be-

tween computed distance matrices and human judgements.

The fundamental frequency contours as well as the au-

tomatically generated symbolic note representations were

obtained using the system described in [8].

4.3.1 Dynamic time warping alignment

Similar to [2] we used a dynamic time warping algorithm

to align melodies and estimate their rhythmic and pitch

similarity. Since vocal vibrato and microtonal ornamen-

tations strongly influence the cost matrix, we instead align

continuous contours of quantized pitch values obtained with

the automatic transcription described in [8]. The cost ma-

trix M describes the squared frequency deviation between

all possible combinations of time frames between the two

analyzed contours f01 and f02, where α is a constraint

limiting the maximum cost:

Mi,j = min((f01[i]− f02[j])
2, α) (1)

The dynamic time warping algorithm determines the

optimal path among the matrix M from first to last frame.

The deviation of the slope of the path p with length N from

the diagonal path gives a measure for temporal deviation

(DTWtemporal),

Δtemp =

∑N
i=1(p[i]− pdiag[i])

2

N
(2)

while the average over its elements defines the pitch devi-

ation (DTWpitch):

Δpitch =

∑N
i=1 p[i]

N
. (3)

We used a MATLAB implementation 3 , which extends

the algorithm with several restrictions in order to obtain a

musically meaningful temporal alignment. Figure 2 shows

the cost matrix and Figure 3 the unaligned and aligned pitch

sequences.

3 http://www.ee.columbia.edu/ dpwe/resources/matlab/dtw/
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Figure 2. Dynamic time warping: Cost matrix and optimal

path.

Figure 3. Unaligned (top) and aligned (bottom) melodic

contours.

4.3.2 Global performance descriptors

As described in [10], we extracted a total of 13 global

descriptors from automatic transcriptions and computed a

similarity matrix based on the Euclidean distance among

feature vectors. In order to determine the most suitable de-

scriptors for this task, we analyzed the phylogenetric tree
(Figure 4) computed from the distance matrix of expert

similarity ratings. Here, we identify two main clusters, at

large distance from each other.

Using these two clusters as classes in a classification

task, we perform a support vector machine (SVM) subset

selection in order to identify the descriptors that are best

suited to distinguish the two clusters. We accordingly ex-

tracted the six best ranked descriptors for all songs and

computed the similarity matrix from the Euclidean dis-

tances among feature vectors. The extracted descriptors

are summarized below:

1. Amount of silence: Percentage of silent frames.

������� 	

������� 


Figure 4. Phylogenetic tree generated from expert similar-

ity judgements.
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Figure 5. Harmonic pitch class profile for a sung phrase

with a resolution of 12 bins per semitone.

2. Average note duration in seconds.

3. Note duration fluctuation: Standard deviation of

the note duration in seconds.

4. Average volume of the notes relative to the normal-

ized maximum.

5. Volume fluctuation: standard deviation of the note

volume relative to normalized maximum.

6. Amount of ornamentation: Average per-frame dis-

tance in [Hz] between the quantized note value and

the fundamental frequency contour.

4.3.3 Chroma similarity

We implemented a similarity measure presented in [11]

in the context of cover identification: First, the harmonic

pitch class profiles (HPCP) are extracted on a global and a

frame basis. The resulting pitch class histogram describes

the relative strength of the 12 pitch classes of the equal-

tempered scale. HPCPs are robust to detuning as well as

variation in timbre and dynamics. After adjusting the key

of one sequence to the other, a binary similarity matrix

is computed based on the frame-wise extracted HPCPs.

Again, dynamic time warping was used to find the best

possible path among the similarity matrix. For a detailed

description of the algorithm, we refer the reader to [11].

4.4 Evaluation

We evaluated the suitability of the computational models

for this task by analyzing the correlation between com-

puted similarity and human ratings. A common method

to evaluate a possible relation between two distance ma-

trices is the Mantel test [12]: first, the linear correlation

between two matrices is measured with the Pearson corre-
lation, which gives a value r between -1 and 1. A strong

correlation is indicated by a value significantly different

from zero. To verify that a relation exists, the value is com-

pared to correlations to permuted versions of the matri-

ces. Here, 10000 random permutations are performed. The

confidence value p corresponds to the proportion of permu-

tations giving a higher correlation than the original matrix.

Consequently, a confidence value close to zero confirms an

existing correlation.

5. RESULTS

Figure 6 shows the comparison of the computed similarity

measures by means of correlation r and confidence value

p for the different participant groups and stimuli types. We

first note that the distance measure obtained from manu-

ally extracted high-level descriptors seems to reflect best

the perceived melodic similarity for both, expert and naı̈ve

listeners. Even though the computed similarity correlates

strongly with the expert ratings, the also strong relation

with the non-expert similarity judgments is still surpris-

ing, given the fact that the descriptors are based on rather

abstract musicological concepts. We furthermore find a

weaker, but still significant correlation between human rat-

ings and the temporal deviation measure of the dynamic
time warping algorithm as well as the vector distance among

performance descriptors. On the other hand, we find no re-

lation between human ratings and the pitch deviation from

the dynamically aligned sequences, nor the chroma sim-

ilarity measure. Given the fact that the selected perfor-

mance descriptors are related to dynamic and temporal be-

havior and ornamentation and the temporal deviation mea-

sure does not consider the absolute pitch difference of the

aligned sequences, we can speculate that for the given ma-

terial these factors influence perceived similarity stronger

than differences in the pitch progression. Martinete presents

a particularly interesting case, since the skeleton of the

melodic contour and at least its outer envelope is preserved

throughout the performances. Notice also that in all cases

the found correlation with the similarity ratings of real record-

ings is stronger than for the synthesized versions. Since

none of the computational methods take voice timbre or

lyrics into account, we can preclude that these factors in-

fluenced human judgement. It is however possible that it

was more difficult for the listener to internalize these syn-

thesized sequences compared to real recordings given their

artificial nature and consequently judging similarity was

more difficult and less precise.

6. CONCLUSIONS

The present study investigates the mechanisms involved

in the perception of melodic similarity for the particular

case of a cappella flamenco singing. We compared hu-

man judgements from experts and naı̈ve listeners for au-

dio recordings and synthesized melodic contours. Com-

putational models are furthermore used to create distance

matrices and evaluated based on their correlation with hu-

man ratings. We observed a significantly higher agreement

among experts and a stronger correlation among compu-

tational models and the ratings based on real recordings

than when comparing to ratings for synthesized melodies.

Furthermore, we discover that models based on descriptors

related to rhythm, dynamics and ornamentation are better

suited to recreate similarity judgements than models based

on absolute pitch distance. We obtained the highest corre-
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Figure 6. Correlation between computed similarity and

human ratings. Statistically significant results are marked

grey.

lation for both expert and non-expert ratings for a similar-

ity measure computed from manually extracted high-level

features. The problem of how to compute the high-level

features automatically is still open. This problem is equiv-

alent to that of automatically detecting ornamentation and

main notes in a flamenco cante.

Acknowledgements
The authors would like to thank Joaquin Mora for pro-

viding the manual transcriptions and Joan Serrá for com-
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“Analyzing Melodic Similarity Judgements in Fla-

menco A Cappella Singing,” Proceedings of the Inter-
national Conference on Music Perception and Cogni-
tion, 2012.

[10] N. Kroher: The Flamenco Cante: Automatic Char-
acterization of Flamenco Singing by Analyzing Audio
Recordings, Master Thesis, Universitat Pompeu Fabra,

2013.
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ABSTRACT

The VIS Framework for Music Analysis is a modular Python

library designed for “big data” queries in symbolic musical

data. Initially created as a tool for studying musical style

change in counterpoint, we have built on the music21 and

pandas libraries to provide the foundation for much more.

We describe the musicological needs that inspired the

creation and growth of the VIS Framework, along with a

survey of similar previous research. To demonstrate the

effectiveness of our analytic approach and software, we

present a sample query showing that the most commonly

repeated contrapuntal patterns vary between three related

style periods. We also emphasize our adaptation of typical

n-gram-based research in music, our implementation strat-

egy in VIS, and the flexibility of this approach for future

researchers.

1. INTRODUCTION

1.1 Counterpoint

“The evolution of Western music can be characterized in

terms of a dialectic between acceptable vertical sonori-

ties on the one hand. . . and acceptable melodic motions on

the other.” [12] A full understanding of polyphonic mu-

sic (with more than one voice or part) requires descrip-

tion in terms of this dialectic, which is called counterpoint.

Whereas music information retrieval research (such as [6])

typically describes polyphonic music only in terms of ver-

tical (simultaneous or harmonic) intervals, musicologists

interested in contrapuntal patterns also want to know the

horizontal (sequential or melodic) intervals in each voice

that connect the vertical intervals. Since counterpoint de-

scribes how pitches in independent voices are combined

in polyphonic music, a computerized approach to counter-

point analysis of symbolic music can provide a wealth of

information to musicologists, who have previously relied

primarily on prose descriptions of musical style. 1

1 We wish to thank the following people for their contributions:
Natasha Dillabough, Ichiro Fujinaga, Jane Hatter, Jamie Klassen, Alexan-
der Morgan, Catherine Motuz, Peter Schubert. The ELVIS Project was

c© Christopher Antila and Julie Cumming.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Christopher Antila and Julie Cumming.

“The VIS Framework: Analyzing Counterpoint in Large Datasets”, 15th

International Society for Music Information Retrieval Conference, 2014.
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Figure 1. Symbolic score annotated with vertical and hor-

izontal intervals. A common contrapuntal module appears

in the box.

Figure 1 shows the counterpoint between two voices in

a fragment of music. We annotated the vertical intervals

above the score, and the lower voice’s horizontal intervals

below. Note that we show intervals by diatonic step size,

counting number of lines and spaces between two notes,

rather than semitones. We describe this contrapuntal mod-

ule further in Section 2.1. By using intervals rather than

note names, we can generalize patterns across pitch levels,

so the same pattern may start on any pitch. For this article,

we ignore interval quality (e.g., major or minor third) by

using diatonic intervals (e.g., third), allowing generaliza-

tion across mode and key. We do use interval quality for

other queries—this is a choice available in VIS at runtime.

To allow computerized processing of contrapuntal pat-

terns, we encode the counterpoint between two voices with

alternating vertical and horizontal intervals. In Figure 1,

the first two beats are “3 +2 3.” We call these patterns in-

terval n-grams, where n is the number of vertical intervals.

Our n-gram notation system is easily intelligible to music

theorists and musicologists, and allows us to stay close to

musicology.

1.2 Research Questions

Until recently, musicologists’ ability to accurately describe

polyphonic textures was severely limited: any one person

can learn only a limited amount of music in a lifetime, and

the computer-based tools for describing or analyzing poly-

phonic music in detail are insufficiently precise for many

repertoires. Descriptions of musical style and style change

are often vague, derived from intuitive impressions and

personal knowledge of repertoire rather than quantifiable

supported by the Digging into Data Challenge; the Canadian team re-
sponsible for the work described in this paper was additionally funded by
the Social Sciences and Humanities Research Council of Canada.
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evidence. Our project attempts the opposite by quantita-

tively describing musical style change using counterpoint.

We chose counterpoint not only because musicologists

are already aware of its importance, but because it allows

us to consider structure in all polyphonic music, which in-

cludes the majority of surviving Western music created

after 1300. Our project’s initial goal is to find the most

frequently-repeated contrapuntal patterns for different pe-

riods, genres, and composers, to help form detailed, evid-

ence-based descriptions of style periods and style change

by knowing which features change over time and when. In

addition, statistical models will allow a fresh approach to

attribution problems (determining the composer of a piece

where it is not otherwise known), by enabling us to de-

scribe some of the factors that distinguish a composer’s

style.

1.3 The VIS Framework

Our project’s most important accomplishment is the VIS

Framework—the software we developed to answer the re-

search questions described above. (VIS stands for “verti-

cal interval successions,” which is a way to describe coun-

terpoint). Currently VIS’s primary function is to find con-

trapuntal patterns in symbolic music, recording them with

the notation described above in Figure 1 so they may be

counted. However, we designed the framework to allow a

much broader set of queries, and we intend to add sup-

port for additional musical dimensions (like meter and har-

mony) as well as more complicated statistical experiments

(like Markov-chain modeling).

We used the Counterpoint Web App, a Web-based user

interface for VIS’s counterpoint functionality, to run the

analyses presented in this article. 2 Such Web-based soft-

ware encourages musicologists to participate in data-driven

analysis even if they are otherwise unable to program. The

Web App’s visual design, the use of musicologist-friendly

terms and user workflows, and the ability to output analy-

sis results on musical scores are significant advantages. At

the same time, programmers are encouraged to download

and extend the VIS Framework using its well-documented

Python API. While our Framework provides a guide for

structuring analysis workflows, each analytic step benefits

from our integration of the music21 and pandas libraries.

Together, these allow analytic approaches more amenable

to musicians and statisticians, respectively. 3

2. BACKGROUND

2.1 Contrapuntal Modules

A contrapuntal module is a repeated contrapuntal pattern

made from a series of vertical (harmonic) and horizontal

(melodic) intervals—a repeated interval n-gram. [11] We

are primarily interested in the frequency and nature of two-

voice contrapuntal modules. VIS allows us to computerize

tedious score analysis previously done by hand, as when

Peter Schubert identified modules in Palestrina. [13] While

2 Visit counterpoint.elvisproject.ca.
3 Refer to pandas.pydata.org and mit.edu/music21.
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Figure 2. “Cadence” contrapuntal module from Figure 1,

with music21 offset values.

two-voice contrapuntal modules are the primary structural

element of much Renaissance music, we can find contra-

puntal modules in nearly all polyphonic music, so our soft-

ware and research strategies will be useful for a wide range

of music. [3]

Figure 2 shows a representation of the “7 1 6 -2 8” in-

terval 3-gram (a 3-gram because there are three vertical

intervals). Using a half-note rhythmic offset, the first verti-

cal interval is a seventh, the horizontal motion of the lower

part is a unison (1), there is a vertical sixth, the lower part

moves down by a second (-2), and the final vertical interval

is an octave. In modal counterpoint, this is a highly con-

ventionalized figure used to signal a cadence—a closing or

concluding gesture for a phrase or piece. This is the same

3-gram as in the box in Figure 1.

Importantly, our analysis method requires that voicing

information is encoded in our files. MIDI files where all

parts are given in the same channel cannot be analyzed use-

fully with our software.

2.2 Previous Uses of n-Grams in MIR

We have chosen to map musical patterns with n-grams

partly because of their previous use in natural language

processing. 4 Some previous uses of n-grams in music anal-

ysis, and computerized counterpoint analysis, are described

below.

J. Stephen Downie’s dissertation presents a method for

indexing melodic n-grams in a large set of folk melodies

that will be searched using “Query by Humming” (QBH).

[7] Downie’s system is optimized for what he calls “lookup,”

rather than “analysis,” and he admits that it lacks the de-

tail required by musicologists. Importantly, Downie only

indexes horizontal intervals: melody rather than counter-

point.

Another QBH lookup system, proposed by Shyamala

Doraisamy, adapts n-grams for polyphonic music. [5, 6]

While this system does account for polyphony, it does not

record horizontal intervals so it lacks the detailed contra-

puntal information we seek. Furthermore, Doraisamy’s in-

tervals are based on MIDI note numbers rather than the di-

atonic steps preferred by musicologists. Finally, the largest

interval allowed by Doraisamy’s tokenization strategy is 26

4 As in the Google Ngram Viewer; refer to
books.google.com/ngrams.
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semitones—just over two octaves, and therefore narrower

than the normal distance between outer voices even in Re-

naissance polyphony. Considering the gradual expansion

of range in polyphonic music, to the extremes of the late

19th-century orchestra, the gradual appearance of large in-

tervals may be an important style indicator.

Meredith has proposed geometric transformation sys-

tems for encoding multi-dimensional musical information

in a computer-friendly way. [9, 10] We especially appreci-

ate the multi-dimensional emphasis and the mathematical

properties of these systems, and the software’s ability to

work even when voicing information is not available in the

symbolic file.

Finally, Jürgensen has studied accidentals in a large fif-

teenth-century manuscript of organ intabulations with an

approach very similar to ours, but carried out using the

Humdrum Toolkit. [8] She locates cadences by identifying

a contrapuntal model and then records the use of acciden-

tals at the cadence. While she searches only for specific

contrapuntal modules, we identify all of the n-grams in a

test set in order to determine the most frequently recurring

contrapuntal patterns.

2.3 Multi-Dimensional n-Grams in VIS

Considering these previous uses of n-grams and counter-

point in MIR, we designed our software with the flexi-

bility to accommodate our requirements, as well as those

of future analysis strategies. By tokenizing n-grams with

strings that minimally transform the input, musicologists

can readily understand the information presented in an n-

gram. This strategy offers a further benefit to programmers,

who can easily create n-grams that include different musi-

cal dimensions without necessarily developing a new token

transformation system. Users may choose to implement

any tokenization strategy on top of our existing n-gram-

indexing module.

The example 3-gram shown in Figure 2 is tokenized in-

ternally as “7 1,” “6 -2,” “8 END.” Although there appear

to be 2n − 1 tokens, we consider a vertical interval and

its following horizontal interval as a combined unit—as

though it were a letter in an n-gram as used in computa-

tional linguistics. The simplicity afforded by using strings

as tokens, each of which may contain an arbitrary array of

musical information, has been advantageous.

Indeed, the difficulty of determining a musical analogue

to the letter, word, and phrase divisions used in computa-

tional linguistics may be one of the reasons that computer-

driven research has yet to gain much traction in mainstream

musicology. That music lacks an equivalent for space char-

acters poses an even greater problem in this regard: while

some music does use clear breaks between phrases, their

exact placement can often be disputed among experts. Mu-

sicologists also wish to account for the multiple simultane-

ous melody lines of polyphonic music, which has no equiv-

alent in natural language. These are the primary motivating

factors behind our multi-dimensional interval n-gram to-

kens that encode both vertical and horizontal intervals. As

our research continues, context models and multiple view-

point systems, in the style of Conklin and Witten, will par-

tially obviate the questions of which n value to use, and of

how best to incorporate varied musical elements. [1]

The popularity of Python within scientific computing

communities allows us to benefit from any software that

accepts pandas data objects. The easy-to-learn, object-or-

iented API of music21, along with the relatively high

number of supported file formats, are also significant ad-

vantages. In the 1980s, a music analysis toolkit consisting

of a collection of awk scripts was sensible, but Humdrum’s

limitation to UNIX systems and a single symbolic file for-

mat pose undesirable limitations for a big data project.

3. EXPERIMENT

3.1 Data Sets

We present an experiment to quantitatively describe style

change in the Renaissance period, providing a partial an-

swer for our primary research question. 5 We assembled

test sets for three similar style periods, named after a rep-

resentative composer from the period: Ockeghem (1440–

85), Josquin (1485–1521), and Palestrina (1540–85). The

pieces in the test set were chosen to represent the style pe-

riod as accurately as our project’s database allowed. 6 The

twenty-year gap between the later periods is a result of less

symbolic music being available from those decades. Each

set consists of a mixture of sacred and secular vocal music,

most with four parts, in a variety of genres, from a variety

of composers. Though we analyzed n-grams between two

and twenty-eight vertical intervals long, we report our re-

sults only for 3-grams because they are the shortest contra-

puntal unit that holds meaning. Note that we include results

from all possible two-part combinations, reflecting Renais-

sance contrapuntal thinking, where many-part textures are

composed from a series of two-part structures. [3, 13]

The Ockeghem test set consists of 50 files: 28 in the

MIDI format and 22 in **kern. For the composers, 8 pieces

were written by Busnoys, 32 by Ockeghem, and 10 are late

works by Dufay. The longest repeated n-gram was a 25-

gram.

The Josquin test set consists of 56 files: 18 MIDI, 23

**kern, 9 MusicXML, and 6 NoteWorthy Composer. For

the composers, 3 pieces were written by Agricola, 7 by

Brumel, 6 by Compre, 2 by Fvin, 12 by Isaac, 19 by Josquin,

3 by Mouton, 2 by Obrecht, and 2 by la Rue. The longest

repeated n-gram was a 28-gram.

Finally, the Palestrina test set consists of 53 files: 30

MIDI, 15 **kern, 6 MusicXML, and 2 NoteWorthy Com-

poser. For the composers, 15 pieces were written by Pales-

trina, 9 by Rore, 28 by Victoria, and 1 by Wert. The longest

repeated n-gram was a 26-gram.

3.2 Methodology

The VIS Framework uses a modular approach to query de-

sign, dividing analysis tasks into a series of well-defined

5 You may download our test sets from
elvisproject.ca/ismir2014.

6 Visit database.elvisproject.ca.
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steps. 7 We intend the module break-down to be helpful for

musicologists who wish to reason about and design their

own queries. Thus, musicological concerns drove the cre-

ation of many of the analysis steps, such as the filtering

modules described below. The interval n-gram frequency

experiment in this article uses the following modules: Note-
RestIndexer, IntervalIndexer, HorizontalIntervalIndexer,

FilterByOffsetIndexer, FilterByRepeatIndexer, NGramInd-
exer, ColumnAggregator, and finally the FrequencyExper-
imenter. 8

The NoteRestIndexer finds note names and rests from

a music21 Score. The IntervalIndexer and Horizontal-
IntervalIndexer calculate vertical and horizontal intervals,

respectively.

The FilterByOffsetIndexer uses a basic algorithm to fil-

ter weak-beat embellishing tones that otherwise obscure

structural counterpoint. We regularize observations to a giv-

en rhythmic offset time interval using the music21 offset,

measured in quarter lengths. Refer to Figure 2 as an exam-

ple, where vertical intervals are filtered with a 2.0 offset.

Events beginning on a multiple of that duration will be re-

tained (like the notes at 0.0, 2.0, and 4.0). Events lasting for

multiples of that duration will appear to be repeated (like

the note at 4.0, which is also recorded at 6.0). Events not

beginning on a multiple of the duration will be removed

(like the notes at 1.0 and 1.5) or shifted to the following

offset, if no new event occurs. For this study, we chose a

half-note (2.0) offset interval in accordance with Renais-

sance notation practices, but this can be changed in VIS at

runtime.

The FilterByRepeatIndexer removes events that are iden-

tical to the immediately preceding event. Because of its

placement in our workflow for this experiment, subsequent

vertical intervals will not be counted if they use the same

pitches. Our interval n-grams therefore necessarily involve

contrapuntal motion, which is required for proper pattern

recognition. Such repeated events arise in musical scores,

for example, when singers recite many words on the same

pitch. The FilterByOffsetIndexer may also create repeated

events, as at offset 6.0 in Figure 2. Users may choose not

to run this module.

In this article, our NGramIndexer includes results from

all pairs of part combination. Users may exclude some com-

binations at runtime, choosing to limit their query to the

highest and lowest parts, for example. On receiving inter-

vals from the FilterByRepeatIndexer, the NGramIndexer
uses the gliding window technique to capture all possible

overlapping interval n-grams. The indexer also accepts a

list of tokens that prevent an n-gram from being counted.

We use this feature to avoid counting contrapuntal pat-

terns that include rests. Finally, the NGramIndexer may

add grouping characters, surrounding “vertical” events in

brackets and “horizontal” events in parentheses to enhance

legibility of long n-grams. The 3-grams in this article are

short enough that grouping characters are unnecessary; on

7 This section refers to the 2.x release series.
8 For more information about the VIS Framework’s analysis mod-

ules and overall architecture, please refer to our Python API at
vis.elvisproject.ca.

the other hand, the legibility of the “[10] (+2) [9] (1) [8]

(+2) [7] (1) [6] (-2) [8]” 6-gram found 27 times in the Pal-

estrina test set greatly benefits from grouping characters.

The FrequencyExperimenter counts the number of oc-

currences of each n-gram. These results, still specific to

part combinations within pieces, are then combined with

the ColumnAggregator.

On receiving a spreadsheet of results from VIS, we cal-

culated the number of n-grams as the percentage total of

all n-grams in each of the test sets. For each set, we also

counted the total number of 3-grams observed (including

all repetitions of all 3-grams), the number of distinct 3-

gram types (whether repeated or not), and the number of

3-gram types that occur more than once; these are shown

below in Table 1.

3.3 Results

Due to the limited time span represented in this study, we

wish to suggest avenues for future exploration, rather than

offer conclusive findings. We present a visualization of the

experimental results in Figure 3, a hybrid between a Venn

diagram, word cloud (i.e., a 3-gram cloud), and a time-

line. The diagram includes interval 3-grams that consti-

tute greater than 0.2% of the 3-grams in at least one of

the test sets. When a 3-gram appears in an intersection of

style periods, that 3-gram constitutes greater than 0.2% of

the 3-grams in those sets. As in a world cloud, the font

size is scaled proportionately to a 3-gram’s frequency in

the test sets in which it is common. Most visually striking

is the confirmation of musicologists’ existing experiential

knowledge: certain contrapuntal patterns are common to

all three style periods, including the cadence module (“7

1 6 -2 8”) and two other 3-grams that end with the “7 1

6” cadential suspension. These results make sense because

cadences are an essential feature of musical syntax.

Test Set Total Types Repeated Types

Ockeghem 30,640 10,644 4,509 (42%)

Josquin 31,233 9,268 4,323 (47%)

Palestrina 33,339 10,773 5,023 (47%)

Table 1. Summary of 3-gram repetitions in our query.

In addition to the common cadential patterns noted above,

both Figure 3 and Table 1 show evidence of stylistic change

over time. Most notably, the Josquin and Palestrina test

sets show a higher level of repetition than the Ockeghem

set. The number of 3-grams included in Figure 3 is higher

in the Josquin test set (with seventeen 3-grams) than ei-

ther the Ockeghem or Palestrina sets (both with eleven 3-

grams). Yet Table 1 indicates the Josquin and Palestrina

sets both have a higher percentage of 3-gram types that

are repeated at least once (47% in both sets, compared to

42% in the Ockeghem set). These data suggest an increase

in repetition of contrapuntal modules from the Ockeghem

to the Josquin generations, which was retained in the Pa-

lestrina generation. Figure 3 only partially reinforces this

suggestion: while five 3-grams are unique to the Ockeghem

set, six are unique to the Josquin set, but only one is unique
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Figure 3. Frequency of contrapuntal modules is different

between temporally-adjacent style periods.

to the Palestrina set. Moreover, the “5 -2 6 -2 6” module,

unique to the Palestrina set, is the least common 3-gram in

Figure 3—how did contrapuntal repetition both decrease

in Palestrina’s generation and remain the same?

Previous research by Cumming and Schubert may help

us explain the data. In 2008, Cumming noted that exact

repetition became much more common in Josquin’s life-

time than in Ockeghem’s. [2] Schubert showed that com-

posers tended to repeat contrapuntal patterns in inversion

during Palestrina’s lifetime, so that the lower voice is moved

above the original upper voice. [13] Inversion changes a

contrapuntal pattern’s vertical intervals in a consistent way

that preserves, but switches, the horizontal intervals of the

two parts. For example, “7 1 6 -2 8” inverts at the octave

to “2 -2 3 +2 1.” While humans can recognize both forms

as two versions of the same pattern, VIS currently shows

only exact repetition; future enhancements will permit us

to equate the original and the inversion. This decision may

explain why our data show lower rates of repetition for the

Palestrina test set.

We find further evidence of stylistic change in Figure 3:

certain patterns that musicologists consider to be common

across all Renaissance music are in fact not equally com-

mon in our three test sets. For example, motion by parallel

thirds and tenths appears to be more common in certain

style periods than others, and in a way that does not yet

make sense. The Palestrina set shares ascending parallel

thirds (“3 +2 3 +2 3”) with the Ockeghem and descending

parallel thirds (“3 -2 3 -2 3”) with the Josquin set. Ascend-

ing parallel tenths (“10 +2 10 +2 10”) are more common

in the Ockeghem set, and descending parallel tenths (“10

-2 10 -2 10”) in the Josquin set. In particular, descending

parallel thirds are an order of magnitude less common in

the Ockeghem test set than the Josquin or Palestrina (con-

stituting 0.013%, 0.272%, and 0.225% of 3-grams in their

test set, respectively). Conventional musicological wisdom

suggests these 3-grams will be equally common in all three

test sets, and that parallel tenths will be more common than

parallel thirds in later style periods, as the range between

voices expands. Since the reasons for such a deviation are

not yet known, we require further investigation to study the

changing nature of contrapuntal repetition during the Re-

naissance period. Yet even with these preliminary findings

it is clear that evidence-based research has much to offer

musicology.

4. FUTURE WORK

Our research will continue by extending VIS to add the

option of equivalence classes that can group, for example,

inversionally-related interval n-grams. We will also build

on previous work with melody- and harmony-focussed mul-

tiple viewpoint systems to create an all-voice contrapuntal

prediction model. [1, 14]

Our experiments will continue with larger test sets for

increased confidence in our findings, also adding style peri-

ods earlier than the Ockeghem and later than the Palestrina

sets, and subdividing our current style periods. This will

help us reassess boundaries between style periods, and ex-

actly what such a boundary entails. We will also compare

results of single pieces with test sets of various sizes.

Finally, we will implement additional multi-dimension-

al n-gram tokens, for example by adding the note name

of the lowest voice. This approach would encode Figure 2

as “7 F 1 6 F -2 8 E.” In Renaissance music, this type of

n-gram will clarify the relationships between contrapuntal

modules and a piece’s mode.

5. CONCLUSION

The VIS Framework for Music Analysis is a musicologist-

friendly Python library designed to analyze large amounts

of symbolic musical data. Thus far, our work has concen-

trated on counterpoint—successions of vertical intervals

and the horizontal intervals connecting them—which some

scholars view as composers’ primary concern throughout

the development of Western music. Our software uses multi-

dimensional n-grams to find and count the frequency of

repeated contrapuntal patterns, or modules. In particular,

by retaining all inputted dimensions and using strings as

tokens (rather than integers or characters), we simultane-

ously allow musicologists to quickly understand the con-

tent of an n-gram while also avoiding the challenge of

developing a new tokenization strategy for every musical

dimension added to the n-gram. We hope this flexibility

and ease-of-use encourages musicologists and non-expert

programmers, who would otherwise be discouraged from

computer-based music analysis, to experiment more freely.

The results of our query presented in this article, which

compares the most commonly-repeated contrapuntal mod-

ules in three Renaissance style periods, show the type of

insight possible from computerized music research. The

time-consuming effort required for previous work on con-

trapuntal modules is greatly reduced when analysts have

access to specialized computer software. We analyzed more

than 150 polyphonic compositions for interval n-grams be-

tween two and twenty-eight vertical intervals in length,

which would have taken months or years for a human.

Even with simple mathematical strategies like counting the

frequency of interval n-grams to know which are most com-

mon, we can confirm existing intuitive knowledge about
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the foundations of counterpoint while also suggesting av-

enues for future research on the nature of musical repeti-

tion.

6. REFERENCES

[1] D. Conklin and I. Witten. Multiple viewpoint systems

for music prediction. Journal of New Music Research,

24(1):51–73, 1995.

[2] J. Cumming. From variety to repetition: The birth

of imitative polyphony. In Bruno Bouckaert, Eugeen

Schreurs, and Ivan Asselman, editors, Yearbook of the
Alamire Foundation, number 6, pages 21–44. Alamire,

2008.

[3] J. Cumming. From two-part framework to movable

module. In Judith Peraino, editor, Medieval music in
practice: Studies in honor of Richard Crocker, pages

177–215. American Institute of Musicology, 2013.

[4] M. S. Cuthbert and C. Ariza. music21: A toolkit for

computer-aided musicology and symbolic music data.

In Proceedings of the International Symposium on Mu-
sic Information Retrieval, pages 637–42, 2010.

[5] S. Doraisamy. Polyphonic Music Retrieval: The n-
gram approach. PhD thesis, University of London,

2004.

[6] S. Doraisamy and S. Rger. Robust polyphonic music

retrieval with n-grams. Journal of Intelligent Informa-
tion Systems, 21(1):53–70, 2003.

[7] J. S. Downie. Evaluating a Simple Approach to Music
Information Retrieval: Conceiving melodic n-grams as
text. PhD thesis, University of Western Ontario, 1999.

[8] F. Jürgensen. Cadential accidentals in the Buxheim or-

gan book and its concordances: A midfifteenth-century

context for musica ficta practice. Acta Musicologica,

83(1):39–68, 2011.

[9] D. Meredith. A geometric language for representing

structure in polyphonic music. In Proceedings of the
International Society for Music Information Retrieval,
pages 133–8, 2012.

[10] D. Meredith, K. Lemström, and G. Wiggins. Algo-

rithms for discovering repeated patterns in multidimen-

sional representations of polyphonic music. Journal of
New Music Research, 41(4):321–45.

[11] J. A. Owens. Composers at Work: The Craft of Musi-
cal Composition 1450–1600. Oxford University Press,

1997.

[12] P. Schubert. Counterpoint pedagogy in the renaissance.

In T. Christensen, editor, The Cambridge History of
Western Music Theory, pages 503–33. Cambridge Uni-

versity Press, 2002.

[13] P. Schubert. Hidden forms in Palestrina’s first book of

four-voice motets. Journal of the American Musicolog-
ical Society, 60(3):483–556, 2007.

[14] R. Whorley, G. Wiggins, C. Rhodes, and M. Pearce.

Multiple viewpoint systems: Time complexity and the

construction of domains for complex musical view-

points in the harmonisation problem. Journal of New
Music Research, 42(3):237–66, 2013.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

76



  
 

HIERARCHICAL APPROACH TO DETECT COMMON 
MISTAKES OF BEGINNER FLUTE PLAYERS 

 Yoonchang Han, Kyogu Lee  
 Music and Audio Research Group 

Seoul National University, Seoul, Republic of Korea 
{yoonchanghan,kglee}@snu.ac.kr 

 

ABSTRACT 

Music lessons are a repetitive process of giving feedback 
on a student’s performance techniques. The manner in 
which performance skills are improved depends on the 
particular instrument, and therefore, it is important to 
consider the unique characteristics of the target instru-
ment. In this paper, we investigate the common mistakes 
of beginner flute players and propose a hierarchical ap-
proach to detect such mistakes. We first examine the 
structure and mechanism of the flute, and define several 
types of common mistakes that can be caused by incor-
rect assembly, poor blowing skills, or mis-fingering. We 
propose tailored algorithms for detecting each case by 
combining deterministic signal processing and deep 
learning, to quantify the quality of a flute sound. The sys-
tem is structured hierarchically, as mis-fingering detec-
tion requires the input sound to be correctly assembled 
and blown to discriminate minor sound difference. Exper-
imental results show that it is possible to identify differ-
ent mistakes in flute performance using our proposed al-
gorithms. 

1. INTRODUCTION 

The most important part of a music lesson is giving a stu-
dent feedback on his or her performance, posture, and 
playing skills so that the student can play the sound cor-
rectly. Music lesson methods vary depending on the in-
strument being learned; therefore, audio signal processing 
for music education should make extensive use of prior 
knowledge regarding playing style, common mistakes, 
unique characteristics, and constraints of the target in-
strument. However, most existing music signal analysis 
techniques use a general-purpose model, and relatively 
little attention is paid to an instrument-specific approach. 
A general-purpose model is advantageous because it can 
be applied to various types of instruments. However, this 
model lacks the capability to capture instrument-specific 
sound characteristics. There are always common mistakes 
that beginners make, but little is known about how to de-
tect these automatically. 

     The goal of this paper is to investigate common be-
ginner’s mistakes when playing a specific instrument—
the flute, in this case—and to analyze the spectral charac-
teristic of each case to give the student appropriate feed-
back on his or her performance. Because the sound of a 
musical instrument is affected by numerous factors, in 
our work, we first divide the factors that usually lead be-
ginners to play the wrong sound into three parts: incorrect 
flute assembly, blowing skill, and fingering. 
     The rest of the paper is organized as follows: We 
briefly present existing works related to our proposed 
idea. Then, we investigate possible mistakes in flute per-
formance by examining the structure and mechanism of 
the flute, and several types of common mistakes and the 
resulting sounds are explained. Next, we present an over-
all system structure to distinguish each mistake, along 
with a detail explanation of each proposed algorithm. We 
then present the experimental results to demonstrate the 
feasibility of the proposed system, followed by our con-
clusion and directions for future work. 

2. RELATED WORK 

The characteristics of musical instruments depend on 
their sound production mechanism. The characteristics of 
one instrument can greatly differ from those of others, 
and each instrument’s characteristics may not be cap-
tured equally well as another even when using the same 
computational model [2]. However, there has been min-
imal research regarding an instrument-specific model. 
Some examples of instrument-specific approaches in-
volve the use of a violin [8, 14-16], guitar [1], bells [9], 
and tabla [5]. For instance, the violin transcription sys-
tem in [8] makes use of characteristics such as highest 
and lowest pitch, possible play style (e.g., upper octave 
duophony), vibrato, and loudness. The training system in 
[14] uses a common envelope style of violin sound for 
note segmentation prior to real-time pitch detection, and 
[9] uses the acoustic characteristics of a church bell, as 
well as the rules of a bell charming performance, for 
transcription and estimating the number of bells. In addi-
tion, a chord transcription system designed for guitar in 
[1] outperforms the non-guitar-specific method.  
     As shown above, using prior knowledge of the char-
acteristics of a target instrument creates new possibilities 
in music signal processing, and can also improve the per-
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formance of the system. However, there are still many 
instruments to be studied, and the flute is one of them. 

3. COMMON MISTAKES OF A FLUTE PLAYER 

3.1 Assembling the Flute 

Like most woodwind instruments, the flute needs to be 
assembled before it is played. The flute consists of a head 
joint, body joint, and foot joint, as shown in Figure 1. The 
connecting part between the body and foot joint is very 
short, while the connecting part between the head joint 
and body joint is a few centimeters long. This intentional-
ly designed adjustable part is called the tuning slide, and 
it can be used for changing the total length of the flute to 
various sizes, which affects the overall pitch of the flute. 
For instance, if the head joint is placed very deep into the 
tuning slide of the body, the pitch will be increased for 
every note. By contrast, if the head joint is pulled out too 
far, the overall pitch will drop owing to the longer wave-
length.  

 
Figure 1. Flute consists of head joint, body joint, and 
foot joint (modified after [11]). 
 
     Another method of pitch tuning is adjusting the cork 
part of the head joint, as shown in Figure 2. This can be 
adjusted by a screw. Pushing the cork will raise the pitch 
of all notes. However, this is beyond the scope of this pa-
per, as this screw is normally not adjusted by flute per-
formers but by flute technicians. 
 

 

     Figure 2. Schematic of a flute head joint [13]. 

     Trained performers use this variable tuning slide for 
pitch tuning. The pitch of the flute is sensitive to the con-
ditions of the surrounding environment, such as humidity 
and temperature. However, novice flutists are not sensi-
tive to minor pitch shifting, and they may play the flute in 
the wrong overall pitch without recognizing it. 

3.2 Blowing Embouchure 

The flute generates sound by blowing a rapid air jet 
across the embouchure 1  hole, as shown in Figure 3. 
Hence, the quality of the generated sound is highly de-
pendent on the blowing skill of the performer. Blowing 
skill involves lip position and the thickness/stability of 
the air jet. Clear tone production is challenging for begin-
ners because the method of tone production for the flute 

                                                             
1 Mouthpiece of a musical instrument. 

is not supported by mechanical parts; rather, it depends 
only on the player’s blowing skill [4]. 

 

Figure 3. Airstream oscillation of the flute embouchure 
hole. The labels indicate the phase angles of the acoustic 
current at the hole [3]. 

     Tone quality and octave of the sound are related to 
blowing skill. The flute has a range of three octaves, 
starting from middle C (C4), with several less-used notes 
in octaves 3 and 7. The blowing pressure determines the 
octave of the sound, as shown in Figure 4. Greater blow-
ing pressure can be achieved by blowing a narrower and 
stronger air jet. To generate a stable and clean sound, it is 
important to keep this blowing pressure reasonably 
steady. Failure to do this will result in fluctuating sound 
and noise, which is highly unpleasant and typically the 
first hurdle for beginners to overcome in their training.  

   

Figure 4. Air jet blowing pressure has a roughly linear 
relationship to fundamental frequency. A, B, C, and D are 
different performers, and different shapes represent dif-
ferent dynamics [12]. 

3.3 Fingering 

Novice flutists frequently make mistakes in fingering ow-
ing to their lack of familiarity with the irregular fingering 
rules of the flute. High-octave fingering is comparatively 
more complex than low-octave fingering [4], which is the 
reason why flute lessons usually start with the lowest oc-
tave and move step-by-step to higher octaves. Hence, we 
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focus on octaves 4 and 5, which are the octaves that be-
ginner flute players initially study.  
     Most of the octave 5 fingerings are identical to those 
of octave 4, as shown in Figure 3. However, the fingering 
for C and D, as well as the sharps of these notes, require 
different fingerings than those of octave 4. These notes 
can be played with octave 4 fingering using a faster and 
sharper air jet, but this results in a slightly airy timbre, 
compared to the sound when the flute is correctly fin-
gered. As this airy timbre is not significantly noticeable, 
and most of the notes in octaves 4 and 5 share the same 
fingering, many beginners do not notice that they used 
octave 4 fingerings to play octave 5, unless the instructor 
spots it. 

 

Figure 5. Fingering of octave 4 and 5 flute notes. Note 
that C, D, and sharps of these require different fingering, 
unlike E, F, G, A, and B. 

     Another fingering-related problem is the proper posi-
tioning of the fingers. The open-hole flute requires that 
the flutist use his or her fingers to block the holes in the 
keys. Most professional flutists prefer the open-hole flute 
owing to its advantages in tone production and intonation 
adjustment [4]. However, this is not considered in our 
system because beginners who have trouble with block-
ing open-hole keys can avoid this problem by putting 
plastic plugs in the holes until they get used to playing 
the open-hole flute. 

4. PROPOSED SYSTEM & METRICS 

The overall system comprises several steps. In the first 
step, the system determines whether the flute is assem-
bled correctly using entire input audio. Next, once the 
flute sound is detected as coming from a correctly assem-
bled flute, the system measures if sound of the each note 
is a clear, correctly blown sound or an airy-timbered 
sound. Finally, the properly blown sound is identified as 
sound generated from either correct fingering or incorrect 
fingering. The system is hierarchically structured, be-
cause mis-fingering detection does not work well for 
fluctuated sound or head joint pushed/pulled sound as it 
requires discriminating minor sound difference. The input 
audio is resampled to 16 kHz first, and he system archi-
tecture is shown in Figure 6. 

4.1 Assembling Error Detection 

Some mistakes can cause modifications to the overall 
pitch, and some mistakes result in poor timbre. The as-
sembling error affects only the overall pitch of the gener-
ated sound. As mentioned in 3.1, the distance the head 

joint is pushed in or pulled out from the tuning slide of 
the body joint determines the overall pitch. To this end, a 
quantized chromagram from Harte and Sandler is used to 
detect the tuning center [6]. 

 

Figure 6. Flow diagram of the overall system. The bold 
box indicates where the system sends feedback to the us-
er. 

 

Figure 7. HPCP peaks histogram within a semitone for 
correctly (up) and loosely assembled (down) case. 
 
     To determine the tuning center, a spectrum of linear 
frequency spectra is Constant-Q transformed and 
summed across octaves to produce a harmonic pitch class 
profile (HPCP). A 36-bin quantized chromagram is used 
to determine the semitone center, and three bins were al-
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located for each semitone. By observing the distribution 
of peak positions across the width of a semitone, as 
shown in Figure 7, it is possible to determine the tuning 
center of the instrument. Because three bins are allocated 
for each semitone, the tuning center of a perfectly tuned 
sound would ideally be 1.5. Therefore, the system will 
consider the input sound to be correctly tuned when the 
tuning center value is approximately 1.5. If the detected 
tuning center is too low (less than 1), the system sends 
feedback to the user that the head joint is too loosely as-
sembled. Conversely, the system tells the user that the 
head joint is assembled more tightly than necessary when 
the tuning center is high (greater than 1). 

4.2 Fluctuated Sound Detection 

Incorrect lip position on the embouchure, along with an 
irregular stream of blown wind, results in a highly un-
pleasant and fluctuating tone. This sound contains many 
inharmonic partials in a spectrum, and it is clearly visible 
on a spectrogram. Performing binary masking on a spec-
trogram makes these inharmonic partials more obvious, 
as shown in the second row of Figure 8.  

 

 

Figure 8. Log spectrogram, binary masked spectrogram, 
and sum of bins for each frame for D, E, F, G, A, and B 
of octave 5. Up to 6 second is correctly blown sound and 
from 6 to 12 second is fluctuated sound. 

Binary masking is performed as follows: 
 

                                                                                                       (1) 
 

where X is the log spectrum, Xb is the binary masked 
spectrum, and θ is the threshold constant. Empirically, a 
value between -20 and -30 works well for θ, depends on 
recording environment. Note that these values are ob-
tained when natural log multiplied by 20 is used for the 
log spectrum. Using this binary masked spectrogram, the 
sum of the number of positive valued bins of each spec-
trum can be used as a measurement for determining how 
the sound fluctuates owing to poor blowing skill. This 
can be expressed as follows: 

                                                                                  
                                                                                  (2) 
 

where F is the amount of fluctuation. The third row of 
Figure 8 is F value obtained from (2) with 1 second me-
dian filtering, and it is possible to observe the value is 
much higher for fluctuated sound than correctly blown 
sound. 

4.3 Mis-fingering detection 

As mentioned in 3.3, for C5, C#5, D5, and D#5, using 
octave 4 fingering with a faster and sharper air jet still 
generates octave 5 pitches even without correct fingering, 
although the timbre is slightly airy. To detect this timbral 
difference, we decided to use both the Mel-frequency 
cepstral coefficient (MFCC)—a widely used, hand-
designed feature—and sparse filtering (SF) [10]—a deep-
layered, unsupervised feature learning method. SF works 
by optimizing the sparsity of feature distribution, and it 
works well on a range of data modalities without specific 
tuning. Both single- and double-layered sparse filtering 
were used with 200 units for each layer. The obtained 
feature was classified into two classes (correct/incorrect) 
using a random forest (RF) classifier, which exhibits bet-
ter performance than a support vector machine or back-
propagation neural network in a variety of cases [7]. The 
flow diagram for mis-fingering detection is shown below. 

 

Figure 9. Flow diagram for mis-fingering detection. 
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5. EXPERIMENT 

5.1 Objective & Procedure 

The goal of our experiment was to explore whether the 
proposed system and algorithms work well for detecting 
the mistakes of beginner flutists. Flute sound samples 
were obtained from two intermediates (who have played 
the flute for one to two years) and one expert (who holds 
an exam score of Grade 8 with a Distinction). Flutes used 
for the experiment were a B foot joint with open holes, 
and a silver head with nickel body and foot. The correct 
flute sound, fluctuating sound, head joint pulled, and 
head joint pushed sound were recorded for octaves be-
tween 4 and 5. The length of the collected audio was 30 
seconds for each semitone. The case of correct and incor-
rect fingering for C5, C#5, D5, and D#5 was recorded for 
10 minutes each to obtain sufficient training data. The 
input audio was recorded at 44.1 kHz mono and 
downsampled to 18 kHz. Tuning center was calculated 
from whole target audio as it is not time-varying charac-
teristics. Meanwhile, fluctuating and mis-fingering detec-
tion was performed framewise. Different window and 
hop size were used for each experiment, as each mistake 
detection algorithm requires different spectral resolution.  

5.2 Results 

The experimental results show that the system successful-
ly distinguishes each mistake. To find tuning center, a 74 
ms window and 18 ms hop size were used. As shown in 
Table 1, the tuning center of a correctly played sample is 
close to 1.5, which is the exact center. Also, tuning center 
values for the head joint when it is pushed and pulled fell 
into the expected range, which were (0–1) and (2–3), re-
spectively. 

Mistake cases 
Tuning center value (0 to 3) 

Player 1 Player 2 Player 3 

Correct 1.68 1.59 1.62 

Head joint pushed  2.55 2.49 2.43 

Head joint pulled 0.48 0.45 0.75 

Table 1. Tuning center values of correct, head joint 
pushed, and head joint pulled flute sound of three differ-
ent flutists. 

     Next, Figure 10 is a framewise distribution of fluctua-
tion measure (1) for correct and fluctuated flute sound. A 
64 ms window and 32 ms hop size were used, with θ val-
ue of -25dB. The median value of the correct flute sound 
is 50, and most of the values fall between 63 and 37. The 
fluctuating flute sound has a median value of 167, and 
most of the values fall between 150 and 178. This means 
that these cases are clearly distinguishable using the pro-
posed metric. 

     Finally, Table 2 shows the ten-fold cross-validation 
results of the proposed mis-fingering classification using 
single-layer SF, double-layer SF, and MFCC as a feature, 
and RF as a classifier. A 16 ms window and 10 ms hop 
size were used, and SF was used with 200 units per layer. 

 

Figure 10. Box plot of fluctuation measurements. The 
central marks indicate the median, and the edges are the 
first and third quartiles. 
 

Method Accuracy (%) 

Spectrogram + SF (single) 90.24 

Spectrogram + SF (double) 90.02 

MFCC 90.89 

MFCC + SF (single) 90.33 

MFCC + SF (double) 91.35 

Table 2. Mis-fingering classification ten-fold cross-
validation result using SF/ MFCC as a feature and RF as 
a classifier. 

The result shows that the combination of the MFCC and 
double-layered SF performs the best; however, all of the 
approaches perform reasonably well within a not very 
meaningful margin. The result indicates that the MFCC, a 
handcrafted feature, is still useful in separating the tim-
bral differences of the flute. Further, although SF is not 
designed for the purpose of timbre analysis, it works 
quite well without fine-tuning, as mentioned in [10]. In 
the experiment, single-layered SF worked better when the 
input is a spectrogram, but double-layered SF showed 
better performance when the input is MFCC. 

6. CONCLUSION & FUTURE WORK 

The objective of our work is to use audio signal analysis 
to give a student feedback on his or her flute performance 
to help fix mistakes, as a lesson teacher would do. To 
achieve this goal, we examined the mechanism and struc-
ture of the flute. We also investigated the common mis-
takes of beginner flute players. We determined several 
types of common mistakes and developed a hierarchical 
system to detect such cases by observing the tuning cen-
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ter, fluctuation metric, and a mis-fingering detection al-
gorithm. As a result, we have successfully identified 
common mistake cases from input audio, which can be 
used as feedback that would be provided by a lesson 
teacher-. Head-joint assembling errors were detected by 
determining the tuning center of the flute sound. Fluctuat-
ing sound caused by poor blowing skills was separated 
from the correct flute sound by measuring the amount of 
noisy harmonic contents. Finally, mis-fingering cases 
were detected by analyzing their timbre using MFCC and 
SF with an RF classifier. 
     There remain some problems to be tackled in this mis-
take detection algorithm for real-world user applications. 
First, the mis-fingering detection algorithm may be af-
fected by the material or maker of the flute because the 
algorithm detects very minor changes in timbre. In the 
experiment, only two types of flute (silver head with 
nickel body, and foot) were used. However, the flute can 
be made of various types of metal, such as silver, gold, 
and platinum. Moreover, various flute makers have their 
own timbral characteristics, which may influence the 
classification results. Second, the experiment was done 
on the frame level, but the user perceives the score based 
on the note level. Hence, the system should be used along 
with appropriate onset-offset detection to give more user-
friendly feedback. 
     We believe that this type of timbre-related and user-
behavior-oriented feedback is highly important for the 
next-generation music transcription systems, especially 
those used for educational purposes. Playing the instru-
ment with correct onset and pitch is not a very difficult 
part of being a good player, but making a beautiful timbre 
is what really takes time. This paper focuses only on the 
flute; however, our overall approach, including analyzing 
mistake cases and determining customized solutions, can 
be applied to various instruments in a similar way. 
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ABSTRACT

Large music content libraries often comprise multiple ver-

sions of a piece of music. To establish a link between dif-

ferent versions, automatic music alignment methods map

each position in one version to a corresponding position in

another version. Due to the leeway in interpreting a piece,

any two versions can differ significantly, for example, in

terms of local tempo, articulation, or playing style. For

a given pair of versions, these differences can be signif-

icant such that even state-of-the-art methods fail to iden-

tify a correct alignment. In this paper, we present a novel

method that increases the robustness for difficult to align

cases. Instead of aligning only pairs of versions as done in

previous methods, our method aligns multiple versions in a

joint manner. This way, the alignment can be computed by

comparing each version not only with one but with several

versions, which stabilizes the comparison and leads to an

increase in alignment robustness. Using recordings from

the Mazurka Project, the alignment error for our proposed

method was 14% lower on average compared to a state-

of-the-art method, with significantly less outliers (standard

deviation 53% lower).

1. INTRODUCTION

Recent years have seen significant efforts to create large,

comprehensive music collections. Music content providers

(e.g. Spotify, iTunes, Pandora) rely on their existence,

while national libraries and charitable organizations cre-

ate and curate them in order to provide access to cultural

heritage. For a given piece of music, large collections of-

ten contain various related recordings (cover songs, dif-

ferent interpretations), videos (official clip, live concert)

and musical scores (in different formats such as MIDI and

MusicXML, covering several editions). To identify and

link these different versions, various automatic alignment

methods have been proposed in recent years. Such syn-
chronization methods have been used to facilitate naviga-

tion in large collections [1], to implement score following

in real-time [2–5], to compare different interpretations of

c© Siying Wang, Sebastian Ewert, Simon Dixon.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Siying Wang, Sebastian Ewert, Si-

mon Dixon. “Robust Joint Alignment of Multiple Versions of a Piece of

Music”, 15th International Society for Music Information Retrieval Con-

ference, 2014.

a piece [6], to identify cover songs [7] or to simplify com-

plex audio processing tasks [8].

In general, the goal of music synchronization is, given

a position in one version of a piece of music, to locate the

corresponding position in another version. To compute a

synchronization, existing methods align two versions of a

piece at a time, even if several relevant versions are avail-

able. For example, in [9, 10] a score of a piece is automat-

ically aligned to a corresponding audio recording, while

in [11] two acoustic realizations are being synchronized.

As shown previously, current methods yield in many cases

alignments of high accuracy [9–11]. However, musicians

can interpret a piece in diverse ways, which can lead to sig-

nificant local differences in terms of articulation and note

lengths, ornamental notes, or the relative loudness of notes

(balance). If such differences are substantial, the alignment

accuracy of state-of-the-art methods can drop significantly.

To increase alignment robustness for difficult cases, the

main idea in this paper is to exploit the fact that multiple

versions of a piece are often available and can be aligned in

a joint way. This way, we can exploit the additional infor-

mation that each version provides about how a certain po-

sition in a piece can be realized by a musician. As a conse-

quence, while two given recordings might be rather differ-

ent and hard to align, both of them might actually be more

similar to a third recording and including such a record-

ing within the alignment process can lead to an increase in

overall robustness. To compute our joint synchronization,

we modify a multiple sequence alignment method typically

employed in biological signal processing and combine it

with strategies developed in a musical context based on

Multiscale-DTW (FastDTW) and chroma-based onset fea-

tures for increased computational efficiency and synchro-

nization accuracy. In the following, we describe technical

details of this method in Section 2. Then, we report on

some of our experiments in Section 3. Conclusions and

prospects for future work are given in Section 4.

2. ALIGNMENT METHOD

Various methods have been proposed to align two given

data sequences, including Dynamic Time Warping (DTW)

and Hidden Markov Models (HMM) [2], Conditional Ran-

dom Fields (CRF) [9], and Particle Filter / Monte-Carlo

Sampling (MCS) based methods [4,5]. With the exception

of MCS methods, which are online methods, the remaining

three methods operate in an offline fashion and are quite
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Figure 1. Alignment of two interpretations of Chopin Op. 24
No. 2, measures 115-120: (a) Score for the six measures. (b)/(c)
Chroma features for an interpretation by Magin and Indjic, re-
spectively; chroma features with uniform energy distribution are
the result of silence in the recording. (d) Alignment results for
our baseline pairwise (gray) and proposed method (black).

similar from an algorithmic point of view. We describe our

proposed method as an extension to DTW. However, the

underlying ideas are applicable in HMM and CRF contexts

as well.

2.1 Baseline Pairwise Alignment

To summarize DTW-based alignment, let X := (x1, x2,
. . . , xN ) and Y := (y1, y2, . . . , yM ) be two feature se-

quences with xn, ym ∈ F , where F denotes a suitable fea-

ture space. Furthermore, let c : F ×F → R denote a local

cost measure on F . We define a resulting (N ×M) cost

matrix C by C(n,m) := c(xn, ym). An alignment be-

tween X and Y is defined as a sequence p = (p1, . . . , pL)
with p� = (n�,m�) ∈ [1 :N ]×[1 :M ] for 
 ∈ [1 :L] sat-

isfying 1 = n1 ≤ n2 ≤ . . . ≤ nL = N and 1 = m1 ≤
m2 ≤ . . . ≤ mL = M (boundary and monotonicity con-

dition), as well as p�+1 − p� ∈ {(1, 0), (0, 1), (1, 1)} (step

size condition). An alignment p having minimal total cost

among all possible alignments is called an optimal align-
ment. To determine such an optimal alignment, one recur-

sively computes an (N ×M)-matrix D, where the matrix

entry D(n,m) is the total cost of the optimal alignment

between (x1, . . . , xn) and (y1, . . . , ym):

D(n,m) := min

⎧⎪⎨⎪⎩
D(n− 1,m− 1) + w1C(n,m),

D(n− 1,m) + w2C(n,m),

D(n,m− 1) + w3C(n,m),

for n,m > 1. Furthermore, D(n, 1) :=
∑n

k=1 w2C(k, 1)

for n > 1, D(1,m) =
∑M

k=1 w3C(1, k) for m > 1, and

D(1, 1) := C(1, 1). The weights (w1, w2, w3) ∈ R
3
+

can be used to adjust the preference over the three step

sizes. By tracking the choice for the minimum starting

from D(N,M) back to D(1, 1), an optimal alignment can

be derived in a straightforward way [2]. In a musical con-

text, F typically denotes the space of normalized chroma

features, c is usually a cosine (or Euclidean) distance with

weights set to (w1, w2, w3) = (2, 1, 1) to remove a bias for

the diagonal direction [2, 11].

A main difficulty in aligning music stems from the de-

gree of freedom a musician has in interpreting a score,

in particular regarding the local tempo, balance (relative

loudness of concurrent notes), articulation and playing style.

If several differences occur together, standard alignment

methods sometimes fail to identify the musically correct

alignment. In Fig. 1(b)/(c), we see chroma features for

two interpretations of Chopin Op. 24 No. 2 measures 115-

120 (Fig. 1(a)) as performed by Magin and by Indjic, re-

spectively. Besides the tempo, we see differences in the

interpretation of pauses (the uniform energy distributions

in the features correspond to silence), articulation and in

the balance (relative loudness of notes). In this case, the

differences are significant such that pairwise DTW-based

approaches [10, 11] fail to compute the correct alignment,

see upper path in Fig. 1(d). The red dots indicate corre-

sponding beat positions in the two versions.

2.2 Joint Alignment of Multiple Versions

Comparing several versions of a piece, interpretations vary

in different ways and to different extents. If several ver-

sions of a piece are available, each version provides an

example of how a specific position in a piece can be real-

ized, and this additional information can be used to stabi-

lize the alignment for difficult sections. A straightforward

strategy to compute a joint alignment could be to extend

DTW to allow for more than two versions. For example,

to align three versions, one can define an order-3 cost ten-

sor in a straightforward way and apply the same dynamic

programming techniques as used in DTW [12] (note that

a cost matrix for two versions is an order-2 tensor). How-

ever, assuming that each feature sequence to be aligned is

roughly of length N , the time and memory requirement to

align K recordings would be in O(NK), which prohibits

the alignment of more than a very few recordings.

In computational biology, multiple sequence alignment

is a well-studied problem. Most popular are so called profile-
based methods and progressive alignment methods [12].

Profile-based methods employ a specific type of HMM,

which is trained via Expectation-Maximization (EM) on

the set of feature sequences to be aligned. Each state of

the resulting profile-HMM corresponds to a position in a

so called average-sequence: the sequence of means of the

observation probabilities of the HMM-states, see [12] for

details. A multiple synchronization is then computed by

aligning each sequence to the average-sequence via the

Viterbi algorithm. This procedure has been attempted in

a musical context with limited success [13]. We believe

this is due to, using EM training, whereby aligned features

are essentially averaged (with Gaussian observation proba-

bilites), which results in a loss of information and can lead

to a loss of alignment accuracy.

Using progressive alignment such averaging is not nec-

essary. The underlying idea is to successively build a data

structure referred to as a template, which provides efficient

access to several aligned feature sequences, see Fig. 2(a).
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Figure 2. Progressive alignment: Three aligned chroma se-
quences contained in the template (a) are compared to the chroma
sequence (b). The resulting individual cost matrices (c) are
merged into one (d), which is used to compute the alignment.
The white lines in (a) and (c) indicate the positions of gap sym-
bols.

By comparing a given feature sequence (Fig. 2(b)) to the

sequences contained in the template, the alignment can be

computed not only using one cost matrix (as in pairwise

alignment) but several matrices in parallel - one for each

sequence in the template (Fig. 2(c)). By suitably combin-

ing the information provided by each individual cost ma-

trix, the influence of strong local differences on the align-

ment, that often only occur between specific pairs of ver-

sions, can be attenuated. As shown in Section 3, this can

lead to a significant boost in alignment robustness.

To describe this procedure in more detail, we assume

that we have K different versions of a piece and that their

feature sequences are denoted by Xk = (xk
1 , . . . , x

k
Nk

) for

k ∈[1 :K]. In each step of the progressive alignment, the

template Z contains several of these feature sequences that

have been stretched to have the same length. Initially, Z
only consists of X1. The remaining feature sequences are

then successively aligned to Z, and after each alignment

Z is updated by adding one more sequence. To this end,

let Z̃ = (z̃1, . . . , z̃L̃) denote the current template which

contains k − 1 sequences of length L̃ (i.e. each z̃� con-

tains k − 1 features), Xk the sequence to be aligned, and

p = (p1, . . . , pL) =
(
(n1,m1), . . . , (nL,mL)

)
an align-

ment between Z̃ and Xk. Intuitively, to add Xk to Z̃, we

use p to stretch Z̃ and Xk such that corresponding fea-

tures are aligned and become part of the same element

of Z. However, whenever features need to be copied to

do the stretching (step sizes (1, 0) and (0, 1)), we rather

insert a special gap symbol instead of the features them-

selves. More precisely, let Z = (z1, . . . , zL) denote the

updated template, zn(k) denote the k-th feature in the n-

th element of Z, and G denote the gap symbol 1 . Set

z1 = (z̃1(1), . . . , z̃1(k−1), xk
1), then for l = (2, 3, . . . , L):

z� =

⎧⎪⎨⎪⎩
(z̃n�

(1), . . . , z̃n�
(k − 1), xk

m�
), p� − p�−1 = (1, 1)

(z̃n�
(1), . . . , z̃n�

(k − 1), G), p� − p�−1 = (1, 0)

(G, . . . , G, xk
m�

), p� − p�−1 = (0, 1)

1 Since chroma features contain only non-negative entries, the gap
symbol can often be encoded as a pseudo-feature having negative entries.

The gap symbol and its influence will be further discussed

in Section 3.

The alignment procedure itself is almost identical to

standard DTW; only the local cost measure has to be ad-

justed to take the properties of the template into account.

For a template Z comprising k−1 feature sequences and a

feature sequence X, we define a template-aware cost func-

tion cT : (F ∪G)k−1 ×F → R as

cT (zn, xm) =
k−1∑
r=1

{
c(zn(r), xm), zn(r) �= G,

CG, zn(r) = G,

where CG > 0 is a constant referred to as the gap penalty.

The influence a single additional recording can have us-

ing progressive alignment is illustrated in Fig. 1(d). Here,

we included a third performance by Poblocka in the align-

ment, which could be considered as being “between” the

two versions shown in Fig. 1 in terms of articulation style

and balance. As we can see, the resulting path (black) fol-

lows the ground-truth markings (red dots) quite closely and

improves significantly over the pairwise result.

2.3 Order of Alignments and Iterative Processing

The alignment of the first two versions in our progressive

approach is equivalent to standard pairwise alignment. Er-

rors in this first step influence to some degree all subse-

quent alignment steps. We discuss now two strategies that

can help to increase the reliability of the first few align-

ments in our progressive approach. First, the order in which

the alignments are computed is of importance, and we should

start with recordings that are easy to align. In computa-

tional biology, a common approach to identify a reasonable

order is referred to as the guide tree approach [12]. While

there are various ways to implement such an approach, we

consider the following procedure. First, for each pair of

recordings, we compute the total cost of an optimal align-

ment between the pair to identify the pair having the low-

est average cost, which is defined as the total cost of the

alignment divided by its length L. We call the feature se-

quences for the recordings in this pair X1 and X2. For the

next recording, we identify the one being jointly closest to

X1 and X2. To this end, we sum for each of the remaining

recordings the average cost of the alignments between the

recording and X1, and the recording and X2. We call the

feature sequence of the recording with the lowest sum X3.

We continue with this procedure until all recordings are in

order. We refer to this strategy as DTW-cost-based order.

While this strategy leads to a useful order, its computa-

tional costs are significant. In our experiments, we found

an alternative based on a much simpler strategy: We sorted

the versions according to their length, starting with the

shortest recordings. In the following, we refer to this strat-

egy as length-based order. In Section 3, we compare both

ordering strategies and discuss their behavior.

A second strategy to improve the reliability of the first

alignments is referred to as iterative progressive alignment.
The idea behind this strategy is, after all versions are aligned

and included in the template, to remove one version from
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ID Piece No. Rec. No. Pairs
M17-4 Opus 17 No. 4 62 1891
M24-2 Opus 24 No. 2 62 1891
M30-2 Opus 30 No. 2 34 561
M63-3 Opus 63 No. 3 81 3240
M68-3 Opus 68 No. 3 49 1176

Table 1. Chopin Mazurkas and their identifiers used in our ex-
periments. The last two columns indicate the number of perfor-
mances available for the respective piece and the number of eval-
uated unique pairs.

the template and realign it, starting with the first version

that was aligned. This way, errors made early in the pro-

gressive alignment can potentially be corrected. We imple-

mented this extension as well and discuss it in Section 3.

2.4 Increasing the Computational Efficiency and
Alignment Accuracy

Since progressive alignment shares its algorithmic roots

with standard DTW, we can incorporate extensions that

were successfully used with DTW-based methods. In par-

ticular, the methods described in [10, 14] employ a variant

of DTW referred to as multiscale DTW (FastDTW) to in-

crease the computational efficiency. The general idea is

to recursively project an alignment computed at a coarse

feature resolution level to a next higher resolution, and to

refine the projected alignment on that resolution. This way,

the matrix D only has to be evaluated around the projected

path. This multiscale approach typically leads to a signifi-

cant drop in runtime by up to a factor of 30, see [14].

Furthermore, the authors in [10] introduce a type of

features that indicate onset positions separately for each

chroma. These chroma-based onset features (DLNCO fea-

tures) are then combined with normalized chroma features.

As shown by the experiments in [10], these combined fea-

tures can lead to a significant increase in alignment accu-

racy for pairwise methods. In the following, we employ

the same features and cost measure as used in [10].

3. EXPERIMENTS

To illustrate the performance of our proposed method as

well as the influence of certain parameters, we conducted

a series of experiments using recordings taken from the

Mazurka Project 2 , which compiled a database of over 2700
recorded performances by more than 130 distinct pianists

for 49 Mazurkas composed by Frédéric Chopin. The record-

ings are dated between 1902 and today, and were made

under strongly varying recording conditions. For our ex-

periments, we employ a subset of five Mazurkas and 288
recordings, for which manually annotated beat positions

are available, see Table 1. Performances with structural

differences compared to the majority of recordings (such

as additional repetitions of a part of a piece) were excluded

from our experiments.

2 http://www.mazurka.org.uk

3.1 Evaluation Measure

To evaluate the accuracy of an alignment between two dif-

ferent versions of a piece, we employ the beat annotations

as ground truth. To this end, we use the alignment to lo-

cate for each annotated beat position in the one version

a corresponding position in the other version. Using the

manual beat annotations for the other version, we can then

compute the absolute difference between the correct beat

position and the one obtained from the alignment. By av-

eraging these differences for all beats, we obtain the aver-
age beat deviation (ABD) for a given alignment, which we

measure in milli-seconds. For our evaluation, we compute

this measure for each Mazurka and each pair of recordings.

For example, for M17-4 our setup contains 62 recordings,

which results in
(
62
2

)
= 1891 unique pairs and correspond-

ing average beat deviation values, see Table 1.

3.2 Pairwise vs Progressive Alignment

In a first experiment, we compare the alignment accuracy

for pairwise and progressive alignment. Since the pair-

wise method described in [10] employs the same features

and cost measure as our proposed progressive method, we

use [10] as a baseline (other pairwise methods [11] showed

a similar behavior). In particular, we use a temporal res-

olution of 20ms for both chroma and onset-indicator (DL-

NCO) features. The DTW weights are set to (w1, w2, w3) =
(2, 1.5, 1.5). As proposed in [10], we use the cosine dis-

tance for the chroma features and the Euclidean distance

for the DLNCO features. Moreover, for our proposed pro-

gressive alignment, we use the length-based alignment or-

der and set the gap penalty parameter to the highest value

the cost measure c can assume. The distribution of the av-

erage beat deviation (ABD) values for all pairs is summa-

rized for each of the five Mazurkas separately in the box-

plots 3 shown in Fig. 3, as well as in column A and B in

Table 2.

Comparing the results for pairwise and progressive align-

ment, we can see that the mean ABD drops slightly us-

ing the progressive approach for most examples. For ex-

ample, the mean ABD for M17-4 drops from 68ms using

pairwise alignment to 59ms using our progressive method

(decrease by 13%). On average, the mean ABD drops by

14%. More importantly though, the progressive alignment

is significantly more stable. In particular, the inter-quartile

range is smaller for all five Mazurkas using the progres-

sive alignment (Fig. 3). Further, the number of alignments

with a very high ABD is significantly reduced. This can

be measured by the standard deviation (std), which for

M17-4 using pairwise alignment is 19ms, while progres-

sive alignment leads to an std of 12ms. This difference is

even greater for other Mazurkas (M24-2 and M63-3). On

average, the std is reduced by more than 50%. So over-

all, while our proposed procedure also led to an increase in

3 We use standard boxplots: the red bar indicates the median, the blue
box gives the 25th and 75th percentiles (p25 and p75), the black bars
correspond to the smallest data point greater than p25 − 1.5(p75 − p25)
and the largest data point less than p75 + 1.5(p75 − p25), and the red
crosses are called outliers.
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Figure 3. Comparison of the baseline pairwise alignment method with our proposed progressive alignment method. The boxplots
illustrate the distribution of the average beat deviation values for each Mazurka separately.

M17-4 [A] [B] [C] [D] [E] [F] [G]
min 15 15 17 15 15 15 19
mean 68 59 68 63 76 80 91
max 210 102 118 116 789 129 252
std 19 12 13 13 94 13 22

M24-2
min 12 15 17 12 15 16 11
mean 39 31 38 33 31 46 56
max 311 68 118 59 68 98 320
std 20 6 12 7 6 9 22

M30-2
min 7 7 7 7 16 6 6
mean 30 30 31 29 31 40 43
max 61 46 49 53 46 64 80
std 8 5 6 6 5 7 9

M63-3
min 11 13 15 12 13 14 9
mean 46 40 46 40 40 53 62
max 1000 97 99 99 97 109 1000
std 32 11 12 11 11 11 33

M68-3
min 14 17 21 15 17 21 12
mean 58 46 57 53 46 71 86
max 172 89 144 105 89 179 335
std 23 13 18 15 13 21 34

Table 2. Statistics over the average beat deviation (ABD) values
for the five Mazurkas and for 7 different alignment approaches
(see text). [A]: Pairwise alignment. [B]: Proposed progressive
alignment. [C]: Proposed without gap symbols. [D]: Proposed
using DTW-cost-based alignment order. [E]: Proposed using it-
erative alignment. [F]: Proposed without DLNCO features. [G]:
Pairwise without DLNCO features. All values in milli-seconds.

alignment accuracy on average, the main effect is a gain in

robustness against strongly incorrect alignments.

3.3 Gap Penalties

In the next experiment, we investigate the influence of the

gap penalty parameter by testing a slightly modified ver-

sion of our proposed method. To this end, we modify

the way the template is creating by setting z� = (z̃n�
(1),

. . . , z̃n�
(k − 1), xk

m�
) for 
 ∈ [1 :L], i.e. we do not insert

gap symbols but copy features as necessary to create the

new template (comparing to Section 2.2). The results us-

ing this modification are shown in column C in Table 2.

Comparing these values to our proposed method (column

B) and the reference pairwise method (column A), we see

that this gap-less version typically improves over pairwise

alignment in terms of maximum ABD values and the stan-

dard deviation, just as the proposed method. For example,

for M17-4, the max ABD in column A is 210ms, while the

max ABD in column C is 118ms. However, we do not ob-

serve a decrease in the mean ABD compared to pairwise

alignment. For example, for M17-4, while using gaps the

mean ABD drops from 68ms (column A) to 59ms (column

B), it stays on a similar level in column C (68ms). The

reason could be that by copying the features to create the

template, some temporal precision is lost and this results

in a minor loss of alignment accuracy.

3.4 Alignment Order

Next, we investigate the influence of the order in which we

compute the progressive alignment, comparing the length-

based and the DTW-cost-based strategy (see Section 2.3).

The results are given in columns B and D of Table 2, re-

spectively. As we can see, there are no significant differ-

ences between both strategies. For example, for M17-4,

the mean ABD using the length-based strategy is 59ms

(column B), while using the DTW-cost-based strategy the

ABD slightly increases to 63ms. The other statistical val-

ues show a similar behavior. Since these results do not

disclose any obvious advantages for the DTW-cost-based

strategy, we therefore propose to simply use the length-

based strategy. Interestingly, using the length-based strat-

egy but starting with the longest recordings led to worse

results.

Since (local) tempo differences can usually be handled

quite well using DTW, it is not obvious why sorting by

length yields a useful order. However, the fact that it does

could indicate that there might be a correlation between

the chosen tempo and other expressive parameters, such

as articulation or balance, as strong differences in these

parameters typically lead to difficulties for the alignment.

Furthermore, the fact that according to our evaluation the

shorter recordings were easier to align, could indicate that

a high tempo could limit the range of possible realizations

of expressive parameters in a performance. However, fur-

ther studies would be necessary to confirm such theories.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

87



3.5 Iterative Alignment

In a further experiment, we investigate whether iterative

processing could further improve the alignment accuracy,

compare Section 2.3. To this end, we use two iterations:

the first iteration corresponds to progressive alignment, and

in the second iteration, each version is removed from the

template once and is then realigned. The results for this

extension are given in column E of Table 2. Overall, the

iterative variant led to a slight decrease in ABD in almost

all examples, which is not even visible in Table 2 as we

rounded all values. On the contrary, we observed a signif-

icant increase in ABD for M17-4 using the iterative vari-

ant. Here, the realignment led to a misalignment of several

shorter recordings. Therefore, the results do not indicate

any significant advantages of using iterative alignment.

3.6 Influence of Onset-Indicator Features

In a final experiment, we investigate the influence of the

chroma-based onset-indicator (DLNCO) features [10] on

the alignment accuracy when using progressive alignment.

To this end, we disabled the DLNCO features in our pro-

posed method, and computed the alignment only based on

the normalized chroma features. The results of this exper-

iment are given in column F in Table 2. As a further ref-

erence, we disabled the DLNCO features in our baseline

pairwise method as well (column G).

As we can see, the minimum over the ABD values re-

mains unaffected for most of the Mazurkas, which means

that easy to align pairs can be aligned with chroma fea-

tures alone just as well. For example, for M17-4, the mini-

mum value in column F is identical to the one in column B.

However, we see a significant increase in ABD in all other

statistical values. For example, the mean ABD for M17-

4 for our proposed method including DLNCO features is

59ms (column B), while disabling the DLNCO leads to a

mean ABD of 80ms (column F). Similar observations can

be made comparing the pairwise results. Overall, the re-

sults seem to indicate that including onset-indicator fea-

tures indeed leads to a significant increase in alignment ac-

curacy also for progressive alignments.

4. CONCLUSION

In this paper, we introduced a method for aligning mul-

tiple versions of a piece of music in a joint way. The

availability of multiple versions to compare against during

the alignment, stabilized the comparison for hard-to-align

recordings and led to an overall increase in alignment ac-

curacy and, in particular, in alignment robustness. Our ex-

periments using real-world recordings from the Mazurka

Project demonstrated that our proposed method can indeed

be used to raise the alignment accuracy compared to pre-

vious methods that are limited to pairwise alignments. For

the future, we plan to further investigate the behaviour of

our procedure. In particular, we plan to analyze how other

ordering strategies influence the alignment accuracy. We

will also further explore different strategies to implement

a cost for the gap symbol and to make it more adaptive.
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ABSTRACT

The lack of a formalism for “the problem of music descrip-

tion” results in, among other things: ambiguity in what

problem a music description system must address, how it

should be evaluated, what criteria define its success, and

the paradox that a music description system can reproduce

the “ground truth” of a music dataset without attending to

the music it contains. To address these issues, we formal-

ize the problem of music description such that all elements

of an instance of it are made explicit. This can thus inform

the building of a system, and how it should be evaluated in

a meaningful way. We provide illustrations of this formal-

ism applied to three examples drawn from the literature.

1. INTRODUCTION

Before one can address a problem with an algorithm (a fi-

nite series of well-defined operations that transduce a well-

specified input into a well-specified output) one needs to

define and decompose that problem in a way that is com-

patible with the formal nature of algorithms [17]. A very

simple example is the problem of adding any two posi-

tive integers. Addressing this problem with an algorithm

entails defining the entity “positive integer”, the function

“adding”, and then producing a finite series of well-defined

operations that applies the function to an input of two pos-

itive integers to output the correct positive integer.

A more complex example is “the problem of music de-

scription.” While much work in music information re-

trieval (MIR) has proposed systems to attempt to address

the problem of music description [4, 12, 29], and much

work attempts to evaluate the capacity of these systems for

addressing that problem [9, 20], we have yet to find any

work that actually defines it. (The closest we have found is

that of [24].) Instead, there are many allusions to the prob-

lem: predict the “genre” of a piece of recorded music [25];

label music with “useful tags” [1]; predict what a listener

will “feel” when “listening” to some music [29]; find mu-

sic “similar” to some other music [26]. These allusions are

deceptively simple, however, since behind them lie many

c© Bob L. Sturm, Rolf Bardeli, Thibault Langlois, Valentin

Emiya.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Bob L. Sturm, Rolf Bardeli, Thibault

Langlois, Valentin Emiya. “Formalizing the Problem of Music Descrip-

tion”, 15th International Society for Music Information Retrieval Confer-

ence, 2014.

problems and questions that have major repercussions on

the design and evaluation of any proposed system. For ex-

ample, What is “genre”? What is “useful”? How is “feel-

ing” related to “listening”? “Similar” in what respects?

With respect to the problem of music description, some

work in MIR discusses the meaningfulness, worth, and fu-

tility of designing artificial systems to describe music [28];

the idea of and the difficulty in “ground truth” [3, 6, 15];

the size of datasets [5], a lack of statistics [10], the exis-

tence of bias [16], and the ways such systems are evalu-

ated [21, 22, 27]. Since a foundational goal of MIR is to

develop systems that can imitate the human ability to de-

scribe music, these discussions are necessary. However,

what remains missing is a formal definition of the problem

of music description such that it can be addressed by algo-

rithms, and relevant and valid evaluations can be designed.

In this work, we formalize the problem of music de-

scription and try to avoid ambiguity arising from seman-

tics. This leads to a rather abstract form, and so we illus-

trate its aspects using examples from the literature. The

most practical benefit of our formalization is a specifica-

tion of all elements that should be explicitly defined when

addressing an instance of the problem of music description.

2. FORMALISM

We start our formalization by defining the domain of the

problem of music description. In particular, we discrimi-

nate between the music that is to be described and a record-

ing of it since the former is intangible and the latter is data

that a system can analyze. We then define the problem

of music description, a recorded music description system

(RMDS), and the analysis of such a system. This leads to

the central role of the use case.

2.1 Domain

Denote a music universe, Ω, a set of music, e.g., Vivaldi’s

“The Four Seasons”, the piano part of Gershwin’s “Rhap-

sody in Blue”, and the first few measures of the first move-

ment of Beethoven’s Fifth Symphony. A member of Ω is

intangible. One cannot hear, see or point to any member

of Ω; but one can hear a performance of Vivaldi’s “The

Four Seasons”, read sheet music notating the piano part

of Gershwin’s “Rhapsody in Blue”, and point to a printed

score of Beethoven’s Fifth Symphony. Likewise, a recorded

performance of Vivaldi’s “The Four Seasons” is not Vi-

valdi’s “The Four Seasons”, and sheet music notating the

piano part of Gershwin’s “Rhapsody in Blue” is not the

piano part of Gershwin’s “Rhapsody in Blue”.
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In the tangible world, there may exist tangible record-

ings of the members of Ω. Denote the tangible music record-
ing universe byRΩ. A member ofRΩ is a recording of an

element of ω ∈ Ω. A recording is a tangible object, such

as a printed CD or score. Denote one recording of ω ∈ Ω
as rω ∈ RΩ. There might be many recordings of an ω in

RΩ. We say the music ω is embedded in rω; it enables for

a listener an indirect sense of ω. For instance, one can hear

a live or recorded performance of ω, and one can read a

printed score of ω. The acknowledgment of and distinc-

tion between intangible music and tangible recordings of
music is essential since systems cannot work with intangi-

ble music, but only tangible recordings.

2.2 Music Description and the Use Case

Denote a vocabulary, V , a set of symbols or tokens, e.g.,

“Baroque”, “piano”, “knock knock”, scores employing com-

mon practice notation, the set of real numbers R, other mu-

sic recordings, and so on. Define the semantic universe as

SV,A := {s = (v1, . . . , vn)|n ∈ N,

∀1 ≤ i ≤ n[vi ∈ V] ∧A(s)} (1)

where A(·) encompasses a semantic rule, for instance, re-

stricting SV,A to consist of sequences of cardinality 1. Note

that the description s is a sequence, and not a vector or a

set. This permits descriptions that are, e.g., time-dependent,

such as envelopes, if V and A(·) permit it. In that case,

the order of elements in s could be alternating time val-

ues with envelope values. Descriptions could also be time-

frequency dependent.

We define music description as pairing an element of

Ω or RΩ with an element of SV,A. The problem of music
description is to make the pairing acceptable with respect
to a use case. A use case provides specifications of Ω and

RΩ, V and A(·), and success criteria. Success criteria de-

scribe how music or a music recording should be paired

with an element of the semantic universe, which may in-

volve the sanity of the decision (e.g., tempo estimation

must be based on the frequency of onsets), the efficiency of

the decision (e.g., pairing must be produced under 100 ms

with less than 10 MB of memory), or other considerations.

To make this clearer, consider the following use case.

The music universe Ω consists of performances by Buck-

wheat Zydeco, movements of Vivaldi’s “The Four Sea-

sons”, and traditional Beijing opera. The tangible music

recording universe RΩ consists of all possible 30-second

digital audio recordings of the elements in Ω. Let the vo-

cabulary V = {“Blues”, “Classical”}; and define A(s) :=
[|s| ∈ {0, 1}]. The semantic universe is thus, SV,A = {(),
(“Blues”), (“Classical”)}. There are many possible suc-

cess criteria. One is to map all recordings of Buckwheat

Zydeco to “Blues”, map all recordings of Vivaldi’s “The

Four Seasons” to “Classical”, and map all recordings of

traditional Beijing opera to neither. Another is to map no

recordings of Buckwheat Zydeco and Vivaldi’s “The Four

Seasons” to the empty sequence, and to map any recording

of traditional Beijing opera to either non-empty sequence

with a probability less than 0.1.

2.3 Recorded Music Description Systems

A recorded music description system (RMDS) is a map

from the tangible music recording universe to the semantic

universe:

S : RΩ → SV,A. (2)

Building an RMDS means making a map according to well-

specified criteria, e.g., using expert domain knowledge, au-

tomatic methods of supervised learning, and a combina-

tion of these. An instance of an RMDS is a specific map

that is already built, and consists of four kinds of com-

ponents [21]: algorithmic (e.g., feature extraction, classi-

fication, pre-processing), instruction (e.g., description of

RΩ and SV,A), operator(s) (e.g., the one inputting data and

interpreting output), and environmental (e.g., connections

between components, training datasets). It is important to

note that S is not restricted to map any recording to a sin-

gle element of V . Depending on V and A(·), SV,A could

consist of sequences of scalars and vectors, sets and se-

quences, functions, combinations of all these, and so on. S

could thus map a recording to many elements of V .

One algorithmic component of an RMDS is a feature
extraction algorithm, which we define as

E : RΩ → SF,A′ (3)

i.e., a map from RΩ to a semantic universe built from the

vocabulary of a feature space F and semantic rule A′(·).
For instance, if F := C

M , M ∈ N, and A′(s) := [|s| = 1],
then the feature extraction maps a recording to a single

M -dimensional complex vector. Examples of such a map

are the discrete Fourier transform, or a stacked series of

vectors of statistics of Mel frequency cepstral coefficients.

Another algorithmic component of an RMDS is a classifi-
cation algorithm, which we define:

C : SF,A′ → SV,A (4)

i.e., a map from one semantic universe to another. Ex-

amples of such a map are k-nearest neighbor, maximum

likelihood, support vector machine, and a decision tree.

To make this clearer, consider the RMDS named “RT

GS” built by Tzanetakis and Cook [25]. E maps sam-

pled audio signals of about 30-s duration to SF,A′ , defined

by single 19-dimensional vectors, where one dimension is

spectral centroid mean, another is spectral centroid vari-

ance, and so on. C maps SF,A′ to SV,A, which is defined

by V = {“Blues”, “Classical”, “Country”, “Disco”, “Hip

hop”, “Jazz”, “Metal”, “Pop”, “Reggae”, “Rock”}, and

A(s) := [|s| = 1]. This mapping involves maximizing the

likelihood of an element of SF,A′ among ten multivariate

Gaussian models created with supervised learning.

Supervised learning involves automatically building com-

ponents of an S, or defining E and C, given a training
recorded music dataset: a sequence of tuples of recordings

sampled fromRΩ and elements of SV,A, i.e.,

D := {(ri, si) ∈ RΩ × SV,A|i ∈ I} (5)

The set I indexes the dataset. We call the sequence (si)i∈I
the ground truth of D. In the case of RT GS, its training
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recorded music dataset contains 900 tuples randomly se-

lected from the dataset GTZAN [22,25]. These are selected

in a way such that the ground truth of D has no more than

100 of each element of SV,A.

2.4 Analysis of Recorded Music Description Systems

Given an RMDS, one needs to determine whether it ad-

dresses the problem of music description. Simple ques-

tions to answer are: does Ω and RΩ of the RMDS encom-

pass those of the use case? Does the SV,A of the RMDS

encompass that of the use case? A more complex ques-

tion could be, does the RMDS meet the success criteria

of the use case? This last question involves the design,

implementation, analysis, and interpretation of valid ex-

periments that are relevant to answering hypotheses about

the RMDS and success criteria [21, 27]. Answering these

questions constitutes an analysis of an RMDS.

Absent explicit success criteria of a use case, a standard

approach for evaluating an RMDS is to compute a vari-

ety of figures of merit (FoM) from its “treatment” of the

recordings of a testing D that exemplify the input/output

relationships sought. Examples of such FoM are mean

classification accuracy, precisions, recalls, and confusions.

An implicit belief is that the correct output will be pro-

duced from the input only if an RMDS has learned criteria

relevant to describing the music. Furthermore, it is hoped

that the resulting FoM reflect the real world performance

of an RMDS. The real world performance of an RMDS

are the FoM that result from an experiment using a testing

recording music dataset consisting of all members in RΩ,

rather than a sampling of them. If this dataset is out of

reach, statistical tests can be used to determine significant

differences in performance between two RMDS (testing

the null hypothesis, “neither RMDS has ‘learned better’

than the other”), or between the RMDS and that of picking

an element of SV,A independent of the element from RΩ

(testing the null hypothesis, “The RMDS has learned noth-

ing”). These statistical tests are accompanied by implicit

and strict assumptions on the measurement model and its

appropriateness to describe the measurements made in the

experiment [2, 8].

As an example, consider the evaluation of RT GS dis-

cussed above [25]. The evaluation constructs a testing D
from the 100 elements of the dataset GTZAN not present in

the training D used to create the RMDS. They treat each

of the 100 recordings in the testing D with RT GS, and

compare its output with the ground truth. From these 100

comparisons, they compute the percentage of outputs that

match the ground truth (accuracy). Whether or not this is

a high-quality estimate of the real world accuracy of RT

GS depends entirely upon the definition of Ω, RΩ, SV,A,

as well as the testing D and the measurement model of the

experiment.

There are many serious dangers to the interpretation of

the FoM of an RMDS as reflective of its real world per-

formance: noise in the measurements, an inappropriate

measurement model [2], a poor experimental design and

errors of the third kind [14], the lack of error bounds or

error bounds that are too large [8], and several kinds of

bias. One kind of bias comes from the very construction

of testing datasets. For instance, if the testing dataset is the

same as the training dataset, and the set of recordings in the

dataset is a subset ofRΩ, then the FoM of an RMDS com-

puted from the treatment may not indicate its real world

performance. This has led to the prescription in machine

learning to use a testing dataset that is disjoint with the

training dataset, by partitioning for instance [13]. This,

however, may not solve many other problems of bias as-

sociated with the construction of datasets, or increase the

relevance of such an experiment with measuring the extent

to which an RMDS has learned to describe the music in Ω.

2.5 Summary

Table 1 summarizes all elements defined in our formaliza-

tion of the problem of music description, along with exam-

ples of them. These are the elements that must be explic-

itly defined in order to address an instance of the problem

of music description by algorithms. Central to many of

these are the definition of a use case, which specifies the

music and music recording universe, the vocabulary, the

desired semantic universe, and the success criteria of an

acceptable system. (Note that “use case” is not the same

as “user-centered.”) If the use case is not unambiguously

specified, then a successful RMDS cannot be constructed,

relevant and valid experiments cannot be designed, and the

analysis of an RMDS cannot be meaningful. Table 1 can

serve as a checklist for the extent to which an instance of

the problem of music description is explicitly defined.

3. APPLICATION

We now discuss two additional published works in the MIR

literature in terms of our formalism.

3.1 Dannenberg et al. [7]

The use cases of the RMDS employed by Dannenberg et

al. [7] are motivated by the desire for a mode of communi-

cation between a human music performer and an accompa-

nying computer that is more natural than physical interac-

tion. The idea is for the computer to employ an RMDS to

describe the acoustic performance of a performer in terms

of several “styles.” Dannenberg et al. circumvent the need

to define any of these “styles” by noting, “what really mat-

ters is the ability of the performer to consistently produce

intentional and different styles of playing at will” [7]. As

a consequence, the use cases and thus system analysis are

centered on the performer.

One use case considered by Dannenberg et al. defines

V = {“lyrical”, “frantic”, “syncopated”, “pointillistic”,

“blues”, “quote”, “high”, “low”}, and the semantic rule

A(s) := [|s| ∈ {1}]. The semantic universe SV,A is then

all single elements of V . The music universe Ω is all possi-

ble music that can be played or improvised by the specific

performer in these “styles.” The tangible music record-

ing universe RΩ is all possible 5-second acoustic record-

ings of the elements of Ω. Finally, the success criteria of

this particular problem of music description includes the

following requirements: reliable for a specific performer

in an interactive performance, classifier latency of under
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Element (Symbol) Definition Example
music universe (Ω) a set of (intangible) music {“Automatic Writing” by R. Ashley}
tangible music recording
universe (RΩ)

a set of tangible recordings of all members of Ω {R. Ashley, “Automatic Writing”, LCD
1002, Lovely Music, Ltd., 1996}

recording (rω) a member of RΩ a 1-second excerpt of the 46 minute
recording of “Automatic Writing” from
LCD 1002

vocabulary (V) a set of symbols {“Robert”, “french woman”, “bass in
other room”, “Moog”} ∪ [0, 2760]

semantic universe (SV,A) {s = (v1, . . . , vn)|n ∈ N, ∀1 ≤ i ≤ n[vi ∈ V] ∧ A(s)}, i.e.,
the set of all sequences of symbols from V permitted by the
semantic rule A(·)

{(“Robert”, 1), (“Robert”, “Moog”,
4.3), (“french woman”, 104.3), (“french
woman”, “Moog”, 459), . . .}

semantic rule (A(s)) a Boolean function that defines when sequence s is “permissi-
ble”

A(s) :=
[
(|s| ∈ {2, 3, 4, 5}) ∧

({v1, . . . , v|s|−1} ⊆ {“Robert”,
“french woman”, “bass in other room”,
“Moog”} ∪ {}) ∧ (v|s| ∈ [0, 2760])

]
music description the pairing of an element of Ω or RΩ with an element of SV,A label the events (character, time) in record-

ing LCD 1002 of “Automatic Writing” by
R. Ashley

the problem of music de-
scription

make this pairing acceptable with respect to the success criteria
specified by the use case

make this pairing such that F-score of
event “Robert” is at least 0.9

use case specification of Ω,RΩ,V, A(s), and success criteria see all above
system a connected set of interacting and interdependent components

of four kinds (operator(s), instructions, algorithms, environ-
ment) that together address a use case

system created in the Audio Latin Genre
Classification task of MIREX 2013 by or-
ganizer from submission “AP1” and fold 1
of LMD [18]

operators agent(s) that employ the system, inputting data, and interpret-
ing outputs

Audio Latin Genre Classification orga-
nizer of MIREX 2013

instructions specifications for the operator(s), like an application program-
ming interface

MIREX 2013 input/output specifications
for Train/Test tasks; “README” file in-
cluded with “AP1”

algorithm a finite series of well-defined ordered operations to transduce
an input into an output

“Training.m” and “Classifying.m” MAT-
LAB scripts in “AP1”, etc.

environment connections between components, external databases, the
space within which the system operates, its boundaries

folds 2 and 3 of LMD [18], MIREX com-
puter cluster, local MATLAB license file,
etc.

recorded music description
system (RMDS) (S)

S : RΩ → SV,A, i.e., a map from RΩ to SV,A “RT GS” evaluated in [25]

feature extraction algorithm
(E)

E : RΩ → SF,A′ , i.e., a map from RΩ to an element of a
semantic universe based on the feature vocabulary F and se-
mantic rule A′(s)

compute using [19] the first 13 MFCCs
(including zeroth coefficient) from a
recording

feature vocabulary (F) a set of symbols R
13

classification algorithm (C) C : SF,A′ → SV,A, i.e., a map from SF,A′ to the semantic
universe

single nearest neighbor

recorded music dataset D := ({rω ∈ RΩ, s ∈ SV,A}i)i∈I , i.e., a sequence of tuples
of recordings and elements of the semantic universe, indexed
by I

GTZAN [22, 25]

“ground truth” of D (si)i∈I , i.e., the sequence of “true” elements of the semantic
universe for the recordings in D

in GTZAN: {“blues”, “blues”, . . . , “clas-
sical”, . . . , “country”, . . .}

analysis of an RMDS answering whether an RMDS can meet the success criteria of
a use case with relevant and valid experiments

designing, implementing, analyzing and
interpreting experiments that validly an-
swer, “Can RT GS [25] address the needs
of user A?”

experiment principally in service to answering a scientific question, the
mapping of one or more RMDS to recordings of D, and the
making of measurements

apply RT GS to GTZAN, compare its out-
put labels to “ground truth”, and compute
accuracy

figure of merit (FoM) performance measurement of an RMDS from an experiment classification accuracy of RT GS in
GTZAN

real world performance of
an RMDS

the figure of merit expected if an experiment with an RMDS
uses all of RΩ

classification accuracy of RT GS

Table 1. Summary of all elements defined in the formalization of the problem of music description, with examples.

5 seconds. The specific definition of “reliable” might in-

clude high accuracy, high precision in every class, or only

in some classes.

Dannenberg et al. create an RMDS by using a training

dataset of recordings curated from actual performances, as

well as collected in a more controlled fashion in a lab-

oratory. The ground truth of the dataset is created with

input from performers. The feature extraction algorithm

includes algorithms for pitch detection, MIDI conversion,

and the computation of 13 low-level features from the MIDI

data. One classification algorithm employed is maximum

likelihood using a naive Bayesian model.

The system analysis performed by Dannenberg et al. in-

volve experiments measuring the mean accuracy of all sys-
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tems created and tested with 5-fold cross validation. Fur-

thermore, they evaluate a specific RMDS they create in the

context of a live music performance. From this they ob-

serve three things: 1) the execution time of the RMDS is

under 1 ms; 2) the FoM of the RMDS found in the lab-

oratory evaluation is too optimistic for its real world per-

formance in the context of live performance; 3) using the

confidence of the classifier and tuning a threshold parame-

ter provides a means to improve the RMDS by reducing its

number of false positives.

3.2 Turnbull et al. [24]

Turnbull et al. [24] propose several RMDS that work with

a vocabulary consisting of 174 unique “musically relevant”

words, such as “Genre–Brit Pop”, “Usage-Reading”, and

“NOT-Emotion–Bizarre / Weird”. A(s) := [|s| = 10 ∧
∀i �= j(vi �= vj)], and so the elements of SV,A are tuples

of ten unique elements of V . The music universe Ω con-

sists of at least 502 songs (the size of the CAL500 dataset),

such as “S.O.S.” performed by ABBA, “Sweet Home Al-

abama” performed by Lynyrd Skynyrd, and “Fly Me to the

Moon” sung by Frank Sinatra. The tangible music record-

ing universe RΩ is composed of MP3-compressed record-

ings of entire music pieces. The RMDS sought by Turnbull

et al. aims “[to be] good at predicting all the words [in V]”,

or “produce sensible semantic annotations for an acousti-

cally diverse set of songs.” Since “good”, “sensible” and

“acoustically diverse” are not defined, the success criteria

is ambiguous. Ω is also likely much larger than 502 songs.

The feature extraction algorithm in the RMDS of Turn-

bull et al. maps a music recording to a semantic universe

built from a feature vocabulary F := R
39, and the semantic

rule A′(s) := [|s| = 10000]. That is, the algorithm com-

putes from an audio recording 13 MFCC coefficients on

23ms frames, concatenates the first and second derivatives

in each frame, and randomly selects 10000 feature vec-

tors from all those extracted. The classification algorithm

in the RMDS uses a a maximum a posteriori decision cri-

terion, with conditional probabilities of features modelled

by a Gaussian mixture model (GMM) of a specified order.

One RMDS uses expectation maximization to estimate the

parameters of an 8-order GMM from a training dataset.

Turnbull et al. build an RMDS using a training dataset

of 450 elements selected from CAL500. They apply this

RMDS to the remaining elements of CAL500, and mea-

sure how its output compares to the ground truth. When

the ground truth of a recording in CAL500 does not have

10 elements per the semantic rule of the semantic universe,

Turnbull et al. randomly add unique elements of V , or

randomly remove elements from the ground truth of the

recording until it has cardinality 10.

Turnbull et al. compute from an experiment FoM such

as mean per-word precision. Per-word precision is, for a

v ∈ V and when defined, the percentage of correct map-

pings of the system from the recordings in the test dataset

to an element of the semantic universe that includes v.

Mean per-word precision is thus the mean of the |V| per-

word precisions. Turnbull et al. compare the FoM of the

RMDS to other systems, such as a random classifier and

a human. They conclude that their best RMDS is slightly

worse than human performance on “more ‘objective’ se-

mantic categories [like instrumentation and genre]” [24].

The evaluation, measuring the amount of ground truth re-

produced by a system (human or not) and not the sensi-

bility of the annotations, has questionable relevance and

validity to the ambiguous use case.

4. CONCLUSION

Formalism can reveal when a problem is not adequately de-

fined, and how to explicitly define it in no uncertain terms.

An explicit definition of a problem shows how to evaluate

solutions in relevant and valid ways. It is in this direction

that we move with this paper for the problem of music de-

scription, the spirit of which is encapsulated by Table 1.

The unambiguous definition of the use case is central for

addressing an instance of the problem of music description.

We have discussed several published RMDS within this

formalism. The work of Dannenberg et al. [7] provides

a good model since its use case and analysis are clearly

specified — both center on a specific music performer —

and through evaluating the system in the real world they

actually complete the research and development cycle to

improve the system [27]. The use cases of the RMDS built

by Tzanetakis and Cook [25] and Turnbull et al. [24] are

not specified. In both cases, a labeled dataset is assumed to

provide sufficient definition of the problem. Turnbull et al.

suggest a success criterion of annotations being “sensible,”

but the evaluation only measures the amount of ground

truth reproduced. Due to the lack of definition, we are thus

unsure what problem either of these RMDS is actually ad-

dressing, or whether either of them is actually considering

the music [23]. An analysis of an RMDS depends on an

explicit use case. The definition of the use case in Dan-

nenberg et al. [7] renders this question irrelevant: all that

is needed is that the RMDS meets the success criteria of a

given performer, which is tested by performing with it.

While we provide in this paper a formalization of the

problem of music description, and a checklist of the com-

ponents necessary to define an instance of such a problem,

it does not describe how to solve any specific problem of

music description. We do not derive restrictions on any

of the components of the problem definition, or show how

datasets should be constructed to guarantee an evaluation

can result in good estimates of real world performance.

Our future work aims in these directions. We will inco-

prorate the formalism of the design and analysis of com-

parative experiments [2,21], which will help define the no-

tions of relevance and validity when it comes to analyzing

RMDS. We seek to incorporate notions of learning and in-

ference [13], e.g., to specify what constitutes the building

of a “good” RMDS using a training dataset (where “good”

depends on the use case). We also seek to explain more

formally two paradoxes that have been observed. First,

though an RMDS is evaluated in a test dataset to repro-

duce a large amount of ground truth, it appears to not be

a result of the consideration of characteristics in the music

universe [20]. Second, though artificial algorithms have
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none of the extensive experience humans have in music lis-

tening, description, and culture, they can reproduce ground

truth consisting of extremely subjective and culturally cen-

tered concepts like genre [11].
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ABSTRACT

Music Information Retrieval (MIR) is a multi-disciplin-

ary research area that aims to automate the access to large-

volume music data, including browsing, retrieval, storage,

etc. The work that we present in this paper tackles a non-

trivial problem in the field, namely music genre classifi-

cation, which is one of the core tasks in MIR. In our pro-

posed approach, we make use of association analysis to

study and predict music genres based on the acoustic fea-

tures extracted directly from music. In essence, we build

an associative classifier, which finds inherent associations

between content-based features and individual genres and

then uses them to predict the genre(s) of a new music piece.

We demonstrate the feasibility of our approach through a

series of experiments using two publicly available music

datasets. One of them is the largest available in MIR and

contains real world data, while the other has been widely

used and provides a good benchmarking basis. We show

the effectiveness of our approach and discuss various re-

lated issues. In addition, due to its associative nature, our

classifier can assign multiple genres to a single music piece;

hopefully this would offer insights into the prevalent multi-

label situation in genre classification.

1. INTRODUCTION

The recent advances in technology, such as data storage

and compression, data processing, information retrieval,

and artificial intelligence, facilitate music recognition, mu-

sic composition, music archiving, etc. The Internet is fur-

ther promoting the enormous growth of digital music col-

lections. Millions of songs previously in physical formats

are now readily available through instant access, stimulat-

ing and motivating research efforts in meeting new chal-

lenges. Among them is Music Information Retrieval (MIR),
an interdisciplinary area that attracts practitioners from in-

formation retrieval, computer science, musicology, psy-

chology, etc. One of the main tasks in MIR is the design

and implementation of algorithmic approaches to manag-

ing large collections of digital music, including automatic

c© Tom Arjannikov, John Z. Zhang.
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cense (CC BY 4.0). Attribution: Tom Arjannikov, John Z. Zhang. “AN
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TO GENRE CLASSIFICATION IN MUSIC”, 15th International Society

for Music Information Retrieval Conference, 2014.

tag annotation, recommendation, playlist generation, etc.

The work to be presented in this paper explores the

feasibility of applying association analysis to music genre

classification. Through our experience with music data,

we have found that there are some inherent associations

between audio characteristics and human assigned music

genre labels. Accordingly, it would be desirable to see

whether these associations, if found, can provide insight

into genre classification of music. Our work in this paper

is geared toward this target.

In a nutshell, our proposed approach uses music data it-

self by extracting useful information from it and conduct-

ing association analysis to make genre prediction. When

we talk about the actual sound data of music, we refer

to whatever is stored on various media, such as magnetic

tapes and now in the digital format. We can extract useful

information from this data via signal processing. This in-

formation represents the different characteristics of the ac-

tual sound stored on media [10]. We refer to it as content-
based features and use it with our approach. To our knowl-

edge, we are among the first to propose using association

analysis for music genre classification in the MIR commu-

nity.

2. PREVIOUS WORK

2.1 Classification in MIR

Classification is the process of organizing objects into pre-

defined classes. It is a supervised type of learning, where

we are given some labeled objects from which we form a

computational model that can be used to classify new, pre-

viously unseen objects [15].

Classification is one of the core tasks in MIR, since it is

usually the first step in many applications, such as on-line

music retrieval, playlist recommendation, etc. In our work,

we focus on genre classification, which is concerned with

categorizing music audio into different genres. Tzanetakis

and Cook [18] are among the first to work on this problem,

where the task is to label an unknown piece of music with

a correct genre name. They show that this is a difficult

problem even for humans and report that college students

achieve no more than 70% accuracy.

Previous works in MIR along this direction include the

following. DeCoro et al. [5] use Bayesian Model to aid in

hierarchical classification of music by aggregating the re-

sults of multiple independent classifiers and, thus, perform

error correction and improve overall classification accu-
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racy. Recent examples of using Support Vector Machines
(SVM) for music genre classification include an investiga-

tion of Meng and Shawe-Taylor [13], where they explore

different kernels used in a support vector classifier. Li and

Sleep [9] extend normalized information distance into ker-

nel distance for SVM and demonstrate classification accu-

racy comparable to others. In addition, recently, Anglade

et al. [3] use Decision Tree for music genre classification

by utilizing frequent chord sequences to induce context

free definite clause grammars of music genres.

2.2 Association Analysis in MIR

Association analysis attempts to discover the inherent rela-

tions among data objects in an application domain. These

relations are represented as association rules. An example

of such application domain is the shopping basket analy-

sis in supermarkets, where one tries to discover relations

among the items purchased by customers. For example,

the association rule {milk, eggs}→ {bread} implies that,

if milk and eggs are bought together by a customer, then

bread is likely to be bought as well, i.e., they have some

inherent statistical relationships [7].

We consider the so-called itemsets, such as {milk, eggs,

bread} in the above example, to be frequent if they appear

in many transactions. The support of an itemset represents

the percentage of transactions that contain the itemset and

minimum support is the threshold that separates the fre-

quent itemsets from the infrequent ones. A frequent item-

set can produce an association rule of the form A → B,

where A and B are non-empty itemsets and A
⋂
B = φ.

An association rule holds for a dataset with some mini-

mum support and confidence, which is the percentage of

transactions containing A that also contain B [7].

A formal treatment of applying association analysis in

MIR is in Section 3. Within the context of MIR, each track

or music piece is represented using a set of content-based

features derived from its digitized data. Together, a set of

these features place the given track in a discrete location in

the feature space. Intuitively, the tracks that are very sim-

ilar to each other may share the same neighborhood. This

could help with organizing music collections for effective

data retrieval. When grouped together, the features contain

some patterns. We would like to look for these patterns and

use them for music genre classification.

Kuo et al. [8] propose a way to recommend music based

on the emotion that it conveys and look for associations in

data that contains information perceived only by humans.

Similarly, Xiao et al. [19] use a parameterized statistical

model to look for associations between timbre and per-

ceived tempo. Liao et al. [12] use a dual-wing harmo-

nium model to discover association patterns between MTV

video clips and the music that accompanies those clips.

Neubarth et al. [14] present a method of association rule

mining with constraints and discover rules in the form of

A → B, telling that either region implies genre or genre

implies region. Arjannikov et al. [4] use association analy-

sis to verify tag annotation in music, though their approach

is based on textual music tags and is not content-based.

Our work to be presented below is different from the above

and is among the initial efforts to apply association analy-

sis to content-based music genre classification.

3. CLASSIFYING MUSIC INTO GENRES VIA
ASSOCIATION ANALYSIS

Our work in this paper is focused on the music genre tags.

As stated in [6, 10, 10], any discrete set of tags that are not

correlated can be used as categories, or classes, into which

we could split a collection of music pieces. Arjannikov

et al. [4] show that association analysis reveals patterns in

music textual tags. This motivates our investigation of as-

sociation analysis in content-based music features.

3.1 Notation

Association analysis requires discrete items, however, most

content-based music features are not. Thus, when given a

set of features F = {f1, f2, f3, · · · , fk}, we discretize

each feature into a predetermined number of bins b, where

b > 1, and derive a new feature set F ′ = {f ′
11 , f ′

12 , · · · ,
f ′
1b

, f ′
21 , f ′

22 , · · · , f ′
2b

, · · · , f ′
k1

, f ′
k2

, · · · , f ′
kb
}. Then, from

the set of music pieces M , we derive a transactional style

dataset D = {d1, d2, · · · , dr}, where r = |M |. Each

transaction di = {a1, a2, · · · , ak} corresponds to a music

piece and each aj in di is a feature item in the literal form

FpBq , where p corresponds to the feature number in F ′

and q corresponds to the bin number, into which the fea-

ture for the particular music piece falls. For example, if

the first content-based feature is a number between 0 and

1, and it is discretized into 10 equidistant bins, then, given

a particular music piece, whose first feature value is 0.125,

its corresponding di would contain the label F1B2.

When we formulate our problem as described above,

the music set M , becomes a transactional set D suitable

for association mining.

3.2 Proposed Approach

We call our proposed approach association-based music
genre classifier (AMGC). Figure 1 depicts the whole pro-

cess of using AMGC, which is detailed below.

3.2.1 AMGC

We start by preparing our data during the pre-processing

stage. First, we acquire content-based features from mu-

sic; in this paper, we use the features that have already

been extracted and published for the purpose of compar-

ing different classifiers on even ground [16, 17]. Then, we

discretize any continuous features. It is worth noting that

obtaining optimal discretization is an open problem in ma-

chine learning. In our work, we use feature discretization

based on equal width of bins, for its simplicity, to avoid any

possible bias based on class labels. Then we form transac-

tional style datasets, as described in Section 3.1, and split

the training dataset into subsets, one for each genre. Fi-

nally, we remove any items that appear in all transactions

with a certain frequency threshold (FRQ), which is the per-

cent of transactions containing the item.
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Figure 1. The three stages of our proposed association-based approach to classify music into genres.

During the training stage, we invoke the Apriori algo-

rithm [1, 2] and mine frequent itemsets from each genre’s

sets of items at some minimum support. From these we

generate classification rules of the form A → B, where A
is the frequent itemset and B is the genre associated with

that itemset. Then, we remove any itemsets that appear in

two or more genres. The resulting rules uniquely represent

their respective genres and we use them for classification

during the last stage.

3.2.2 Scoring Method

To obtain a classification score for each genre, we use the

following four components. Itemset Percentage (IP) is the

percent of itemsets that a given music piece matches for

a given genre out of all itemsets matched from that genre.

Support Sum (SS) is the sum of the matched itemsets’ min-

imum support divided by the sum of all itemsets’ mini-

mum support for the given genre. Confidence Sum (CS)

is the current genre’s confidence sum of the matched item-

sets divided by the sum of all itemsets’ confidence. Finally,

Length Sum (LS), the sum of cardinalities of the matched

itemsets divided by the sum of cardinalities of all itemsets

for the given genre.

We score each music piece against each genre’s set of

rules as following. First, we create a voting vector, whose

cardinality is equal to the number of genres, and com-

pute the corresponding component’s value for each genre.

Then, the genre with the highest value is voted as a candi-

date of that component, and its element in the voting vector

is incremented by 1. Thus, the four components result in

four votes and the genre with the highest number of votes

is declared as winner and becomes the predicted genre of

the given music piece.

3.2.3 Accuracy Evaluations

In our work, we use the following classification measures.

Recall, also known as sensitivity, represents the percentage

of correctly classified instances for that genre [7]. Preci-
sion reflects the percentage of correctly classified instances

from all instances that are perceived as belonging to that

genre by the classifier [7]. Finally, accuracy is calculated

by dividing the number of all correctly classified instances

for all genres by the total number of predictions made [7].

Because AMGC can assign multiple genre labels to a

single music piece, we compute the Multi-Labeling Rate
(MLR) by dividing the total number of predicted labels by

the number of all test instances of a genre. MLR falls into

the range between 1 and the total number of genres with

frequent itemsets. The closer it is to 1, the fewer multi-

label assignments were made, which indicates that AMGC

is performing more like a single-label classifier. If MLR

is equal to the total number of genres, then the results of

classification are least useful. Furthermore, if MLR is be-

low 1, then there are music pieces, whose genres could not

be predicted.

3.3 Goals

Our aim is to test whether the classification rules obtained

from music content-based features by AMGC can be used

to categorize music into genres. For this, we designate

three goals: (G1) AMGC achieves a classification accuracy

that is better than choosing genres at random; (G2) AMGC

is stable - when given similar datasets, it should achieve

similar classification accuracy; (G3) AMGC attains higher

accuracy with better quality data and fewer genres.

4. EXPERIMENT RESULTS AND DISCUSSIONS

4.1 Data Preparation

The classification task at hand requires content-based fea-

tures paired with genre tags and we find two datasets that

fit this requirement.

The Latin Music Database [17], denoted as DLMD, is

popular in the music genre classification task despite its

small size. There are many classification results available

in the literature, which are based on a set of features that

has already been extracted and circulated as part of DLMD.

Thus, we can test the feasibility of our approach without

introducing variance based on difference in feature extrac-

tion techniques. Moreover, DLMD usually results in high

classification accuracy for many methods [17]. We use one

of the three sets of features included with it, which is ex-

tracted from the beginning 30 seconds of each music piece.

The Million Song Dataset Benchmarking [16], denoted

as DMSDB, is much larger than DLMD and boasts several

sets of content-based features. We use five of these sets
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and the genre labels, which were originally obtained from

Allmusic [16]. Additionally, we restrict the number of

tracks to 1000 per genre, in order to balance the number

of training and testing examples among genres.

Dataset Number of Number of Number of Type of
name songs genres features Features
DLMD 3000 10 30 MFCC
DMSDB-1 1500 15 10 MM
DMSDB-2 1500 15 16 Spectral
DMSDB-3 1500 15 20 LPC
DMSDB-4 1500 15 20 AM
DMSDB-5 1500 15 26 MFCC

Table 1. Music genre datasets and their statistics.

We include some statistical information about the data-

sets in Table 1 and label them accordingly. We split each

one into two equal-sized partitions at random, while main-

taining the genres balanced; each genre is represented by

equal number of tracks in both partitions. One of the par-

titions becomes the training set and the other becomes the

testing set. If there are too many music pieces belonging

to one genre as compared to others, we remove the extra

tracks at random. If a genre is represented by fewer pieces

than 300 for DLMD and 1000 for DMSDB, then we do not

use that genre in our experiments. This reduces the origi-

nal DMSDB dataset to 17 genres from 25. Moreover, during

Stage 2 of our proposed approach, when we mine frequent

itemsets, two of the genres produce none; therefore, only

15 genres persist, as reported in Table 1. DLMD remains at

10 genres because it was originally balanced at 300 music

pieces per genre.

In the following section, we demonstrate through our

experiment results how we achieve the three goals formu-

lated in Section 3.3.

4.2 Results and Discussions
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Figure 2. DLMD at minimum support = 20%.

During our experiments, we observe that our proposed

parameters affect the classification accuracy, and thus, they

are effective. It is evident from Figures 2 and 3 that the

number of discretization bins affects the classification ac-

curacy for both DLMD and DMSDB. Figure 4 demonstrates

how the classification accuracy is affected by the minimum

support parameter. We also note that AMGC performs
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Figure 3. DMSDB-2 at minimum support = 2%.

much better than if we were to choose genres at random.

Thus, we confirm that AMGC works for some parameter

settings and conclude our work towards G1.

As demonstrated in the literature, the classification ac-

curacy usually increases when the number of classes is

reduced [11]. Thus, we reduce the number of genres for

both DLMD and DMSDB to 5 and observe that AMGC per-

forms better. Therefore, we report only the results for the

smaller set of genres in Figures 4 through 9. We also ob-

serve that DLMD achieves higher accuracy than DMSDB as

can be seen in Figures 2 and 3. This concludes our work

towards G3, as AMGC performs better with a better qual-

ity dataset, moreover, it performs better on a reduced set of

genres.
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It is clear from Figures 2, 3 and 4, that the FRQ parame-

ter does not significantly affect the classification accuracy,

although, it produces highest accuracy overall when set to

95%. We use this setting in all of the experiment results in

Figures 5 through 9.

During our experiments, we observe that DMSDB data-

sets perform best at lower minimum support and number of

bins settings. We set the number of bins to 13 and perform

a sweep across minimum support values between 2 and

20. As can be seen in Figure 5, among all five, DMSDB-2

performs the best and DMSDB-4 the worst. Three of the five

datasets achieve their highest accuracy when the number

of bins is set to 13; however, DMSDB-4 performs better at

19 bins, and DMSDB-5 at 11 bins. Thus, we include the

corresponding results in Figure 5.
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We observe that all three evaluation measures, recall,
precision, and accuracy, obtain very similar values to

each other in our experiments, as can be seen in Figures

6 and 7. It can also be seen in Figures 2 through 7, that

AMGC does not behave arbitrarily, when given different

datasets or different parameter settings. This confirms that

our approach is stable and concludes our work towards G2.

During our experiments, we notice that for some val-

ues of minimum support and for some numbers of bins,

AMGC performs much better than choosing genre assign-

ment at random. However, with other values of these pa-

rameters, AMGC predicts majority of music to be of one

genre. Moreover, sometimes it votes for all genres equally,

where MLR becomes equal to the number of genres. Fur-

thermore, we encountered certain parameter settings, when

some or all genres were not represented by any classifi-

cation rules. We investigate the behaviour of MLR and

the number of genres present in both DLMD and DMSDB

through further experiments and report our findings in Fig-

ures 8 and 9. Here, we set the minimum support to 20 and

then to 90 for both datasets. As can be seen in Figure 8, at

the higher minimum support, some genres are discarded,

due to removal of intersections during Stage 2 of our ap-

proach. Meanwhile, Figure 9 illustrates that AMGC be-

haves as a single label classifier, because we remove rules

that are found among any genre-pair, thus, the remaining

rules are representative of a single genre.

When experimenting with our approach on music genre

classification using different features in DMSDB, we use

the same genre assignment and alternate the features. This

helps us confirm that difference in content-based features

result in different classification performance. Hence, dif-

ferent features are more or less useful for the genre clas-

sification task, which is reflected by the feature selection
task in MIR.

In our experiments, we notice that it may take a long

time to pre-process the data and train the classifier. How-

ever, the resulting classification model is very fast, where

its speed can be expressed as the number of classification

rules multiplied by the number of music pieces to be clas-

sified.
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5. CONCLUSION

In this paper, we introduce a novel approach to MIR, name-

ly, using association analysis to help music genre classi-

fication. Association analysis looks for frequent patterns

in music data, which represent the similarity of all music

pieces in a given genre.

Through experiments, we demonstrate the effectiveness

of our approach and confirm that association analysis can

be applied to music data. However, there is still room

for improvement, which includes feature extraction, fea-

ture selection and discretization. We believe that as they

improve, our method will also improve. We can also take

some immediate steps to improve our classifier by tuning

the two parameters, minimum support for mining frequent

items and the number of discretization bins. Our experi-

ments demonstrate that these two parameters are directly

related to the performance of our classifier, and they vary

depending on the data. Hence, tuning these parameters to

each specific dataset will improve the classification accu-

racy. We leave these to our future work.
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ABSTRACT

The multiple viewpoints representation is an event-based

representation of symbolic music data which offers a means

for the analysis and generation of notated music. Previ-

ous work using this representation has predominantly re-

lied on n-gram and variable order Markov models for mu-

sic sequence modelling. Recently the efficacy of a class

of distributed models, namely restricted Boltzmann ma-

chines, was demonstrated for this purpose. In this paper,

we demonstrate the use of two neural network models which

use fixed-length sequences of various viewpoint types as

input to predict the pitch of the next note in the sequence.

The predictive performance of each of these models is com-

parable to that of models previously evaluated on the same

task. We then combine the predictions of individual mod-

els using an entropy-weighted combination scheme to im-

prove the overall prediction performance, and compare this

with the predictions of a single equivalent model which

takes as input all the viewpoint types of each of the indi-

vidual models in the combination.

1. INTRODUCTION

We are interested in the computational modelling of melo-

dies available in symbolic music data formats such as MIDI

and KERN. For this purpose, we chose to work with a rep-

resentation of symbolic music first proposed in [9] in rela-

tion to multiple viewpoints for music prediction (which we

refer to here as the “multiple viewpoints representation”).

The multiple viewpoints representation is an event-based

representation extracted from symbolic music data where

a given piece of music is decomposed into parallel streams

of features, known as viewpoint types. Each viewpoint type

is either a directly observable musical dimension such as

pitch and note duration, or an abstract one derived from

them such as inter-onset interval or pitch contour. In or-

der to analyse musical structure using this representation,

one can train a machine learning model on sequences of

c© Srikanth Cherla1,2, Tillman Weyde1,2 and Artur
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viewpoint types and apply it to tasks such as music gener-

ation [6] and classification [3, 7]. This representation has

also been the focus of more recent work related to music

cognition [14,17]. The novelty of this approach is in its ex-

tension of previous work in language modelling to music

with an information theoretic backing which facilitates an

objective evaluation of models for music prediction. Ap-

proaches based on information theory have been of interest

in musicology to understand structure and meaning in mu-

sic in terms of its predictability [10, 11, 13].

In the original work on multiple viewpoints [9] and that

which followed [15, 21], Markov models were exclusively

employed for music modelling using this framework. While

this is a reasonable choice, Markov models are often faced

with a problem related to data sparsity known as the curse
of dimensionality [2]. This refers to the exponential rise in

the number of model parameters to be estimated with the

length of the modelled sequences. Models which employ

distributed architectures such as neural networks tend to

avoid this problem, as they do not require enumerating all

state transition probabilities, but rather the weights of the

network encode only those dependencies necessary to min-

imize prediction error. It was demonstrated more recently

in [4] how a distributed model — the restricted Boltzmann

machine, is a suitable alternative in this context. It was also

suggested in [8] that neural networks might be suitable al-

ternatives to n-gram models for music modelling with mul-

tiple viewpoints but no actual research in this direction has

ensued.

In this paper, we first present two neural networks for

modelling sequences of musical pitch. The first is a sim-

ple feed-forward neural network [20], and the second is

the musical extension of the Neural Probabilistic Language

Model [2] — a deeper feed-forward network with an added

weight-sharing layer between the input and hidden lay-

ers. The latter was originally proposed for learning dis-

tributed representations of words in language modelling.

Both models predict a probability distribution over the pos-

sible values of the next pitch given a fixed-length context

as input. Their predictive performance is comparable to or

better than previously evaluated melody prediction mod-

els in [4, 16]. The second network is further extended to

make use of additional viewpoint types extracted from the

context, as inputs for the same task of predicting musi-

cal pitch. We then combine the predictions of individual

models with different viewpoint types as their respective
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inputs using an entropy-weighted combination scheme to

improve the overall prediction performance, and compare

this with the predictions of a single model which takes as

input all the viewpoint types of each of the individual mod-

els in the combination.

We begin with an overview of the multiple viewpoints

representation in Section 2. This is followed by a descrip-

tion of the two neural networks which are used with this

representation, in Section 3. Section 4 presents an evalua-

tion of the predictive performance of the two models along

with a comparison to previous work. Finally, directions for

future research are outlined in Section 5.

2. MULTIPLE VIEWPOINT SYSTEMS

In order to explain music prediction with multiple view-

points, the analogy to natural language is used here. In

statistical language modelling, the goal is to build a model

that can estimate the joint probability distribution of subse-

quences of words occurring in a language L. A statistical

language model (SLM) can be represented by the condi-

tional probability of the next word wT given all the previ-

ous ones [w1, . . . , w(T−1)] (written here as w
(T−1)
1 ), as

P (wT
1 ) =

T∏
t=1

P (wt|w(t−1)
1 ) . (1)

The most commonly used SLMs are n-gram models,

which rely on the simplifying assumption that the proba-

bility of a word in a sequence depends only on the imme-

diately preceding (n− 1) words [12]. This is known as the

Markov assumption, and reduces (1) to

P (wT
1 ) =

T∏
t=1

P (wt|w(t−1)
(t−n+1)) . (2)

Following this approach, musical styles can be inter-

preted as vast and complex languages [9]. In predicting

music, one is interested in learning the joint distribution

of musical event sequences sT1 in a musical language S.

Much in the same way as an SLM, a system for music pre-

diction models the conditional distribution p(st|s(t−1)
1 ), or

under the Markov assumption p(st|s(t−1)
(t−n+1)). For each

prediction, context information is obtained from the events

s
(t−1)
(t−n+1) immediately preceding st. Musical events have a

rich internal structure and can be expressed in terms of di-

rectly observable or derived musical features such as pitch,

note duration, inter-onset interval, or a combination of two

or more such features. The framework of multiple view-

point systems for music prediction [9] was proposed in or-

der to efficiently handle this rich internal structure of music

by exploiting information contained in these different mu-

sical feature sequences, while at the same time limiting the

dimensionality of the models using these features. In the

interest of brevity, we limit ourselves to an informal discus-

sion of multiple viewpoint systems for monophonic music

prediction and refer the reader to [9] for a more detailed

explanation.

A musical event s refers to the occurrence of a note in a

melody. A viewpoint type (or simply type) τ refers to any

of a set of musical features that describe an event. The do-

main of a type, denoted by [τ ] is the set of possible values

of that type. A basic type is a directly observable or given

feature such as pitch, note duration, key-signature or time-
signature. A derived type can be derived from any of the

basic types or other derived types. Two or more types can

be “linked” by taking the Cartesian product of their respec-

tive domains, thus creating a linked viewpoint type. A mul-
tiple viewpoints system (MVS) is a set of models, each of

which is trained on subsequences of one type, whose indi-

vidual predictions are combined in some way to influence

the prediction of the next event in a given event sequence.

Given a context s
(t−1)
(t−n+1) and an event st, each viewpoint τ

in an MVS must compute the probability pτ (st|s(t−1)
(t−n+1)).

In order to input the viewpoint type sequences to the

neural network models, we first convert each input type

value into a binary one-hot encoding. When a context

event is missing or undefined, each element of the vector

is initialized to 1/|S|. When there is more than one input

type, one-hot vectors corresponding to all the input types

for a musical event are concatenated to obtain an input vec-

tor for that event. As we are dealing with models of fixed

context-length l, the final input feature vector input to the

model is a concatenation of l such vectors. In doing so, we

are effectively bypassing the need to compute a Cartesian

product to link viewpoint types before using them as input

to a single model which has been the practice when using

n-gram and variable order Markov models.

Each model in an MVS relies on a different source of in-

formation (its respective input types) to make a prediction

about the target viewpoint type. The accuracy of the pre-

diction depends on how informative these input types are

of the target type. It is possible to combine the information

provided by different input types for possibly better pre-

dictive performance. Here, we consider two ways of doing

this - implicitly in a single model which is trained using a

set of input types, and explicitly by combining the prob-

ability distributions of multiple models, each of which is

trained separately on a mutually exclusive subset of these

input types. While the former is only a special case of what

has been described so far, we provide an explanation of the

latter below in Section 2.1.

2.1 Combining Multiple Models

It was demonstrated in [9, 15] that an entropy-weighted

combination of the predictions of two or more n-gram or

variable order Markov models typically results in ensem-

bles with better predictive performance than any of the in-

dividual models. As it is the predicted distributions which

are combined, this approach is independent of the types of

models involved. Here, we briefly describe two approaches

for creating such ensembles. Let M be a set of models and

pm(s) be the probability assigned to symbol s ∈ [τtgt] by

model m, where [τtgt] is the domain of the target type.

The first approach involves taking a weighted arithmetic

mean of their respective predictions. This is the mixture-
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of-experts combination, and is defined as

p(s) =

∑
m∈M wmpm(s)∑

m∈M wm

where each of the weights wm depends on the entropy of

the distribution generated by the corresponding model m
in the combination such that greater entropy (and hence

uncertainty) is associated with a lower weight [5]. The

weights are given by the expression wm = Hrel(pm)−b,

where the relative entropy Hrel(pm) is

Hrel(pm) =

{
H(pm)/Hmax(pm), if Hmax([τtgt]) > 0

1, otherwise

The best value of the bias b is determined through cross-

validation. The quantities H and Hmax are respectively

the entropy of the prediction and the maximum entropy of

predictions over the symbol space [τtgt], and are defined as

H(p) = −
∑

s∈[τtgt]

p(s) log2 p(s) . (3)

Hmax(p) = log2 |S|.

where p(s ∈ [τtgt]) = p(χ = s) is the probability mass

function of a random variable χ distributed over the dis-

crete alphabet [τtgt] such that the individual probabilities

are independent and sum to 1.

The second combination method — product-of-experts,

is computed similarly as the weighted geometric mean of

the probability distributions. This is given by

p(s) =
1

R

( ∏
m∈M

pm(s)wm

) 1∑
m∈M wm

where R is a normalisation constant which ensures that the

resulting distribution over S sums to unity. The weights

wm in this case are obtained in the same manner as for

the mixture-of-experts case. It was observed in a previous

application of these two combination methods to melody

modelling [15], that product-of-experts resulted in a greater

improvement in predictive performance.

3. FIXED-CONTEXT NEURAL NETWORKS

In this section, we provide a brief overview of the two

fixed-context neural network models which we employed

for the task of predicting the pitch of the next note in a

melody, given a viewpoint type context which leads up to

it. These are (1) a feed-forward neural network, and (2)

a neural probabilistic melody model. The key difference

between the two is the presence of an additional weight-

sharing layer in the latter which transforms the binary rep-

resentation of the viewpoint types into lower-dimensional

real-valued vectors before passing these on as inputs to a

feed-forward network (much like the former).

. . . y

. . . h

. . . . . . . . . x

W(0)

W(1)

(a) Feed-forward Neural Network

. . . y

. . . h

. . . . . . . . . v

. . . . . . . . . x

W(c) W(c)

W(0)

W(1)

(b) Neural Probabilistic Melody Model

Figure 1: The two models employed for multiple view-

point melodic prediction in this paper (biases ignored in

the illustration). A concatenation of the fixed-length input

type context is presented to each model in its visible layer

and the predictions are made in the output layer.

3.1 Feed-forward Neural Network

In its simplest form, a feed-forward neural network (Fig-

ure 1) consists of an input layer x ∈ R
n, a hidden layer

h ∈ R
m and an output layer y ∈ R

l. The input layer

is connected to the hidden layer by a weight-matrix W (0)

and likewise, the hidden layer to the output layer by a ma-

trix W (1). Each unit in the hidden layer typically applies

a non-linear function to the input it receives from the layer

below it. Similarly, each unit of the output layer applies a

function to the input it receives from the hidden layer im-

mediately preceding it. In a network with a single hidden

layer, this happens according to the following equations

u(0) = b(0) +W (0)x (4)

h = f (0)(u) (5)

u(1) = b(1) +W (1)h (6)

y = f (1)(v) (7)

where b(0) and b(1) are the hidden and output layer biases,

f (0) and f (1) are functions applied to the input received

by each node in the hidden and output layers respectively.

Thus, for a given input x, the output y is calculated as

y = f (1)(b(1) +W (1) · f (0)(b(0) +W (0)x)) (8)

In the present case, f (0) is the logistic sigmoid func-

tion and f (1) is the softmax function. The network can
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be trained in a supervised manner using the backpropaga-

tion algorithm [20]. This algorithm applies the chain rule

of differentiation to propagate the error between the target

output and the output of the model backwards into the net-

work, and use these derivatives to appropriately update the

model parameters (the network weights and biases).

3.2 Neural Probabilistic Melody Model

Next we consider the neural probabilistic melody model

(NPMM), which was originally introduced in [2] as a lan-

guage model for word sequences. It consists of a feed-

forward network such as the one described in Section 3.1,

with an additional embedding layer below it (Figure 1).

This model takes as input a concatenation of binary view-

point type vectors (cf. Section 3) which represent a fixed-

length context. The first layer of the network maps each

of these sparse binary vectors to lower-dimensional dense

real-valued vectors which make up the input layer of what

is essentially a feed-forward network above it. This map-

ping is determined by a shared weight matrix W (c) which

is learned from data, and is given by

v = W (c)x. (9)

The hidden layer in the case of the NPMM consists of

hyperbolic-tangent activation units. The output layer con-

tains softmax units. The model is trained with backprop-

agation using gradient descent as in the case of a standard

feed-forward neural network.

4. EVALUATION

The first goal of this paper is to demonstrate the suitabil-

ity of fixed-context neural networks for multiple viewpoint

melodic prediction. To this end, we compare the two mod-

els described in Section 3 with variable-order Markov mod-

els (VOMMs) and restricted Boltzmann machines (RBMs).

It was observed that the predictive performance of each of

the neural network models is either comparable to or bet-

ter than that of the best VOMMs of both bounded and un-

bounded order [16], while slightly worse than the RBM

of [4] (Figure 2). Second, we wish to compare the predic-

tions of a single neural network which uses multiple input

types with that of an ensemble of networks with smaller

input dimensions, each of which uses a subset of the input

types of the former, and combined with the entropy-based

weighting scheme described in 2.1. We found that, while

the addition of viewpoint types does improve the predic-

tive performance in both cases, that of the single network

is slightly worse than the ensemble (Figure 3). Moreover,

the extent of this improvement diminishes with an increase

in context length.

4.1 Dataset

Evaluation was carried out on a corpus of monophonic

MIDI melodies that cover a range of musical styles. It

consists of 4 datasets - Bach chorale melodies, and folk

melodies from Canada, China and Germany, with a total
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Figure 2: Comparison between the predictive perfor-

mances of the best bounded and unbounded variable-order

Markov models (VOMM(b) and VOMM(u) respectively),

the best restricted Boltzmann machine (RBM), the feed-

forward neural network (FNN) and the neural probabilistic

melody model (NPMM) averaged over the datasets.

of 37, 229 musical events. These were also used to eval-

uate RBMs and variable order Markov models for music

prediction in [4, 16]. To facilitate a direct comparison, the

melodies are not transposed to a default key.

4.2 Evaluation Measure

In order to evaluate the proposed prediction models, we

turn to a previous study of Markov models for music pre-

diction in [16]. There, cross entropy was used to measure

the information content of the models. This is a quantity

related to entropy (3). The value of entropy, with reference

to a prediction model, is a measure of the uncertainty of its

predictions. A higher value reflects greater uncertainty. In

practice, one rarely knows the true probability distribution

of the stochastic process and uses a model to approximate

the probabilities in (3). An estimate of the goodness of

this approximation can be measured using cross entropy

(Hc) which represents the divergence between the entropy

calculated from the estimated probabilities and the source

model. This quantity can be computed over all the subse-

quences of length n in the test data Dtest, as

Hc(pmod,Dtest) =
−∑sn1 ∈Dtest

log2 pmod(sn|s(n−1)
1 )

|Dtest|
(10)

where pmod is the probability assigned by the model to the

last pitch in the subsequence given its preceding context.

Cross-entropy approaches the true entropy as the number

of test samples (|Dtest|) increases.

4.3 Model Selection

Different neural network configurations were evaluated by

a grid search over the learning rate η = {0.05, 0.1}, the

number of hidden units nhid = {25, 50, 100, 200, 400},
number of embedding units nemb = {10, 20} (only for

the NPMM), and weight decay wdecay = {0.0000, 0.0001,
0.0005}. Each model was trained using mini-batch gradi-

ent descent up to a maximum of 1000 epochs with a batch

size of 100 samples. Early-stopping [19] and weight-decay
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were also incorporated to counter overfitting. The momen-

tum parameter μ, was set to 0.5 during the first five epochs

and then increased to 0.9 for the rest of the training. Each

model was evaluated with 10-fold cross-validation, with

folds identical to those used in [4, 16] for the sake of com-

parison.

4.4 Model Comparison

We carried out a comparison between the predictive perfor-

mance of the two neural network models presented here,

and models previously evaluated on the same datasets [4,

16]. It is to be noted that, since neither of our models is

updated online during prediction, the comparison with the

variable order Markov models of [16] is limited to their

best performing Long-Term Models. These are of order

bound 2 and unbounded order (labelled there as C*I). It is

evident from Figure 2 that both the neural network models

are able to take advantage of information in longer contexts

than the bounded order n-gram models. This is also a fea-

ture of the RBM, whose best case of context-length 5 out-

performs the rest of the models in the plot. The slight de-

terioration in the performance of the feed-forward network

for longer contexts is possibly due to poor optimization

of its parameters. This is considering the fact that weight-

decay and early-stopping were implemented in the training

algorithm to prevent overfitting. While it was not possible

to incorporate further steps for better parameter optimiza-

tion in this paper, the results are still illustrative of the net-

works’ suitability at the given task and the improvement in

performance with context consistent with each other and

with that of the RBMs. Possible optimizations have been

left as future work, and will be discussed in Section 5.

4.5 Model Combination

In order to evaluate the combination of viewpoint types, we

selected one type which is related to the “what” in music

— scale-degree (intfref ), and another which is related to

the “when” — inter-onset interval (ioi), from the several

possible choices that exist. Furthermore, this experiment

was performed using the NPMM and only on the Chinese

folk melody dataset for the purpose of illustration, with

the assumption that a similar trend would be observed with

the other model and datasets. As our target viewpoint type

i.e. the one being predicted, is musical pitch (seqpitch),

the first model has the input types seqpitch and intfref
and the second one seqpitch and ioi. The additional view-

points are incorporated as explained in Section 2. The pre-

dictions of these two models are combined explicitly using

the mixture- and product-of-experts schemes. On the other

hand, the implicit combination of these two is a single

model whose input types are seqpitch, intfref and ioi.
Figure 3 compares the predictions of the pitch-only version

of the NPMM and the three models using the additional in-

put types. It can be seen that each of these three models has

a better predictive performance than its pitch-only coun-

terpart, thus confirming the relevance of the added view-

point types to musical pitch prediction. Both the mixture-

and product-of-experts combination schemes (seqpitch ×
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Figure 3: Comparison between the predictive perfor-

mances, on the Chinese folk melody dataset, of the pitch-

only NPMM, its extension which uses the intfref and ioi
types as additional input, and ensembles each of which

combines two models of input types (a) seqpitch and intfref
(b) seqpitch and ioi using the mixture (+m) and product

(+p) combination schemes.

(intfref +m ioi) and seqpitch × (intfref +p ioi) re-

spectively in the plot) result in very similar predictive per-

formance, with the latter working only slightly better for

shorter context-lengths of 1, 2 and 3. Moreover, both these

explicit combinations of viewpoint types perform better

than the single implicit combination of types (seqpitch ×
intfref × ioi in the plot). One will, however, notice

that the cross entropy of the predictions slightly worsens at

longer context-lengths, and that the discrepancy between

the implicit and explicit combinations gradually increases

in these cases. As mentioned earlier, we attribute this to

the optimization of the network parameters, which is to be

dealt with in future work.

5. CONCLUSIONS & FUTURE WORK

The two neural network models for melodic prediction pre-

sented here have been found to have a predictive perfor-

mance comparable to or better than previously evaluated

VOMMs, but slightly worse than that of RBMs. Predic-

tive performance can be further improved by the addition

of viewpoint types to the same model, or by combining

multiple models using an entropy-weighted combination

scheme. In our experiments, the latter tended to be better.

One open issue that remains is the parameter optimiza-

tion in the two networks presented here. It was observed

that, particularly when the input layer of a network is large

and the dataset relatively small, the predictive performance

does not improve as expected with context-length and the

addition of viewpoint types. We note here that the re-

sults presented have been generated with models imple-

mented in-house 1 for use with the Python machine learn-

ing library scikit-learn [18], and were thus limited in the

various initialization and optimization strategies used in

their learning algorithms. We also suspect this to be the

reason for the limited success of the NPMM which ex-

hibited relatively more promising results in its language

1 Code available upon request.
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modelling application in [2]. Many more measures to im-

prove generalization and overall prediction accuracy (such

as dropout, different weights initialization strategies and

layer-wise pre-training) have been suggested in [1]. Incor-

porating these measures (or using an existing neural net-

work library which does) can further improve the results.

Apart from this, there are three other aspects which are

of immediate interest to us. The first is the incorporation

of a short-term element in the prediction model which up-

dates its parameters as data is presented to it, and has been

shown to result in improved prediction performance and

human-like predictions [15]. Secondly, while the num-

ber of parameters of the fixed-context models presented

here increases linearly with the context-length (assuming

a fixed number of hidden units), we are at present experi-

menting with recurrent networks where this problem does

not arise due to their recurrent connections. And finally,

the extension of the said models to polyphonic multiple

viewpoints representations is also an open issue at the mo-

ment which we hope to address in the future.
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ABSTRACT 

Rendering symbolic music notation is a common compo-
nent of many MIR applications, and many tools are avail-
able for this task. There is, however, a need for a tool that 
can natively render the Music Encoding Initiative (MEI) 
notation encodings that are increasingly used in music 
research projects. In this paper, we present Verovio, a li-
brary and toolkit for rendering MEI. A significant ad-
vantage of Verovio is that it implements MEI’s structure 
internally, making it the best suited solution for rendering 
features that make MEI unique. Verovio is designed as a 
fast, portable, lightweight tool written in pure standard 
C++ with no dependencies on third-party frameworks or 
libraries. It can be used as a command-line rendering tool, 
as a library, or it can be compiled to JavaScript using the 
Emscripten LLVM-to-JavaScript compiler. This last op-
tion is particularly interesting because it provides a com-
plete in-browser music MEI typesetter. The SVG output 
from Verovio is organized in such a way that the MEI 
structure is preserved as much as possible. Since every 
graphic in SVG is an XML element that is easily address-
able, Verovio is particularly well-suited for interactive 
applications, especially in web browsers. Verovio is 
available under the GPL open-source license. 

1. INTRODUCTION 

A few decades ago, rendering music notation by comput-
er almost exclusively targeting printed output, most often 
in Postscript of PDF formats. Today, partly in response to 
the development of MIR applications, rendering of music 
notation can be necessary in a wide range of contexts, for 
example within standalone desktop applications, in serv-
er-side web application scenarios, or directly in a web 
browser. For example, music notation might need to be 
rendered for displaying search results or for visualizing 
analysis outputs. Another example is score-following ap-
plications, where the passage currently played needs to be 
displayed and possibly highlighted. Rendering music no-
tation by computer, however, is a complex task. Powerful 
music notation rendering engines exist in commercial and 

open-source notation editors, but these are usually not 
very modular and cannot easily be integrated within other 
applications. Other rendering engines, such as LilyPond 
[13] or Mup [1], can be used; however, they usually re-
quire the encoding to be converted to a particular typeset-
ting input syntax. Their architectures and dependencies 
also often limit the contexts in which their use is possible.  

In recent years, the Music Encoding Initiative (MEI) 
has been increasingly adopted for music research projects 
[6]. Its large scope (MEI can be used to encode a wide 
range of music notations, from medieval neumes to 
common Western music notation), modularity, rich 
metadata header and numerous other features, including 
alignment with audio files or performance annotations, 
make it appropriate for a wide range of MIR applications. 
Unfortunately, most of the solutions currently available 
for rendering MEI involve a conversion to another for-
mat, either explicitly or internally in the software applica-
tion used for rendering.  

In this paper, we present the Verovio project, a library 
and toolkit for rendering MEI natively in SVG. Its pur-
pose is to provide a self-contained typesetting engine that 
is capable of creating high-quality graphical output and 
that can also be used in different application contexts. In 
the following section, we describe previous work and ex-
isting solutions for rendering MEI and the use of SVG for 
music notation. We then introduce Verovio, describe the 
MEI structure on which it is built, outline its program-
ming architecture, and highlight features currently availa-
ble. We then present possible uses and output examples 
and conclude the paper with the future work that is 
planned for Verovio. 

2. PREVIOUS WORK 

One currently available option for rendering MEI is con-
version to another format in order to use existing tools 
that do not support MEI. For software applications or 
rendering engines that support the import of the Mu-
sicXML interchange format, MEI can be converted with 
the mei2musicxml XSL stylesheet [9]. Another option is 
to convert MEI directly to a typesetting format, such as 
Mup. Mup is a C rendering engine that was made open-
source in 2012. It uses its own typesetting syntax and 
produces high quality Postscript output. The conversion 
of MEI to Mup can be achieved in one step using the 
mei2mup XSL stylesheet [8]. A similar approach is pos-
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sible for rendering MEI in a web browser, using a con-
version to the ABC format. ABC is an encoding format 
primarily targeting material with fairly limited notational 
features, such as folk and traditional melodies. It can be 
rendered in a web browser with the abcjs renderer [15], 
and the conversion from MEI to ABC can be achieved 
with the mei2abc converter [5]. There is also a new Ja-
vaScript library, MEItoVexflow [18], that makes it possi-
ble to render MEI directly in web browsers using the 
Vexflow API [12]. Another tool for rendition of MEI 
online is Neon.js [3]. The tool not only renders, but also 
acts as a full online editor for neumatic medieval nota-
tion. 

SVG for music notation has been used in several pro-
jects. One early attempt was made in 2003 for converting 
MusicXML to SVG using XSLT [14]. A framework with 
an editor was also developed for outputting SVG from 
GuidoXML notation as part of a dissertation thesis [2]. 
With MEI, SVG rendering was used for the first time in 
the DiMusEd project, a critical edition of songs of Hilde-
gard von Bingen (1098-1179) [11]. In this web-based edi-
tion of neumatic notation, MEI rendering is performed on 
the server side with a custom rendering engine. There are 
also attempts to use XSLT to transform MEI to SVG di-
rectly in the browser. This approach is used in mono:di, 
the transcription software of the Corpus Monodicum edi-
torial project sponsored by the Akademie der Wissen-
schaften und der Literatur in Mainz, also focused on me-
dieval notation [4]. Finally, SVG is a possible back-end 
for the aforementioned Vexflow API in conjunction with 
the Raphael JavaScript library. 

These solutions all have strengths and drawbacks in 
terms of compatibility, usability, speed, output quality, 
and music notation features available. Many of them, 
however, have limitations when the format to which MEI 
is converted for rendering does not support some features 
encoded in the MEI source or has a different structure, 
with the consequence that part of the encoding will be 
lost in conversion, or not rendered appropriately.  

3. VEROVIO 

3.1 MEI structure 

The MEI schema provides multiple options for structur-
ing the musical content. The most widely-used option is 
the score-based structure, where all the parts of a musical 
score are encoded together in the same XML sub-tree. 
The MEI schema also includes a part-based option, where 
each part is stored in a separate XML sub-tree. The 
choice between these options can depend not only on the 
type of document being encoded but also on the type of 
application. The Verovio library was designed as a direct 
implementation of the MEI structure. However, since it is 
rendering-focused, it is built around another content or-
ganization of MEI, a page-based customization more ap-
propriate for graphical display. In a rendering task, the 

page (or more generically, the rendering surface) is a re-
quired high-level entity on which elements can be laid out 
by the rendering process. The page-based customization 
is a more fitting alternative data organization that pro-
vides a page top-level entity. It prioritizes the hierarchy 
that is treated as secondary when encoded with milestone 
elements <pb> in other MEI representations. 

In the page-based customization, the content of the 
music is encoded in <page> elements that are themselves 
contained in a <pages> element within <mdiv> as 
shown in Figure 1. A <page> element contains <sys-
tem> elements. From then on, the encoding is identical to 
standard MEI. That is, a <system> element will contain 
<measure> elements or <staff> elements that are both 
un-customized, depending on whether or not the music is 
measured or un-measured, respectively. Since the modifi-
cations introduced by the customization are very limited, 
the Verovio library can be used to render un-customized 
MEI files. When loading un-customized MEI documents, 
some MEI elements are loaded by Verovio and converted 
to a page-based representation. Typically, <pb> mile-
stone elements are converted to <page> container ele-
ments. Conversely, <section> container elements are 
converted to <secb> milestone elements.

 

 
 

Figure 1. The page-based MEI structure used by Vero-
vio. The <mdiv> element contains <pages>, <page> 
and <system> elements. 

 

3.1.1 Layout and positioning  

In addition to making rendering simpler and faster, the 
idea of the page-based customization is also to make it 
possible to encode the positioning of elements directly in 
the content tree without having to refer to the facsimile 
sub-tree. The latter traditional approach remains available 
with the page-based customization for more detailed and 
more complex referencing to facsimile images. However, 
the page-based customization introduces a lightweight 
positioning and referencing system that can be useful 
when the encoding represents a single source with one 
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image per page. This is typically the case with optical 
music recognition applications for which the encoding of 
the position of each encoded element is necessary. An-
other possible use is the creation of overlay images to be 
displayed on top of facsimile images where the position 
of each symbol also needs to be encoded. Verovio sup-
ports both positioned elements and automatic layout. Au-
tomatic layout will be executed when un-customized MEI 
files are rendered. 

3.1.2 Additional supported formats 

In addition to MEI, Verovio can render Plain and Easy 
(PAE) code [7] and DARMS code [16]. PAE and 
DARMS encodings are widely used for encoding incipits, 
including those for the Répertoire International des 
Sources Musicales (RISM) project. In Verovio, these 
formats are converted to MEI internally, which means 
that the toolkit can also be used to convert them to MEI 
for purposes other than rendering. 

3.2 SVG output 

One significant advantage of SVG rendering over other 
formats (e.g., Postscript or PDF) is that it is rendered na-
tively in most modern web browsers with no plug-in re-
quired. Because SVG is XML, it has an advantage over 
raster image formats that every graphical element is ad-
dressable, making it well-suited for interactive applica-
tions. In a web environment, this makes it easy to high-
light notes or symbols, for example. In addition, since 
SVG is a vector format, the output can also be used for 
high-quality printing. 
 

 

Figure 2. The output of Vervovio for two bars. The 
built-in layout engine of Verovio avoids symbol colli-
sions as much as possible. 

 
One interesting feature of Verovio is that the SVG is 

organized in such a way that the MEI structure is pre-
served as much as possible. For example, a <note> ele-
ment with an @xml:id attribute in the MEI file will have 
a corresponding <g> element in the SVG with an @class 
attribute equal to "note" and an @id attribute corre-
sponding to the @xml:id of the MEI note. This makes 
interaction with the SVG very easy. The hierarchy of the 
elements is also preserved. For example, in MEI, a 
<beam> can be the child element of a <tuplet>, but the 
opposite is also possible. The hierarchy is fully preserved 
in the SVG as shown in Figure 3. 

 

Figure 3. Comparison of MEI and SVG file structures. 
The hierarchy of the MEI is preserved in the SVG. 

 

3.3 Programming architecture 

Verovio is designed as a fast, portable, lightweight tool 
usable as a one-step conversion program. It is written in 
pure standard C++ with no dependencies on third-party 
frameworks and libraries. This ensures maximum porta-
bility of the codebase. Verovio implements its own ren-
dering engine, which can produce SVG with all the musi-
cal symbols embedded in it. The musical glyphs are 
themselves SVG graphics that are included in the Vero-
vio output. This means that no external font needs to be 
included in the SVG generated from Verovio, limiting 
dependencies and reducing as far as possible any poten-
tial compatibility issues between SVG rendering engines.  

The Verovio rendering engine itself is defined as an 
abstract class, and the SVG output is the default concrete 
class. This makes it relatively easy to implement a ren-
dering back-end different from SVG (e.g., PDF, or 
HTML Canvas), if necessary. 

The Verovio toolkit has several options for controlling 
the output. These include options for defining the page 
size (i.e., the surface, or <svg> element size), for setting 
the amount of zoom, and for choosing whether layout in-
formation contained in the MEI file must be taken into 
account. When there is no layout information provided in 
the MEI file (no system or page breaks, for example), or 
when the option for ignoring them is selected, Verovio 
will extrapolate the necessary layout information. 

3.4 Features 

Verovio currently supports the basic features of simple 
common Western music notation and mensural notation. 

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

109



  
 

Table 1 shows a list of music notation snippets rendered 
with Verovio. Figure 4 illustrates how the SVG output of 
Verovio can be used as facsimile overlay when the posi-
tioning feature of the MEI page-based customization is 
used. The example also illustrates mensural music nota-
tion support. 

Beams and tuplets 

 

Measure rests and key and time signature changes 

Clef changes 

 

Trills and fermata 

 

Ties 

Grace notes (accaciature) 

 
Grace notes (appogiature)

 

 
Table 1. A list of music notation snippets rendered with 
the Verovio toolkit. The basic features of simple common 
Western music notation are accounted for. 

 

 

Figure 4. An example of the output of Verovio placed 
back on top of a facsimile image and acting as transcrip-
tion overlay. In this case, positioning information was 
available in the page-based MEI encoding. 

4. USE OF VEROVIO 

4.1 C++ tools and library 

Several use cases can be imagined for the Verovio toolkit. 
First of all, it can be built and used as a standalone com-
mand-line tool. This option is well-suited to scripting en-
vironments and applications. The command-line tool can 
be used to render music notation files (in MEI, PAE or 
DARMS) into SVG. It can also be used to convert 
DARMS or PAE to MEI. Another option is to use Vero-
vio as a music notation rendering library that can be stati-
cally or dynamically linked to full applications. In such 
cases, it is also relatively easy to implement another 
drawing back-end for the corresponding C++ graphic en-
vironment for the music to be rendered directly on the 
screen. This is the case with the Aruspix optical music 
recognition software application where Verovio provides 
a screen rendering using a wxWidgets back-end instead 
of the standard SVG one. This approach is conceivable 
for any C++ graphical environments, be they cross-
platform, like the Qt or JUCE toolkits, or platform specif-
ic. 

4.2 JavaScript toolkit 

The Verovio toolkit can also be compiled to JavaScript 
using the Emscripten LLVM-to-JavaScript compiler [19]. 
In this case, it behaves similarly to the command-line tool 
but in the web browser context. This approach is particu-
larly interesting because it provides a complete in-
browser music MEI typesetter that can be easily integrat-
ed into web-based applications. 

Emscripten does not directly translate C++ into JavaS-
cript. Instead it takes the LLVM (Low Level Virtual Ma-
chine) byte code generated by the Clang compiler from 
the C++ code as a base for the conversion to JavaScript. 
This has several advantages. Most importantly, the level 
of completeness in terms of C++ language feature support 
is extremely high since the idiomatic features of C++ did 
not have to be explicitly translated into JavaScript in the 
Emscripten compiler (only the translation from LLVM 
was necessary). In fact, for the Verovio toolkit, the Em-
scripten compiler is applied on exactly the same codebase 
as the C++ compiler, and no change to the code had to be 
done for this to work. Only the compilation makefile is 
different. 

Another advantage of this approach is that the JavaS-
cript produced is very fast because it benefits from all the 
code optimization performed by the Clang compiler when 
generating the LLVM byte code. Furthermore, in addition 
to standard JavaScript, Emscripten can also generate 
asm.js code, a subset of JavaScript that has the advantage 
of being highly optimizable. On web browsers that sup-
port asm.js (currently Firefox, Chrome and Opera), the 
execution speed is only up to about 1.6 times slower than 
with the native C++ executable. Table 2 shows the sys-
tem time required to load an MEI file of 120 pages of 
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music (7 MB) and for displaying the first page with the 
native executable and with three web browsers. The fig-
ures are the median value of the operation repeated 100 
times. 
 

 Native Firefox Chrome Safari 
System time 

in sec. 0.657 1.054 1.364 1.811 

Comparison 
to native - 1.6 2.1 2.8 

 
Table 2. The system time in seconds for loading an MEI 
files (120 pages, 7 MB) and for displaying the first page. 
The second line gives the ratio with the native executable 
time for the three web browsers used for comparison. 
 

The JavaScript version of the Verovio toolkit is easy to 
use in web environments. It is packed in one single file 
which size is only about 1.2 MB. It is available as a Ja-
vaScript class, and all the options of the command-line 
version are supported in the toolkit. The options can be 
passed to the toolkit in JSON format, and the SVG output 
can be directly fed to HTML objects for display. The 
Figure 5 shows a HTML and Javascript code snippet for 
loading an MEI file using a jQuery HTTP GET request. 
 

 

Figure 5. A JavaScript example for loading an MEI file. 
The toolkit parameters can be set using JSON. 

 
The layout of the MEI data is performed on loading. 

Once the file is loaded into memory, it remains accessible 
in the toolkit instance. The class provides methods for 
getting the number of pages or for navigating through 
them, making it convenient to integrate the toolkit in a 
JavaScript application.  

The Figure 6 shows a screenshot of a web application 
where the toolkit was turned into an online MEI file 
viewer. The application works on desktop computers but 
also on tablets and mobile devices. The JavaScript toolkit 
has been tested with recent versions of the most widely 
used web-browsers. Internet Explorer requires at least 
version 10. 

 

 

Figure 6. An example of a web-based MEI viewer built 
with the Verovio toolkit. Large MEI files can be loaded 
and displayed in the web browser in a very convenient 
way.  

 

5. CONCLUSION AND FUTURE WORK 

Verovio is a toolkit for rendering MEI in SVG that can be 
used in different application environments, including 
online. It is designed with MEI in mind, making it the 
right basis for implementing encoding features that are 
specific to MEI. It will avoid problematic situations that 
occur when using rendering engines based on other for-
mats and that implement a different data structure. Even 
if at this stage, the supported features can be in some cas-
es more limited than with other rendering options, Vero-
vio already implements many important features for ren-
dering both common Western music notation and mensu-
ral notation. 

Current work on Verovio includes the adoption of the 
Standard Music Font Layout (SMuFL) [17] for support-
ing other fonts converted to SVG glyphs, the improve-
ment of the SVG structure and adding support for addi-
tional MEI elements and attributes. The priority is given 
to features specific to MEI. The future work will include 
the development of a prototype for making Verovio a 
possible basis for an online MEI editor. It will also in-
clude the creation of an MEI application profile for Vero-
vio using the TEI One Document Does-it-all (ODD) ap-
proach. The corresponding XSL stylesheets for convert-
ing to it other MEI profiles will also be provided. Adding 
the import of other encoding formats is also envisaged in 
the future. 
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6. AVAILABILITY 

Verovio can be downloaded from http://www.verovio.org 
and is available under the GPLv3 open-source license. 
The website also includes documentation on currently 
available features. 
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ABSTRACT

The popularization of music distribution in electronic for-

mat has increased the amount of music with incomplete

metadata. The incompleteness of data can hamper some

important tasks, such as music and artist recommendation.

In this scenario, transductive classification can be used to

classify the whole dataset considering just few labeled in-

stances. Usually transductive classification is performed

through label propagation, in which data are represented as

networks and the examples propagate their labels through

their connections. Similarity-based networks are usually

applied to model data as network. However, this kind of

representation requires the definition of parameters, which

significantly affect the classification accuracy, and presents

a high cost due to the computation of similarities among all

dataset instances. In contrast, bipartite heterogeneous net-

works have appeared as an alternative to similarity-based

networks in text mining applications. In these networks,

the words are connected to the documents which they oc-

cur. Thus, there is no parameter or additional costs to gen-

erate such networks. In this paper, we propose the use

of the bipartite network representation to perform trans-

ductive classification of music, using a bag-of-frames ap-

proach to describe music signals. We demonstrate that the

proposed approach outperforms other music classification

approaches when few labeled instances are available.

1. INTRODUCTION

The popularity of online music services has dramatically

increased in the last decade. The revenue of online ser-

vices, such as music streaming, has more than triplicate in

the last three years. Online services already account for a

significant 40% of the overall industry trade revenues [1].

However, the popularization of music and video clips dis-

tribution in electronic format has increased the amount of

music with incomplete metadata. The incompleteness of
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the data can hamper some important tasks such as index-

ing, retrieval and recommendation.

For instance, users of music services commonly define

their preferences based on genre information. A recom-

mendation system can make use of such information to

suggest other music conditional to the expressed prefer-

ences. The lack of genre information on music imposes

limits to the capability of the recommendation systems to

correctly identify consume patterns as well as to recom-

mend a diverse set of music. Similar statements can be

made for music indexing and retrieval.

Due to the academic and commercial importance of dig-

ital music, we have witnessed in the last decade a tremen-

dous increase of interest for Music Information Retrieval

(MIR) tasks. Most of the proposed MIR methods are based

on supervised learning techniques. Supervised learning

usually requires a substantial amount of correctly labeled

data in order to induce accurate classifiers. Although la-

beled data can be obtained with human supervision, such

process is usually expensive and time consuming. A more

practical approach is to employ methods that can avail

of both a small number of labeled instances and a large

amount of unlabeled data.

Transductive learning directly estimates the labels of

unlabeled instances without creating a classification model.

A common approach to perform transductive classification

is label propagation, in which the dataset is represented as

a network and the labels of labeled instances are propa-

gated to the unlabeled instances through the network con-

nections. Similarity-based networks are usually applied

to represent data as networks for label propagation [19].

However, they present a high cost due to the computation

of the similarities among all dataset instances, and require

the definition of several graph construction parameters that

can significantly affect the classification accuracy [11].

Bipartite heterogeneous networks have appeared as an

alternative to similarity-based networks in sparse domains,

such as text mining [9, 10]. In these networks, words are

connected to documents in which they occur. Thus, there

are no parameters or additional costs to generate such net-

works. In a similar way, we can represent music collec-

tions as a bipartite network though the use of a bag-of-

frames (BoF) representation. The BoF is a variation of

bag-of-words (BoW) representation used in text analysis

and has been applied in studies of genre recognition, mu-

sic similarity, and others [12].
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In this paper, we propose the use of the bipartite net-

work representation to perform transductive classification

of music, using a BoF approach to describe music signals.

We demonstrate that the proposed approach outperforms

other music classification approaches when few labeled in-

stances are available.

2. BACKGROUND & RELATED WORK

Transductive classification is a useful way to classify all

dataset instances when just few labeled instances are avail-

able [19]. Perhaps the most common and intuitive way to

perform transductive classification is through label propa-

gation, which is commonly made by using similarity-based

networks to represent the data. Usual ways to generate

similarity-based networks are [17–19]: (i) fully connected-

network, in which every pair of instances are connected;

(ii) k nearest neighbor, in which an instance is connected

with its k most similar instances; and (iii) ε network, in

which two instances are connected if their distance is above

a threshold.

Bipartite networks have appeared as an alternative to

similarity-based networks in sparse domains such as texts

[9, 10]. The use of bipartite networks to represent text

collections and the use of algorithms which perform label

propagation in bipartite networks obtained results as good

as the obtained by similarity-based networks [10]. How-

ever, the computation cost to generate similarity-based net-

works is O(|I|2 × |A|), in which |I| is the number of in-

tances and |A| is the number of attributes of a dataset,

while the computational cost to generate bipartite networks

is O(|I| × |A|). Morevorer, the gerenation of bipartite net-

works is parameter-free.

We can represent music collections as a bipartite net-

work though the generation of a bag-of-frames (BoF).

Methods using BoF has became common in different MIR

tasks, including similarity, genre, emotion and cover song

recognition [12]. Such strategies basically consist of three

main steps: feature extraction, codebook generation and

learning/classification.

Probably, the most simple and commonly used strat-

egy for the codebook generation is the Vector Quantization

(VQ). Basically, the VQ uses clustering algorithms on the

frame-level features and consider the center of clusters as

the words of a dictionary. The simple k-means is, prob-

ably, the most used algorithm in this step and showed to

achieve similar results to other methods [8].

Recently, new tools have emerged for creating code-

books. Specifically, strategies based on Sparse Cod-

ing [5, 15] and Deep Belief Networks [3, 7] have been

widely used. However, even though these strategies often

improve the results in different domains, they can present

similar performance to simple strategies such as VQ in cer-

tain tasks [7].

3. PROPOSED FRAMEWORK: MC-LPBN

In this paper we propose a framework called MC-LPBN

(Music Classification through Label Propagation in Bi-

MFCC 

Word 
Candidate 

MFCC 

... 
Music Signal 

Figure 1. Word candidates generation process

Codebook 
Clustering 
Algorithm 
(k-means) 

Word 
Candidates 

Words 

Figure 2. The word candidates are clustered and each cen-

troid is elected as a codeword. The word frequency is di-

rectly related to the candidates count in each cluster

partite Networks) to perform transductive classification of

musics. The proposed framework has three main steps: (i)
codebook generation, (ii) network generation for transduc-

tive classification, and (iii) transductive classification using

bipartite heterogeneous networks. In the next subsections

we present the details of each step.

3.1 Codebook Generation and Bag-of-Frames

In order to represent a music collection as a BoF it is nec-

essary to extract a set of words. Such procedure starts with

the extraction of word candidates. A word candidate is a

set of features extracted from a single window. As a sliding

window swipes across the entire music signal, each music

gives origin to a set of word candidates. In this work we

use MFCC as feature extraction procedure. Figure 1 illus-

trates the word candidates generation process.

The next step is the creation of a codebook. A codebook

is a set of codewords used to associate the word candidates

to a finite set of words. The idea is to select the most rep-

resentative codeword for each word candidate. To do this,

we use a clustering algorithm with the word candidates and

consider the center of each cluster as a codeword. So, each

candidate is associated to the codeword that represents the

cluster it belongs. In this step, we used the ubiquitous k-

means algorithm, due to its simplicity and efficiency. Fig-

ure 2 illustrates this procedure.

Finally, there is a step to the generation of a BoF ma-

trix. In such a matrix, each line corresponds to a music

recording, each column corresponds to a word and the cells

correspond to the frequency of occurrence of the word in

the music. The BoF allows the generation of bipartite net-

works for transductive classification, as we discuss in the

next subsection.

3.2 Network Generation for Transductive
Classification

Formally, a network is defined by N = 〈O, E ,W〉, in

which O represents the set of objects (entities) of a prob-

lem, E represents the set of connections among the objects

and W represents the weights of the connections. When
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O is composed by a single type of object, the network is

called homogeneous network. When O is composed by h
different types of objects, i.e., O = O1 ∪ · · · ∪ Oh, the

networks is called heterogeneous network [6].

The music collection can be represented by a bipar-

tite heterogeneous network with O = M ∪ T , in which

M = {m1,m2, . . . ,mn} represents the set of music and

T = {t1, t2, . . . , tl} represents the set of words. M is

composed by labeled (ML) and unlabeled (MU ) music,

i.e., M = ML ∪ MU . A music mi ∈ M and a word

tj ∈ T are connected if tj occurs in mi. The weight of the

relation between mi and tj (wmi,tj ) is the frequency of tj
in mi. Thus, only the words and their frequencies in the

music are needed to generate the bipartite network.

For transductive classification based on networks, let

C = {c1, c2, . . . , cl} be the set of possible labels, and let

foi = {f1, f2, . . . , f|C|}T be the weight vector of an ob-

ject oi, which determines its weight or relevance for each

class. Hence, it is also referred as class information vector.

The class information of an object mi ∈ M or an object

tj ∈ T is denoted respectively by fmi
and ftj . All the

class information of objects in M or T is denoted by the

matrices F(M) = {fm1
, fm2

, . . . , fm|M|}T and F(T ) =

{ft1 , ft2 , . . . , ft|T |}T . The class information of a labeled

music mi is stored in a vector ymi
= {y1, y2, . . . , y|C|}T ,

which has the value 1 to the corresponding class position

and 0 to the others. The weights of connections among ob-

jects are stored in a matrix W. A diagonal matrix D is used

to store the degree of the objects, i.e., the sum of the con-

nection weights of the objects. Thus the degree of a music

mi in a bipartite network is (dmi
= di,i =

∑
tj∈T wmi,tj ).

3.3 Transductive Classification Using Bipartite
Heterogeneous Networks

The main algorithms for transductive classification in data

represented as networks are based on regularization [19],

which have to satisfy two assumptions: (i) the class infor-

mation of neighbors must be close; and (ii) the class infor-

mation assigned during the classification process must be

close to the real class information. In this paper we used

three regularization-based algorithms: (i) Tag-based clas-

sification Model (TM) [16], (ii) Label Propagation based

on Bipartite Heterogeneous Networks (LPBHN) [10], and

(iii) GNetMine (GM) [6].

TM algorithm minimizes the differences among (i) the

real class information and the class information assigned to

music (M), (ii) the real class information and the class in-

formation assigned to and objects from other domains that

aid the classification (A), and (iii) the class information

among words (T ) and objects in (M) or (A), as presented

in Equation 1.

Q(F) = α
∑
ai∈A

||fai− yai ||2 + β
∑

mi∈ML

||fmi− ymi ||2 (1)

+γ
∑

mi∈MU

||fmi
− ymi

||2 +
∑

oi∈M∪A

∑
tj∈T

woi,tj ||foi− ftj ||2

The parameters α, β and γ control the importance given

for each assumption of TM. Objects are classified using

class mass normalization [18].

LPBHN is a parameter-free algorithm based on the

Gaussian Fields and Harmonic Functions (GFHF) algo-

rithm [18], which performs label propagation in homoge-

neous networks. The difference is that LPBHN considers

the relations among different types of objects. The func-

tion to be minimized by LPBHN is:

Q(F) =
1

2

∑
mi∈M

∑
tj∈T

wmi,tj ||fmi − ftj ||2 (2)

+ lim
μ→∞

μ
∑

mi∈ML

||fmi
− ymi

||2,

in which μ tending to infinity means that fmi ≡ ymi , i.e.,

the information class of labeled musics do not change.

The GM framework is based on the Learning with

Local and Global Consistency (LLGC) algorithm [17],

which performs label propagation in homogeneous net-

works. The difference between the algorithms is that GM

considers the different types of relations among the differ-

ent types of objects. For the problem of music classifi-

cation using bipartite networks, GM minimizes the differ-

ences of (i) the class information among music and words

and (ii) the class information assigned to labeled music

during the classification and their real class information.

The function to be minimized by GM is:

Q(F) =
∑

mi∈M

∑
tj∈T

wmi,tj

∣∣∣∣∣
∣∣∣∣∣ fmi√

dmi

− ftj√
dtj

∣∣∣∣∣
∣∣∣∣∣
2

(3)

+
∑

mi∈M
μ||fmi − ymi ||2,

in which 0 < μ < 1.

We highlight that all the algorithms presented above

have iterative solutions to minimize the respective equa-

tions. This allows to obtain similar results to the closed

solutions with a lower computational time.

4. EXPERIMENTAL EVALUATION

To illustrate the generality of our approach, we evaluate

our framework in two different scenarios. In this sec-

tion, we describe the tasks we considered, the experimen-

tal setup used in our experiments, as well as the results

obtained and a short discussion about them.

4.1 Tasks Description

We evaluate our framework in genre recognition and cover

song recognition scenarios. The remaining of this section

contains a brief description of each task and the datasets

used to each end.

4.1.1 Genre Recognition

Genre recognition is an important task in several applica-

tions. Genre is a quality created by the human beings to
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intuitively characterize music [14]. For humans, the clas-

sification of music by genre is relatively simple task, and

can be done by listening to a short excerpt of a music.

Therefore, most of the existing data for this task con-

siders a short duration excerpt for each recording. In this

work, we use the GTZAN 1 and Homburg 2 datasets. The

first has 1, 000 snippets of 30 seconds of ten different gen-

res. The number of instances of each class is equally dis-

tributed. The Homburg dataset, in turn, has ten seconds

sections of 1, 886 recordings, belonging to nine genres. In

this case, the genre with fewer instances has only 47 exam-

ples, while the largest has 504.

4.1.2 Cover Song Recognition

Cover song may be defined as distinct performances of

the same music with differences in tempo, instrumentation,

style or other characteristics [4]. Finding reinterpreted mu-

sic is an important task mainly to commercial ends. For ex-

ample, it can be used to ensure copyright in websites which

allow users to create content.

In this paper, we evaluate our framework in a task sim-

ilar to the cover song recognition. But, instead find the

original recording of a query music, we consider all differ-

ent interpretations of the same music as the same class.

To evaluate our proposal we used the Mazurkas Project

data 3 , in which each music has several versions. This

dataset contains 2914 recordings of 49 Chopin’s mazurkas

for piano (from 43 to 97 versions per class).

4.2 Experimental Setup

We evaluated our framework considering different config-

urations for the 1st and 3rd steps. For the 1st step, we

consider variations of parameters of the feature extraction

and codebook generation phases. In this work, we use 20

MFCC as frame-level features. This number is a com-

mon choice in MIR papers [2]. We use 5 different win-

dow sizes, with an overlap of 50% between them: 0.0625,

0.125, 0.25, 0.5 and 0.75 seconds. Finally, we applied the

k-means using k ∈ {100, 200, 400, 800, 1600, 3200}.
For the 3rd, we consider the algorithms presented in

Section 3.3: Label Propagation using Bipartite Heteroge-

neous Networks (LPBHN), Tag-based Model (TM), and

GNetMine (GM). For GM we use the parameter α ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. For TM we use α = 0, since

there are no objects from different domains, β ∈ {0.1, 1.0,
10, 100, 1000}, and γ ∈ {0.1, 1.0, 10.0, 100.0, 1000.0}.
The iterative solutions proposed by the respective authors

were used for all the algorithms. The maximum number of

iterations is set to 1000 since this is a common limit value

for iterative solutions.

We also carried out experiments using two algorithms

for label propagation in similarity-based networks, Learn-

ing with Local and Global Consistency (LLGC) [17] and

Gaussian Fields and Harmonic Functions (GFHF) [18],

1 http://marsyas.info/download/data sets/
2 http://www-ai.cs.uni-dortmund.de/audio.html
3 http://www.mazurka.org.uk/

and two classical supervised learning algorithms for com-

parison with the proposed approach, k Nearest Neighbors

(kNN) and Support Vector Machines (SVM) [13].

We build similarity-based networks using the fully con-

nected approach with σ = 0.5 [19] and we set α =
{0.1, 0.3, 0.5, 0.7, 0.9} for LLGC algorithm. For kNN we

set k = 7 and weighted vote, and for SVM we used linear

kernel and C = 1 [9].

The metric used for comparison was the classification

accuracy, i.e., the percentage of correctly classified mu-

sic recordings. The accuracies are obtained considering

the average accuracies of 10 runs. In each run we ran-

domize the dataset and select x examples as labeled ex-

amples. The remaining |M| − x examples are used for

measuring the accuracy. We carried out experiments us-

ing x = {1, 10, 20, 30, 40, 50} to analyze the trade-off be-

tween the number of labeled documents and classification

accuracy. The best accuracies obtained by some set of pa-

rameters of the algorithms are used for comparison.

4.3 Results and Discussion

Given the large amount of results obtained in this work,

their complete presentation becomes impossible due to

space constraints. Thus, we developed a website for this

work, where detailed results can be found 4 . In this sec-

tion, we summarize the results from different points of

view.

4.3.1 Influence of Parameters Variation

Our first analysis consists in evaluating the influence of

the variation of the codebook generation step parameters.

Figure 3 presents the variation of accuracy for both genre

recognition dataset and each window size according to a

different number of words in the dictionary. To do this,

we fixed the number of labeled examples in 10. This num-

ber represents a good trade-off between the classification

accuracy of the algorithms and the human effort to label

music. But, we note that the behaviors are similar to other

numbers of properly labeled examples.

The results show that the transductive learning methods

can achieve similar or even superior results than the ob-

tained by using inductive models. In the case of GTZAN

data, there is a clear increasing pattern when the number of

words varies. Using higher values to it, both strategies per-

form well, but the transductive learning obtained the higher

accuracies. The results obtained by similarity-based net-

works were slightly better in most of configurations. But,

as mentioned before, similarity-based networks has a high

cost to calculate the similarities between all the examples

and require the setting of several parameters to construct

the network. In the Homburg dataset, transductive learn-

ing is better independently of the parameter configuration.

In this case, there are no significant differences between bi-

partite network approaches, but they performed better than

the similarity-based networks in most of cases.

In order to evaluate our framework in the cover song

recognition, we used the LPBHN algorithm, that achieved

4 http://sites.labic.icmc.usp.br/dfs/ismir2014
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(b) GTZAN - 0.125
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(c) GTZAN - 0.25
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(d) GTZAN - 0.5
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(e) GTZAN - 0.75
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(f) Homburg - 0.0625
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(g) Homburg - 0.125

��� ��� ��� ��� ���� ����
	
����

��

��

��

��

��

��

��
��

�
��


��
�

(h) Homburg - 0.25
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(i) Homburg - 0.5
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(j) Homburg - 0.75

Figure 3. Accuracy for genre recognition by varying the number of words in the codebook. The number of labeled

examples per class is fixed in 10.

similar result to other transductive methods and has the ad-

vantage of being parameter-free, and both, SVM and kNN,

inductive approaches. The results show a high increasing

pattern when transductive learning is used, and a more sta-

ble pattern to supervised methods. Figure 4 shows the ac-

curacy achieved by fixing the number of labeled examples

in 10. We fixed the window size to 0.75 seconds, since

Mazurkas is the larger dataset used in this work and this is

the fastest configuration to the feature extraction phase. We

believe that the performance of transductive learning can

overcome the SVM if we increase the number of words.
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Figure 4. Accuracy for Mazurkas by varying the number

of words in the codebook. The number of labeled examples

is fixed in 10 and the window length in 0.75 seconds.

4.3.2 Number of Labeled Examples Variation

The evaluation of the performance variation according to

the number of labeled examples is an important analysis in

the context of transductive learning. Figure 5 shows the be-

havior of accuracy in genre recognition task when there is

a variation in the number of labeled examples that belong

to each class. The results were obtained by fixing the num-

ber of words in 3200, in which good results were achieved

in several configurations, and a window size of the middle

value of 0.25 seconds, since the results were similar than

the obtained with other values to this parameter.

To analyze these graphs, it is interesting to know the

proportion that the number of labeled examples represents

in each dataset. For example, in the case of GTZAN set,

50 examples correspond to exactly 50% of the examples in

each classes. In the case of Homburg, it represents 100%
of the minority class, but less than 10% of the majority.

In both cases, the behavior of the accuracies was simi-

lar. As the number of labeled samples increases, the per-

formance becomes better. The transductive learning meth-

ods performed better across the curve. As the proportion

of the number of labeled instances increases, the tendency

is that the performance of inductive algorithms approaches

the performance of transductive algorithms.

For sake of space limitations, we omitted the results for

the cover song recognition task. However, we point out

that the behavior of accuracy rates were very similar to ob-

tained in the other task.

5. CONCLUSION

In this paper, we presented a framework for transductive

classification of music using bipartite heteregeneous net-

works. We show that we can have a better performance by

using this approach instead the traditional inductive learn-

ing. Our results were close or superior to the obtained by

similarity-based networks. This kind of network, however,

requires several parameters and has a high cost due to the

calculation of the similarity between the instances.

We should note that the accuracy rates achieved in this

paper are worse than some results presented in related

works. For example, there are some papers that achieved

accuracy higher than 80% to the GTZAN dataset using

BoF approaches. However, these results were probably

obtained due to the choice of specific features and param-

eters. Moreover, these papers used inductive learning ap-

proaches, with labels for the entire dataset. Nevertheless,

we demonstrated that, for the same parameter set, the use

of bipartite heterogeneous network achieved the best re-

sults.

As future work we will investigate a better feature con-

figuration and different codebook generation strategies.
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(b) Homburg

Figure 5. Accuracy of genre recognition by varying the numbers of labeled examples for each class. The number of words

and the windows length are fixed in 3200 and 0.25 seconds, respectively.
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ABSTRACT

This paper focuses on automatic melody transcription in a

situation where a chord transcription is already available.

Given an excerpt of music in audio form and a chord tran-

scription in symbolic form, the task is to create a symbolic

melody transcription that consists of note onset times and

pitches. We present an algorithm that divides the audio

into segments based on the chord transcription, and then

matches potential melody patterns to each segment. The

algorithm uses chord information to favor melody patterns

that are probable in the given harmony context. To eval-

uate the algorithm, we present a new ground truth dataset

that consists of 1,5 hours of audio excerpts together with

hand-made melody and chord transcriptions.

1. INTRODUCTION

Melody and chords have a strong connection in Western

music. The purpose of this paper is to exploit this con-

nection in automatic melody transcription. Given a chord

transcription, we can use it in melody transcription to con-

strain the set of possible melodies. Both the rhythm and

the pitches of the melody should match the chords in a suc-

cessful melody transcription.

For example, let us consider the melody in Figure 1.

The melody consists of 16 bars, each annotated with a

chord symbol. The first observation is that chord bound-

aries divide the melody into segments of approximately

equal length. Each of the segments has a simple rhythmical

structure. In this case the chord boundaries exactly match

the bar lines, and each segment contains up to three melody

notes. Of course, many melodies are more complex than

this, but the underlying segmentation is still usually appar-

ent.

Let us now consider the pitches of the melody. The key

of the melody mainly determines what pitches typically oc-

cur in the melody. In this example the key of the melody

is C major, and almost all melody pitches belong to the C

major scale. However, there are two exceptions: the G#

c© Antti Laaksonen.
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Figure 1: A melody from Disney’s Snow White and the
Seven Dwarfs. The chord transcription consists of 16

chords, and the melody transcription consists of 30 notes.

note in the second bar and the C# note in the sixth bar.

Thus, although the melody follows the C major scale, the

individual chords also have an effect on the pitches. In this

case the major thirds of E major and A major chords are so

predominant that the melody adapts to the harmony.

Human transcribers routinely use this kind of musical

knowledge in music transcription. If the melody does not

match the chords, or the chords do not match the melody,

the transcription cannot be correct. However, in automatic

music transcription, chord extraction and melody extrac-

tion have been studied separately for the most part.

Currently, the best automatic systems for chord tran-

scription produce promising results, while melody tran-

scription seems to be a more challenging problem. For this

reason, we approach automatic melody transcription with

the assumption that a chord transcription has already been

done. We present an algorithm that divides the audio data

into segments based on the chord boundaries. After this,

the algorithm assigns each segment a melody pattern that

matches both the audio data and the chord information.

1.1 Problem statement

Given an excerpt of music in audio form and a chord tran-

scription in symbolic form, the task is to produce a melody

transcription in symbolic form. We concentrate on typical

Western music, and assume that the pitches of the notes are

given in semitones.

We assume that the audio data A is divided into nA

frames of equal length using some preprocessing method.

For each audio frame k (1 ≤ k ≤ nA), we are given values

A[k].begin and A[k].end that are time values in seconds
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when the frame begins and ends. In addition, for each pos-

sible melody note q we are given a real number A[k][q] in

the range [0, 1]. This value estimates the strength of the

note q in frame k.

The chord transcription C consists of nC chord changes.

For each chord change k (1 ≤ k ≤ nC), we are given a

value C[k].time that is the time when the chord changes.

In addition, we are given a value C[k].chord that is the

name of the chord. We restrict ourselves to triads (major,

minor, diminished and augmented chords that consist of

three notes), which results in a total of 48 possible chords.

Finally, the outcome of the algorithm should be a melody

transcription M that consists of nM melody notes. For

each melody note k (1 ≤ k ≤ nM ), the algorithm should

produce values M [k].time and M [k].pitch that denote the

onset time of the note and the pitch of the note.

Throughout the paper, we use MIDI note numbers to

refer to the pitches. Thus, every pitch has a unique integer

value and the interval of pitches a and b is |a−b| semitones.

Pitch C4 (261.6 Hz) is associated with MIDI value 60.

1.2 Related work

Automatic melody transcription has been studied actively

during the last decade. Detailed reviews of the proposed

methods can be found in [16] and [20].

The usual first step in automatic melody transcription

is to detect potential melody notes in the audio signal. The

most popular method for this is to calculate a salience func-

tion for the audio frames using the discrete Fourier trans-

form or a similar technique (e.g. [2, 6, 15, 19]). Other pro-

posed approaches for audio data processing include signal

source separation [3] and audio frame classification [5].

After this, the final melody is selected according to some

criterion. One technique for this is to construct a hidden

Markov model (HMM) for note transitions and use the

Viterbi algorithm for tracking the most probable melodic

line [3, 5, 19]. An alternative to this is to use a set of local

rules that describe typical properties of melody notes and

outlier notes [7, 15, 20]. In addition, some systems [2, 6]

feature agents that follow potential melody lines.

The idea of providing additional information to facili-

tate the melody transcription has also been considered in

previous studies. A usual approach for this is to gather in-

formation from users. For example, users can determine

which instruments are present [8], help in the source sep-

aration process [4] or create an initial version of the tran-

scription [9]. The drawback of these systems is, of course,

that the transcription is not fully automatic.

There are also some previous studies that combine key,

chord and pitch estimation. In [18], the key and the chords

of the piece are estimated simultaneously. Multiple pitch

transcription systems that exploit key and chord informa-

tion in pitch estimation include [1] and [17].

Most of the previous work on automatic melody tran-

scription focuses on a slightly different problem than the

topic of this paper, namely how to determine the melody

frequency in the audio signal frame-by-frame. In [19] and

[22], the output of the algorithm is similar to ours.

2. ALGORITHM

In this section we present our melody transcription algo-

rithm that uses a chord transcription as a starting point for

the transcription. The algorithm first divides the audio data

into segments so that the boundaries of the segments cor-

respond to the boundaries of the chords in the chord tran-

scription. After this, the key of the piece is estimated using

the chord transcription. Finally, the algorithm assigns each

segment a pattern of notes that matches both the audio data

and the chord transcription.

The input and the output of the algorithm are as de-

scribed in Section 1.1. Thus, the algorithm is given nA

audio frames in array A and a chord transcription of nC

chord changes in array C, and the algorithm produces a

melody transcription of nM notes in array M .

2.1 Segmentation

The first step in the algorithm is to divide the audio data

into segments. The segments will be processed separately

in a later phase in the algorithm. The idea is to choose the

boundaries of the segments so that the harmony in each

segment is stable. This is accomplished using the chord

boundaries in the chord transcription.

Let

l(k) = C[k + 1].time− C[k].time

for each k where 1 ≤ k ≤ nC − 1 and

f(k, x) = (l(k)/x)/�l(k)/x�

where x is a real value. Thus, l(k) is the length of the

segment between chord changes k and k+1, and f(k, x) is

an estimate how evenly x divides that segment into smaller

segments. Finally, let

g(k, x) =

{
1 if f(k, x) ≤ 1 + ε
0 otherwise

and

s(x) =

nC−1∑
i=1

g(i, x).

If f(k, x) ≤ 1+ε for some small ε, our interpretation is

that x divides the segment evenly. Thus, g(k, x) indicates

if the segment is divided evenly, and s(x) is the number of

segments that are divided evenly if x was chosen. In this

paper we use value ε = 0.1.

The algorithm chooses a value of x such that x is in the

range [minx,maxx] and s(x) is as large as possible. The

value x will be used as a unit length in the segmentation.

The values minx and maxx denote the minimum and max-

imum unit length; in this paper we use values minx = 0.5
and maxx = 3.

Finally, the algorithm produces a segment division S of

nS segments by dividing each chord segment k into l(k)/x
smaller segments of equal length (the number of segments

is rounded to the nearest integer). For each new segment u
(1 ≤ u ≤ nS) the algorithm assigns the values S[u].begin
and S[u].end as described above, and S[u].chord denotes

the name of the chord in the segment.
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2.2 Key estimation

After determining the segments, the algorithm estimates

the key of the piece. The estimated key will be used later

in the algorithm to favor melody notes that agree with the

key. The key estimation is done using a simple method that

is based on the chord information.

The algorithm goes through all segments in S and main-

tains a counter for each pitch class (a total of 12 counters).

Initially, all the counters are zero. For each segment k,

the algorithm increases the value of each counter that cor-

responds to S[k].chord. For example, if S[k].chord is G

major, the algorithm increases counters that correspond to

notes G, B and D.

Finally, the algorithm determines the key using the coun-

ters as follows. There are 24 possible keys, 12 major keys

and 12 minor keys. For each key, the algorithm calculates

the sum of counters that correspond to tonic, mediant and

dominant in that key. The key whose sum is the highest is

selected as the key of the piece.

This method for key estimation is more simple than

methods used in previous studies involving chord and key

estimation from music audio [11,18]. However, this method

produces results that are considered accurate enough for

this purpose.

2.3 Pattern matching

For each segment, the algorithm chooses a melody pattern

that matches both the audio data within the segment and

the chord and key information. Each segment is processed

independently, and the final melody transcription consists

of all melody patterns in the segments.

The algorithm divides each segment into d note slots

where d is a preselected constant for all segments. Each

note slot can contain either one melody note or rest in the

melody pattern. The idea is to select d so that most rhythms

can be represented using d note slots, but at the same time

d is small enough to restrict the number of melody notes.

In practice, small integers that are divisible by 2 and/or 3

should be good choices for d.

An optimal melody pattern is selected according to a

scoring function. The scoring function should give high

scores for melody patterns that are probable choices for

the segment. Depending on the scoring function, there are

three ways to construct the optimal melody pattern:

• Greedy construction: If the melody slots are inde-

pendent of one another, we can select the optimal

melody note for each slot and combine the results to

get the optimal melody pattern.

• Dynamic programming: If the melody slots are not

independent but the score of a slot only depends on

the previous slot, we can use dynamic programming

to construct the optimal pattern.

• Complete search: If the score of a melody pattern

cannot be calculated before all melody notes are se-

lected, we have to go through all possible note pat-

terns and select the optimal one.

The methods involving greedy construction and dynamic

programming are efficient in all practical situations. How-

ever, in complete search we need to check qd melody pat-

terns where q is the number of possible choices for a melody

slot. In practice, q ≈ 50, so complete search can be used

only when d ≤ 4 to keep the algorithm efficient.

2.4 Scoring function

The scoring function that we use in this paper is primar-

ily based on the key information and favors melody notes

that match the estimated key of the excerpt. In addition,

the notes that belong to the chord of the segment have an

increased probability to be selected to the melody. Thus, if

an E major chord occurs in the C major key, the note G# is

a strong candidate for the melody note even if it does not

belong to the C major scale.

Let s(k, a, q) denote the score for an event where a’th

note slot of segment k contains note q. We calculate the

score using the formula

s(k, a, q) = z · b(k, a, q)− x · c(k, a, q)
where b(k, a, q) is a base score calculated from the audio

data, c(k, a, q) is a penalty for selecting a note that does

not appear in the audio data, and z and x are parameters

that control the balance of the base score and the penalty.

Let I be a set that contains the indices of all audio frames

that are inside the current note slot. Now we define

b(k, a, q) =
∑
i∈I

A[i][q]

and

c(k, a, q) =
∑
i∈I

e(i, q)

where

e(i, q) =

{
1 if A[i][q] = 0
0 otherwise.

The parameter z favors melody notes that match the

chord transcription, and it should depend on the key of the

excerpt and the chord in segment k. We set z = 2 if q be-

longs to the current chord, z = 1 if q belongs to the key of

the excerpt and otherwise z = 0. The parameter x controls

the effect of adding a note to the melody that does not ap-

pear strongly in the audio data, and we study the effect of

that constant in Section 3.

Finally, we select the note pattern greedily so that each

note slot will be assigned the note that maximizes the score

for that slot. If no note produces a score greater than 0, we

leave that slot empty.

We also experimented with dynamic programming scor-

ing functions that favor small intervals between consec-

utive notes, but the results remained almost unchanged.

Consequently, we chose the more simple greedy construc-

tion approach.

3. EVALUATION

In this section we present results concerning the accuracy

of the transcriptions produced by our algorithm, using real-

world inputs. We evaluated our algorithm using a dataset
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of Western popular music. We used both hand-made and

automatic chord transcriptions as additional input for the

algorithm.

Audio Melody Extraction task is an established part of

the MIREX evaluation [13]. However, in the MIREX eval-

uation each audio frame is assigned a melody note fre-

quency, and those results cannot be compared with our

melody transcriptions that consist of note onset times and

pitches in semitones.

3.1 Dataset

The evaluation dataset consists of 1,5 hours of audio ex-

cerpts from Western popular music. The length of each

excerpt in the dataset is between 20 and 60 seconds. For

each excerpt, we manually created time-aligned melody

and chord transcriptions. We chose the excerpts so that the

content of each excerpt is unique i.e. repetitions of verses

and choruses are not included in the dataset.

The dataset can be found on our web site 1 , and is avail-

able for free for use in research. For each excerpt, the

dataset includes an audio file in WAV format, and chord

and melody transcriptions in text format. Each chord tran-

scription is a list of chord change times and chord symbols,

and each melody transcription is a list of note onset times

and pitches. Thus, the transcriptions in the dataset corre-

spond to the definitions in Section 1.1.

3.2 Evaluation method

To evaluate a melody transcription, we calculate two val-

ues: the precision and the recall. Precision is the ratio of

the number of correct notes in the transcription and the to-

tal number of notes in the transcription. Recall is the ratio

of the number of correct notes in the transcription and the

total number of notes in the ground truth.

Let X be a melody transcription of nX notes created

by the algorithm, and let G be the corresponding melody

transcription of nG notes in the ground truth. Both tran-

scriptions consists of a list of melody note onset times and

pitches as described in Section 1.1.

To evaluate the precision and the recall of X , we first

align the transcriptions. Let nD be the maximum integer

value such that we can create lists DX and DG as follows.

List DX consists of nD note indices in X , and list DG

consists of nD note indices in G. In addition, for each k
(1 ≤ k ≤ nD) X[DX [k]].pitch = G[DG[k]].pitch and

|X[DX [k]].time − G[DG[k]].time| ≤ α where α is a

small contant. In other words, we require that lists DX

and DG align a set of notes where all pitches match each

other and the onset times of the notes do not differ more

than α from each other.

Finally, let

precision(X,G) = nD/nX

and

recall(X,G) = nD/nG.

1 http://cs.helsinki.fi/u/ahslaaks/fpds/

In practice, we calculate the value nD efficiently using

dynamic programming. The technique is similar to calcu-

lating the Levenshtein distance between two strings [14].

This evaluation method corresponds with that used in

[19] and [22], however, the previous papers do not specify

how the notes in the two transcriptions are aligned.

3.3 Experiments

We implemented our algorithm as described in Section 2.

For calculating array A we used an algorithm by Salamon

and Gómez that estimates potential melody contours in the

audio signal. We used the Vamp plugin implementation of

the algorithm (”all pitch contours”). Note that this algo-

rithm already restricts the set of possible melodies consid-

erably. We converted each pitch frequency to a MIDI note

number assuming that the frequency of A4 is 440 Hz.

We used four chord transcriptions in the evaluation:

• A random chord transcription where the time be-

tween two chord changes is a random real number

in the range [0.5, 2] and each chord is randomly se-

lected from the set of 48 possible triads.

• A simple automatic chord transcription created by

our own algorithm. We used the standard technique

of constructing a hidden Markov model and tracking

the optimal path using the Viterbi algorithm [21].

• An advanced automatic chord transcription created

using the Chordino tool [12].

• The chord transcription in the ground truth.

Random chord transcriptions were used in an effort to

understand the actual role of the chord information and

how the algorithm works if the chord information does not

make sense at all.

Finally, there are three parameters that we varied during

the evaluation:

• d: the number of note slots in a segment as described

in Section 2.3 (default value: 6),

• x: the cost for assigning a note to a frame with-

out a note as described in Section 2.4 (default value:

1.00),

• α: the maximum onset time difference in the evalua-

tion as described in Section 3.2 (default value: 0.25).

The default values were chosen so that they produce

good results on the evaluation dataset.

In each experiment in the evaluation, we varied one pa-

rameter and kept the remaining parameters unchanged. We

used the ground truth chord transcription as the default

chord transcription. We created melody transcriptions for

all excerpts in the dataset and calculated average precision

and recall values.
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(a) The results using random chord transcription, simple

automatic transcription, advanced automatic transcrip-

tion, and ground truth transcription.
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(b) The results varying the parameter d: the number of

available note slots in a segment.
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(c) The results varying the parameter x: the cost for

assigning a note to a frame without a note.
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(d) The results varying the parameter α: the maximum

onset time difference in seconds in the evaluation.

Figure 2: The results of the experiment.

3.4 Results

In the first experiment (Figure 2a) we studied how the qual-

ity of the chord transcription affects the results. As ex-

pected, the better the chord transcription, the better the

precision of the melody transcription. However, recall was

highest when using automatic chord transcriptions. One

possible reason for this is that there were more chord changes

in automatic transcriptions than in the ground truth tran-

scription. Therefore more melody notes were selected us-

ing the automatic chord transcriptions.

In the second experiment (Figure 2b) we varied the pa-

rameter d: the number of note slots in a segment. Our

findings suggest that 6 note slots is a good trade-off be-

tween the precision and the recall. This can be explained

by the fact that 6 is divisible by both 2 and 3, and thus seg-

ments of 6 note slots are suitable for both 3/4 time and 4/4

time music. Interestingly, when d ≤ 6 the precision of the

transcription remained nearly unchanged.

In the third experiment (Figure 2c) we varied the pa-

rameter x: the cost for assigning a note to a frame without

a note. This was an important parameter, and the results

were as expected. Increasing the parameter x improves the

precision because melody notes are only selected if they

appear strongly in the audio data. At the same time, this

decreases the recall because fewer uncertain notes are in-

cluded in the melody transcription.

Finally, in the fourth experiment (Figure 2d) we varied

the parameter α: the maximum note onset time difference

in the evaluation. Of course, the greater the parameter α,

the better the results. Interestingly, after reaching a value

of approximately 0.25, increasing α did not affect the re-

sults considerably. The probable reason for this is that if

the melody note pitches in the transcription are not correct,

the situation cannot be rescued by allowing more error for

the onset times.

Previous studies also present some results about the pre-

cision and the accuracy of the algorithms. However, find-

ings from these studies cannot be directly compared with

the new results because the evaluation dataset is different

in each study. In [19] precision 0.49 and recall 0.61 was

reported using a database of 84 popular songs. In [22] the

melody transcription was evaluated using a small set of 11

songs with precision 0.68 and recall 0.63.
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4. CONCLUSIONS

In this paper we presented an automatic melody transcrip-

tion algorithm that uses a chord transcription for select-

ing melodies that match the harmony of the music. We

evaluated the algorithm using a collection of popular mu-

sic excerpts, and the results of the evaluation suggest that

the chord information can be successfully used in melody

transcription of real-world inputs.

Our new evaluation dataset consists of 1,5 hours of au-

dio excerpts of popular music together with melody and

chord annotations. The dataset can be used at no cost

for research purposes, for example as evaluation material

for other chord transcription and melody transcription sys-

tems.

Our future work aims to use the harmony information

provided by the chord transcription more extensively in

melody transcription. Currently our algorithm uses only

information about chord notes to constrain the pitches of

melody notes, but using more advanced musical knowl-

edge should yield better results.

5. ACKNOWLEDGEMENTS

This work has been supported by the Helsinki Doctoral

Programme in Computer Science and the Academy of Fin-

land (grant number 118653).

6. REFERENCES
[1] E. Benetos, A. Jansson and T. Weyde: ”Improving automatic

music transcription through key detection,” AES 53rd Inter-
national Conference on Semantic Audio, 2014.

[2] K. Dressler: “An auditory streaming approach for melody ex-
traction from polyphonic music,” 12th International Society
for Music Information Retrieval Conference, 19–24, 2011.

[3] J.-L. Durrieu et al: ”Source/filter model for unsupervised
main melody extraction from polyphonic audio signals,”
IEEE Transactions on Audio, Speech, and Language Pro-
cessing, 18(3), 564–575, 2010.

[4] J.-L. Durrieu and J.-P. Thiran: ”Musical audio source sep-
aration based on user-selected F0 track,” 10th International
Conference on Latent Variable Analysis and Signal Separa-
tion, 2012.

[5] D. Ellis and G. Poliner: “Classification-based melody tran-
scription,” Machine Learning, 65(2–3), 439–456, 2006.

[6] M. Goto: ”A real-time music scene description system:
predominant-F0 estimation for detecting melody and bass
lines in real-world audio signals,” Speech Communication,
43(4), 311–329, 2004.

[7] S. Joo, S. Park, S. Jo and C. Yoo: “Melody extraction based
on harmonic coded structure,” 12th International Society for
Music Information Retrieval Conference, 227–232, 2011.

[8] H. Kirchhoff, S. Dixon and A. Klapuri: ”Shift-variant non-
negative matrix deconvolution for music transcription,” 37th
International Conference on Acoustics, Speech and Signal
Processing, 2012.

[9] A. Laaksonen: ”Semi-automatic melody extraction using
note onset time and pitch information from users,” SMC
Sound and Music Computing Conference, 689–694, 2013.

[10] M. Lagrange et al: ”Normalized cuts for predominant
melodic source separation,” IEEE Transactions on Audio,
Speech, and Language Processing, 16(2), 278–290, 2008.

[11] K. Lee and M. Slaney: ”A unified system for chord tran-
scription and key extraction using hidden Markov models,”
8th International Conference on Music Information Retri-
avel, 245–250, 2007

[12] M. Mauch and S. Dixon: ”Approximate note transcription for
the improved identification of difficult chords,” 11th Interna-
tional Society for Music Information Retrieval Conference,
135–140, 2010

[13] MIREX Wiki: Audio Melody Extraction task,
http://www.music-ir.org/mirex/wiki/

[14] G. Navarro: ”A guided tour to approximate string matching,”
ACM Computing Surveys, 33(1): 31–88, 2001

[15] R. Paiva, T. Mendes and A. Cardoso: ”Melody detection in
polyphonic musical signals: exploiting perceptual rules, note
salience, and melodic smoothness,” Computer Music Jour-
nal, 30(4), 80–98, 2006.

[16] G. Poliner et al: ”Melody transcription from music audio:
approaches and evaluation,” IEEE Transactions on Audio,
Speech, and Language Processing, 15(4), 1247–1256, 2007.
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ABSTRACT

In this paper we propose an offline method for refining

audio-to-score alignment at the note level in the context

of orchestral recordings. State-of-the-art score alignment

systems estimate note onsets with a low time resolution,

and without detecting note offsets. For applications such as

score-informed source separation we need a precise align-

ment at note level. Thus, we propose a novel method that

refines alignment by determining the note onsets and off-

sets in complex orchestral mixtures by combining audio

and image processing techniques. First, we introduce a

note-wise pitch salience function that weighs the harmonic

contribution according to the notes present in the score.

Second, we perform image binarization and blob detection

based on connectivity rules. Then, we pick the best com-

bination of blobs, using dynamic programming. We finally

obtain onset and offset times from the boundaries of the

most salient blob. We evaluate our method on a dataset

of Bach chorales, showing that the proposed approach can

accurately estimate note onsets and offsets.

1. INTRODUCTION

Audio-to-score alignment concerns synchronizing the notes

in a musical score with the corresponding audio rendition.

An additional step, alignment at the note level, aims at ad-

justing the note onsets, in order to further minimize the

error between the score and audio. In the context of or-

chestral music, this task is challenging; first, because of

the complex polyphonies, and, second, because of the tim-

ing expressivity of classical music.

As possible applications of note alignment, deriving the

exact locations of the note onsets and offsets could improve

tasks as score-informed source separation [6], [2], [7].

State-of-the-art score alignment methods use Non-

negative matrix factorization (NMF) [14], [11], template

adaptation through expectation maximization [9], dynamic

time warping (DTW) [3], and Hidden Markov Models

(HMM) [4, 6]. The method described in [11, p. 103] is

the only one addressing explicitly the topic of fine note
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alignment as a post-processing step. A factorization is per-

formed to obtain the onsets of the anchor notes. The basis

vectors are trained with piano pitches models, and the on-

sets are obtained from the activations matrix. Furthermore,

an additional step is performed in order to look for onsets

between anchors.

However, the methods listed above have certain limita-

tions. First, accurately detecting the offset of the note is a

challenging problem and none of these methods claim to

solve it. Second, the scope of the NMF-based systems is

solely piano recordings. Third, except [11], the algorithms

consider a large window to evaluate detected onsets. Note

that the MIREX Real-time Audio-to-Score Alignment task

considers a 2000 ms window size.

With respect to image processing techniques deployed

in music information research, a system to link audio and

scores for makam music is presented in [13]. In this case,

Hough transform is used for picking the line correspond-

ing to the most likely path from a binarized distance ma-

trix. Additionally, the same transform is used in [1] to find

repeating patterns for audio thumbnailing.

In this paper we propose a novel method for audio-to-

score alignment at the note level, which combines audio

and image processing techniques. In comparison to classi-

cal audio-to-score alignment methods, we aim to detect the

offset of the note, along with its onset. Additionally, we do

not assume a constant delay between score and audio, thus

we do not use any information regarding the beats, tempo

or note duration, in order to adjust the onsets. Therefore,

our method can align notes when dealing with variable de-

lays, as the ones resulting from automatic score alignment

or the ones yielded by manually aligning the score at the

beat level.

The proposed method is based on two stages. First, the

audio processing stage involves filtering the spectral peaks

in time and frequency for every note. Consequently, the

filtering occurs in the time interval restricted for each note

and in the frequency bands of the harmonic partials corre-

sponding to its fundamental frequency. Furthermore, we

decrease the magnitudes of the peaks which are overlap-

ping in time and frequency with the peaks from other notes.

Using the filtered spectral peaks, we compute the pitch

salience for each note using the harmonic summation algo-

rithm described in [10]. Second, we detect the boundaries

of the note using an image processing algorithm. The pitch

salience matrix associated to each note is binarized. Then,

blobs, namely boundaries and shapes, are detected using
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the connectivity rules described in [12, p. 248]. From all

the blobs candidates associated to every note, we pick the

best combination of consecutive blobs using dynamic pro-

gramming. The image processing part has the advantage

that the blob boundaries will define the note onsets along

with the corresponding offsets.

The remainder of this paper is structured as follows. In

the first section we describe the note-wise pitch salience

computation, followed by the blob selection using image

processing methods. Then, we evaluate our algorithm on a

dataset of Bach chorales [6] and we discuss the results.

2. METHOD

The proposed method aims to detect the onsets and offsets

of the notes from a monaural audio recording, where the

score is assumed to be automatically or manually aligned

a priori, assuming an error up to 200 ms.

Figure 1. The two main sections of our method: audio and
image processing, and the corresponding steps.

Figure 2 shows the block diagram of the proposed

method. As can be seen, the method is subdivided in two

stages. First, in the audio processing stage, a filtered pitch

salience matrix is obtained for each of the notes in the

score, and for every instrument. Second, in the image pro-

cessing stage, the pitch salience matrix is regarded as a

greyscale image, and blobs are detected in the binarized

image. Moreover, we construct a graph with all the blobs

and we pick the best combination of blobs by using Dijk-

stra’s algorithm to find the best path in the graph. Finally,

we refine the time boundaries for the blobs that overlap,

using an adaptive threshold binarization.

2.1 Note-wise pitch salience computation

For each input signal, we first compute the Short time

Fourier transform (STFT) and we extract the spectral

peaks. Then, we analyze each single note in the score

and we select only the spectral peaks in the frames around

its approximate time location and the frequency bands as-

sociated to its harmonic partials (i.e. multiples of the

fundamental frequency). Finally, we compute the pitch

salience, using the harmonic summation algorithm de-

scribed in [10].

To select the time intervals at which we are going to

look for the note onsets and offsets, we analyze the pre-

aligned score that we want to refine. We start from the

assumption that the note onsets are played with an error

lower than 200 ms from the actual onset in the score. In

other words, we set the search interval to ±200 ms from

the note onset at the score. Additionally, in the case of

the offset, we extend the possible duration of a note in the

score by 200 ms or until another note in the score appears.

In the rest of the paper, this search interval will be referred

to as Ton(n) and Toff (n).

Then, we analyze the spectral peaks within the time in-

terval defined for each note, and we filter them according

to the harmonic frequencies of the MIDI note F̂n(i), where

F̂n(0) is the fundamental frequency of note n. Namely, we

take the first 16 of the harmonic partials of this frequency,

F̂n(i) with i ∈ [0, ..., 15]. Taking into account vibratos,

we set a 1.4 semitone interval around each of the harmonic

partials. Consequently, we select a set of candidate peaks

Pn(k) and the associated amplitudes An(k) for note n at

frame k such that Pn(k) ∈ [F̂n(i) − L̂n(i), ..., F̂n(i) +
L̂n(i)], where L̂n(i) is a frequency band equivalent to 0.7
of a semitone.

As a drawback, some of the selected peaks could over-

lap in time and frequency. To overcome this problem, we

distribute the amplitude An(k) of the overlapped peaks

Pn(k) using a factor gi(Pn(k), Pm(k)), where n and m
are the overlapped notes, gi is a gaussian centered at the

corresponding frequency F̂n(i) of the note n and the har-

monic partial i. The standard deviation equals to
L̂n(i)

2 ,

thus:

gi(x) = w ∗ 0.8i ∗ e
−(x−F̂n(i))

2
/

L̂n(i)
2

2

(1)

Note that the magnitude of the gaussian decreases with

the order of the harmonic, i, and is proportional to w, the

weight of the rest of the instruments in current audio file, or

the coefficient extracted from a pre-existing mixing matrix.

For example, if we align using solely a monaural signal in

which all four instruments have the same weight, 0.25 for

all four instruments, the coefficient will be w = 0.75.

The factor gi penalizes frequencies which are in the al-

lowed bands but are further away from the central frequen-

cies. In this way, we eliminate transitions to other notes or

energy which can add up noise later on in the blob detec-

tion stage.

Finally, for each note n and its associated Pn(k) and

An(k) where k ∈ [Ton(n), ...Toff (n)], we use the pitch

salience function described in [10]. The algorithm calcu-

lates a salience measure for each pitch candidate, starting

at F̂n(0) − L̂n(0), based on the presence of its harmonics

and sub-harmonics partials, and the corresponding magni-

tudes. Finally, the salience function for each time window

is quantized into cent bins, thus the resulting matrix Sn

has the dimensions (Toff (n) − Ton(n), Q) , where Q is

the number of frequency bins for the six octaves. In our

case, we experimentally choose Q = 600 bins.
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2.2 Blob selection using image processing

The goals of the image processing stage are to obtain the

location of the note onset and offset by binarizing the note-

wise pitch salience, and to detect shapes and contours in

the binarized image.

Accounting that the image binarization is not a robust

process [12], different results are expected as a function of

the amount of time overlap between notes, the salience of

the pitch and its fundamental frequency. Therefore, as the

shape and contour detection heavily relies on this step, we

need a robust binarization, which would finally give us the

best information for detecting the boundaries of the note.

Previous approaches to improve binarization rely on

background subtraction or local binarization [12]. There-

fore, we propose a binarization method similar to the local

binarization, but adapted to our context: the pitch salience

matrix. On the assumption that the bins closer to the funda-

mental frequency, F̂n(0), are more salient than the ones at

higher frequencies, we split the binarization areas in sub-

areas related to the harmonic partials F̂n(i). Thus, the

salience matrix Sn is binarized gradually and locally, ob-

taining a binary matrix Bn. Moreover, we consider l as

the binarization step, moving gradually from 50 to 600 in

steps of 50 bins.

Furthermore, we compute Bn in l steps, each time only

for the columns in the interval [l − 50...l].

Bn(i, j) =

{
0,Sn(i, j) < mean(Sl

n)
1,Sn(i, j) ≥ mean(Sl

n)
(2)

where i ∈ [Ton(n), ..., Toff (n)] , j ∈ [l−50...l], and Sl
n

is a submatrix of Sn, obtained by extracting the columns

of Sn in the interval [0..l].

As an example, a pitch salience matrix Sn for a bassoon

note is plotted in the Figure 2A. The green rectangles mark

the submatrices Sl
n for various values of l. The resulting

binarized image is depicted in Figure 2B.
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Figure 2. Binarizing the spectral salience matrix (figure
A) and detecting the blobs in the resulting image (figure
B). Binarization is done gradually and locally, relative to
the green squaresáreas in figure A. The ground truth onset
and offset of the note are marked by vertical red lines.

The next step is detecting boundaries and shapes on the

binarized image. We use the connectivity rules described

in [12, p. 248] in order to detect regions and the boundaries

of these regions, namely the blobs. Thus, we want to label

each pixel of the matrix Bn with a number from 0 to r,

where r is the total number of detected blobs.

Having a pixel (i, j) with i ∈ [Ton(n), ..., Toff (n)]
and j ∈ [0, ..., Q], where Q is the number of frequency

bins, we need to consider all the neighboring pixels and

we have to take into account their connectivity with the

current pixel. The 4-way connectivity rules account for the

immediate neighbors, as compared to 8-way connectivity

which account for all the surrounding pixels. Because we

are not interested in modeling transitions between notes,

we discard diagonal shapes by using the 4-way connec-

tivity rules. Hence, the connectivity matrix, which deter-

mines the neighborhood of the pixel (i, j), can be written

as:

M =

⎡⎣0 1 0
1 1 1
0 1 0

⎤⎦
For the matrix M, the central pixel with the coordinates

(2,2) represents the origin pixel (i, j), and all the other non-

zero pixels are the considered positions for the neighbors.

The algorithm, described in [12, p. 251], takes one pixel

at a time and visits its non-zero neighbors. Then, we move

sequentially from one pixel to its neighbors, setting bound-

aries for the pixels having neighbors equal to zero. Finally,

the shape is enclosed when the algorithm reaches the pixel

of origin.

Furthermore, once we have detected a set of blobs bn
for each note n, we need to compute the best combination

of the blobs for all notes. Because search intervals for con-

secutive notes can overlap in time, choosing the best com-

bination of blobs is not as trivial as picking the best blob

in terms of area or salience, and the decisions that we take

for a current note, should take into account the decisions

we take for the previous and the next note. This kind of

problem, which chains up a set of decisions can be solved

with dynamic programming.

Consequently, we consider the blobs to be the vertices

of an oriented graph, in which the edges are assigned a cost

depending on the area of the two blobs and the overlapping

between them, as seen in Figure 3. Basically, blobs with

bigger area and little overlapping will have a lower cost,

which makes them ideal candidates when we find the best

path in the graph. Additionally, we can have an edge only

between blobs of consecutive notes, and we can remove

the edges between blobs which overlap more than 50% in

time.

Therefore, we compute the area of each blob of the note

n by summing up the values in the binarized matrix Bn,

enclosed by the corresponding blob contours. Addition-

ally, we exclude the blobs which have the duration less than

100 ms, and the ones starting after the allowed interval for

the attack time.

The normalized area of blob i for the note n is H(bin)
and is a value inversely proportional with the actual area,

because we want the larger blobs to have a lower cost,
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Figure 3. A sample of the graph between three consecutive
notes. b[1..5] are the blobs detected for each note. Thicker
lines represent lower costs. The red line represents the best
path in the graph.

when picking the best path. In the same manner, we must

increase the cost as the overlapping between the blobs

increases. Thus, for two adjacent notes n and n + 1,

O(bin, b
i
n+1) has cost 1 if there is no overlapping, and an

increased value summing up the ratio of the the area of the

two overlapping blobs. For instance, if 20% of the area of

the first blobs overlaps with 70% of the area of the second

blob, O = 1 + 0.2 + 0.7 = 1.9.

Thus, the cost for the edges has the expression

cost(bni , b
n
i+1) = O(bin, b

i
n+1) ∗ (H(bin) +H(bin+1))

In order to find the shortest path between the vertices of

the first note in the score and the last one, we use Dijkstra’s

algorithm described in [5]. The algorithm finds the shortest

path for a graph with non-negative edges by assigning a

tentative distance to each of the vertices and progressively

advancing by visiting the neighboring nodes.

Additionally, after the best path is computed, we can

face the situation where two consecutive blobs overlap in

time due to the inaccuracy in binarization and the fact that

the minimum cost path does not guarantee no overlapping.

Because the melody for a particular instrument is consid-

ered to be monophonic, we do not allow overlapping be-

tween two consecutive notes. Thus, we ought to find a

splitting point between the starting point of the blob asso-

ciated with the next note and the ending point of the blob

associated with the current note.
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Figure 4. Blob refinement using adaptive threshold bina-
rization of two consecutive overlapping blobs in the best
path. The minimum overlapping is achieved for threshold
t = 1.4

Having two consecutive blobs from the best path, bn
and bn+1, we take the image patches surrounding their

boundaries and we adaptively increase the threshold of bi-

narization until the minimum overlapping is achieved. Con-

sequently, we consider the submatrices Ŝn and Ŝn+1 of the

corresponding pitch salience matrices Sn and Sn+1, and

for a variable threshold t = [0.2..2], we compute the bi-

nary matrices B̂t
n and B̂t

n+1.

B̂t
n(i, j) =

{
0, Ŝn(i, j) < t ∗mean(Ŝn)

1, Ŝn(i, j) ≥ t ∗mean(Ŝn)
(3)

As seen in Figure 4, the higher the threshold t, the less

pixels are be assigned to value 1 in the binary matrices,

thus we increase the threshold gradually until no overlap-

ping is achieved.

Finally, the note onset and offset are extracted from the

leftmost and the rightmost pixels of the refined blobs in the

best path.

3. EVALUATION

3.1 Experimental setup

The dataset used to evaluate our proposal consists of 10
human played J.S. Bach four-part chorales, and is com-

monly known as Bach10 . The audio files are sampled

from real music performances recorded at 44.1 kHz that

are 30 seconds in length per file. Each piece is performed

by a quartet of instruments: violin, clarinet, tenor saxo-

phone and bassoon. Each musician’s part was recorded in

isolation. Individual lines were then mixed to create 10
performances with four-part polyphony. More information

about this dataset can be found in [6].

We observe that the dataset has a few particularities.

First, every recording presents fermatas, where the final

duration of the note is left at the discretion of the performer

or the conductor, making it more difficult to detect the on-

set and offsets of the notes. Second, the chorales have a

peculiar homophonic texture. Third, the annotated note

onsets and offsets in the ground truth can have more or

less notes than the actual score. We discovered that this

mismatch comes from repeating notes, which in the origi-

nal score are represented by a single larger note. This step

also makes the detection of the note offsets more difficult.

In order to perform alignment at the note level, we gen-

erate a misaligned score by introducing onset and offset

time deviations for all the notes and all the instruments in

the ground-truth score. The deviations are randomly and

uniformly distributed in the intervals [−200, ...,−100] and

[100, ..., 200] ms. Moreover, we aim at refining the align-

ment of the algorithm proposed by [3]. Thus, we correct

the onset times and we detect the offsets around the begin-

ning of the next note. For both of these tasks we consider

the interval [−200, ..., 200] ms.

Furthermore, the STFT is computed using a Blackman-

Harris 92dB window with a size of 128 ms and, a hop size

of 6 ms. Additionally, we zero-pad the window by three

times its length. Moreover, frequencies and magnitudes

of the spectral peaks are extracted with the algorithm de-

scribed in [8], which uses parabolic interpolation to accu-

rately detect positive slopes in the spectrum computed at

the previous step.
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3.2 Results

We aim at correctly aligning the onsets and offsets of the

misaligned score described in Section 3.1 and we add up

200 ms before and after the note boundaries in order to

search for the exact starting and ending point of the note.

Thus, our algorithm can have up to 400 ms in error for the

onsets, and a larger error for the offset, because we are not

constraining the duration of the note to any interval.

For each piece, aligned rate (AR) or precision is defined

as the proportion of correctly aligned notes in the score and

ranges from 0 to 1. A note is said to be correctly aligned

if its onset does not deviate more than a threshold from the

reference alignment. To test the reliability of our method,

we tried different threshold values ranging form 15 to 140
ms. Other measures as the average offset (i.e. average

absolute-valued time offset between a reported note onset

by the score follower and its real onset in the reference file)

and the std offset (i.e. standard deviation of sign-valued

time offset) are also considered.

As illustrated in figure 5, the proposed system is able

to accurately align more than the 30% of the onsets with a

detection threshold lower than 15 ms. Furthermore, more

than 80% of the onsets are accurately detected with a thresh-

old of 60 ms. Because the search time interval for the note

allows for error larger than 200 ms, the AR for the onset

does not reach 100% in t = 200ms, as less than 2% of the

onsets have larger errors.

Furthermore observe that we less accurate in detecting

the offsets, particularly when we do not know the approxi-

mate note offset and we estimate it around the onset of the

next note, as when we take as input the alignment of the

algorithm proposed by [3]. The drop in performance of the

offset detection can also be explained by the fact that the

energy of a note can decay below a threshold, thus exclud-

ing it when binarization is performed.

Figure 6 shows boxplots of the average offset and the

std error for each instrument, and for the note onset and off-

set, for the misaligned dataset. The lower and upper lines

of each box show 25th and 75th percentiles of the sample.

The line in the middle of each box is the average offset.

The lines extending above and below each box show the

extent of the rest of the samples, excluding outliers. Out-

liers are defined as points over 1.5 times the interquartile

range from the sample median and are shown as crosses.

We observe that performance is lower for violin com-

pared to the other instrument. This can be explained by

the fact that for this dataset the violin has noisier or soft

attacks, which do not yield a high enough value in terms of

pitch salience, and is lost when binarizing the image.

Moreover, the fact that we are able to detect most of

the onsets in the interval 0.06 seconds, which is an accept-

able interval for the attack of the instruments aligned, point

us on some limitation on using the pitch salience function,

which is not able to be accurate enough with noisier at-

tacks, as it happened for the violin.

Furthermore, we want more insight on how the errors

are distributed across the time range. Thus, we plot the 2-

d histogram of the onset errors, as seen in Figure 7. We

Figure 5. The proposed system improves the align rate of
(A) the system proposed by [3] and of (B) the misaligned
dataset, for onset errors, as well as offset errors

observe that even though the original dataset had large er-

rors, our method was able to detect the note onsets within

a small time frame, as most of the errors are in the bin cen-

tered at zero.

Moreover, our method is better at fixing the delays in

the note onsets. In comparison, we can commit more errors

if the onset of the note is thought to be before the actual

onset, because the window in which we have to look for it

overlaps more with the previous note, hence we have more

interference.

Additionally, for every note and every instrument, we

compute the percentage of correctly detected frames with

respect to ground truth. Our algorithm is able to correctly

detect 89% of the frames of the ground truth notes. In com-

parison, the notes in the misaligned dataset have a degree

of 66% correctly detected frames.

Finally, we compute the percentage of frames which are

erroneously detected as part of the notes. We observe that

solely 0.07% of frames from the notes we refine are out-

side the boundaries of the ground truth notes, compared to

the misaligned dataset, for which 34% of the frames are

displaced outside the time boundaries of the notes.

Therefore, our algorithm is more likely to shorten the

notes, rather than making erroneous decisions regarding

their time frame. This is due to the way we are picking

the best sequence of blobs, which penalizes the overlap-

ping, thus picking blobs which have a smaller area but less

overlapping with the blobs from neighboring notes.

4. CONCLUSIONS

We proposed a method to refine the alignment of onsets

and offsets in orchestral recordings, using audio and im-
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Figure 6. The average offset and the std offset in terms of
25th and 75th percentile of the proposed system for bas-
soon, clarinet saxophone, and violin, for note onsets, as
well as note offsets

Figure 7. The histogram of error distribution in the onset
alignment

age processing techniques. We compute a note-wise pitch

salience function and we binarize it. Moreover, we detect

blobs in the binarized image, and we pick the best blob

candidate for each note by finding the best path in the asso-

ciated graph. Furthermore, as offset detection is regarded

as a more difficult problem, the proposed method addresses

this issue by detecting image blobs to simultaneously label

note onsets and offsets.

The evaluation shows that our method is able to re-

fine the alignment in a misaligned dataset, having detected

more than 80% of the onsets with an error of 60 ms. More-

over, we analyzed the performance across all four instru-

ments, and we discovered that the accuracy drops for a vi-

olin, as being higher for the other instruments. Thus, as a

future step, we need to analyze what limitation has the al-

gorithm regarding certain instrument classes. Additionally,

the proposed method should be tested with another dataset,

with more complex polyphonies and tempo variations.

Furthermore, our method can be improved by using tim-

bre models when filtering the spectral peaks and decreas-

ing their magnitude. Additionally, choosing the best se-

quence of blobs can be improved by using a better cost

function for the Dijkstra’s algorithm. In addition, one could

use image processing with other data obtained by audio

processing means, as the spectrogram or come with a more

robust approach than the pitch salience which does not cap-

ture noisy note attacks or noisy spectrum.

Finally, the note refinement can be used to improve the

performance of score informed source separation, in the

situation where the score is not well aligned with the audio.
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ABSTRACT

This paper presents a biologically-inspired composit-

ional hierarchical model for MIR. The model can be treated

as a deep learning model, and poses an alternative to deep

architectures based on neural networks. Its main features

are generativeness and transparency that allow clear in-

sight into concepts learned from the input music signals.

The model consists of multiple layers, each is composed

of a number of parts. The hierarchical nature of the model

corresponds well with the hierarchical structures in music.

Parts in lower layers correspond to low-level concepts (e.g.

tone partials), while parts in higher layers combine lower-

level representations into more complex concepts (tones,

chords). The layers are unsupervisedly learned one-by-

one from music signals. Parts in each layer are compo-

sitions of parts from previous layers based on statistical

co-occurrences as the driving force of the learning pro-

cess. We present the model’s structure and compare it

to other deep architectures. A preliminary evaluation of

the model’s usefulness for automated chord estimation and

multiple fundamental frequency estimation tasks is pro-

vided. Additionally, we show how the model can be ex-

tended to event-based music processing, which is our final

goal.

1. INTRODUCTION

The field of music information retrieval (MIR) has reached

a significant expansion in tasks and solutions in the short

timespan of its existence [3, 10]. The tasks include ex-

traction of high-level music descriptors from music, such

as melody, chords and rhythm, as well as highly percep-

tual tasks involving mood estimation, genre recognition

and artist influence. Solutions have not come to a per-

fect one for any of the described tasks yet; however, nu-

merous approaches proposed each year are improving the

c© Matevž Pesek, Aleš Leonardis, Matija Marolt.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Matevž Pesek, Aleš Leonardis, Matija

Marolt. “A compositional hierarchical model for music information re-

trieval”, 15th International Society for Music Information Retrieval Con-
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state-of-the-art rapidly. Recently, deep belief networks as

an alternative single model for a variety of tasks, have been

successfully introduced to the field.

This paper presents a biologically-inspired composit-

ional hierarchical model for music information retrieval.

The proposed model poses an alternative to recent deep

learning architecture approaches [6,9]. Its main difference

from the latter is in its transparent structure, thus allowing

representation and interpretation of the signal’s informa-

tion extracted on different levels. We show the usefulness

of our proposed approach in a preliminary evaluation of

the model for the tasks of automated chord estimation and

multiple fundamental frequency estimation. We also show

how the model can be extended to event-based music pro-

cessing, and point out how the model’s transparency en-

ables other applications of the model, e.g. for music anal-

ysis, synthesis and visualization.

2. DEEP ARCHITECTURES FOR MIR

The concept of deep learning has grown in popularity in

the fields of signal processing [15], audio processing [9]

and MIR. Lee [7] presented one of the first attempts of us-

ing deep belief networks (DBNs) on audio signals, where

convolutional DBNs were applied to the speaker identifi-

cation task. A DBN was used as a feature extractor, and a

support vector machine for classification.

Later, Hamel and Eck [5], evaluated DBNs for genre

recognition using a five-layer DBN with three hidden lay-

ers for feature extraction. The support vector machine was

used for classification, where as raw spectral data was used

as input to the DBN. DBNs show great potential for many

tasks that involve high-level feature extraction, such as emo-

tion recognition, since there is usually no trivial spectral or

temporal feature that could be used to model the high-level

representation in question. Schmidt and Kim [13] showed

promising results by using a 5-layer DBN for extraction of

emotion-based acoustic features. Other approaches mod-

eled temporal aspects of the audio signal. Conditional DBN-

s were used by Battenberg and Wessel [1] for drum pat-

tern analysis. Schmidt [12] took a step further and showed

that DBNs can be trained for discriminating rhythm and

melody.

Overall, recent research has shown great interest and
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success in using features learned from music signals, in

contrast to previously used hand-crafted features. The re-

search reviewed in this subsection took place only in the

last few years; thus, there is a vast expansion of deep learn-

ing in MIR to be expected, as anticipated by Humphrey [6].

3. THE COMPOSITIONAL HIERARCHICAL
MODEL

3.1 Motivation and concept

DBNs brought an improvement to many MIR tasks with

their unsupervised learning of features and generative mod-

eling. However, they require a large set of hidden units

per layer, and consequently, large training sets. Also, the

hidden nature of units offers no clear explanation of the

undergoing feature extraction process and the meaning of

extracted features. It is our goal to overcome these lim-

itations by developing a white-box compositional hierar-

chical model with shareable parts, thus reducing the num-

ber of parts and learning data needed, as well as reaching

transparency in terms of interpretable internal structure of

the model.

The proposed model provides a hierarchical representa-

tion of the audio signal, from the signal components on the

lowest level, up to individual musical events on the highest

levels. It is built on the assumption that a complex signal

can be decomposed into a hierarchy of building blocks -

parts. These parts exist at various levels of granularity and

represent sets of entities describing the signal. According

to their complexity, parts can be structured across several

layers from less to the more complex. Parts on higher lay-

ers are expressed as compositions of parts on lower layers

(e.g.: a chord is composed of several pitches, each pitch of

several harmonics etc.). A part can therefore describe indi-

vidual frequencies in a signal, their combinations, as well

as pitches, chords and temporal patterns, such as chord

progressions.

The structure of our model is inspired by work in com-

puter vision, specifically the hierarchical compositional

model presented by Leonardis and Fidler [8]. Their model

represents objects in images in a hierarchical manner, struc-

tured in layers from simple to complex image parts. The

model is learned from the statistics of natural images and

can be employed as a robust statistical engine for object

categorization and other computer vision tasks. We believe

that such approach can also be used for music representa-

tion and analysis, however the transformation of the model

to a different domain is not trivial.

3.2 Model structure

The compositional hierarchical model consists of several

layers. Each layer contains a set of parts. A part is a com-

position of two or more parts from a lower layer and may

itself be part of any number of compositions on a higher

layer. Thus, the compositional model forms a hierarchy of

parts, where each part represents a composition of lower-

layer parts, as seen in Figure 1. Connections in the figure

represent compositions of parts.

3.2.1 Input layer

The input layer of the model is derived from the time-

frequency representation of the music signal. We denote

this layer as layer L0. It contains a single atomic part,

which is activated (produces output) at locations of all fre-

quency components in the signal at a given time instance.

An example is given in Figure 1, although not all activa-

tions are shown for clarity. More formally, a part’s activa-

tion is defined by two values: location LP that corresponds

to frequency, and magnitude AP , that corresponds to mag-

nitude of the frequency component.

Figure 1. Compositional hierarchical model. Parts on the

input layer correspond to signal components in the time-

frequency representation. Parts on higher layers are com-

positions of lower-layer parts (denoted as links in the fig-

ure). A part may be contained in several compositions, e.g.

P11 on the first layer is part of compositions P21, P22 and

P2m on the second layer. Several depictions of the same

part (e.g. part instances P11 and P ′
11) denote several acti-

vations of the part on different locations (all instances of a

part on a layer are marked with the same outlined color).

Parts activated in t1 are shown filled with color.

Any time-frequency representation can be used for the

input layer, although logarithmic frequency spacing pro-

duces more compact models due to the relative nature of

part compositions on higher layers (as described further

on).

3.2.2 Subsequent layers

Higher layers of the modelLn contain sets of compositions
- parts composed of parts from lower layers. Each compo-

sition can contain any number of parts from the lower lay-

ers (for clarity we only use two-part compositions to ex-

plain the model). A composition can be part of any num-

ber of compositions on higher layers. Compositions are

denoted as links between parts in Figure 1.

Composition i on layer Ln can be formally defined as

a structure containing parts from a layer below: a central

part C, and a secondary part S. We name the parts forming

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

132



a composition subparts. A composition can be defined as:

Pn,i = {Cn−1,j , Sn−1,k, (μn,i, σn,i)}, (1)

where Cn−1,j and Sn−1,k are the central and secondary

subparts from layer n − 1, while μn,i and σn,i define a

Gaussian limiting the difference between locations of sub-

part activations (see definition of activation below). For

clarity, we shall omit subscripts in the following equations

and use P , C, S, μ and σ to denote a part and its compo-

nents.

A composition is activated (propagates output to higher

layers) when all of its subparts are activated. This strict

condition can be softened with hallucination, as explained

in section 3.3. Part activation is composed of two values:

activation location LP , which represents the location (fre-

quency) at which the part is activated, and activation mag-

nitude AP , which represents the strength of activation. The

location of part’s activation is defined simply as the loca-

tion of activation of its central subpart:

LP = LC . (2)

Thus, central parts of compositions on different layers prop-

agate their locations upwards through the hierarchy. The

magnitude of activation is defined as:

AP = tanh[G(LC − LS , μ, σ) · (AC +AS)], (3)

where tanh stands for the hyperbolic tangent function that

limits the magnitude to [0,1) and G represent the Gaussian

that limits the difference in locations of the central part and

the subpart according to μ and σ. As an example, P2,2 in

Figure 1 is defined as

P2,2 = {P1,1, P1,3, (1200, 25)}, (4)

where μ and σ are given in cents. Therefore, it will be acti-

vated whenever P1,1 and P1,3 will be activated at locations

approximately one octave (1200 cents) apart. Two such ac-

tivations are shown in the figure, one at 294 Hz and one at

440 Hz.

3.3 Inference

The model can be used as a feature extractor over any de-

sired dataset. An audio signal, transformed into a time-

frequency representation, serves as input for layer L0. Ac-

tivations are then calculated layer-by-layer according to

Equations 2 and 3. Additionally, two biologically-inspired

mechanisms govern the inference process and increase ro-

bustness of the model: hallucination and inhibition.

Before we define both mechanisms, we need to intro-

duce the concept of coverage. Coverage c(P,LP ) of part

P active at location LP represents all signal information

(frequency components) covered by the part and its sub-

tree of parts. It is calculated top-down from an active part

to L0 as:

c(P,LP ) =
⋃
{c(C,LP ), c(S,LP + μ)}. (5)

For the L0 layer, coverage is defined as the set of parts

with positive activations AP > 0, thus representing the

set of covered frequency components. An example from

Figure 1: the coverage of P2,2 active at 294 Hz is the set of

frequencies: {294Hz, 588Hz, 880Hz}.
3.3.1 Hallucination

Hallucination deals with filling-in the missing or damaged

information in the signal and is implemented by enabling

part activation in presence of incomplete input. The miss-

ing information in the signal can be replaced with knowl-

edge encoded in the model during learning by allowing ac-

tivations of parts most fittingly covering the information

present. This allows the model to produce hypotheses in

situations with no straight result. Hallucination also boosts

alternative explanations of input data, thus increasing its

explanation power and robustness.

Hallucination is governed by parameter τ1 which can

be defined per layer and modified during the inference. It

changes the conditions under which a part may be acti-

vated. The default condition, as explained in section 3.2, is

that activation of a part is possible when all of its subparts

are active. With hallucination, a part P may be activated at

location LP , when the number of frequency components it

covers |c(P,LP )|, divided by the maximal number of com-

ponents it may cover is larger than τ1. For example, a τ1
of 0.75 means that 3

4 of all possible frequency components

must be covered by the part for it to be activated. A τ1 of

1 represents the default behavior.

3.3.2 Inhibition

The second biologically-inspired mechanism provides a bal-

ancing factor by reducing redundant activations, similar to

lateral inhibition performed by the human auditory system.

Inhibition refines the set of parts that yield competing hy-

potheses of the same fragments of information in the in-

put signal. Parts with greater activation magnitudes are

retained and weaker activations inhibited. Inhibition also

reduces activations that result from noise in the signal.

Activation of part P at LP is inhibited, when another

part Q with activation LQ on the same layer (or a set of

parts) covers the same fragments of information in the in-

put signal, but with higher activation. The condition can

be expressed as:

∃Q :
|c(P,LP )\c(Q,LQ)|

|c(P,LP )|
< τ2 ∧AQ > AP , (6)

where τ2 defines the amount of inhibition. For example, a

value of 0.5 means that activation of P is inhibited if half

of its coverage is already covered by another, stronger part.

To sum up: inference yields a set of activations on all

model layers by calculating activations considering hallu-

cination and inhibition over all layers in a bottom-up order

and over all time-frames of the input signal. Resulting ac-

tivations represent model features and can be directly in-

terpreted or used as inputs for discriminative tasks.

3.4 Learning

The model is learned in an unsupervised manner on a set

of input signals. It is constructed layer-by-layer, similar
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to other deep architectures. The learning process relies on

statistics of part activations, thus signal regularities are the

driving force of the learning process.

When building layer Ln, co-occurrences of activations

of parts on Ln−1 are observed. Compositions are formed

from parts that frequently activate together at similar dis-

tances. All such parts are joined into compositions and

added to the set of candidate compositions P . When form-

ing a composition of two frequently co-occurring parts, the

part at the lower location represents the central part of the

composition, while parameters μ and σ are estimated from

all co-occurring activations of the two parts.

To reduce the number of compositions on each layer and

keep only the most informative ones, the set of candidates

P is refined. The goal of refinement is to reduce the num-

ber of compositions in the learned layer while maintaining

sufficient coverage of information in the learning set.

Refinement is implemented with a greedy approach,

where in each iteration, a part that contributes most to the

coverage of information in the learning set, is selected and

added to the layer. Refinement is concluded when one of

the following two criteria are reached: a sufficient percent-

age of information in the learning set is covered (according

to threshold τ3), or no part remaining in the candidate set

adds to the cumulative coverage of information. Algorithm

1 outlines the described approach.

Algorithm 1 Greedy approach for selection of composi-

tions from the candidate set P . Parts that add most to

the coverage of information in the learning set are pre-

ferred. Function perc calculates the percentage of infor-

mation covered in the learning set by the given set of parts.

1: procedure REFINE(P)
2: prevCov ← 0
3: coverages ← ∅
4: Ln ← ∅
5: repeat
6: for P ∈ P do
7: coverages[P ] ← perc(Ln ∪ P )

8: Chosen ← argmax
P

(coverages)

9: Ln ← Ln ∪ Chosen
10: P ← P \ Chosen
11: if coverages[Chosen] = prevCov then
12: break //No added coverage - finish
13: prevCov ← coverages[Chosen]
14: until prevCov > τ3 ∨ P = ∅

3.5 Time

The model presented so far is time-independent. It oper-

ates on a frame-by-frame basis, where each time frame in

the time-frequency representation is treated independently

from others. Music, however, evolves in time and models

that operate on such bases often fail to reflect the evolution

of sound properly.

The proposed model can be naturally extended to in-

clude the time dimension. Our first step towards extending

the model for time-dependent processing was to implement

a short-time automatic gain control mechanism, similar to

the automatic gain control contrast mechanism in human

and other animal perceptual systems. The mechanism inte-

grates part activations at similar locations over time. When

a new part activation appears and persists, its value is ini-

tially boosted to accentuate the onset and later suppressed

towards a stable value.

The mechanism operates on all layers, and has a short-

term effect on lower layers, and longer-term effect on higher

layers due to the upward propagation of activations. Its end

effect is that it stabilizes activations, reduces noise, pro-

duces smoother model output and boosts event onsets.

3.6 Relation to Deep Architectures

The compositional hierarchical model shares a great deal

of similarities with other deep learning architectures. The

structure of the model is similar in terms of learning a va-

riety of signal abstractions on several layers of granularity.

The model is learned in an unsupervised generative man-

ner, thus, no annotated data is needed. The learning pro-

cedure is similar: the structure is built layer-by-layer. The

proposed model can also be used for discriminative tasks

by observing activations of parts on multiple layers.

We see the biggest advantage of the proposed compo-

sitional hierarchical model over other established deep ar-

chitectures in its transparency. As parts are compositions

of subparts, their activations are directly observable and

interpretable. This opens the model up for a variety of in-

teresting usages, as it not only produces features that can

be used, but features that can be interpreted and explained.

In addition, the inhibition and hallucination mechanisms

make it possible to produce alternative explanations of the

input by suppressing the winning explanation and search

for alternatives. In comparison to DBNs, where the outputs

of each layer can only be interpreted during the evaluation,

the proposed model offers a deeper analysis of results by

tracing the higher layer activations over all layers and in-

vestigating the impact of each subpart.

Another difference in comparison to DBNs is the share-

ability and relativeness of parts, which both lead to a small

number of parts needed to represent complex signals. A

part in the proposed model is defined by the relative dis-

tance between its subparts and can thus be activated on dif-

ferent locations along the frequency axis. Thus, the large

amount of layer units that DBNs need to cover the entire

spectrum is not necessary and is replaced by reusing the

available parts. This relativeness is accompanied with the

concept of part shareability: parts on a layer may be shared

by many compositions on higher layers. For example, a

chord is composed of at least three pitches which may be

identical in their representation in our model.

We show the usefulness of the described model’s fea-

tures in the evaluation section, where the model is used as

both feature extractor and a classifier. Other possible appli-

cations exploiting the the model’s structure are presented

in section 5.

4. EVALUATION OF THE MODEL

The presented model is applicable to different MIR tasks.

To present the model’s usefulness, we built a three-layer
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model and evaluated it on two tasks: automated chord es-

timation and multiple fundamental frequency estimation.

The input layer was the same for both tasks. A constant-

Q transform was used to transform music signals onto 345

frequency bins between 55 and 8000 Hz, with a step size

of 50 ms and maximal window size of 100 ms. Two layers

of compositions L1 and L2 were learnt as described pre-

viously. Due to the shareability of parts, the they contain

only 23 and 12 parts respectively. The small number of

parts in the model should mean that the model could be

trained on a small learning set. We tested this hypothesis

and trained the model on large and small datasets, and ob-

served few differences. We were therefore able to build the

model by using only a small set of 88 piano key samples

as our learning set. We used the L2 layer for the task of

multiple fundamental frequency estimation. For the task

of automated chord estimation, we provided an additional

L3 octave-invariant layer. The latter consists of 48 parts,

where L3 activations correspond to octave-invariant acti-

vations of the L2.

4.1 Automated Chord Estimation

The time-independent model was tested for the task of au-

tomated chord estimation on the standard Beatles dataset,

kindly provided by C. Harte. We used activations of the

octave-invariant L3 layer as features and made the classi-

fication by using a hidden Markov model (HMM) with 24

states, each representing a chord, as described by [2]. We

used cross-validation for evaluation; one album was used

for HMM training and the rest of the dataset for estimation.

Our per-frame classification accuracy on the given data-

set was 67.14 % with 0.1525 standard deviation. Com-

pared to other per-frame approaches, we find our results

slightly lower than for example [11], which also used per-

frame technique for feature extraction. Nevertheless, we

performed the evaluation as a proof of concept with time-

independent feature extraction and no fine-tuning of the

model, its learning, nor tuning of HMM parameters. We

anticipate significant results increase by extending the mod-

el to time-dependent evaluation, using the whole hierarchy

for classification and parameter tuning.

4.2 Multiple fundamental frequency estimation

The model was also tested for the task of multiple funda-

mental frequency estimation (MFEE) on the two subsets

of MAPS (MIDI Aligned Piano Sounds) dataset, provided

by [4]. Activations of layerL2 were directly used as funda-

mental frequency estimations with no further processing.

The following metrics were used for evaluation: per-

frame precision and recall, precision and recall without

penalising for octave errors, and pitch-class precision and

recall. Results are shown in Table 1. Our results are sig-

nificantly lower when compared to recent approaches, e.g.

[14] which reported 77.1% classification accuracy on the

subsets. However, the mentioned approach differs signif-

icantly from ours, as a severely larger dataset (approx. 4

times larger than the test sets) was used for training the

support vector machine (SVM) classifier. In comparison,

Figure 2. Hypotheses produced by our model for the task

of multiple fundamental frequency estimation (A) and the

ground truth (B). X axis represent time (in frames), and y

midi pitches. Although the model produces many possi-

ble hypotheses per frame, only the ones with the highest

magnitudes are used for comparison. Colors represent the

magnitudes of activations in Fig. A or the MIDI velocity

in Fig. B.

our model was trained only on a small set of piano key

samples, so no parts of the MAPS dataset were used for

training. It is also worth to mention that for this task, our

model was used as a feature extractor and a classifier at the

same time. We expect that accuracy would be improved if

a classifier such as a SVM would be added on top of our

model and would take features extracted on all layers for

inputs. Our intention for this paper, however, is to present

the general applicability of the model for multiple tasks

and to avoid fine-tuning.

Table 1. Classification accuracy (CA) using all hypothe-

ses provided by the model, precision (Pr) and recall (Re)

values over a part of the MAPS dataset. Results without

penalising octave errors and considering only pitch classes

are marked with O and PC subscripts respectively.

Folder name CA Pr Re

AkPnBcht 56.53 % 19.40 % 55.69 %

AkPnBsdf 66.17 % 22.05 % 61.27 %

AkPnBchtO 67.08 % 35.37 % 64.55 %

AkPnBsdfO 71.16 % 46.10 % 68.83 %

AkPnBchtPC 86.20 % 51.83 % 86.59 %

AkPnBsdfPC 88.23 % 58.68 % 70.99 %

5. OTHER APPLICATIONS OF THE MODEL

Our intention with developing the proposed model is to

make an interpretable model that overcomes some of the

limitations of DBNs and can be used for tackling various

MIR tasks. Its transparency, however, also makes other
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uses of the model possible.

The hierarchical approach presented in this paper fits

well with the hierarchical structure of music in frequency

as well as in time domains. Each part of the model repre-

sents an explainable entity (e.g. tone partial, pitch, chord).

In contrast to the DBNs, each part of the model can be visu-

alized. Visualization not only exposes the layered structure

of the model, but also discloses information processed by

the observed part and its influence on other parts and their

activations. This insight into the music signal can be used

in several scenarios — music visualization, music analysis

and music synthesis.

We have developed a real-time visualization of the model,

enabling deeper understanding of the processed informa-

tion. When observing an inferred audio signal, the output

of all layers of the model is presented by visualizing acti-

vations of parts. This insight enables detailed analysis of

each event in the music signal and may bring additional

event details to light. For example, a chord inversion can

be observed by looking into the activated subtree of the

chord from top layers to bottom-ones. Thus, visualization

of our model offers an innovative user interface for music

analysis.

The transparency of the model can also be exploited

for music processing and synthesis. Parts across all lay-

ers form a variety of harmonic structures, and can be used

for signal manipulation and synthesis. By activating a set

of parts at different locations, a new spectral representa-

tion is produced. Although the interface may not provide

a sufficient amount of features for a standalone music per-

formance, it can be used as a sound generator in a com-

bination with a music instrument, e.g. a MIDI keyboard.

The interface thus serves as an advanced tool for spectral

modification, while the instrument provides the interface

for performance.

6. CONCLUSION AND FUTURE WORK

This paper presents a compositional hierarchical model as

an alternative to deep learning architectures based on neu-

ral networks. The model shares a great deal of similari-

ties with other deep architectures, including a multi-layer

structure, unsupervised generative learning and suitabil-

ity for discriminative tasks. Furthermore, the white-box

structure of the model offers new utilizations of the model.

We highlighted three possible applications: feature extrac-

tion for MIR tasks, music visualization and music analy-

sis/synthesis.

The model’s internals rely on findings in the fields of

neurobiology and cognitive sciences. By implementing

biologically-inspired mechanisms into the model, we made

an attempt to build a model which partially resembles a

subset of functions of the human auditory system. We in-

tend to retain and further develop this aspect of the model

with an intention to bring the computational modeling

closer to human auditory perception.

The paper presents an initial development of our model.

We plan to further extend it with the focus on temporal

modeling. Parts can namely be extended into the time do-

main, thus bringing their activations closer to event-based

modeling. We also plan to tackle temporal tasks, such as

onset detection, as well as beat tracking and tempo estima-

tion. The proposed model is also going to be evaluated for

pattern analysis of symbolic data, including discovery of

repeated themes, and symbolic melodic similarity.
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ABSTRACT

Mixing multitrack music is an expert task where charac-

teristics of the individual elements and their sum are ma-

nipulated in terms of balance, timbre and positioning, to

resolve technical issues and to meet the creative vision of

the artist or engineer. In this paper we conduct a mixing

experiment where eight songs are each mixed by eight dif-

ferent engineers. We consider a range of features describ-

ing the dynamic, spatial and spectral characteristics of each

track, and perform a multidimensional analysis of variance

to assess whether the instrument, song and/or engineer is

the determining factor that explains the resulting variance,

trend, or consistency in mixing methodology. A number of

assumed mixing rules from literature are discussed in the

light of this data, and implications regarding the automa-

tion of various mixing processes are explored. Part of the

data used in this work is published in a new online mul-

titrack dataset through which public domain recordings,

mixes, and mix settings (DAW projects) can be shared.

1. INTRODUCTION

The production of recorded music involves a range of ex-

pert signal processing techniques applied to recorded mu-

sical material. Each instrument or element thereof exists

on a separate audio ‘track’, and this process of manipulat-

ing and combining these tracks is normally referred to as

mixing. Strictly creative processes aside, each process can

generally be classified as manipulating the dynamic (bal-

ance and dynamic range compression), spatial (stereo or

surround panning and reverberation), and spectral (equal-

isation) features of the source material, or a combination

thereof [1, 4, 8, 15].

Recent years have seen a steep increase in research on

automatic mixing, where some of the tedious, routine tasks

in audio production are automated to the benefit of the in-

experienced amateur or the time constrained professional.

c© Brecht De Man, Brett Leonard, Richard King and Joshua

D. Reiss.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Brecht De Man, Brett Leonard,

Richard King and Joshua D. Reiss. “An Analysis and Evaluation of Au-

dio Features for Multitrack Music Mixtures”, 15th International Society

for Music Information Retrieval Conference, 2014.

Most research is concerned with the validation of a mixing

rule based on knowledge derived from practical literature

or expert interviews [2, 6, 7, 9], usually through an exper-

iment where a method based on this assumption is com-

pared to a set of alternative methods. Furthermore, some

research has been done on machine learning systems for

balancing and panning of tracks [13]. In spite of these ef-

forts, the relation between the characteristics of the source

material and the chosen processing parameters, as well as

the importance of subjective input of the individual ver-

sus objective or generally accepted target features, is still

poorly understood. Recurring challenges in this field in-

clude a lack of research data, such as high-quality mixes in

a realistic but sufficiently controlled setting, and tackling

the inherently high cross-adaptivity of the mixing problem,

as the value of each processing parameter for any given

track is usually dependent on features and chosen process-

ing parameters associated with other tracks as well.

In this work, we conduct an experiment where a group

of mixing engineers mix the same material in a realistic

setting, with relatively few constraints, and analyse the ma-

nipulation of the signals and their features. We test the

validity of the signal-dependent, instrument-independent

model that is often used in automatic mixing research [6,

7], and try to identify which types of processing are largely

dependent on instrument type, the song (or source mate-

rial), or the individual mixing engineer. Consequently, we

also identify which types of processing are not clearly de-

fined as a function of these parameters, and thus warrant

further research to understand their relation to low-level

(readily extracted) features or high-level properties (instru-

ment, genre, desired effect) of the source audio. We dis-

cuss the relevance of a number of audio features for the

assessment of music production and the underlying pro-

cesses as described above. This experiment also provides

an opportunity to validate some of the most common as-

sumptions in autonomous mixing research.

2. EXPERIMENT
The mixing engineers in this experiment were students of

the MMus in Sound Recording at the Schulich School of

Music at McGill University. They were divided in two

groups of eight, where each group corresponds with a class
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from a different year in the two-year programme, and each

group was assigned a different set of four songs to mix.

Each mixing engineer allocated up to 6 hours to each of

their four mix assignments, and was allowed to use Avid’s

Pro Tools including built-in effects (with automation) and

the Lexicon PCM Native Reverb Plug-In Bundle, a set of

tools they were familiar with.

Four out of eight songs are available on a new multi-

track testbed including raw tracks, the rendered mixes and

the complete Pro Tools project files, allowing others to re-

produce or extend the research. The testbed can be found

on c4dm.eecs.qmul.ac.uk/multitrack. The au-

thors welcome all appropriately licensed contributions con-

sisting of shareable raw, multitrack audio, DAW project

files, rendered mixes, or a subset thereof. Due to copyright

restrictions, the other songs could not be shared.

We consider three types of instruments - drums, bass,

and lead vocal - as they are featured in all test songs in this

research, and as they are common elements in contempo-

rary music in general. Furthermore, we split up the drums

in the elements kick drum, snare drum, and ‘rest’. Three

out of eight songs had a male lead vocalist, and half of

the songs featured a double bass (in one case part bowed)

while the other half had a bass guitar for the bass part.

For the purpose of this investigation, we consider a frag-

ment of the song only, consisting of the second verse and

chorus, as all considered sources (drums, bass and lead vo-

cal) are active here.

Whereas the audio was recorded and mixed at a sam-

pling ratio of 96 kHz, we converted all audio to 44.1 kHz

to reduce computational cost and to calculate spectral fea-

tures based on the mostly audible region. The processed

tracks are rendered from the digital audio workstation with

all other tracks inactive, but with an unchanged signal path

including send effects and bus processing 1 .

3. FEATURES
The set of features we consider (Table 1) has been tailored

to reflect properties relevant to the production of music in

the dynamic, spatial and spectral domain. We consider the

mean of the feature over all frames of a track fragment.

We use the perceptually informed measure of loudness

relative to the loudness of the mix, as a simple RMS level

can be strongly influenced by high energy at frequencies

the human ear is not very sensitive to. To accurately mea-

sure loudness in the context of multitrack content, we use

the highest performing modification in [12] (i.e. using a

time constant of 280 ms and a pre filter gain of +10 dB)

on the most recent ITU standard on measuring audio pro-

gramme loudness [3].

1 When disabling the other tracks, non-linear processes on groups of
tracks (such as bus dynamic range compression) will result in a different
effective effect on the rendered track since the processor may be trig-
gered differently (such as a reduced trigger level). While for the purpose
of this experiment, the difference in triggering of bus compression does
not affect the considered features significantly, it should be noted that
for rigorous extraction of processed tracks, in such a manner that when
summed together they result in the final mix, the true, time-varying bus
compression gain should be measured and applied on the single tracks.

Category Feature Reference
Dynamic Loudness [3, 12]

Crest factor (100 ms and 1 s) [17]

Activity [7]

Spatial SPS [16]

P[band] [16]

Side/mid ratio

Left/right imbalance

Spectral Centroid [5]

Brightness

Spread

Skewness

Kurtosis ·
Rolloff (.95 and .85) ·
Entropy

Flatness

Roughness

Irregularity

Zero-crossing rate

Low energy [5]

Octave band energies

Table 1: List of extracted features

To reflect the properties of the signal related to dynamic

range on the short term, we calculate the crest factor over

a window of 100 ms and over a window of 1 s [17].

To quantify gating, muting, and other effects that make

the track (in)audible during processing, we measure the

percentage of time the track is active, with the activity state

indicated by a Schmitt trigger with thresholds at −25 and

−30 dB LUFS [7].

To analyse the spatial processing, we use the Stereo

Panning Spectrum (SPS), which shows the spatial position

of a certain frequency bin in function of time, and the Pan-

ning Root Mean Square (P[band]), the RMS of the SPS over

a number of frequency bins [16]. In this work, we use the

absolute value of SPS, averaged over time, and the stan-

dard Ptotal (all bins), Plow (0-250 Hz), Pmid (250-2500

Hz) and Phigh (2500-22050 Hz), also averaged over time.

Furthermore, we propose a simple stereo width measure,

the side/mid ratio, calculated as the power of side chan-

nel (sum of left and right channel) over the power of the

mid channel (average of left channel and polarity-reversed

right channel). We also define the left/right imbalance, as

(R − L)/(R + L) where L is the total/average power of

the left channel, and R is the total/average power of the

right channel. A centred track has low imbalance and low

side/mid ratio, while a hard panned track has high imbal-

ance and high side/mid ratio. Note that while these features

are related, they do not mean the same thing. A source

could have uncorrelated signals with the exact same energy

in the left and right channel respectively, which would lead

to a low left/right imbalance and a high side/mid ratio.

Finally, we use features included in the MIR Toolbox

[5] (with the default 50 ms window length) as well as oc-

tave band energies to describe the spectral characteristics

of the audio.
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4. ANALYSIS AND DISCUSSION
4.1 Analysis of variance

Table 2 shows the mean values of the features, as well as

the standard deviation between different mixing engineers

and the standard deviation between different songs. Most

considered features show greater variance for the same en-

gineer across different songs, than for the same song over

different engineers. Exceptions to this are the left/right im-

balance and spectral roughness, which on average appear

to be more dependent on the engineer than on the source

content. The change of features (difference before and af-

ter processing, where applicable) varies more for differ-

ent mixing engineers than for different songs, too, for all

features. However, when considering the features instru-

ment by instrument, the source material only rarely causes

the means of the feature to differ significantly (the means

are only significantly different through the effect of source

material for the zero-crossing rate of the snare drum track,

and for the spectral entropy of the vocal track). This sug-

gests that engineers would disagree on processing values,

whereas the source material has less effect.

For each feature, we perform an analysis of variance

to investigate for which feature we can reject the hypothe-

sis that the different ‘treatments’ (different source material,

mixing engineer or instrument) result in the same feature

value. For those features for which there is a significant ef-

fect (p < 0.05), we perform a multiple comparison of pop-

ulation means using the Bonferroni correction to establish

what the mean values of the feature are as a function of the

determining factor, and which instruments or songs have a

significantly lower or higher mean than others. We discuss

the outcome of these tests in the following paragraphs.

As some elements were not used by the mixing engi-

neer, some missing values are dropped when calculating

the statistics in the following sections.

4.2 Balance and dynamics processing
In general, the relative loudness of tracks, averaged over

all instruments, is dependent on the song (p < 5 · 10−11).

However, when looking at each instrument individually,

the relative loudness of the bass guitar (p < 0.01), snare

drum (p < 0.05) and other drum instruments (‘rest’, i.e.

not snare or kick drum, p < 5 · 10−4) is dependent on

mixing engineer.

In automatic mixing research, a popular assumption is

that the loudness of the different tracks or sources should

be equal [7]. A possible exception to this is the main ele-

ment, usually the vocal, which can be set at a higher loud-

ness [1]. From Figure 1, it is apparent that the vocal is sig-

nificantly louder than the other elements considered here,

whereas no significant difference of the mean relative loud-

ness of the other elements can be shown. Furthermore, the

relative loudness of the vocal shows a relative narrow range

of values (−2.7 ± 1.6 LU), suggesting an agreement on a

‘target loudness’ of about−3 LU relative to the overall mix

loudness.

It should be noted that due to crosstalk between the

drum microphones, the effective loudness of the snare drum
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Figure 1: Average and standard deviation of loudness of

sources relative to the total loudness of the mix, across

songs and mixing engineers.

and kick drum will differ from the loudness measured from

the snare drum and kick drum tracks. As a result, dis-

agreement of the relative loudnesses of snare drum and

other drum elements such as overhead and room micro-

phones does not necessarily suggest a significantly differ-

ent desired loudness of the snare drum, as the snare drum is

present in both of these tracks. In this work, however, we

are interested in the manipulations of the different tracks

as they are available to the engineer.

The crest factor is affected by both the instrument (p <
5 · 10−3) and song (p < 10−20), and every instrument in-

dividually shows significantly different crest factor values

for different engineers (p < 5 · 10−3). One exception to

the latter is the kick drum for a crest factor window size of

1 s, where the hypothesis was not disproved for one group

of engineers.

All instruments show an increase in crest factor com-

pared to the raw values (ratio significantly greater than

one). This means that the short-term dynamic range is

effectively expanded, which can be an effect of dynamic

range compression as transients are left unattenuated due

to the response time of the compressor, while the rest of

the signal is reduced in level.

The percentage of the time the track was active did not

meaningfully change under the influence of different source

material, individual mixing engineers or instruments. A

drop in activity in some instances is due to gating of kick

drum, but this is the decision of certain mixing engineers

for certain songs, and no consistent trend.

4.3 Stereo panning
Both the average left/right imbalance and average side/mid

ratio were significantly higher for the non-pop/rock songs

(p < 10−6).

The Panning Root Mean Square values P[band] all show

a larger value for the total mix and for the ‘rest’ group. The

difference is significant except for the lowest band, where

only the bass is significantly more central than the total

mix. This can be explained by noting that most of the low

frequency sources are panned centre (see further).

In literature on automatic mixing and mixing engineer-

ing textbooks, it is stated that low-frequency sources as

well as lead vocals and snare drums should be panned cen-

tral [1, 2, 4, 6, 8–10, 14]. To quantify the spatialisation for

different frequencies, we display the panning as a function
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Feature Kick drum Snare drum Rest drums Bass Lead vocal Average Mix

Loudness [LU] -13.15± 4.05
3.89 -16.78 ± 6.17

4.57 -12.68 ± 5.46
2.80 -2.65 ± 1.52

1.31 -9.50 ± 3.51
2.86 -10.95 ± 4.14

3.09 N/A

Crest (100 ms) 3.599 ± 0.603
0.330 4.968 ± 0.998

0.469 4.510 ± 1.065
0.354 2.565 ± 0.443

0.166 3.315 ± 0.403
0.208 3.791 ± 0.634

0.274 3.332 ± 0.294
0.116

Crest (1 s) 9.824 ± 3.074
1.911 16.724 ± 6.458

3.135 12.472 ± 4.710
1.823 4.339 ± 1.098

0.449 5.283 ± 1.102
0.514 9.728 ± 2.907

1.398 5.315 ± 0.997
0.554

Activity 0.676 ± 0.250
0.122 0.861 ± 0.161

0.078 0.909 ± 0.115
0.029 0.958 ± 0.076

0.009 0.844 ± 0.089
0.044 0.850 ± 0.117

0.048 0.995 ± 0.009
0.004

L/R imbalance 0.075±0.094
0.137 0.144 ±0.153

0.227 0.361 ± 0.303
0.213 0.107 ±0.135

0.176 0.045 ±0.072
0.085 0.146 ±0.139

0.152 0.088 ± 0.075
0.074

Side/mid ratio 0.036±0.055
0.076 0.036 ±0.040

0.043 0.242 ± 0.183
0.154 0.009 ±0.013

0.015 0.022 ±0.018
0.022 0.069 ± 0.060

0.059 0.101 ± 0.049
0.046

Ptotal 0.104 ± 0.102
0.090 0.108 ± 0.082

0.059 0.307 ± 0.028
0.027 0.075 ± 0.093

0.083 0.134 ±0.022
0.027 0.145 ± 0.060

0.052 0.234 ± 0.030
0.027

Plow 0.066±0.078
0.087 0.122 ± 0.102

0.073 0.243 ± 0.045
0.041 0.040 ± 0.063

0.059 0.147 ±0.034
0.042 0.123 ± 0.061

0.056 0.188 ± 0.042
0.034

Pmid 0.066±0.074
0.076 0.114 ± 0.090

0.064 0.290 ± 0.023
0.023 0.052 ± 0.082

0.067 0.177 ±0.027
0.035 0.140 ± 0.054

0.048 0.248 ± 0.027
0.023

Phigh 0.106 ± 0.104
0.091 0.105 ± 0.081

0.058 0.309 ± 0.029
0.028 0.076 ± 0.094

0.085 0.124 ±0.022
0.028 0.144 ± 0.061

0.053 0.231 ± 0.033
0.029

Centroid [Hz] 2253.8± 1065.6
729.8 4395.3 ± 1448.6

554.2 4130.8 ± 1228.1
483.2 1046.5 ± 520.1

232.4 2920.2 ± 452.1
264.7 2949.3 ± 872.1

418.6 2478.8 ± 517.9
247.1

Brightness 0.306 ± 0.105
0.103 0.598 ± 0.156

0.069 0.557 ± 0.115
0.058 0.135 ± 0.082

0.031 0.455 ± 0.071
0.040 0.410 ± 0.100

0.056 0.362 ± 0.070
0.034

Spread 3250.1± 783.2
447.5 4363.6 ± 701.9

335.9 4422.1 ± 734.6
292.3 2426.6 ± 559.2

320.4 3369.9 ± 324.6
191.3 3566.5 ± 587.5

298.0 3453.2 ± 421.7
200.6

Skewness 3.649 ± 1.068
0.886 1.492 ± 0.663

0.301 1.665 ± 0.682
0.246 6.234 ± 1.885

0.630 2.470 ± 0.573
0.243 3.102 ± 0.912

0.427 2.779 ± 0.600
0.257

Kurtosis 23.847± 11.997
9.164 5.965 ± 2.905

1.474 7.053 ± 3.449
1.263 58.870 ± 31.874

11.107 11.579 ± 4.267
1.784 21.463 ± 9.834

4.477 13.646 ± 4.511
2.073

Rolloff .95 [Hz] 8880.1± 3679.2
2151.2 13450.9± 3100.6

1582.2 13373.4± 2594.1
1007.4 4389.4 ± 2714.7

1244.5 9879.0 ± 1335.7
725.3 9994.5 ± 2498.0

1240.8 9679.0 ± 1563.8
734.3

Rolloff .85 [Hz] 4513.7± 2736.6
1788.8 8984.3 ± 3139.7

1348.5 8755.3 ± 2742.5
975.6 1625.5 ± 1205.0

594.3 5595.8 ± 1121.4
609.7 5894.9 ± 2047.2

986.1 5026.2 ± 1337.8
599.8

Entropy 0.655 ± 0.104
0.090 0.840 ± 0.084

0.057 0.832 ± 0.051
0.025 0.552 ± 0.073

0.026 0.735 ± 0.043
0.016 0.723 ± 0.066

0.038 0.744 ± 0.043
0.015

Flatness 0.148 ± 0.072
0.051 0.350 ± 0.142

0.056 0.337 ± 0.118
0.045 0.073 ± 0.035

0.020 0.167 ± 0.030
0.018 0.215 ± 0.074

0.035 0.174 ± 0.046
0.020

Roughness 84.72±84.85
98.32 36.30 ±41.16

43.32 67.57 ± 71.76
46.28 236.04±160.38

176.05 247.00±216.15
247.36 134.33±319.30

338.44 1843.31±1341.50
1419.35

Irregularity 0.158 ± 0.098
0.063 0.235 ± 0.151

0.079 0.297 ± 0.135
0.069 0.502 ± 0.176

0.065 0.540 ± 0.165
0.094 0.346 ± 0.136

0.075 0.705 ± 0.090
0.078

Zero-crossing 584.7 ± 509.5
409.4 2222.0 ± 1183.3

604.7 1988.9 ± 944.1
466.1 246.6 ± 217.8

89.6 1177.5 ± 233.7
143.6 1243.9 ± 554.3

305.4 905.2 ± 237.4
118.8

Low energy 0.752 ± 0.113
0.081 0.723 ± 0.084

0.055 0.682 ± 0.047
0.034 0.507 ± 0.096

0.033 0.544 ± 0.065
0.048 0.641 ± 0.073

0.048 0.541 ±0.035
0.038

Table 2: Average values of features per instrument, including average over instrument and value of total mix, with standard

deviation between different songs by the same mixing engineer (top), and between different mixes of the same song (bot-

tom). Values for which the variation across different mixes for the same song is greater than the variation across different

songs for the same engineer are displayed in bold.
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Figure 2: Mean Stereo Panning Spectrum (with standard

deviation) over all mixes and songs

of frequency in Figure 2, using the average Stereo Panning

Spectrum over all mixes and songs. From this figure a clear

increase in SPS with increasing frequency is apparent be-

tween 50 Hz and 400 Hz. However, this trend does not

extend to the very low frequencies (20-50 Hz) or higher

frequencies (>400 Hz).

4.4 Equalisation
To assess the spectral processing of sources, mostly equali-

sation in this context, we consider both the absolute values

of the spectral features (showing the desired features of the

processed audio) as well as the change in features (show-

ing common manipulations of the tracks). When only tak-

ing the manipulations into account, and not the features

of the source audio, similar to blindly applying a software

equaliser’s presets, the results would be less translatable

to situations where the source material’s spectral charac-

teristics differs from that featured in this work [2]. How-

ever, considering the change in features could reveal com-

mon practices that are less dependent on the features of the

source material. Therefore, we investigate both.

The spectral centroid of the whole mix varies strongly

depending on the mixing engineer (p < 5 · 10−6). The

centroid of the snare drum track is consistently increased

through processing, due to a reduction of the low energy

content as well as spill of instruments like kick drum (see

further regarding the reduction of low energy) and/or the

emphasis of a frequency range above the original centroid.

The brightness of each track except bass guitar and kick

drum (the sources with the highest amount of low energy)

is increased.

For a large set of spectral features (spectral centroid,

brightness, skewness, roll-off, flatness, zero-crossing, and

roughness), the engineers disagree on the preferred value

for all instruments except kick drum. In other words, the

values describing the spectrum of a kick drum across engi-

neers are overlapping, implying a consistent spectral target

(a certain range of appropriate values). For other features
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(spread, kurtosis and irregularity) the value correspond-

ing with the kick drum track is also significantly different

across engineers. The roughness shows no significantly

different means for any instrument except the ‘rest’ bus.

The low energy of each track is reduced for each in-

strument, with significantly more reduction for snare drum

than for kick drum and bass guitar. Its absolute value for

bass and vocal is significantly different across engineers,

whereas there is a general overlap for all other instruments

including the mix. As the variation in the resulting value of

low energy is higher than the variation for the unprocessed

versions, no target value is apparent for any instrument, nor

for the total mix.

Analysis of the octave band energies reveals definite

trends across songs and mixing engineers, for a certain in-

strument as well as the mix. The standard deviation does

not consistently decrease or increase over the octave bands

for any instrument when compared to the raw audio. The

suggested ‘mix target spectrum’ is in agreement with [11],

which derived a ‘target spectrum’ based on average spec-

tra of number one hits from various genres and over sev-

eral decades. Figure 4 shows the measured average mix

spectrum against the octave band values of the average

spectrum of a number one hit after 2000 from that work,

which lies within a standard deviation from our result with

the exception of the highest band. The average relative

change in energies is not significantly different from zero

(no bands are consistently boosted or cut for certain instru-

ments), but taking each song individually in consideration,

a strong agreement of reasonably drastic boosts or cuts is

shown for some songs. This confirms that the equalisation

is highly dependent on the source material, and engineers

largely agree on the necessary treatment for source tracks

showing spectral anomalies.

5. CONCLUSION
We conducted a controlled experiment where eight mul-

titrack recordings mixed by eight mixing engineers were

analysed in terms of dynamic, spatial and spectral process-

ing of common key elements.

We measured a greater variance of features across songs

than across engineers, for each considered instrument and

for the total mix, whereas the mean values corresponding

to the different engineers were more often statistically dif-

ferent from each other.

The relative loudness of the lead vocal track was found

to be significantly louder than all other tracks, with an av-

erage value of −3 LU relative to the total mix loudness.

The amount of panning as a function of frequency was

investigated, and found to be increasing with frequency up

to about 400 Hz, above which it stays more or less con-

stant.

We measured a consistent decrease of low frequency

energy and an increase of crest factor for all instruments,

and an increase of the spectral centroid of the snare drum

track. Spectral analysis has shown a definite target spec-

trum that agrees with the average spectrum of recent com-

mercial recordings.
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Figure 3: Average octave band energies (blue) with stan-

dard deviation (red) for different instruments after process-

ing, compared to the raw signal (black).
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Figure 4: Average octave band energies for total mix,

compared to ‘After 2000’ curve from [11] (green dashed

line)

6. FUTURE WORK
Future work will be concerned with perceptual evaluation

of mixes and its relation to features, using both qualita-

tive (‘which sonic descriptors correspond with which fea-

tures?’) and quantitative analysis (‘which manipulation of

audio is preferred?’).

Further research is needed to establish the desired loud-

ness of sources, as opposed to loudness of tracks, and its

variance throughout songs, genres, and mixing engineers.

An extrapolation of the analysis described in this paper

to other instruments is needed to validate the generality of

the conclusions regarding the processing of drums, bass

and lead vocal at the mixing stage, and to further explore

laws underpinning the processing of different instruments.

Based on the findings of this work, which showed trends

and variances of different relevant features, we can inform

knowledge engineered or machine learning based systems

that automate certain mixing tasks (balancing, panning,

equalising and compression).

This work was based on a still relatively limited set of

mixes, for which the engineers came from the same insti-

tution. Through initiatives such as the public multitrack

testbed presented in this paper, it will be possible to anal-

yse larger corpora of mixes, where more parameters can be

investigated with more significance.
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ABSTRACT

Electronic dance music (EDM) is a popular genre of mu-

sic. In this paper, we propose a method to automatically

detect the characteristic event in an EDM recording that is

referred to as a drop. Its importance is reflected in the num-

ber of users who leave comments in the general neighbor-

hood of drop events in music on online audio distribution

platforms like SoundCloud. The variability that character-

izes realizations of drop events in EDM makes automatic

drop detection challenging. We propose a two-stage ap-

proach to drop detection that first models the sound char-

acteristics during drop events and then incorporates tem-

poral structure by zeroing in on a watershed moment. We

also explore the possibility of using the drop-related social

comments on the SoundCloud platform as weak reference

labels to improve drop detection. The method is evaluated

using data from SoundCloud. Performance is measured

as the overlap between tolerance windows centered around

the hypothesized and the actual drop. Initial experimental

results are promising, revealing the potential of the pro-

posed method for combining content analysis and social

activity to detect events in music recordings.

1. INTRODUCTION

Electronic dance music (EDM) is a popular genre of dance

music which, as the name suggests, is created using elec-

tronic equipment and played in dance environments. Out-

side of clubs and dance festivals, EDM artists and listeners

actively share music on online social platforms. Central

to the enjoyment of EDM is a phenomenon referred to as

“The Drop”. Within the EDM community, a drop is de-

scribed as a moment of emotional release, where people

start to dance “like crazy” [12]. There is no precise recipe

for creating a drop when composing EDM. Rather, a drop

occurs after a build, a building up of tension, and is fol-

lowed by the re-introduction of the full bassline [1]. A

given EDM track may contain one or more drop moments.

c© Karthik Yadati, Martha Larson, Cynthia C. S. Liem,

Alan Hanjalic.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Karthik Yadati, Martha Larson, Cyn-

thia C. S. Liem, Alan Hanjalic. “Detecting Drops in Electronic Dance

Music: Content based approaches to a socially significant music event”,

15th International Society for Music Information Retrieval Conference,

2014.

The designation “The Drop” is generally reserved for the

overall phenomenon rather than specific drop events.

In this paper we address the challenge of automatically

detecting a drop in a given EDM track. The social signifi-

cance of the drop in the EDM context can be inferred, for

instance, from the websites that compile a playlist of the

best drops 1 . It is also evident from vivid social activity

around drop events on online audio distribution platforms

such as SoundCloud 2 . We also mention here a documen-

tary, scheduled to be released in 2014, tracking the evo-

lution of EDM as a cultural phenomenon, and titled The
Drop 3 . Ultimately, the drop detection approach proposed

in this paper could serve both EDM artists and listeners.

For example, it would enable artists to compare drop cre-

ation techniques, and would also support listeners to better

locate their favorite drop moments.

The challenge of drop detection arises from the high

variability in different EDM tracks, which differ in their

musical content and temporal development. Our drop de-

tection approach uses audio content analysis and machine

learning techniques to capture this variability. As an ad-

ditional source of reference labels for classifier training,

we explore the utility of drop-related social data in the

form of timed comments, comments associated with spe-

cific time codes. We draw our data from SoundCloud, a

music distribution platform that supports timed comments

and is representative of online social sharing of EDM. The

paper makes three contributions:

• We propose a two-step content-based drop detection

approach.

• We verify the ability of the approach to detect drops
in EDM tracks.

• We demonstrate utility of the social features (timed

comments on SoundCloud) to reduce the amount of

hand-labeled data needed to train our classifier.

The remainder of this paper is organized as follows.

Section 2 discusses related work, and is followed by the

presentation and evaluation of our method in sections 3 and

4. Section 5 provides a summary and an outlook towards

future work.

1 http://www.beatport.com/charts/top-10-edm-drops-feb1/252641
2 http://soundcloud.com
3 http://www.imdb.com/title/tt2301898/
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2. RELATED WORK

Although Electronic Dance Music is a popular music genre

attracting large audiences, it has received little attention in

the music information retrieval research community. Re-

search on EDM is limited to a small number of contribu-

tions. Here, we mention the most notable. Hockman et

al. [5] propose a genre-specific beat tracking system that is

designed to analyze music from the following EDM sub-

genres: Hardcore, Jungle, Drum and Bass. Kell et al. in [6]

also apply audio content analysis to EDM in order to inves-

tigate track ordering and selection, which is usually carried

out by human experts, i.e., Disc Jockeys (DJ). The work re-

port findings on which content features influence the pro-

cess of ordering and selection. A musicological perspec-

tive is offered by Collins in [3], who applies audio content

analysis and machine learning techniques to empirically

study the creative influence of earlier musical genres on the

later ones using a date annotated database of EDM tracks,

with specific focus on the sub-genres Detroit techno and

Chicago house. Our work strives to redress the balance and

give more attention to EDM. It draws attention to Sound-

Cloud as an important source of music data and associated

social annotations, and also to “The Drop”, a music event

of key significance for the audience of EDM.

The rise of social media has also seen the rise in avail-

ability of user-contributed metadata (e.g., comments and

tags). Social tags have recently grown in importance in

music information retrieval research. In [11], they were

used to predict perceived or induced emotional responses

to music. This work reports findings on the correlation be-

tween the emotion tags associated with songs on Last.fm—

“happy”, “sad”, “angry” and “relax”—and the user emo-

tion ratings for perceived and induced emotions. Social

data is generally noisy, since generating precise labels is

not users’ primary motivation for tagging or commenting.

However, this data can still prove useful as weak reference

labels, reducing the burden of producing ground-truth la-

bels for a large set of music tracks, which is an expen-

sive and time consuming task. Social tags available on

Last.fm have been used to automatically generating tags

for songs [4]. An interesting direction of research is de-

scribed in [13], where the authors use content-based anal-

ysis of the song to improve the tags provided by users. Ex-

isting work makes use of social tags that users assign to

a song as a whole. In contrast, our work makes use of

timed comments that users contribute associated with spe-

cific time points during a song.

Obtaining time-code level ground-truth labels for a large

set of music tracks is an expensive and time consuming

task. One way to obtain reference labels is to use crowd-

sourcing, where users are explicitly offered a task (e.g., la-

bel the type of emotion [9]). Our approach of using timed

comments spares the expense of crowdsourcing. It has the

additional advantage that users have contributed the com-

ments spontaneously, i.e., they have not been asked to ex-

plicitly assign them, making them a more natural expres-

sion of user reactions during their listening experience.

3. PROPOSED APPROACH

Our proposed two-step approach is based on general prop-

erties of the “The Drop”. As previously mentioned drops

are characterized by a build up towards a climax followed

by reintroduction of the bassline. We hypothesize that the

switch will coincide with a structural segment that ends at a

drop moment. For this reason, the first step in our approach

is segmentation. However, not all segment boundaries are

drops. For this reason, the second step in our approach is

a content-based classification of segments that eliminates

segments whose boundaries are not drop points. Figure 1

illustrates the two-stage approach, where we first segment

to identify drop candidates and then classify in order to

isolate candidates that are actually drop moments.

Segment  
Classification 

Segment  
boundaries 

Detected drop 

Figure 1. Two-stage approach to drop detection

The classification framework we propose to find drop

events is illustrated in Figure 2. At the heart of the frame-

work are the following modules: Segmentation, feature ex-

traction, classification and evaluation.

Feature 
Extraction 

Model 
Training 

User 
comments 

Expert 
labels 

Segment 
Classification Evaluation 

Training Data 

Test Data 

Segmentation 

Feature 
Extraction Segmentation 

Figure 2. The proposed classification framework

3.1 Segmentation

The segmentation step carries out unsupervised segment

boundary detection. Exploratory experiments revealed that

the segmentation method proposed in [10] gives a good

first approximation of the drops in an EDM track, and we

have adopted it for our experiments. The method uses the

chroma features computed from the audio track to identify

the segment boundaries. We use the same parameters as

used in [10]: 12 pitch classes, a window length of 209 ms,

and a hop size of 139 ms. We carried out an intermediate

evaluation to establish the quality of the drop candidates
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generated by the segmentation step alone. The average

distance between the actual drop (ground-truth) and a seg-

ment boundary generated by our segmentation method is

2.5 seconds, and less than 8% of the drops are missed in

our training set (described in Section 4.1).

3.2 Feature Extraction for Classification

An overview of the feature extraction process is illustrated

in Figure 3.

Feature 
Selection 

Spectrogram 

Rhythm 

MFCC 

Segment  
boundaries 

Figure 3. Feature extraction procedure

After segmentation, we extract content-based features

from a fixed length window around the segment boundary.

We use the following features: Spectrogram, MFCC and

features related to rhythm. We adopt Mel-Frequency Cep-

stral Coefficients (MFCC) and features computed from the

spectrogram because of their effectiveness. A unique fea-

ture of a drop is that it is preceded by a buildup or build.

Figure 4 indicates that this buildup can be clearly observed

in the spectrogram of an audio segment containing a drop.

This provides additional motivation to use features com-

puted from the spectrogram in our approach. We use the

statistics computed from the spectrogram in our method

(mean and standard deviations of the frequencies). For

MFCC and spectrogram calculation, we use a window size

of 50 msec with a 50% overlap with the subsequent win-

dows. We use 13 coefficients for the MFCC. Due to a

Figure 4. Spectrogram of an audio segment indicating a

build (red arrow) towards a drop at 10 seconds.

switch of rhythm at the drop moment, features related to

rhythm are another important source of information. We

use the rhythm related features: rhythm patterns, rhythm

histogram, temporal rhythm histogram [8]. We concate-

nate the rhythm features, MFCC and statistics computed

from the spectrogram into a single feature vector. Feature

selection, following the approach of [2], is performed on

the training data in order to reduce the dimensionality of

the feature vector and also to ensure that we use the most

informative features in the classification step.

3.3 Training and Classification

To train the classifier, we assign drop (1) vs. non-drop (0)

labels to time-points in the track using two sources of infor-

mation: high fidelity ground-truth (manual labels provided

by an expert) and user comments (weak reference labels).

Prior to training the model, we map the ground-truth la-

bels to the nearest segment boundaries. We note that the

segmentation step reduces the search space for the drop,

as we no longer search for it in the entire track, but fo-

cus on features around the segment boundaries. We use a

binary SVM classifier with a linear kernel as our training

algorithm.

3.4 Evaluation

Our method predicts time points in a track at which the

drop occurs. We consider each detected drop to be a dis-

tinct drop. The fact that the drop can only be hypothesized

at a segment boundary keeps detections from occurring

close together, given that the average length of segments

generated by our segmentation algorithm is 16.5 seconds.

In order to report the performance in terms of accuracy

and precision, we utilize the F1-score. Although the drop

is annotated as a point in the track, it is characterized by

the music around the point. This aspect of the drop mo-

tivates our choice of using a tolerance window of varying

temporal resolutions around the hypothesized drop and use

temporal overlap to compute the F1-score. We follow these

steps to compute the F1-score:

1. Place a tolerance window of size t seconds centered

around the hypothesized (from our approach) and

the reference drop (ground-truth).

2. Compute the number of true positives (tp), false pos-

itives (fp) and false negatives (fn) as illustrated in

Figure 5 (the unit of measurement being seconds).

Note that the numbers computed here are related to

the number of seconds of overlap between the win-

dows placed over the actual drop and the predicted

drop. These are computed for every detected drop in

the track.

3. Compute the F1-score using the following equation:

F1 = 2tp
2tp+fn+fp .

4. Repeat the above steps for different sizes of t. We

use windows sizes of t = 15 sec, 13 sec, 11 sec, 9
sec, 7 sec, 5 sec, 3 sec to compute the F1 score.

5. If there is more than one drop in the track, repeat all

the above steps and compute an average F1-score for

each size of the window t.

4. EXPERIMENTS

We have proposed a classification framework for detecting

drops in an EDM track. We use MIRToolbox [7] to ex-

tract features related to spectrogram and MFCC, while we
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Hypothesized  
drop 

Actual 
drop 

t seconds 

t seconds 

fp tp 

fn 

Figure 5. Illustration to compute true positive (tp), false

positive (fp) and false negative (fn) using a rectangular

window of size t seconds.

use the source code provided by the authors of [8] to ex-

tract features related to rhythm. We carry out feature selec-

tion with a mechanism, adopted from [2], that uses support

vector machines to identify the most informative features.

For the binary classification of drop vs. non-drop, we use

a support vector machine classifier provided in LibSVM.

The experiments have been designed to address the two re-

search questions of this paper:

• Can our proposed approach detect drops success-

fully? (Section 4.3), and

• What is the utility of the timed comments in the lim-

ited presence of explicit ground-truth data? (Sec-

tion 4.4)

4.1 Dataset

In order to evaluate our method, we collect music and so-

cial data from SoundCloud, which can be seen as a rep-

resentative of modern online social audio distribution plat-

forms. It allows users to upload, record and share their self-

created music. One of the unique features of SoundCloud

is that it allows users to comment at particular time-points

in the sound. These comments are referred to as “timed

comments”. Figure 6 illustrates a screenshot of the audio

player on SoundCloud along with the timed comments.

Figure 6. Screenshot of the audio player on SoundCloud.

These comments offer a rich source of information as

they are associated with a specific time-point and could in-

dicate useful information about the sound difficult to infer

from the signal. Table 1 illustrates a few example timed

comments, which provide different kinds of information

about the sound. These timed comments can be noisy with

respect to their timestamps due to discrepancies between

when users hear interesting events, and when they com-

ment on them.

SoundCloud provides a well-documented API that can

be used to build applications using SoundCloud data and

information on select social features. In order to collect

our dataset, we used the Python SDK to search for re-

Timestamp Comment

01:21 Dunno what it is about this song, inspires me to
make more tunes though! love it!

00:28 Love the rhythm!!

00:49 love that drop! nice bassline! nice vocals! epic!

Table 1. Examples of timed comments on SoundCloud.

cent sounds belonging to the following three sub-genres

of EDM: dubstep, electro and house. Using the returned

list of track identification numbers, we download the track

(if its allowed by the user who uploaded the sound) and

the corresponding timed comments. We then filter out the

comments which do not contain the word “drop”. At the

end of the data collection process, we have a set of tracks

belonging to the above mentioned genres, the associated

timed comments containing the word “drop”, and the cor-

responding timestamp of the comment. Table 2 provides

some statistics of the dataset.

Genre # files Aver.
Duration

Aver. #
comments

Aver. #
drop

comments

Aver. #
drops

Dubstep 36 4 min. 278 4 3

Electro 36 3.6 min. 220 3 3

House 28 3.9 min. 250 5 2

Table 2. Statistics of the dataset

As we have filtered out the non-drop comments and all

the tracks in the dataset have at least one drop comment,

we can assume that there is at least one drop in each track.

We use a dataset of 100 tracks with a split of 60–20–20 for

the training, development and testing respectively.

4.2 Ground-truth annotations

As we are developing a learning framework to detect drops

in an EDM track, we need reference labels for the time-

points at which drops occur in our dataset, as mentioned

previously. We utilize two sources of information: explicit

ground-truth (high fidelity labels) and implicit ground-truth

(user comments). In order to obtain high fidelity drop la-

bels, one of the authors has listened to the 100 tracks and

manually marked the drop points. The labeled points re-

fer to the point where the buildup ends and the bassline is

re-introduced. Instead of listening to the entire track, the

author skips 30 seconds after he hears a drop as it is highly

unlikely that a second drop would occur within 30 seconds.

It took approximately 6 hours for the author to label the en-

tire dataset. When computing F1-score in the experiments,

we use the manual labels as ground-truth.

Explicit ground-truth labels are expensive as creating

them requires experts to spend time and effort to listen

to the tracks and mark the drop points. Relying on ex-

plicit ground-truth data also hampers the scalability of the

dataset, as it would require much more time and effort from

the annotators for a larger dataset. Keeping with the social

nature of SoundCloud, users contribute comments, some

which remark on the pretense or quality of a drop (Table

1). We investigate the possibility of using these timed com-

ments as weak reference labels in predicting the drop. We

refer to timed comments as weak reference labels owing

to their noisy nature. For example, only 20 % of the drop

comments in the training set are located at the actual drop

in a track. Note that we treat each comment as a distinct
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drop. We have a total of 190 drops and 225 drop comments

in our dataset. As we can see, there are more comments

than the actual drops. Mapping multiple drop comments,

which are nearer to each other, to a single time point is a

consideration for the future.

4.3 Detecting drop using content-based features

In this experiment, we evaluate the performance of the con-

tent based features in detecting a drop using the explicit

ground-truth labels. We compute the F1-score for each

track separately. The F1-score is averaged if there is more

than one drop in the track. In Table 3, we report three

results: (1) F1-score, averaged across the entire dataset;

(2) Highest F1-score for a single track and (3) Lowest F1-

score for a single track. As mentioned before, we use win-

dows of sizes t = 3, 5, 7, 9, 11, 13, 15 sec. The size of the

window (t) represents the temporal precision to which the

F1-score is reported. Observing the results for the average

performance (first row of Table 3), we achieve a maximum

F1 score of 0.71 for a 15 second tolerance window. How-

ever, we already achieve an F1 score greater than 0.6 for

a tolerance window as small as 3 seconds. The second

row of Table 3 illustrates the F1 scores for one single track

which has the best drop detection and we observe that the

F1 scores are high and go up to 0.96 for a 15 second tol-

erance window. The third row of Table 3 illustrates the F1

scores for one single track which has the worst drop de-

tection and we observe that the F1 scores are very low, as

it has more false positives. Moreover, the structure seg-

ment boundaries do not capture the drops particularly well

in this track.

4.4 Utility of timed comments

Timed comments are an important source of information

as they could indicate the time point where a drop occurs.

Figure 7 illustrates a pipeline for the experiment to assess

the utility of timed comments as weak reference labels. It

is carried out in three stages labeled as (1), (2) and (3) in

the figure. The stages are explained here. We divide the

complete training set of N tracks into two mutually ex-

clusive sets of n and N − n tracks. Assuming that the n
tracks have ground-truth labels, we train a model (1) and

use it to classify the unlabeled segment boundaries from

the N − n tracks. We segment boundaries labeled positive

by the classifier, which will be of low fidelity, and add them

it to the training data. In the second stage (2), we use the

expanded training data (n tracks + low fidelity positive seg-

ment boundaries) to predict the drop segments in the test

set and compute the F1 score for evaluation. Then, the fea-

tures computed from a window sampled around user drop

comments are added to the training data. The data now

includes features from the n tracks, and low fidelity pre-

dicted positive segment boundaries, and around sampled

at user comments. We use this data to train a model (3)

and use it to predict the drop segments in the test set and

compute the F1 score for evaluation.

In this experiment, we use the following training data

sizes which are expressed in terms of the number of tracks:

High fidelity 
drop labels  
(n songs) 

Train classifier Test on 
(N-n) songs 

Positive drop 
segments 

(Low fidelity) 

Test set F1 score 

(1) (1) (1) 

(1) 

(2) 

(2) 

(2) 

(3) 
(3) 

User 
comments 

(3) 

Expert 
labels 

Figure 7. Procedure to assess the utility of timed com-

ments in detecting drop.

n = 5, 10, 20, 30, 40, 50. F1 scores over different win-

dow sizes are computed to demonstrate the drop detection

performance. Figure 8 illustrates the performance of the

binary classifier when we have increasing sizes of train-

ing data. Due to space constraints, we illustrate the results

only for one size of the tolerance window: 11 seconds.

Difference in F1 scores when we add user comments is vi-

sualized in Figure 8. Inspecting the figure, we can say that

F1
 sc

or
e 

Number of songs for training (tolerance window size 11 seconds) 

Figure 8. F1 scores for combining high fidelity ground-

truth labels and user comments for a tolerance window size

of 11 seconds and different training set sizes: 5 tracks, 10

tracks, 20 tracks, 30 tracks, 40 tracks, 50 tracks. First bar

in each group indicates the results of stage (3) of the ex-

periment and the second bar indicates the F1 score for the

stage (2) of the experiment

reasonable F1 scores are obtained when we use n = 30
and n = 40 tracks as training set and a tolerance window

size of 11 seconds. We observe that the F1 scores are lower

than with explicit ground-truth annotations, which we at-

tribute to the noise of user comments.

5. CONCLUSION AND OUTLOOK

We have proposed and evaluated content-based approach

that detects an important music event in EDM referred to

as a drop. To this end, we have made use of music and user-

contributed timed-comments from an online social audio
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3 sec 5 sec 7 sec 9 sec 11 sec 13 sec 15 sec

Average Perfermance 0.61 0.62 0.66 0.66 0.68 0.69 0.71

Track with Best Performanc 0.83 0.9 0.92 0.94 0.95 0.96 0.96

Track with Worst Performance 0.2 0.36 0.43 0.47 0.49 0.51 0.52

Table 3. Experimental results indicating the average, best and worst F1 scores for increasing window sizes

distribution platform: SoundCloud. We reported perfor-

mance in terms of F1, using a tolerance window of varying

time resolutions around the reference drop time-points and

the drop time-points hypothesized by our approach. With a

tolerance window of 5 seconds, which we estimate to be an

acceptable size to listeners, we obtain an F1 score greater

than 0.6. “Timed-comments”, contributed by users in as-

sociation with specific time-codes were demonstrated to be

useful as weak labels to supplement hand-labeled reference

data. We achieved a reasonable accuracy using a standard

set of music related features. One of the future steps would

be to come up with a set of features which can model the

variability and the temporal structure during drop events,

which will in turn improve the accuracy. We concentrated

on a subset of genres: dubstep, electro and house in this pa-

per as these were the more popular genres on SoundCloud

(in terms of number of comments). An immediate direc-

tion would be to expand the current dataset by including

various sub-genres of EDM, e.g., techno and drum & bass.

Our work demonstrates that musical events in popu-

lar electronic music can be successfully analyzed with the

help of time-level social comments contributed by users

in online social sharing platforms. This approach to mu-

sic event detection opens up new vistas for future research.

Our next step is to carry out a user study with our drop

detector aimed at discovering exactly how it can be of use

to EDM artists and listeners. Such a study could also re-

veal the source of “noise” in the timed comments, allowing

us to understand why users often comment about drops in

neighborhoods far from where an actual drop has occurred.

This information could in-turn allow us to identify the most

useful drop comments to add to our training data. Further,

we wish to widen our exploration of information sources

that could possibly support drop detection to also include

MIDI files that are posted by users online together with the

audio. Currently, the availability of these files is limited,

but we anticipate that they might be helpful for bootstrap-

ping. Another source of information is a crowdsourcing,

which could be used to identify drops directly, or to filter

comments directly related to the drop, from less-closely

related or unrelated comments.
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ABSTRACT

DJ mixes and radio show recordings constitute an impor-

tant and underexploited music and data source. In this

paper we try to approach the problem of separation of a

continuous DJ mix into single tracks or timestamping a

mix. Sharing some aspects with the task of structural seg-

mentation, this problem has a number of distinctive fea-

tures that make difficulties for structural segmentation al-

gorithms designed to work with a single track. We use the

information derived from spectrum data to separate tracks

from each other. We show that the metadata that usu-

ally comes with DJ mixes can be exploited to improve the

separation. An iterative algorithm that can consider both

content-based data and user provided metadata is proposed

and evaluated on a collection of freely available times-

tamped DJ mix recordings of various styles.

1. INTRODUCTION

DJ mixes provide a great source of music data, which does

not gain much attention from the MIR community yet. The

work by Kell and Tzanetakis [6], which gives an analysis

of track selection and ordering in DJ mixes is one of the

few exceptions.

Besides playing in clubs many DJs nowadays produce

weekly radio shows with latest and greatest and sometimes

exclusive tracks. These shows are often freely available

through the internet and are very popular among electronic

music lovers. Tracklists for the shows are often provided

by DJs themselves or by their fans.

For many people it is important to know which track is

playing now. The cue sheet file format [2] suits perfectly to

carry this kind of information. It was designed to describe

how the tracks on CD are laid out, but later it was supported

by many audio players and CD burning software. There

are communities, such as http://cuenation.com or

http://themixingbowl.org, which bring together

the people who create cue sheets for DJ mixes and radio

shows. But the wiki page [1] on the first site says nothing

about any tools for automatical or semi-automatical gener-

ation of cue sheets.

c© Nikolay Glazyrin.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Nikolay Glazyrin. “Towards Auto-

matic Content-Based Separation of DJ Mixes into Single Tracks”, 15th

International Society for Music Information Retrieval Conference, 2014.

The most time consuming part of this process is find-

ing the moments when one track gives place to another.

This may be a big problem for an untrained listener, be-

cause making smooth transitions between tracks is one of

the skills every DJ should have. For a trained person it is

not so hard, but to find a precise position of a transition

one has to listen carefully through dozens of seconds of

the audio. A tool that can propose most probable transi-

tion positions can facilitate this task. Such a tool can also

be used by DJs who upload their mixes to special sharing

services or online radio stations. These services will be

able to timestamp the mix automatically instead of forcing

the uploader to do this. The timestamps may be then used

to provide fast access to particular tracks within the mix

and to easily share previews of unreleased tracks played

in radio shows. Timestamped recordings of DJ mixes can

be used by recommendation systems to calculate content-

based features and relate them to sequential tracks.

The task of DJ mix separation is essentially the task of

audio segmentation, so the concepts and approaches can

be shared between these tasks. But some conditions and

requirements make them different. These differences will

be discussed in section 2. In section 3 we describe the pro-

posed method to separate tracks in DJ mix recordings. In

section 4 we describe the experiments and the evaluation

methodology. Finally, in section 5 we conclude and for-

mulate open problems and directions for future work.

2. PROBLEM FORMULATION AND RELATED
WORK

Music structural segmentation is a very popular and elab-

orated task. Paulus et al. in [9] distinguish three differ-

ent classes of music segmentation methods. Repetition-

based methods try to identify recurring patterns. Novelty-

based methods try to find transitions between contrasting

parts. Homogenity-based methods, contrary to novelty-

based ones, try to determine fragments that are consistent

with respect to some characteristic. Combined methods

have also been proposed. Some recent ones try to com-

bine novelty-based and homogenity-based approaches [4]

or combine novelty-based approach with harmonical infor-

mation in a joint probabilistic model [10].

A DJ mix can be viewed as a very long composition of

individual tracks. These tracks constitute the segments in

our task. It is important that no track can occur more than

once within a typical mix. So repetition-based methods are
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not suitable at the level of tracks.

Novelty-based approach seems to be the most suitable

for track boundaries detection. Algorithms that implement

this approach generally have 2 main steps: segmentation

and grouping.

Segmentation is usually done using an intermediate rep-

resentation in the form of self-similarity matrix (or self-

distance matrix). Since the original audio is not very infor-

mative, it needs to be transformed into a sequence of fea-

ture vectors, for which this matrix is calculated. The list

of features often used for this includes MFCCs, constant-

Q spectrum, various low-level spectrum features, such as

spectral centroid, spectral spread and others.

The most popular method of obtaining initial segmenta-

tion from a self-similarity matrix was proposed by Foote [3].

It is based on so called checkerboard novelty kernels, which

are essentially an M ×M matrix with checkerboard-like

structure. Novelty estimations can be obtained by con-

volving this kernel along the main diagonal of the self-

similarity matrix. Peaks of the resulting novelty function

provide the initial segment borders.

Homogenity-based methods come up as a direct con-

tinuation of this novelty-based segmentation. They group

similar segments together. A good review of the whole

variety of methods can be found in [9]. Many of them per-

form clustering of segments, e.g. [7], [5]. Any information

about the desired result can be helpful at this stage to build

the most effective grouping procedure.

In case of DJ mix separation the grouping procedure be-

comes especially important. It is quite common for dance

compositions to have a so called “break” in the middle,

where the sound can change dramatically. Such breaks

should be overcome to properly detect track boundaries.

At the same time, two adjacent segments that belong to

different tracks should not be joined.

A typical DJ mix lasts considerably longer than a typi-

cal musical composition. So the method must be able to

work with recordings that span hours of audio. On the

other hand, this loosens the requirements to border detec-

tion: an error of seconds or sometimes even tens of sec-

onds can be acceptable. Even humans can have different

opinions about one exact moment when a track has tran-

sitioned to the next one. An interesting task of detecting

transition periods (where two or more tracks are playing

simultaneously) comes up here, but we don’t consider it in

this paper. Marolt in [8] works with similar time scale and

boundaries requirements, but with a limited set of possible

segment types that sound quite differently.

Transitions can vary significantly for different music

styles. It is more likely to find sharp cuts in drum’n’bass

mixes, than in deep house mixes, which tend to have long

gradual transitions. Average track length is also dependent

on music style. But these are generally not the strict rules.

Radio shows often have an intro, which is played in the

beginning and often becomes a part of the tracklist. Jin-

gles, interludes or talks where the music gets faded can

occur at random places within a recording. But it is not

required to discriminate them, as they usually don’t get in-

cluded into tracklists.

The existence of tracklists also makes a great difference

from structural segmentation task. It can be seen from the

potential applications described in section 1, that the sep-

aration of a DJ mix is not much valuable per se. But it

becomes really useful when it can be connected with meta-

data: artist name and track title. Because this metadata is

often available, it can also be used in the algorithm. For

example, the information about the number of segments

in the separation gives a barrier to segmentation and/or

grouping process. And if a large music base is available

to the algorithm, parts of a mix can be matched to corre-

sponding music recordings to provide even better estima-

tion of track borders.

There may be the cases where matching is not possi-

ble though. Sometimes DJs play tracks that are not yet

released officially, and therefore cannot appear in any cat-

alogue or database. Some tracks never get released offi-

cially. Some tracks have been released years ago, and it’s

almost impossible to obtain rights on them or find them in

any database. That is why the development of the informed

automatic DJ mix separation system cannot be reduced to

a number of calls to track identification software.

Therefore, further we will suppose that there is a track-

list available for a mix recording, but not the timestamps,

and no identification software is available. And the task

will be to determine those timestamps based on the audio

data and the information from the tracklist, or to align the

mix tracklist to the audio. The authors are not informed

about any works on this task existing at the moment.

3. SYSTEM DESCRIPTION

We adopt the approach based on novelty-based segmenta-

tion followed by grouping of similar segments.

3.1 Features

Constant-Q log-spectrograms are calculated at first for au-

dio recordings, which sampling frequency has been left at

the default value of 44100 Hz. We used Constant Q plu-

gin from Queen Mary vamp plugin set 1 with the follow-

ing parameters: step size and block size are both equal to

16384 samples (0.37 s), 12 components per octave, span-

ning MIDI pitches from 36 to 84 (65 to 936 Hz) with tun-

ing frequency of 440 Hz. A relatively large block size and

zero overlap have been chosen because of the large time

scale and to speed up computations. Low frequencies are

captured, because electronic dance music often has very

accented bass that changes from track to track. The upper

frequency limit has been chosen rather arbitrarily, and we

do not investigate its influence in this study.

A sliding 2D median filter is then applied to spectro-

gram with window size (31, 1) (which corresponds to 11.5

seconds and 1 spectral component) to smooth it.

1 http://www.vamp-plugins.org/plugin-doc/
qm-vamp-plugins.html
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3.2 Segmentation

To accelerate calculations, the self-distance matrix is cal-

culated for a spectrogram with 10 times less resolution by

time axis (3.7 s per column), where each 10 sequential

columns of original spectrogram are replaced with their

average. We also restricted it to only include cosine dis-

tances between segments which are no more than 10 min-

utes apart from each other, because it is very unlikely to

meet a track that lasts longer than that in a DJ mix.

Novelty score is then calculated from the self-distance

matrix using the checkerboard kernels with gaussian taper

proposed in [3]. We used relatively small kernels of size 16

(composed of 4 squares of size 8× 8). All the peaks of the

resulting novelty function form the initial set of borders.

3.3 Clustering

Here we find a use for the information from the mix track-

list. The total number of tracks provides the desired num-

ber of clusters. This is an imporant advantage over the tra-

ditional segmentation task, where the number of segments

is unknown. On the other hand, there is a very strong re-

quirement to the borders between segments. If one true

border is not detected or one false border is detected in

the beginning of the mix, all the subsequent tracks become

misaligned with the real audio, even if all the other borders

are detected perfectly.

Another piece of information from the tracklist that can

be used here is the presence of intro and outro. Many ra-

dioshows and regular podcasts have such an intro, fewer

ones have also an outro. These segments are relatively

short (shorter than 1 minute), but are often included in

tracklists. A reasonable assumption is that if the name of

the first track contains the string intro and/or the name of

the last track contains the string outro, then an intro and/or

an outro should be expected. A good clustering algorithm

could be able to detect them automatically, but we add a

special handling for these cases. If an intro is expected,

among the novelty function peaks during the first 60 sec-

onds of audio the highest one is selected and declared as

the intro right border. The same is done at the end of the

recording if an outro is expected there.

For the remainder of the recording an iterative cluster-

ing procedure is applied. Within each segment the average

of all its feature vectors is calculated and normalized by di-

viding all its components by the maximal one. All the pair-

wise distances between segments whose beginnings are not

more than 600 seconds away from each other are calcu-

lated as Euclidean distances between their average feature

vectors. This gives a Segment Distance Matrix similar to

the one introduced in [4].

All the segment pairs ((li, ri), (lj , rj)), i < j (where li
and ri are correspondingly segment’s left and righ borders)

for which the distance was calculated are sorted according

to the following condition: Dij · (rj− li), where Dij is the

distance between i-th and j-th segments. Only the pair that

produces the smallest value is then merged. If the segments

from this pair are not contiguous, all the intermediate ones

are also included. To avoid too big segments, a pair gets a

penalty when rj − li > 1.25 · average track length: its

condition becomes 100000 · (rj − li).

4. RESULTS

The proposed method was evaluated on a collection of 103

DJ mix recordings 2 downloaded from free online sources.

The corresponding timestamped tracklists in the form of

.cue files were downloaded from http://cuenation.
com and used without any correctons. Timestamps have

only been used to validate the correctness of track sep-

aration. All recordings were taken from different radio

shows and live sessions of different disk jokeys. Most

of recordings are dated 2014, but there were also record-

ings from 2007-2013. The dominant music style within

the selected recordings is trance (uplifting, progressive, big

room, psychedelic), probably due to overall popularity of

DJs playing this music. But house, drum’n’bass, break-

beat, techno, hardstyle, downtempo mixes are also included.

For the reasons described in section 3.3 we pay less at-

tention to the conventional precision and recall metrics. In-

stead, two values have been calculated for each mix: the

average and the maximum absolute distances in seconds

from true track beginnings to detected ones. This way we

can evaluate the usefulness of the method in real life ap-

plications: if the average absolute distance approaches the

average track length within a mix, the method becomes

nearly useless for this mix. The maximum absolute dis-

tance gives an estimation of the worst case. These values

are then averaged across the whole collection to give an

integral measure of method performance.

Frame-based pairwise precision, recall and F-measure

have also been calculated to provide more traditional esti-

mation of segmentation quality. They are defined as fol-

lows. Each recording is separated into 1 second frames.

All frame pairs where both frames belong to the same track

form the sets PE (for the system result) and PA (for the

ground truth). The pairwise precision rate can be cal-

culated by P = |PE∩PA|
|PE | , pairwise recall rate by R =

|PE∩PA|
|PA| , and pairwise F-measure by F = 2PR

P+R . These

values are then also averaged across the collection.

As a baseline we will use the same values calculated

for the naive separation, where all track borders are evenly

spaced within the mix and all tracks have the same dura-

tion. In case of explicit intro/outro information the naive

separation will allocate them 30 seconds in the beginning

or in the end of the mix.

In the first experiment 3 the system was not informed

about the presence of intro and outro sections in the mixes.

The results are shown in Table 1. The “Good” column

shows the number of mixes where the average absolute dis-

tance is less than 90 seconds (rather arbitrary limit). From

the numbers in this table it seems that the proposed method

performs not much better than the naive separation, which

2 The list of file names is available from https://github.com/
nglazyrin/MixSplitter/blob/master/mix_list.txt

3 Full log is available from https://github.com/
nglazyrin/MixSplitter/blob/master/logs/paper_
test.log
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Separation CAvg. abs. dist. CAvg. max dist. Good

Proposed 143.73 s 328.99 s 42

Baseline 152.83 s 318.35 s 30

Table 1. Results with no information about intro and outro.

Separation CAvg. abs. dist. CAvg. max dist. Good

Proposed 111.82 s 286.61 s 62

Baseline 126.87 s 284.41 s 49

Table 2. Results with information about intro and outro.

is confirmed by p-value of 0.096 returned by Wilcoxon

test. But looking closer at the performance on particular

mixes, we can see that in some cases the proposed method

has real advantage. E.g. for the mix M.PRAVDA - Best of
2013 (Part 2) (promodj.com).mp3 it gives average absolute

distance of 8.59 s (which is great) versus 60.22 s obtained

by the naive separation. On the other hand, for some mixes

(e.g. Trancecoda Podcast 008 - GMix Eddie Bitar.mp3) the

average absolute distance exceeds 6 minutes, which is ab-

solutely inacceptable.

In the second experiment 4 the system was informed

about the presence of intro and outro secions and could

react appropriately. From the Table 2 we can see that this

information can be really helpful. In this experiment the

p < 0.01 was returned by Wilcoxon test. The result has

moved nearer to the “Good” limit of 90 seconds average

difference, and the difference between the proposed and

the baseline methods became bigger. And if the limit of

“goodness” has decreased to 60 seconds, the difference

gets more explicit: 54 good separations by the proposed

method versus 24 good naive separations. For 30 seconds

limit on average absolute difference only 25 versus 6 good

separations are left.

This result shows that the proposed method can give

good result for a reasonable amount of mixes (62 out of

103 here). But for some mixes the results are still too bad.

We provide two case-studies that describe common errors

of the method.

Table 3 shows the comparison of true and detected bor-

ders for one of the mixes – 4H Community Guest Mix The
2nd Anniversary of Room51 Show by Breeze Quadrat
PureFM.mp3 – with average absolute difference of 177.11

seconds. First 3 tracks are aligned good, but then the sys-

tem detects wrong border in the middle of 4th track. In

spite of more or less properly detected other borders (the

detected value in row i+ 1 is near the true value in row i),
they all mark beginnings of track i+1 instead of i-th track.

The same information is represented graphically on Fig-

ure 1. Vertical yellow lines on the constant Q spectrogram

mark the true borders, vertical black lines correspond to

detected borders.

The errors of this kind can be overcome with a better

4 Full log is available from https://github.com/
nglazyrin/MixSplitter/blob/master/logs/paper_
test_explicit_intro_outro.log

No. Detected True Difference

1 0.00 s 0.00 s 0.00 s

2 308.38 s 312.08 s 3.70 s

3 628.57 s 613.00 s -15.56 s

4 872.56 s 1029.11 s 156.55 s

5 1025.19 s 1363.48 s 338.29 s

6 1360.54 s 1757.29 s 396.75 s

7 1757.15 s 1961.62 s 204.47 s

8 1970.53 s 2292.27 s 321.74 s

9 2321.36 s 2552.34 s 230.98 s

10 2748.30 s 2979.58 s 231.28 s

11 3247.66 s 3198.78 s -48.88 s

Table 3. Detailed result for the mix by 4H Community.

Separation Precision Recall F-measure

Proposed (1) 0.8145 0.7761 0.7941

Baseline (1) 0.7024 0.6397 0.6688

Proposed (2) 0.8077 0.7892 0.7977

Baseline (2) 0.7069 0.6637 0.6839

Table 4. Framewise precision, recall and F-measure.

sorting function for segment pairs or with a different seg-

ment grouping strategy. As can be seen from Table 4 (the

number in parentheses in the first column corresponds to

the experiment number), the proposed method really lo-

cates borders much better than the baseline. But since

some borders are misplaced, the final pairwise precision

and recall rates are not so close to 1 as they could be.

Another source of errors are mixes that contain tracks

of various durations, e.g. a pile of 1 minute long tracks

followed by 4 minute long tracks, or several interludes

throughout the recording. An example of such mix is 01-
friction - bbc radio1 (chase and status special)-sat-10-13-
2013-talion.mp3, which contains 35 tracks per 2 hours,

and 6 of them are grouped between 55 and 65 minutes.

The separation is shown on the Figure 2. The described

method tends to join short segments and to return more

or less evenly spaced track borders because of the sorting

condition and the penalty for long tracks. So it does not fit

to these highly-variable mixes, which are characteristic for

music genres such as drum’n’bass. But the separations ob-

tained without using the penalty were worse than the ones

obtained by the baseline method.

Table 5 groups the resutls by music genres, which were

manually annotated for each mix. The mixes labeled as

having various genre contain tracks from two or more very

different genres, such as house and drum’n’bass. The Cnt

column gives the total count of mixes of a given genre

within our test collection.

Because the test set is very unbalanced by music genre

(which is dictated by the available cue sheet files), it’s hard

to make conclusions for music genres other than house

and trance (which can be themselves separated into various

subgenres). The proposed system outperforms the baseline

method on these genres, but both methods are failing on
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Figure 1. The separation for the mix by 4H Community.

Figure 2. The separation for the mix by Chase & Status.

Style Cnt Separation Abs. dist. Max dist.

trance 59
Proposed 91.43 s 244.26 s

Baseline 114.85 s 255.38 s

house 29
Proposed 106.55 s 280.78 s

Baseline 117.88 s 270.36 s

techno 4
Proposed 122.11 s 284.51 s

Baseline 104.61 s 219.00 s

downtempo 3
Proposed 304.59 s 702.77 s

Baseline 308.58 s 609.34 s

hardstyle 2
Proposed 81.91 s 232.66 s

Baseline 93.22 s 221.95 s

drum’n’bass 2
Proposed 330.67 s 798.21 s

Baseline 343.03 s 865.92 s

various 2
Proposed 211.28 s 429.65 s

Baseline 203.85 s 407.48 s

breakbeat 2
Proposed 191.88 s 399.71 s

Baseline 124.22 s 346.01 s

Table 5. Results by music genre.

downtempo and drum’n’bass music.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method for informed content-

based separation of DJ mixes into single tracks that out-

performs a naive baseline evenly separating method. We

showed that this method provides good results for a rea-

sonable amount of mixes. The resulting separations are

good enough to use them for further applications. We also

showed how a simple information about the presence of

intro and outro sections in the mix can improve the separa-

tion quality.

This paper establishes a basis for further work on DJ

mixes separation. Another clustering methods need to be

developed to prevent false border detection errors and bor-

der miss errors. It makes sense also to include higher fre-

quencies into the initial spectrum, as they may carry some

meaningful details. On the other hand, the novelty detec-

tion method does not seem to have a major impact, because

the initial border candidate set if sufficiently large to select

values nearby the true borders.

More feature types need to be exploited. It also makes

sense to consider the tempo information to avoid false bor-

der detections, because the tempo does not change often

during transitions, but changes within a track when a break

starts or ends. A deeper modification or a new method is

needed to handle mixes that contain tracks with highly-

varying durations. A separate method to detect interludes

and talks can be helpful here.

Finally, a significant improvement may be expected from

the usage of a track identification system, as it may help to

align at least some of the tracks properly. But this poses a

separate technical and legal task.
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ABSTRACT

We introduce MedleyDB: a dataset of annotated, royalty-

free multitrack recordings. The dataset was primarily de-

veloped to support research on melody extraction, address-

ing important shortcomings of existing collections. For

each song we provide melody f0 annotations as well as

instrument activations for evaluating automatic instrument

recognition. The dataset is also useful for research on tasks

that require access to the individual tracks of a song such

as source separation and automatic mixing. In this paper

we provide a detailed description of MedleyDB, including

curation, annotation, and musical content. To gain insight

into the new challenges presented by the dataset, we run a

set of experiments using a state-of-the-art melody extrac-

tion algorithm and discuss the results. The dataset is shown

to be considerably more challenging than the current test

sets used in the MIREX evaluation campaign, thus open-

ing new research avenues in melody extraction research.

1. INTRODUCTION

Music Information Retrieval (MIR) relies heavily on the

availability of annotated datasets for training and evalu-

ating algorithms. Despite efforts to crowd-source anno-

tations [9], most annotated datasets available for MIR re-

search are still the result of a manual annotation effort by

a specific researcher or group. Consequently, the size of

the datasets available for a particular MIR task is often di-

rectly related to the amount of effort involved in producing

the annotations.

Some tasks, such as cover song identification or music

recommendation, can leverage weak annotations such as

basic song metadata, known relationships or listening pat-

terns oftentimes compiled by large music services such as

last.fm 1 . However, there is a subset of MIR tasks dealing

1 http://www.last.fm

c© Rachel Bittner1, Justin Salamon1,2, Mike Tierney1,

Matthias Mauch3, Chris Cannam3, Juan Bello1.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Rachel Bittner1, Justin Salamon1,2,

Mike Tierney1, Matthias Mauch3, Chris Cannam3, Juan Bello1. “Med-
leyDB: A Multitrack Dataset for Annotation-Intensive MIR Research”,
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with detailed information from the music signal for which

time-aligned annotations are not readily available, such as

the fundamental frequency (f0) of the melody (needed for

melody extraction [13]) or the activation times of the dif-

ferent instruments in the mix (needed for instrument recog-

nition [1]). Annotating this kind of highly specific infor-

mation from real world recordings is a time consuming

process that requires qualified individuals, and is usually

done in the context of large annotation efforts such as the

Billboard [3], SALAMI [15], and Beatles [8] datasets.

These sets include manual annotations of structure, chords,

or notes, typically consisting of categorical labels at time

intervals on the order of seconds. The annotation process

is even more time-consuming for f0 values or instrument

activations for example, which are numeric instead of cat-

egorical, and at a time-scale on the order of milliseconds.

Unsurprisingly, the datasets available for evaluating these

taks are often limited in size (on the order of a couple dozen

files) and comprised solely of short excerpts.

When multitrack audio is available, annotation tasks

that would be difficult with mixed audio can often be ex-

pedited. For example, annotating the f0 curve for a par-

ticular instrument from a full audio mix is difficult and te-

dious, whereas with multitrack stems the process can be

partly automated using monophonic pitch tracking tech-

niques. Since no algorithm provides 100% estimation ac-

curacy in real-world conditions, a common solution is to

have experts manually correct these machine annotations, a

process significantly simpler than annotating from scratch.

Unfortunately, collections of royalty-free multitrack record-

ings that can be shared for research purposes are relatively

scarce, and those that exist are homogeneous in genre. This

is a problem not only for evaluating annotation-intensive

tasks but also for tasks that by definition require access to

the individual tracks of a song such as source separation

and automatic mixing.

In this paper we introduce MedleyDB: a multipurpose

audio dataset of annotated, royalty-free multitrack record-

ings. The dataset includes melody f0 annotations and was

primarily developed to support research on melody extrac-

tion and to address important shortcomings of the exist-

ing collections for this task. Its applicability extends to

research on other annotation-intensive MIR tasks, such as

instrument recognition, for which we provide instrument

activations. The dataset can also be directly used for re-
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search on source separation and automatic mixing. Further

track-level annotations (e.g. multiple f0 or chords) can be

easily added in the future to enable evaluation of additional

MIR tasks.

The remainder of the paper is structured as follows: in

Section 2 we provide a brief overview of existing datasets

for melody extraction evaluation, including basic statistics

and content. In Section 3 we provide a detailed description

of the MedleyDB dataset, including compilation, annota-

tion, and content statistics. In Section 4 we outline the

types of annotations provided and the process by which

they were generated. In Section 5 we provide some in-

sight into the challenges presented by this new dataset by

examining the results obtained by a state-of-the-art melody

extraction algorithm. The conclusions of the paper are pro-

vided in Section 6.

2. PRIOR WORK

2.1 Datasets for melody extraction

Table 1 provides a summary of the datasets commonly used

for the benchmarking of melody extraction algorithms. It

can be observed that datasets that are stylistically varied

and contain “real” music (e.g. ADC2004 and MIREX05)

are very small in size, numbering no more than two dozen

files and a few hundred seconds of audio. On the other

hand, large datasets such as MIREX09, MIR1K and the

RWC pop dataset tend to be stylistically homogeneous

and/or include music that is less realistic. Furthermore,

all datasets, with the exception of RWC, are limited to rel-

atively short excerpts. Note that the main community eval-

uation for melody extraction, the MIREX AME task, 2 has

been limited to the top 4 datasets.

In [14], the authors examined how the aforementioned

constraints affect the evaluation of melody extraction al-

gorithms. Three aspects were studied – inaccuracies in the

annotations, the use of short excerpts instead of full-length

songs, and the limited number of excerpts used. They

found that the evaluation is highly sensitive to systematic

annotation errors, that performance on excerpts is not nec-

essarily a good predictor for performance on full songs,

and that the collections used for the MIREX evaluation [5]

are too small for the results to be statistically stable. Fur-

thermore, they noted that the only MIREX dataset that is

sufficiently large (MIREX 2009) is highly homogeneous

(Chinese pop music) and thus does not represent the va-

riety of commercial music that algorithms are expected to

generalize to. This finding extrapolates to the MIR1K and

RWC sets.

To facilitate meaningful future research on melody ex-

traction, we sought to compile a new dataset addressing the

following criteria:

1. Size: the dataset should be at least one order of mag-

nitude greater than previous heterogeneous datasets

such as ADC2004 and MIREX05.

2 http://www.music-ir.org/mirex/wiki/Audio_
Melody_Extraction
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Figure 1. Number of songs per genre with breakdown by

melody source type.

2. Duration: the dataset should primarily consist of

full length songs.

3. Quality: the audio should be of professional or near-

professional quality.

4. Content: the dataset should consist of songs from a

variety of genres.

5. Annotation: the annotations must be accurate and

well-documented.

6. Audio: each song and corresponding multitrack ses-

sion must be available and distributable for research

purposes.

2.2 Multitrack datasets

Since we opted to use multitracks to facilitate the annota-

tion process, it is relevant to survey what multitrack datasets

are currently available to the community. The TRIOS [6]

dataset provides 5 score-aligned multitrack recordings of

musical trios for source separation, the MASS 3 dataset

contains a small collection of raw and effects-processed

multitrack stems of musical excerpts for work in source

separation, and the Mixploration dataset [4] for automatic

mixing contains 24 versions of four songs. These sets are

too small and homogeneous to fit our criteria; the closest

candidate is the Structural Segmentation Multitrack Dataset

[7] which contains 103 rock and pop songs with structural

segmentation annotations. While the overall size of this

dataset is satisfactory, there is little variety in genre and the

dataset is not uniformly formatted, making batched pro-

cessing difficult or impossible.

Since no sufficient multitrack dataset currently exists,

we curated MedleyDB which fits our needs and can be used

for other MIR tasks as well, and is described in detail in the

following section.

3. DATASET

3.1 Overview

The dataset consists of 122 songs, 108 of which include

melody annotations. The remaining 14 songs do not have

a discernible melody and thus were not appropriate for

melody extraction. We include these 14 songs in the dataset

because of their use for other applications including instru-

ment ID, source separation and automatic mixing.

3 http://mtg.upf.edu/download/datasets/mass
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Name # Songs Song duration Total duration % Vocal Songs Genres Content

ADC2004 20 ∼20 s 369 s 60% Pop, jazz, opera Real recordings, synthesized voice and MIDI
MIREX05 25 ∼10–40 s 686 s 64% Rock, R&B, pop, jazz, solo clas-

sical piano
Real recordings, synthesized MIDI

INDIAN08 8 ∼60 s 501 s 100% North Indian classical music Real recordings
MIREX09 374 ∼20–40 s 10020 s 100% Chinese pop Recorded singing with karaoke accompaniment

MIR1K 1000 ∼10 s 7980 s 100% Chinese Pop Recorded singing with karaoke accompaniment
RWC 100 ∼240 s 24403 s 100% Japanese Pop, American Pop Real recordings

MedleyDB 108 ∼20–600 s 26831 s 57% Rock, pop, classical, jazz, rock,
pop, fusion, world, musical the-
ater, singer-songwriter

Real recordings

Table 1. Existing collections for melody extraction evaluation (ADC2004 through RWC) and the new MedleyDB dataset.
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Figure 2. Distribution of song durations.

Each song in the dataset is freely available online 4 un-

der a Creative Commons Attribution - NonCommercial -

ShareAlike 3.0 Unported license 5 , which allows the re-

lease of the audio and annotations for non-commercial pur-

poses.

We provide a stereo mix and both dry and processed

multitrack stems for each song. The content was obtained

from multiple sources: 30 songs were provided by vari-

ous independent artists, 32 were recorded at NYU’s Dolan

Recording Studio, 25 were recorded by Weathervane Mu-

sic 6 , and 35 were created by Music Delta 7 . The major-

ity of the songs were recorded in professional studios and

mixed by experienced engineers.

In Figure 1 we give the distribution of genres present

within the dataset, as well as the number of vocal and in-

strumental songs within each genre. The genres are based

on nine generic genre labels. Note that some genres such as

Singer/Songwriter, Rock and Pop are strongly dominated

by vocal songs, while others such as Jazz and World/Folk

are mostly instrumental. Note that the Rap and most of the

Fusion songs do not have melody annotations. Figure 2 de-

picts the distribution of song durations. A total of 105 out

of the 122 songs in the dataset are full length songs, and the

majority of these are between 3 and 5 minutes long. Most

recordings that are under 1 minute long were created by

Music Delta. Finally, the most represented instruments in

the dataset are shown in Figure 3. Unsurprisingly, drums,

bass, piano, vocals and guitars dominate the distribution.

4 http://marl.smusic.nyu.edu/medleydb
5 http://creativecommons.org/licenses/by-nc-sa/

3.0/deed.en_US
6 http://weathervanemusic.org/
7 http://www.musicdelta.com/

3.2 Multitrack Audio Structure

The structure of the audio content in MedleyDB is largely

determined by the recording process, and is exemplified in

Figure 4, which gives a toy example of how the data could

be organized for a recording of a jazz quartet.

At the lowest level of the process, a set of microphones

is used to record the audio sources, such that there may be

more than one microphone recording a single source – as

is the case for the piano and drum set in Figure 4. The re-

sulting files are raw unprocessed mono audio tracks. Note

that while they are “unprocessed”, they are edited such that

there is no content present in the raw audio that is not used

in the mix. The raw files are then grouped into stems, each

corresponding to a specific sound source: double bass, pi-

ano, trumpet and drum set in the example. These stems are

stereo audio components of the final mix and include all

effects processing, gain control, and panning. Finally, we

refer to the mix as the complete polyphonic audio created

by mixing the stems and optionally mastering the mix.

Therefore, a song consists of the mix, stems, and raw
audio. This hierarchy does not perfectly model every style

of recording and mixing, but it works well for the major-

ity of songs. Thus, the audio provided for this dataset is

organized with this hierarchy in mind.

3.3 Metadata

Both song and stem-level metadata is provided for each

song. The song-level metadata includes basic information

about the song such as the artist, title, composer, and web-

site. Additionally, we provide genre labels corresponding

to the labels in Figure 1. Some sessions correspond to
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ments in the dataset.
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Figure 4. The hierarchy of audio files for a jazz quartet.

recordings of ensembles, where the microphones may pick

up sound from sources other than the one intended, a phe-

nomenon known as bleeding. Because bleed can affect au-

tomated annotation methods and other types of processing,

songs that contain any stems with bleed are tagged.

Stem-level metadata includes instrument labels based

on a predefined taxonomy given to annotators, and a field

indicating whether the stem contains melody.

The metadata is provided as a YAML 8 file, which is

both human-readable as a text file, and a structured format

that can be easily loaded into various programming envi-

ronments.

4. ANNOTATIONS

4.1 Annotation Task Definitions

When creating annotations for MedleyDB, we were faced

with the question of what definition of melody to use. The

definition of melody used in MIREX 2014 defines melody

as the predominant pitch where, “pitch is expressed as the

fundamental frequency of the main melodic voice, and is

reported in a frame-based manner on an evenly-spaced time-

grid.” Many of the songs in the dataset do not reasonably

fit the definition of melody used by MIREX because of the

constraint that the melody is played by a single voice, but

we felt that the annotations should have consistency with

the existing melody annotations.

Our resolution was to provide melody annotations based

on three different definitions of melody that are in discus-

sion within the MIR community. 9 In the definitions we

consider, melody is defined as:

1. The f0 curve of the predominant melodic line drawn

from a single source.

2. The f0 curve of the predominant melodic line drawn

from multiple sources.

3. The f0 curves of all melodic lines drawn from mul-

tiple sources.

Definition 1 coincides with the definition for the melody

annotations used in MIREX. This definition requires the

choice of a lead instrument and gives the f0 curve for this

instrument. Definition 2 expands on definition 1 by al-

lowing multiple instruments to contribute to the melody.

While a single lead instrument need not be chosen, an in-

dication of which instrument is predominant at each point

in time is required to resolve the f0 curve to a single point

at each time frame. Definition 3 is the most complex, but

also the most general. The key difference in this definition

8 http://www.yaml.org/
9 http://ameannotationinitiative.wikispaces.com

is that at a given time frame, multiple f0 values may be

“correct”.

For instrument activations, we simply assume that sig-

nal energy in a given stem, above a predefined limit, is

indicative of the presence of the corresponding instrument

in the mix. Based on this notion, we provide two types of

annotations: a list of time segments where each instrument

is active; and a matrix containing the activation confidence

per instrument per unit of time.

4.2 Automatic Annotation Process

The melody annotation process was semi-automated by us-

ing monophonic pitch tracking on selected stems to return

a good initial estimate of the f0 curve, and by using a

voicing detection algorithm to compute instrument activa-

tions. The monophonic pitch tracking algorithm used was

pYIN [11] which is an improved, probabilistic version of

the well-known YIN algorithm.

As discussed in the previous section, for each song we

provide melody annotations based upon the 3 different def-

initions. The melody annotations based on Definition 1

were generated by choosing the single most dominant

melodic stem. The Definition 2 annotations were created

by sectioning the mix into regions and indicating the pre-

dominant melodic stem within each region. The melody

curve was generated by choosing the f0 curve from the in-

dicated instrument at each point in time. The Definition 3

annotations contain the f0 curves from each of the anno-

tated stems.

The annotations of instrument activations were gener-

ated using a standard envelope following technique on each

stem, consisting of half-wave rectification, compression,

smoothing and down-sampling. The resulting envelopes

are normalized to account for overall signal energy and to-

tal number of sources, resulting in the t × m matrix H ,

where t is the number of analysis frames, and m is the

number of instruments in the mix. For the ith instrument,

the confidence of its activations as a function of time can

be approximated via a logistic function:

C(i, t) = 1− 1

1 + e(Hit−θ)λ
. (1)

where λ controls the slope of the function, and θ the thresh-

old of activation. Frames where instrument i is considered

active are those for which C(i, t) ≥ 0.5. No manual cor-

rection was performed on these activations.

Note that monophonic pitch tracking, and the automatic

detection of voicing and instrument activations, fail when

the stems contain bleed from other instruments, which is

the case for 25 songs within the collection. Source separa-

tion, using a simple approach based on Wiener filters [2],

was used on stems with bleed to clean up the audio before

applying the algorithms. The parameters of the separation

were manually and independently optimized for each track

containing bleed.
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Figure 5. Screenshot of Tony. An estimated pitch curve is

selected and alternative candidates are shown in yellow.

4.3 Manual Annotation Process

The manual annotation process was facilitated by the use

of a recently developed tool called Tony [10], which en-

ables efficient manual corrections (see Figure 5). Tony

provides 3 types of semi-manual correction methods: (1)

deletion (2) octave shifting and (3) alternative candidates.

When annotating the f0 curves, unvoiced vocal sounds,

percussive attacks, and reverb tail were removed. Sections

of a stem which were active but did not contain melody

were also removed. For example, a piano stem in a jazz

combo may play the melody during a solo section and play

background chords throughout the rest of the piece. In

this case, only the solo section would be annotated, and

all other frames would be marked as unvoiced.

The annotations were created by five annotators, all of

which were musicians and had at least a bachelor’s degree

in music. Each annotation was evaluated by one annota-

tor and validated by another. The annotator/validator pairs

were randomized to make the final annotations as unbiased

as possible.

4.4 Annotation Formats

We provide melody annotations based on the three defini-

tions for 108 out of the 122 songs. Note that while def-

inition 1 is not appropriate for all of the annotated songs

(i.e. there are songs where the melody is played by several

sources and there is no single clear predominant source

throughout the piece), we provide type 1 melody anno-

tations for all 108 melodic tracks so that an algorithm’s

performance on type 1 versus type 2 melody annotations

can be compared over the full dataset. Of the 108 songs

with melody annotations, 62 contain predominantly vo-

cal melodies and the remaining 47 contain instrumental

melodies.

Every melody annotation begins at time 0 and has a hop

size of 5.8 ms (256 samples at fs = 44.1 kHz). Each time

stamp in the annotation corresponds to the center of the

analysis frame (i.e. the first frame is centered on time 0).

In accordance with previous annotations, frequency values

are given in Hz, where unvoiced frames (i.e. frames where

there is no melody) are indicated by a value of 0 Hz.

We provide instrument activation annotations for the en-

tire dataset. Confidence values are given as matrices where

the first column corresponds to time in seconds, starting at

0 with a hop size of 46.4 ms (2048 samples at fs = 44.1

Dataset ν VxR VxF RPA RCA OA

MDB – All .2 .78 (.13) .38 (.14) .55 (.26) .68 (.19) .54 (.17)
MDB – All -1 .57 (.20) .20 (.12) .52 (.26) .68 (.19) .57 (.18)
MDB – VOC -1 .69 (.15) .23 (.13) .63 (.23) .76 (.15) .66 (.14)
MDB – INS -1 .41 (.15) .16 (.09) .38 (.23) .57 (.18) .47 (.17)

MIREX11 .2 .86 .24 .80 .82 .75

Table 2. Performance of Melodia [12] on different sub-

sets of MedleyDB (MDB) for type 1 melody annotations,

and comparison to performance on the MIREX datasets.

For each measure we provide the mean with the standard

deviation in parentheses.

kHz), and each subsequent column corresponds to an in-

strument identifier. Confidence values are continuous in

the range [0, 1]. We also provide a list of activations, each

a triplet of start time, end time and instrument label.

5. NEW CHALLENGES

To gain insight into the challenges presented by this new

dataset and its potential for supporting progress in melody

extraction research, we evaluate the performance of the

Melodia melody extraction algorithm [12] on the subset of

MedleyDB containing melody annotations. In the follow-

ing experiments we use the melody annotations based on

Definition 1, which can be evaluated using the standard five

measures used in melody extraction evaluation: voicing re-

call (VxR), voicing false alarm (VxF), raw pitch accuracy

(RPA), raw chroma accuracy (RCA), and overall accuracy

(OA). For further details about the measures see [13].

In the first row of Table 2 we give the results obtained

by Melodia using the same parameters (voicing threshold

ν = .2) employed in MIREX 2011 [12]. The first thing we

note is that for all measures, the performance is consider-

ably lower on MedleyDB than on MIREX11. The overall

accuracy is 21 percentage points lower, a first indication

that the new dataset is more challenging. We also note

that the VxF rate is considerably higher compared to the

MIREX results. In the second row of Table 2 we provide

the results obtained when setting ν to maximize the over-

all accuracy (ν = −1). The increase in overall accuracy

is relatively small (3 points), indicating that the dataset re-

mains challenging despite using the best possible voicing

parameter. In the next two rows of Table 2, we provide a

breakdown of the results by vocal vs. instrumental songs.

We see that the algorithm does significantly better on vocal

melodies compared to instrumental ones, consistent with

the observations made in [12]. For instrumental melodies

we observe a 19-point drop between raw chroma and pitch

accuracy, indicating an increased number of octave errors.

The bias in performance towards vocal melodies is likely

the result of all previous datasets being primarily vocal.

In Table 3 we provide a breakdown of the results by

genre. In accordance with the the previous table, we see

that genres with primarily instrumental melodies are con-

siderably more challenging. Finally, we repeat the experi-

ment carried out in [14], where the authors compared per-

formance on recordings to shorter sub-clips taken from the

same recordings to see whether the results on a dataset of
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Genre VxR VxF RPA RCA OA

MUS .73 (.16) .14 (.04) .74 (.18) .87 (.08) .73 (.14)
POP .74 (.12) .22 (.09) .65 (.20) .73 (.15) .69 (.12)
S/S .66 (.13) .23 (.12) .64 (.19) .74 (.16) .66 (.11)
ROC .71 (.18) .29 (.15) .53 (.29) .73 (.18) .59 (.16)
JAZ .44 (.14) .12 (.06) .55 (.17) .68 (.15) .57 (.14)
CLA .46 (.20) .15 (.07) .35 (.30) .56 (.22) .51 (.23)
WOR .40 (.12) .18 (.09) .44 (.19) .63 (.14) .44 (.13)
FUS .41 (.04) .17 (.02) .32 (.07) .51 (.01) .43 (.04)

Table 3. Performance of Melodia [12] (ν = −1) on dif-

ferent genres in MedleyDB for type 1 melody annotations.

For each measure we provide the mean with the standard

deviation in parentheses.
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Figure 6. Relative performance differences between full

songs and excerpts. The large black crosses mark the

means of the distributions.

excerpts would generalize to a dataset of full songs. The

novelty in our experiment is that we use full length songs,

as opposed to clips sliced into even shorter sub-clips. The

results are presented in Figure 6, and are consistent with

those reported in [14]. We see that as the relative duration

of the excerpts (1/4, 1/3 or 1/2 of the full song) gets closer

to 1, the relative difference in performance goes down (sig-

nificant by a Mann-Whitney U test, α = 0.01). This high-

lights another benefit of MedleyDB: since the dataset pri-

marily contains full length songs, one can expect better

generalization to real-world music collections. While fur-

ther error analysis is required to understand the specific

challenges presented by MedleyDB, we identify (by in-

spection) some of the musical characteristics across the

dataset that make MedleyDB more challenging – rapidly

changing notes, a large melodic frequency range (43-3662

Hz), concurrent melodic lines, and complex polyphony.

6. CONCLUSION

Due to the scarcity of multitrack audio data for MIR re-

search, we presented MedleyDB – a dataset of over 100

multitrack recordings of songs with melody f0 annotations

and instrument activations. We provided a description of

the dataset, including how it was curated, annotated, and

its musical content. Finally, we ran a set of experiments

to identify some of the new challenges presented by the

dataset. We noted how the increased proportion of instru-

mental tracks makes the dataset significantly more chal-

lenging compared to the MIREX datasets, and confirmed

that performance on excerpts will not necessarily general-

ize well to full-length songs, highlighting the greater gen-

eralizability of MedleyDB compared with most existing

datasets. Since 2011 there has been no significant im-

provement in performance on the MIREX AME task. If

we previously attributed this to some glass ceiling, we now

see that there is still much room for improvement. Med-
leyDB represents a shift towards more realistic datasets for

MIR research, and we believe it will help identify future

research avenues and enable further progress in melody

extraction research and other annotation-intensive MIR en-

deavors.
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ABSTRACT 

Current melody extraction approaches perform poorly on 
the genre of opera [1, 2]. The singer’s formant is defined 
as a prominent spectral-envelope peak around 3 kHz 
found in the singing of professional Western opera sing-
ers [3]. In this paper we introduce a novel melody extrac-
tion algorithm based on this feature for opera signals. At 
the front end, it automatically detects the singer’s formant 
according to the Long-Term Average Spectrum (LTAS). 
This detection function is also applied to the short-term 
spectrum in each frame to determine the melody. The Fan 
Chirp Transform (FChT) [4] is used to compute pitch sa-
lience as its high time-frequency resolution overcomes 
the difficulties introduced by vibrato. Subharmonic atten-
uation is adopted to handle octave errors which are com-
mon in opera vocals. We improve the FChT algorithm so 
that it is capable of correcting outliers in pitch detection. 
The performance of our method is compared to 5 state-of-
the-art melody extraction algorithms on a newly created 
dataset and parts of the ADC2004 dataset. Our algorithm 
achieves an accuracy of 87.5% in singer’s formant detec-
tion. In the evaluation of melody extraction, it has the 
best performance in voicing detection (91.6%), voicing 
false alarm (5.3%) and overall accuracy (82.3%). 

1. INTRODUCTION 

Singing voice can be considered to carry the main melody 
in Western opera. Melody extraction from a polyphonic 
signal including singing voice requires both of the fol-
lowing: estimation of the correct pitch of singing voice in 
each time frame and voicing detection to determine when 
the singing voice is present or not. 

The singer’s (or singing) formant was first introduced 
by Johan Sundberg [3] and described as a clustering of 
the third, fourth, and fifth formants to form a prominent 
spectral-envelope peak around 3 kHz. It is purportedly 
generated by widening the pharynx and lowering the lar-
ynx. The existence of a singer’s formant has been con-
firmed in the singing voices of classically trained male 

Western opera singers and some female singers, but it has 
not yet been found in soprano singers [5] or Chinese 
opera singers [6]. It has been proposed that singers devel-
op the singer’s formant in order to be heard above the or-
chestra. In Western opera, orchestral instruments typical-
ly occupy the same frequency range as the singers. There-
fore singers train their vocal equipment in order to raise 
the amplitude of frequencies at this range. 

The LTAS is the average of all short-term spectra in a 
signal, has been shown to be an excellent tool to observe 
the singer’s formant [7] as can be seen in Figure 1. Char-
acteristics of the singer’s formant in the spectral domain 
include a peak greater than 20 dB below the overall 
sound pressure level, a peak-location at 2.5-3.2 kHz, and 
a bandwidth of around 500-800 Hz [5, 7]. However, to 
date, there has been no method developed to automatical-
ly detect the presence of a singer’s formant or to quantify 
its characteristics. 

Figure 1. Normalized LTAS for 5 audio excerpts from 
the ADC2004 test collection [1].

1.1 Related Work 

In 2004, the Music Technology Group of the Universitat 
Pompeu Fabra organized a melody extraction contest pre-
sented at the International Society for Music Information 
Retrieval Conference. The Music Information Retrieval 
Evaluation eXchange (MIREX) was set up in 2005 and 
audio melody extraction has been a highly competitive 
field ever since. Currently, over 60 algorithms have been 

© Zheng Tang, Dawn A. A. Black.
Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Zheng Tang, Dawn A. A. Black.
“Melody Extraction From Polyphonic Audio Of Western Opera: A 
Method Based On Detection Of The Singer’s Formant”, 15th 
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submitted and evaluated. So far, none of the approaches 
consider the presence of the singer’s formant.

The majority of algorithms presented at MIREX are 
salience based [2]. These assume that the fundamental 
frequency of the melody is equivalent to the most salient 
pitch value in each frame. The Short-Time Fourier Trans-
form (STFT) is often chosen to compute pitch salience [7, 
8]. In 2008, Pablo Cancela proposed the Fan Chirp Trans-
form (FChT) method, combined with Constant Q Trans-
form (CQT) in music processing. The FChT is a time-
warped version of the Fourier Transform that provides 
better time-frequency resolution [4, 9]. Although the 
STFT provides adequate resolution in the majority of 
cases, it fails to generate a satisfying outcome when deal-
ing with Western opera signals. This is because opera 
typically exhibits complex spectral characteristics due to 
vocal ornamentations such as vibrato [1]. Vibrato is a 
regular fluctuation of singing pitch produced by singers. 
This increases the difficulty in tracking the melody. With 
better resolution, the fast change of pitch salience can be 
better observed and tracked by using FChT. 

It has been proposed that the singer’s formant may 
cause octave errors [2]. The presence of a spectral peak 
(the singer’s formant) at a higher frequency may cause 
the fundamental frequency to be confused with the fre-
quency at the centre of the singer’s formant. To address 
this, Cancela developed a method called ‘subharmonic 
attenuation’ that can minimize the negative effects of 
ghost pitch values at the multiple and submultiple peaks 
of a certain fundamental frequency [2, 9]. 

Voicing detection typically receives much less atten-
tion than pitch detection, to the extent that some previous 
melody extraction algorithms did not contain this proce-
dure [10]. The most common approach is to set an energy 
threshold, which might be fixed or dynamic [9]. However, 
this technique is too simplistic since the loudness of mu-
sical accompaniment in Western opera may fluctuate 
considerably. It is therefore impossible to define an ap-
propriate threshold. An alternative technique is to use a 
trained classifier based on a Hidden Markov Model 
(HMM) [11] but it is time-consuming to create a large 
dataset for training and there are always exceptions be-
yond the scope of the training set. In 2009, Regnier and 
Peeters proposed a voicing detection algorithm based on 
extraction of vocal vibrato [12], but has not been applied 
to melody extraction. In general, the high rate of false 
positives when detecting voiced frames limits the overall 
accuracy of melody extraction algorithms and a reduction 
of this is beneficial [2, 13].  

This paper is organized as follows. In Section 2, we 
describe the design and implementation of our proposed 
algorithm for melody extraction. Starting with a general 
workflow of the system, the function and novelty of each 
component is explained in detail. Section 3 explains the 
evaluation process and presents a comparison of existing 
algorithms. The creation of the new dataset is also pre-

sented in this section. Finally, we draw conclusions from 
the results and give suggestions for future work. 

2. DESCRIPTION OF THE ALGORITHM 

2.1 General Workflow 

Figure 2 shows an overview of our system. In order to ex-
tract the pitch of singing voice from polyphonic audio, 
we must first determine whether the audio contains sing-
ing voice. The presence of a singer’s formant would indi-
cate the presence of a classically trained singer. The 
LTAS is used to determine whether a singer’s formant 
exists in the audio, and hence determines whether our 
method can be applied. 

Figure 2. System overview.

Once the presence of a singer is confirmed the spec-
trum is analysed on a frame-by-frame basis. Two deci-
sions are made for each frame: firstly, does the frame 
contain singing and hence a salient pitch? Secondly, what 
is the salient pitch of that frame? 

We examine the spectral content of each frame to es-
tablish the presence of a singer’s formant in that frame. If 
present, that frame is designated ‘voiced’ and assumed to 
contain melody carried by the singer’s pitch.

Each frame is also transformed to the frequency do-
main using the FChT and further processed by subhar-
monic attenuation to obtain the pitch. 
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2.2 Singer’s Formant Detection and Voicing Detec-
tion 

Based on the characteristics of the singer’s formant (see 
Section 1) we introduce a novel algorithm to automatical-
ly detect the presence of a singer’s formant (and hence 
the presence of a classically trained singer). Using Mon-
son’s method to compute the LTAS of the input audio 
signal [14] the presence of a singer’s formant would be 
confirmed if the LTAS exhibited the following properties: 

1. There exists a spectral peak which has an amplitude 
greater than 20 dB less than the overall sound pres-
sure level. 

2. The peak is located between 2.5 and 3.2 kHz. 
3. The peak has a bandwidth of around 500-800 Hz. 
However, these properties were observed through 

analysis of singing voice in the absence of musical ac-
companiment [7]. When analysing singing with accom-
paniment, these criteria had to be modified in the follow-
ing ways: the amplitude threshold of the spectral peak 
was found to be lower than the theoretical value and thus 
the first criteria becomes: 

1. The spectral peak has an amplitude greater than 30 
dB less than the overall sound pressure level. 

The LTAS exhibited irregular fluctuations that made 
accurate identification of the singer’s formant peak prob-
lematic. We therefore smoothed the LTAS (20 point aver-
age) and used polynomial fitting of degree 30. This 
smoothing and polynomial fitting will shift the location 
of the spectral peak and hence the range of the peak must 
be expanded. The second criteria is therefore modified to: 

2. The peak is located between 2.2 and 3.4 kHz. 
Similarly, we observe that the polynomial bandwidth 

may be slightly different from the LTAS curve. Therefore 
the bandwidth of the singer’s formant is set to be larger 
than the original value: 

3. The peak has a bandwidth larger than 600 Hz. 
We must then add another criteria to ensure the signif-

icance of the peak. In order to measure the significance, 
we employed the first-order and second-order derivatives 
of the LTAS to measure the LTAS curvature and, from 
empirical evidence, designate significance to be a peak 
with a curvature greater than 0.01: 

4. The curvature exceeds 0.01 at the location of the 
spectral peak. 

In order to illustrate the criteria, we present the follow-
ing figures. Figure 3 shows the fitting polynomials of 
smoothed LTAS for 5 samples from the MIREX 
ADC2004 test collection [1]. The singer’s formant can be 
clearly observed for the male opera samples. Presented in 
Figure 4 is the second-order derivative of LTAS. This is 
negative when the curve is convex and hence can be used 
to determine the formant bandwidth. Our constraint that 
the bandwidth be at least 600 Hz is illustrated. In Figure 5,
we show that the constraint on curvature can ensure the 
degree of convexity of the curve. It is clear from all plots 

that the opera signals sung by male singers contain the 
singer’s formant but others do not. 

Figure 3. The fitting polynomials of smoothed LTAS 
for 5 audio excerpts from ADC2004 [1].

Figure 4. The second-order derivatives of LTAS for 5 
audio excerpts from ADC2004 [1].

Figure 5. The curvatures of LTAS for 5 audio excerpts 
from ADC2004 [1].
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If the LTAS satisfies all four criteria the audio is pre-
sumed to contain a trained singer. Use of the same criteria 
to analyse the spectrum of a single audio frame can indi-
cate whether the frame is voiced (contains singing) or not. 
For a single frame, only the second and third criteria are 
applied, as the other two criteria are more influenced by 
observed amplitude variations in individual short-term 
spectra. The output of this stage is a two-value sequence 
whose length is the number of frames, with ‘1’ indicating 
a voiced frame and ‘-1’ unvoiced. Subsequently, when 
considering points of discontinuity causing false detec-
tions, single values within a sequence are removed. 

2.3 Pitch Detection 
If a frame is classified as voiced it can be expected to 
contain a clearly defined pitch. Vibrato in singing can 
cause pitch ambiguity. We therefore adopt Cancela’s 
method to perform FChT since it exhibits optimal time-
frequency resolution. This chirp-based transform is based 
on an FFT performed in a warped time domain. It is 
combined with CQT in order to guarantee high resolution 
even when the fan chirp rate is not ideal. More details can 
be found in [4] and [9].  

In Western opera the singer’s formant will cause peaks 
at frequencies higher than the fundamental [2]. The algo-
rithm from Cancela provides subharmonic attenuation - 
an effective solution to this problem. It will suppress mul-
tiple and submultiple pitch peaks of the fundamental fre-
quency. Then, we can perform salience computation to 
detect the pitch in each frame.  

In the outlier correction stage, to improve Cancela’s 
method, we compute two additional peaks per frame as 
candidate substitutes for the wrong pitch. Firstly, the 
most salient pitch peaks are compared with those from 
adjacent frames. If a difference of more than 2 semitones 
occurs on both sides, the estimated pitch in this frame is 
considered as a wrong detection. In this case we substi-
tute the pitch for this frame with the pitch among the 
three candidates which is closest to the average of the two 
adjacent estimations. Due to subharmonic attenuation, the 
influence of the subharmonics of the top peak is reduced 
when calculating the other pitch candidates. 

Our method is novel to Cancela’s in the following 
ways: (1) The algorithm designed by Cancela extracts 
multiple salient peaks simultaneously and these are 
viewed as separate melodies. We introduce the correction 
block so that the less salient peaks are taken as substitutes 
of wrong pitch detection in a single estimation of melody. 
(2) We improve the voicing detection by considering the 
singer’s formant. (3) Cancela’s method is not specifically 
designed for opera items and its potential for dealing with 
vibrato and other spectrum characteristics has not been 
explored. 

Finally, the estimated pitch sequence is multiplied by 
the two-value voicing detection sequence. The output of 
our algorithm follows the standard format of MIREX and 

records the time-stamp and estimated frequency of each 
frame. 

3. EVALUATION 

3.1 The Dataset 
The dataset we used for evaluation is a combination of 
the ADC2004 test collection and our own dataset1. De-
tails of the dataset can be found in Table 1. 

Among the existing test collections in MIREX, only 
ADC2004 contains 2 excerpts in the genre of Western 
opera. In order to evaluate the performance of melody ex-
traction algorithms upon sufficient amount of opera sam-
ples for meaningful comparison, we created a new dataset. 
Nine students from the Central Academy of Drama in 
Beijing were recorded. All had received more than 5 
years of classical voice training except for an amateur 
Western opera male singer. Their singing voices were 
recorded in a practice room, about 10×5×5 m with mod-
erate reverberation. The equipment included a Sony 
PCM-D50 recorder and an AKG C5 microphone. The ac-
companiments played by orchestra were recorded sepa-
rately. All the signals were digitized at a sample rate of 
44.1 kHz with bit depth 16. We normalized the maximum 
amplitude of the singing voices to be -1.25 dB. The sig-
nal-to-accompaniment ratio is set to 0 dB. The ground 
truth for melody extraction was generated by a mono-
phonic pitch tracker in SMSTools with manual adjust-
ment [2] using the vocal track only. The frame size was 
2048 samples with a step size of 256 samples. 

We conducted two evaluations based on this combined 
dataset. The test set for melody extraction consists of 18 
excerpts of 15s-25s duration sung by classically trained 
Western opera tenors. For the evaluation of singer’s for-
mant detection, we will compare them with 14 excerpts 
sung by trained Western opera sopranos, trained Peking 
opera singers, pop singers, and a single unprofessional 
Western opera male singer. 

Test set Singing type No. of 
songs

Expectation/
detection of 
singer’s formant

ADC2004 Tenor, Western 2 Yes/ Yes
Soprano, Western 2 No/ No
Popular music 4 No/ No

The 
dataset 
recorded at the 
Central 
Academy of 
Drama

Tenor, Western 16 Yes/ Yes
Soprano, Western 2 No/ Yes

Amateur, Western 2 No/ Yes
Laosheng, Peking 2 No/ No
Qingyi, Peking 2 No/ No

Table 1. Test dataset for the evaluations of melody extraction 
and singer’s formant detection.

                                                          
1This database is available for download under a creative commons li-
cense at http://c4dm.eecs.qmul.ac.uk/rdr/ all usage should cite this paper.
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3.2 Melody Extraction Comparison 
Of the many melody extraction algorithms submitted to 
MIREX, few are freely available. We present five algo-
rithms for comparison. We were limited in our choice by 
availability, but the methods are representative of the ma-
jority of algorithms submitted to MIREX in that they 
cover common approaches and best performance. Each 
method is briefly introduced next. 

Cancela’s algorithm was submitted in 2008 [9]. He 
used FChT combined with CQT to estimate the pitch in 
each time frame. Voicing detection is conducted through 
the calculation of an adaptive threshold, but this proce-
dure is not included in the open-source code provided 
online. For the purposes of comparison, we added a 
common voicing detection function utilizing an adaptive 
energy threshold as described in [9].

Salamon’s algorithm was introduced in 2011 [8]. It has 
been developed into a melody extraction vamp plug-in: 
MELODIA. This algorithm achieved the best score in 
MIREX 2011. It applies contour tracking to the salience 
function calculated by STFT to remove all the contours 
except for the melody. The voicing detection step is car-
ried out by removing the contours that are not salient. 

The algorithm developed by Sutton in 2006 [11] inno-
vatively combines two pitch detectors based on the fea-
tures of singing voice including pitch instability and high-
frequency dominance. A modified HMM processes the 
estimated melodies and determines the voicing. 

The final two algorithms were both proposed by Vin-
cent in 2005 [10]. One makes use of a Bayesian harmonic 
model to estimate the melody, and the other is achieved 
via loudness-weighted YIN method. Vincent assumed 
that the melody was continuous throughout the audio, and 
voicing detection was not included in his algorithm. 

3.3 Results 
The evaluation results of singer’s formant detection can 
be found in Table 1. Among the 32 audio files in the da-
taset, the assumption is that only the 18 excerpts sung by
Western opera tenors possess the singer’s formant, while 
the others do not. The results show that 28 of the files 
(87.5%) meet our expectation. The singer’s formant is 
also detected in the excerpts of the Western opera ama-
teur and sopranos in our dataset. The amateur singer is 
from the Acting Department at the Central Academy of 
Drama (Beijing) and declares that he has not received any
formal training in opera. However he used to take courses 
in vocal music due to a requirement of the school. Thus, 
there is a possibility that the presence of singer’s formant 
only requires a short period of training. Although sources 
state that there is no singer’s formant present in soprano 
singing [5, 7], the mean pitch of the two excerpts in our 
dataset is at the low end of the range for sopranos (550.43 
Hz). The presence of a singer’s formant is pitch related. 
The higher the pitch, the less likely a singer’s formant is 
present. A precise study of this relationship is a topic for 
future work. 

Table 2 shows the melody extraction results of the 6 
algorithms. Voicing detection measures the probability of 
correct detection of voiced frames, while voicing false 
alarm is the probability of incorrect detection of unvoiced 
frames. Raw pitch accuracy and raw chroma accuracy 
both measure the accuracy of pitch detection, with the 
latter ignoring octave errors. The overall accuracy is the 
proportion of frames labeled with correct pitch and voic-
ing. Since Vincent’s algorithms did not perform voicing 
detection, their voicing metrics and overall accuracy are 
inapplicable. 

First author/ 
completion 
year

Voicing 
detec-
tion

Voicing 
false 
alarm

Raw 
pitch 
accuracy

Raw 
chroma 
accuracy

Overall
accuracy

Vincent 
(Bayes)/ 
2005

N/A N/A 64.8% 68.6% N/A

Vincent 
(YIN)/ 
2005

N/A N/A 69.5% 72.2% N/A

Sutton/ 
2006

89.3% 51.9% 87.0% 87.6% 76.9%

Cancela/ 
20081

72.6% 39.3% 83.9% 84.8% 62.4%

Salamon/ 
2011

62.3% 21.8% 25.4% 30.1% 31.3%

Our method 91.6% 5.3% 84.3% 85.1% 82.3%

Table 2. Results of the audio melody extraction evalua-
tion. 

Our algorithm ranks highest in overall accuracy. We 
also achieve the highest voicing detection rate as 91.6% 
and the lowest voicing false alarm rate as 5.3%, which 
proves that voicing detection based on the singer’s for-
mant is extremely effective for male Western opera. The 
improvement in raw pitch accuracy by outlier correction 
when compared to Cancela’s method is not large. This 
allows us to hypothesise that the melody in Western 
opera may be so prominent that the influence of any ac-
companiment can be disregarded. 

Sutton’s method also has excellent performance on our 
dataset. That success might be attributed to his similar 
focus on the characteristics of singing voice. He also 
makes use of the vibrato feature to estimate the pitch of 
melody. Due to the application of a high-frequency corre-
logram, Sutton’s algorithm may indirectly benefit from 
the presence of a singer’s formant. However, the method 
we propose for voicing detection is much more conven-
ient than the use of an HMM. Moreover, Sutton’s algo-
rithm exhibits a much higher voicing false alarm rate. 

The poor performance of Salamon’s algorithm on our 
dataset can be explained by the fact that it fails to esti-
mate the pitch in detected unvoiced frames accurately. 

We also evaluated the 4 audio files that contradicted 
our expectation in singer’s formant detection (two West-

                                                          
1The voicing detection part of this algorithm is implemented by us and 
cannot represent the original design of the author. 
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ern soprano singers and one amateur male Western opera 
singer). The performance of our algorithm declines sig-
nificantly with a voicing detection rate of 53.1% and an 
overall accuracy of 53.7%. This may be due to the fact 
that the singer’s formant, although present, is not as pro-
nounced or stable as the Western opera tenor’s. 

4. CONCLUSION AND FURTHER WORK 

In this paper, we have presented a novel melody extrac-
tion algorithm based on the detection of singer’s formant. 
This detection relies on 4 criteria modified from previ-
ously proposed characteristics of the singer’s formant. 
The pitch detection step of our algorithm is achieved us-
ing FChT and subharmonic attenuation to overcome the 
known difficulties when detecting the melody in opera. 
We also improved the algorithm so it is capable of re-
moving outliers in pitch detection. 

From the evaluation results, it can be seen that our al-
gorithm can detect the singer’s formant accurately. Melo-
dy extraction evaluation on our dataset confirms that our 
algorithm provides a clear improvement in voicing detec-
tion. Furthermore, its overall accuracy is comparable to 
state-of-the-art methods when dealing with Western 
opera signals. 

In the future, we plan to study the performance of this 
algorithm on signals in other genres and expand its scope 
of application. Additionally, the possible effects of per-
forming environments and accompaniment music to the 
usage of singer’s formant will also be explored. 
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ABSTRACT

Automatic music tagging is an important but challenging

problem within MIR. In this paper, we treat music tagging

as a matrix completion problem. We apply the Poisson

matrix factorization model jointly on the vector-quantized

audio features and a “bag-of-tags” representation. This ap-

proach exploits the shared latent structure between seman-

tic tags and acoustic codewords. Leveraging the recently-

developed technique of stochastic variational inference, the

model can tractably analyze massive music collections. We

present experimental results on the CAL500 dataset and

the Million Song Dataset for both annotation and retrieval

tasks, illustrating the steady improvement in performance

as more data is used.

1. INTRODUCTION

Automatic music tagging is the task of analyzing the audio

content (waveform) of a music recording and assigning to

it human-relevant semantic tags [16] – which may relate to

style, genre, instrumentation, or more subtle aspects of the

music, such as those contributed by users on social media

sites. Such “autotagging” [5] relies on labelled training

examples for each tag, and performance typically improves

with the number of training examples consumed, although

training schemes also take longer to complete. In the era

of “Big Data”, it is necessary to develop models which can

rapidly handle massive amount of data; a starting point for

music data is the Million Song Dataset [2], which includes

user tags from Last.fm [1].

In this paper, we treat the automatic music tagging as

a matrix completion problem, and use the techniques of

stochastic variational inference to be able to learn from

large amounts of data presented in an online fashion [9].

The “matrix completion” problem treats each track as a

row in a matrix, where the elements describe both the acous-

tic properties (represented, for instance, as a histogram of

occurrences of vector-quantized acoustic features) and the

relevance of a large vocabulary of tags: We can regard the

c© Dawen Liang, John Paisley, Daniel P. W. Ellis.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Dawen Liang, John Paisley, Daniel

P. W. Ellis. “Codebook-based scalable music tagging with

Poisson matrix factorization”, 15th International Society for Music Infor-

mation Retrieval Conference, 2014.

tag information as incomplete or missing for some of the

rows, and seek to “complete” these rows based on infor-

mation inferred from the complete, present rows.

1.1 Related work

There have been a large number of papers on automatic

tagging of music audio in recent years. In addition to the

papers mentioned above, work particularly relevant to this

paper includes the Codeword Bernoulli Average (CBA) ap-

proach of Hoffman et al. [7], which uses a similar VQ his-

togram representation of the audio to build a simple but

effective probabilistic model for each tag in a discrimina-

tive fashion. Xie et al. [17] directly fits a regularized logis-

tic regression model to the normalized acoustic codeword

histograms to predict each tag and achieves state-of-the-art

results, and Ellis et al. [6] further improves tagging accu-

racy by employing multiple generative models that capture

different characteristics of a music piece, which are com-

bined in an optimized “bag-of-systems”.

Much of the previous work has been performed on the

CAL500 dataset [16] of 502 Western popular music tracks

that were carefully labelled by at least three human an-

notators with their relevance to 149 distinct labels span-

ning instrumentation, genre, emotions, vocal characteris-

tics, and use cases. This small dataset tends to reward ap-

proaches that can maximize the information extracted from

the sparse data regardless of the computational cost. A rel-

atively larger dataset in this domain is CAL10k [15] with

over 10,000 tracks described by over 500 tags, mined from

Pandora’s website 1 . However, neither of these datasets

can be considered industrial scale, which implies handling

millions of tracks and tens of thousands of tags.

Matrix factorization techniques, in particular, nonnega-

tive matrix factorization (NMF), have been widely used to

analyze music signals [8, 11] in the context of source sep-

aration. Paisley et al. [12] derived scalable Bayesian NMF

for topic modeling, which we develop here. To our knowl-

edge, this is the first application of matrix factorization to

VQ acoustic features for automatic music tagging.

2. DATA REPRESENTATION

For our automatic tagging system, the data comes from

two sources: vector-quantized audio features and a “bag-

1 http://www.pandora.com/
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of-tags” representation.

• Vector-quantized audio features Instead of directly

working with audio features, we vector quantize all

the features following the standard procedure: We

run the K-means algorithm on a subset of randomly

selected training data to learn J cluster centroids

(codewords). Then for each song, we assign each

frame to the cluster with the smallest Euclidean dis-

tance to the centroid. We form the VQ feature yVQ ∈
N

J by counting the number of assignments to each

cluster across the entire song.

• Bag-of-tags Similar to the bag-of-words represen-

tation, which is commonly used to represent docu-

ments, we represent the tagging information (whether

or not the tag applies to a song) with a binary bag-

of-tags vector yBoT ∈ {0, 1}|V |, where V is the set

of all tags.

For each song, we will simply concatenate the VQ fea-

ture yVQ and the bag-of-tags vector yBoT, thus the dimen-

sion of the data is D = J+ |V |. When we apply the matrix

factorization model to the data, the latent factors we learn

will exploit the shared latent structure between semantic

tags and acoustic codewords. Therefore, we can utilize the

shared latent structure to predict tags when only given the

audio features.

3. POISSON MATRIX FACTORIZATION

We adopt the notational convention that bold letters (e.g.

y,θ,β) denote matrices. i ∈ {1, · · · , I} is used to index

songs. d ∈ {1, · · · , D} is used to index feature dimen-

sions. k ∈ {1, · · · ,K} is used to index latent factors from

the matrix factorization model. Given the data y ∈ N
I×D

as described in Section 2, the Poisson matrix factorization

model is formulated as follows:

θik ∼ Gamma(a, ac),

βkd ∼ Gamma(b, b),

yid ∼ Poisson(
∑K

k=1 θikβkd),

(1)

where βk ∈ R
D
+ denote the kth latent factors and θi ∈ R

K
+

denote the weights for song i. a and b are model hyper-

parameters. c is a scalar on the weights that we tune to

maximize the likelihood.

There are a couple of reasons to choose a Poisson model

over a more traditional Gaussian model [14]. First, the

Poisson distribution is a more natural choice to model count

data. Secondly, real-world tagging data is extremely noisy

and sparse. If a tag is not associated with a song in the

data, it could be either because that tag does not apply to

the song, or simply because no one has labelled the song

with the tag yet. The Poisson matrix factorization model

has the desirable property that it does not penalize values

of 0 as strongly as the Gaussian distribution [12]. There-

fore, even weakly labelled data can be used to learn the

Poisson model.

4. VARIATIONAL INFERENCE

To learn the latent factors β and the corresponding decom-

position weights θ from the training data y, we need to

compute the posterior distribution p(θ,β|y). However, no

closed-form expression exists for this hierarchical model.

We therefore employ mean-field variational inference to

approximate this posterior [10].

The basic idea behind mean-field variational inference

is to choose a factorized family of variational distributions,

q(θ,β) =
K∏

k=1

( I∏
i=1

q(θik)
)( D∏

d=1

q(βkd)
)
, (2)

to approximate the posterior p(θ,β|y), so that the Kullback-

Leibler (KL) divergence between the variational distribu-

tion and the true posterior is minimized. Following a fur-

ther approximation discussed in the next section, the fac-

torized distribution allows for a closed-form expression of

this variational objective, and thus tractable inference. Here

we choose variational distributions from the same family

as the prior:

q(θik) = Gamma(θik; γik, χik),

q(βkd) = Gamma(βkd; νkd, λkd).
(3)

Minimizing the KL divergence is equivalent to maximizing

the following variational objective:

L = Eq[ln p(y,θ,β)] +H(q), (4)

where H(q) is the entropy of the variational distribution

q. We can optimize the variational objective using coor-

dinate ascent via two approaches: batch inference, which

requires processing of the entire dataset for every iteration;

or stochastic inference, which only needs a small batch of

data for each iteration and can be potentially scale to much

larger datasets where batch inference is no longer compu-

tationally feasible.

4.1 Batch inference

Although the model in Equation (1) is not conditionally

conjugate by itself, as demonstrated in [4] we can intro-

duce latent random variables zidk ∼ Poisson(θikβkd) with

the variational distribution being q(zidk) = Multi(zid;φid),
where zid ∈ N

K , φidk ≥ 0 and
∑

k φidk = 1. This

makes the model conditionally conjugate, which means

that closed-form coordinate ascent updates are available.

Following the standard results of variational inference

for conditionally conjugate model (e.g. [9]), we can obtain

the updates for θik:

γik = a+
D∑

d=1

yidφidk,

χik = ac+
D∑

d=1

Eq[βkd].

(5)

The scale c is updated as c−1 = 1
IK

∑
i,k Eq[θik].
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Similarly, we can obtain the updates for βkd:

νkd = b+
I∑

i=1

yidφidk,

λkd = b+

I∑
i=1

Eq[θik].

(6)

Finally, for the latent variables zidk, the following update

is applied:

φidk ∝ exp{Eq[ln θikβkd]}. (7)

The necessary expectations for θik are:

Eq[θik] = γik/χik,

Eq[ln θik] = ψ(γik)− lnχik,
(8)

where ψ(·) is the digamma function. The expectations for

βkd have the same form, but use νkd and λkd.

4.2 Stochastic inference

Batch inference will alternate between updating θ and β
using the entire data at each iteration until convergence to

a local optimum, which could be computationally inten-

sive for large datasets. We can instead adopt stochastic

optimization by selecting a subset (mini-batch) of the data

at iteration t, indexed by Bt ⊂ {1, · · · , I}, and optimizing

over a noisy version of the variational objective L:

Lt =
I

|Bt|
∑
i∈Bt

Eq[ln p(yi, θi|β)] + Eq[ln p(β)] +H(q).

(9)

By optimizing Lt, we are optimizing L in expectation.

The updates for weights θik and latent variables zidk are

essentially the same as batch inference, except that now we

are only inferring weights for the mini-batch of data for

i ∈ Bt. The optimal scale c is updated accordingly:

c−1 =
1

|Bt|K
∑

i∈Bt,k

Eq[θik]. (10)

After alternating between updating weights θik and la-

tent variables zidk until convergence, we can take a gradi-

ent step, preconditioned by the inverse Fisher information

matrix of variational distribution q(βkd), to optimize βkd

(see [9] for more technical details),

ν
(t)
kd = (1− ρt)ν

(t−1)
kd + ρt

(
b+

I

|Bt|
∑
i∈Bt

yidφidk

)
,

λ
(t)
kd = (1− ρt)λ

(t−1)
kd + ρt

(
b+

I

|Bt|
∑
i∈Bt

Eq[θik]

)
,

(11)

where ρt > 0 is a step size at iteration t. To ensure conver-

gence [3], the following conditions must be satisfied:∑∞
t=1 ρt =∞,

∑∞
t=1 ρ

2
t <∞. (12)

One possible choice of ρt is ρt = (t0 + t)−κ for t0 > 0
and κ ∈ (0.5, 1]. It has been shown [9] that this update

corresponds to stochastic optimization with a natural gra-

dient step, which better fits the geometry of the parameter

space for probability distributions.

4.3 Generalizing to new songs

Once the latent factor β ∈ R
K×D
+ is inferred, we can natu-

rally divide it into two blocks: the VQ part βVQ ∈ R
K×J
+ ,

and the bag-of-tags part βBoT ∈ R
K×|V |
+ .

Given a new song, we can first obtain the VQ feature

yVQ and fit it with βVQ to compute posterior of the weights

p(θ|yVQ,βVQ). We can approximate this posterior with the

variational inference algorithm in Section 4.1 with β fixed.

Then to predict tags, we can compute the expectation of

the dot product between the weights θ and βBoT under the

variational distribution:

ŷBoT = Eq[θ
TβBoT]. (13)

Since for different songs the weights θ may be scaled dif-

ferently, before computing the dot product we normalize

Eq[θ] so that it lives on the probability simplex. To do au-

tomatic tagging, we could annotate the song with top M
tags according to ŷBoT. To compensate for a lack of diver-

sity in the annotations, we adopt the same heuristic used

in [7] by introducing a “diversity factor” d: For each pre-

dicted score, we subtract d times the mean score for that

tag. In our system, we set d = 3.

5. EVALUATION

We evaluate the model’s performance on an annotation task

and a retrieval task using CAL500 [16] and Million Song

Dataset (MSD) [2]. Unlike the CAL500 dataset where

tracks are carefully-annotated, the Last.fm dataset [1] asso-

ciated with MSD comes from real-world user tagging, and

thus contains only weakly labelled data with a tagging vo-

cabulary that is much larger and more diverse. We compare

our results on these tasks with two other sets of codebook-

based methods: Codeword Bernoulli Average (CBA) [7]

and 
2 regularized logistic regression [17]. Like the Pois-

son matrix factorization model, both methods are easy to

train and can scale to relatively large dataset on a single

machine. However, since both methods perform optimiza-

tion in a batch fashion, we will later refer to them as “batch

algorithms”, along with the Poisson model with batch in-

ference described in Section 4.1.

For the hyperparameters of the Poisson matrix factor-

ization model, we set a = b = 0.1, and the number of

latent factors K = 100. To learn the latent factors β, we

followed the procedure in Section 4.1 for batch inference

until the relative increase on the variational objective is less

than 0.05%. For stochastic inference, we used a mini-batch

size |Bt| = 1000 unless otherwise specified and took a full

pass of the randomly permuted data. As for the learning

rate, we set t0 = 1 and κ = 0.6. All the source code in

Python is available online 2 .

5.1 Annotation task

The purpose of annotation task is to automatically tag un-

labelled songs. To evaluate the model’s ability for anno-

tation, we computed the average per-tag precision, recall,

2 http://github.com/dawenl/stochastic_PMF
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and F-score on a test set. Per-tag precision is defined as

the average fraction of songs that the model annotates with

tag v that are actually labelled v. Per-tag recall is defined

as the average fraction of songs that are actually labelled

v that the model also annotates with tag v. F-score is the

harmonic mean of precision and recall, and is one overall

metric for annotation performance.

5.2 Retrieval task

The purpose of the retrieval task is, when given a query tag

v, to provide a list of songs which are related to tag v. To

evaluate the models’ retrieval performance, for each tag in

the vocabulary we ranked each song in the test set by the

predicted score from Equation (13). We evaluated the area

under the receiver-operator curve (AROC) and mean aver-

age precision (MAP) for each ranking. AROC is defined

as the area under the curve, which plots the true positive

rate against the false positive rate, and MAP is defined as

the mean of the average precision (AP) for each tag, which

is the average of the precisions at each possible level of

recall.

5.3 Results on CAL500

Following the procedure similar to that described in [7,

17], we performed a 5-fold cross-validation to evaluate

the annotation and retrieval performance on CAL500. We

selected the top 78 tags, which are annotated more than

50 times in the dataset, and learned a codebook of size

J = 2000. For the annotation task, we labelled each song

with the top 10 tags based on the predicted score. Since

CAL500 is a relatively small dataset, we only performed

batch inference for Poisson matrix factorization model.

The results are reported in Table 1, which shows that

the Poisson model has comparable performance on the an-

notation task, and does slightly worse on the retrieval task.

As mentioned in Section 3, the Poisson matrix factoriza-

tion model is particularly suitable for noisy and sparse data

where 0’s are not necessarily interpreted as explicit obser-

vations. However, this may not be the case for CAL500, as

the vocabulary was well-chosen and the data was collected

from a survey where the tagging quality is understandably

higher than the actual tagging data in the real world, like

the one from Last.fm. Therefore, this task cannot fully ex-

ploit the advantage brought by the Poisson model. Mean-

while, the amount of data in CAL500 is fairly small – the

data y fit to the model is simply a 502-by-2078 matrix.

This prevents us from adopting stochastic inference, which

will be shown being much more effective than batch infer-

ence even on a 10,000-song dataset in Section 5.4.

5.4 Results on MSD

To demonstrate the scalability of the Poisson matrix factor-

ization model, we conducted experiments using MSD and

the associated Last.fm dataset. To our knowledge, there

has not been any previous work where music tagging re-

sults are reported on the MSD.

Model Prec Recall F-score AROC MAP

CBA 0.41 0.24 0.29 0.69 0.47


2 LogRegr 0.48 0.26 0.34 0.72 0.50

PMF-Batch 0.42 0.23 0.30 0.67 0.45

Table 1. Results for the top 78 popular tags on CAL500,

for Codeword Bernoulli Average (CBA), 
2 regularized lo-

gistic regression (
2 LogRegr), and Poisson matrix factor-

ization with batch inference (PMF-Batch). The results for

CBA and 
2 LogRegr are directly copied from [17].

Since the Last.fm dataset contains 522,366 unique tags,

it is not realistic to build the model with all of them. We

first selected the tags with more than 1,000 appearances

and removed those which do not carry discriminative in-

formation (e.g. “my favorite”, “awesome”, “seen live”,

etc.). Then we ran the stemming algorithm implemented

in NLTK 3 to further reduce the potential duplications and

correct for alternate spellings (e.g. “pop-rock” v.s. “pop

rock”, “love song” v.s. “love songs”), which gave us a vo-

cabulary of 561 tags. Using the default train/test artist split

from MSD, we filtered out the songs which have been la-

belled with tags from the selected vocabulary. This gave us

371,209 songs for training. For test set, we further selected

those which have at least 20 tags (otherwise, it is likely that

this song is very weakly labelled). This gave us a test set of

2,757 songs. The feature we used is the Echo Nest’s timbre

feature, which is very similar to MFCC.

We randomly selected 10,000 songs as the data which

can fit into the memory nicely for all the batch algorithms,

and trained the following models with different codebook

sizes J ∈ {256, 512, 1024, 2048}: Codeword Bernoulli

Average (CBA), 
2 regularized logistic regression (
2 Lo-

gRegr), Poisson matrix factorization with batch inference

(PMF-Batch) and stochastic inference by a single pass of

the data (PMF-Stoc-10K). Here we used batch size |Bt| =
500 for PMF-Stoc-10K, as otherwise there will only be

10 mini-batches from the subset. However, given enough

data, in general larger batch size will lead to relatively su-

perior performance, since the variance of the noisy varia-

tional objective in Equation (9) is smaller. To demonstrate

the effectiveness of the Poisson model on massive amount

of data (exploiting the stochastic algorithm’s ability to run

without loading the entire dataset into memory), we also

trained the model with the full training set with stochas-

tic inference (PMF-Stoc-full). For the annotation task, we

labelled each song with the top 20 tags based on the pre-

dicted score.

The results are reported in Table 2. In general, the

performance of Poisson matrix factorization is compara-

bly better for smaller codebook size J . Specifically, for

stochastic inference, even if the amount of training data is

relatively small, it is not only significantly faster than batch

inference, but can also help improve the performance by

quite a large margin. Finally, not surprisingly, PMF-Stoc-

full dominates all the metrics, regardless of the size of the

codebook, because it is able to learn from more data.

3 http://www.nltk.org/
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Codebook size Model Precision Recall F-score AROC MAP

J = 256

CBA 0.112 (0.007) 0.121 (0.008) 0.116 0.695 (0.005) 0.112 (0.006)


2 LogRegr 0.091 (0.008) 0.093 (0.006) 0.092 0.692 (0.005) 0.110 (0.006)

PMF-Batch 0.113 (0.007) 0.105 (0.006) 0.109 0.647 (0.005) 0.094 (0.005)

PMF-Stoc-10K 0.116 (0.007) 0.127 (0.007) 0.121 0.682 (0.005) 0.105 (0.006)

PMF-Stoc-full 0.127 (0.008) 0.143 (0.008) 0.134 0.704 (0.005) 0.115 (0.006)

J = 512

CBA 0.120 (0.007) 0.127 (0.008) 0.124 0.689 (0.005) 0.117 (0.006)


2 LogRegr 0.096 (0.008) 0.108 (0.007) 0.101 0.693 (0.005) 0.113 (0.006)

PMF-Batch 0.111 (0.007) 0.108 (0.006) 0.109 0.645 (0.005) 0.098 (0.005)

PMF-Stoc-10K 0.112 (0.007) 0.128 (0.007) 0.120 0.687 (0.005) 0.110 (0.006)

PMF-Stoc-full 0.130 (0.008) 0.154 (0.008) 0.141 0.715 (0.005) 0.122 (0.006)

J = 1024

CBA 0.118 (0.007) 0.126 (0.007) 0.122 0.692 (0.005) 0.117 (0.006)


2 LogRegr 0.113 (0.008) 0.129 (0.008) 0.120 0.698 (0.005) 0.115 (0.006

PMF-Batch 0.112 (0.007) 0.109 (0.006) 0.111 0.635 (0.005) 0.098 (0.006)

PMF-Stoc-10K 0.111 (0.007) 0.127 (0.007) 0.118 0.687 (0.005) 0.111 (0.006)

PMF-Stoc-full 0.127 (0.008) 0.146 (0.008) 0.136 0.712 (0.005) 0.120 (0.006)

J = 2048

CBA 0.124 (0.007) 0.129 (0.007) 0.127 0.689 (0.005) 0.117 (0.006)


2 LogRegr 0.115 (0.008) 0.137 (0.008) 0.125 0.698 (0.005) 0.118 (0.006)
PMF-Batch 0.109 (0.007) 0.110 (0.006) 0.110 0.637 (0.005) 0.098 (0.006)

PMF-Stoc-10K 0.107 (0.007) 0.124 (0.007) 0.115 0.682 (0.005) 0.106 (0.006)

PMF-Stoc-full 0.120 (0.007) 0.147 (0.008) 0.132 0.712 (0.005) 0.118 (0.006)

Table 2. Annotation (evaluated using precision, recall, and F-score) and retrieval (evaluated using area under the receiver-

operator curve (AROC) and mean average precision (MAP)) performance on the Million Song Dataset with various code-

book sizes, from Codeword Bernoulli Average (CBA), 
2 regularized logistic regression (
2 LogRegr), Poisson matrix

factorization with batch inference (PMF-Batch) and stochastic inference by a single pass of the subset (PMF-Stoc-10K)

and full data (PMF-Stoc-full). One standard error is reported in the parenthesis.
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Figure 1. Improvement in performance with the number of mini-batches consumed for the PMF-Stoc-full system with

J = 512. Red lines indicate the performance of PMF-Batch which is trained on 10k examples; that system’s performance

is exceeded after fewer than 5 mini-batches.

Figure 1 illustrates how the metrics improve as more

data becomes available for the Poisson matrix factoriza-

tion model, showing how the F-score, AROC, and MAP

improve with the number of (1000-element) mini-batches

consumed up to the entire 371k training set. We see that

initial growth is rapid, thanks to the natural gradient, with

much of the benefit obtained after just 50 batches. How-

ever, we see continued improvement beyond this; it is rea-

sonable to believe that if more data becomes available, the

performance can be further improved.

Table 3 contains information on the qualitative perfor-

mance of our model. The tagging model works by captur-

ing correlations between semantic tags and acoustic code-

words in each latent factor βk. As discussed, when a new

song arrives with missing tag information, only the portion

of βk corresponding to acoustic codewords is used, and the

semantic tag portion of βk is used to make predictions of

the missing tags. Similar to related topic models [9], we

can therefore look at the highly probable tags for each βk

to understand what portion of the acoustic codeword space

is being captured by that factor, and whether it is musically

coherent. We show an example of this in Table 3, where

we list the top 7 tags from 9 latent factors βk learned by

our model with J = 512. We sort the tags according to ex-

pected relevance under the variational distribution Eq[βkd].
This shows which tags are considered to have high proba-

bility for a song that has the given factor expressed. As is

evident, each factor corresponds to a particular aspect of a

music genre. We note that other factors contained similarly

coherent tag information.

6. DISCUSSION AND FUTURE WORK

We present a codebook-based scalable music tagging model

with Poisson matrix factorization. The system learns the

joint behavior of acoustic features and semantic tags, which
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“Pop” “Indie” “Jazz” “Classical” “Metal” “Reggae” “Electronic” “Experimental” “Country”
pop indie chillout piano metal reggae house instrumental country

female vocal rock lounge instrumental death metal funk electro ambient classic country
dance alternative chill ambient thrash metal funky electronic experimental male vocal

electronic indie rock downtempo classic brutal death metal dance dance electronic blues
sexy post punk smooth jazz beautiful grindcore hip-hop electric house psychedelic folk
love psychedelic relax chillout heavy metal party techno progressive love songs

synth pop new wave ambient relax black metal sexy minimal rock americana

Table 3. Top 7 tags from 9 latent factors for PMF-Stoc-full with J = 512. For each factor, we assign the closest music

genre on top. As is evident, each factor corresponds to a particular aspect of a music genre.

can be used to infer the most appropriate tags given the au-

dio alone. The Poisson model is naturally less sensitive to

zero values than some alternatives, making it a good match

to “noisy” training examples derived from real users’ tag-

gings, where the fact that no user has applied a tag does

not necessarily imply that the term is irrelevant. By learn-

ing this model using stochastic variational inference, we

are able to efficiently exploit much larger training sets than

are tractable using batch approaches, making it feasible to

learn from an entire set of over 370k tagged examples. Al-

though much of the improvement comes in the earlier it-

erations, we see continued improvement implying this ap-

proach can benefit from much larger, effectively unlimited

sources of tagged examples, as might be available on a

commercial music service with millions of users.

There are a few areas where our model can be easily de-

veloped. For example, stochastic variational inference re-

quires we set the learning rate parameters t0 and κ, which

is application-dependent. By using adaptive learning rates

for stochastic variational inference [13], model inference

can converge faster and to a better local optimal solution.

From a modeling perspective, currently the hyperparam-

eters for weights θ are fixed, indicating that the sparsity

level of the weight for each song is assumed to be the

same a priori. Alternatively we could put song-dependent
hyper-priors on the hyperparameters of θ to encode the in-

tuition that some of the songs might have denser weights

because more tagging information is available. This would

offer more flexibility to the current model.
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ABSTRACT

In this work, we propose a system for automatic music
transcription which adapts dictionary templates so that they
closely match the spectral shape of the instrument sources
present in each recording. Current dictionary-based auto-
matic transcription systems keep the input dictionary fixed,
thus the spectral shape of the dictionary components might
not match the shape of the test instrument sources. By per-
forming a conservative transcription pre-processing step,
the spectral shape of detected notes can be extracted and
utilized in order to adapt the template dictionary. We pro-
pose two variants for adaptive transcription, namely for
single-instrument transcription and for multiple-instrument
transcription. Experiments are carried out using the MAPS
and Bach10 databases. Results in terms of multi-pitch de-
tection and instrument assignment show that there is a clear
and consistent improvement when adapting the dictionary
in contrast with keeping the dictionary fixed.

1. INTRODUCTION

Automatic music transcription (AMT) is defined as the pro-
cess of converting an acoustic music signal into some form
of music notation [3]. Subtasks of AMT include multi-
pitch detection, onset/offset detection, and instrument iden-
tification. Recently, the vast majority of transcription ap-
proaches use spectrogram factorization methods such as
non-negative matrix factorization (NMF) and probabilis-
tic latent component analysis (PLCA), which attempt to
decompose an input non-negative spectrogram into spec-
tral templates and note activations (e.g. [2, 10, 17]). The
spectral templates can either be pre-extracted and stored
in a template dictionary [2, 17] or can be estimated using
parametric spectral models [10]. An open problem with
dictionary-based methods is that the templates might not
match the spectral shape of the input instrument sources.

EB is supported by a City University London Research Fellowship.
This work was supported by a Télécom ParisTech sabbatical grant.

c© E. Benetos, R. Badeau, T. Weyde, and G. Richard.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Emmanouil Benetos, Roland Badeau,
Tillman Weyde, and Gaël Richard. “Template adaptation for improving
automatic music transcription”, 15th International Society for Music In-
formation Retrieval Conference, 2014.

Also, unconstrained methods such as NMF and standard
PLCA that jointly update the spectral templates and pitch
activations can lead to the creation of non-informative bases,
and thus, to poor transcription results. It has been shown
(e.g. [3]) that the use of templates from the same instru-
ment model or recording conditions can dramatically im-
prove transcription performance.

Related work on automatically estimating or adapting
templates for transcription includes [12], where the authors
proposed a system for user-assisted (i.e. semi-automatic)
music transcription in an NMF setting. The user can label a
few notes in the recording; knowledge of the labelled notes
can be used in order to create a dictionary that matches
the input source. In addition, in [18], the authors propose
a dictionary adaptation step within a sparse model that is
suitable for single-instrument multi-pitch detection.

In this paper, we propose a method for template adap-
tation suitable for multiple-instrument polyphonic music
transcription (supporting both multi-pitch detection and in-
strument assignment). The proposed method is based on a
multiple-instrument transcription system using PLCA, and
supporting tuning changes and frequency modulations. By
performing a conservative transcription in a pre-processing
step, notes are detected with a high degree of confidence
and are used in order to expand the current template dic-
tionary. An additional PLCA-based dictionary adaptation
step can further refine the dictionary, so that it matches
closely the input source(s). Two system variants are pro-
posed, for single- and multiple-instrument transcription.
Experiments using the MAPS [8] and Bach10 [7] databases
show a consistent improvement in multi-pitch detection
and instrument assignment performance when the proposed
template adaptation method is used.

The outline of the paper is as follows. In Section 2,
the proposed single-instrument transcription system is pre-
sented, with the multiple-instrument version presented in
Section 3. The employed datasets, evaluation metrics, and
results are detailed in Section 4. Finally, conclusions are
drawn and future directions are indicated in Section 5.

2. SINGLE-INSTRUMENT SYSTEM

In the following, we describe a method for single-instrument
polyphonic music transcription based on a dictionary of
pre-extracted note templates, which is adapted in order to
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match the input instrument source. The proposed system
contains a “conservative” transcription pre-processing step
in order to detect notes with a high degree of confidence,
a dictionary adaptation step, and a final transcription step.
The diagram of the proposed system can be seen in Fig. 1.

2.1 Pre-processing

As a pre-processing step, we perform an initial transcrip-
tion which uses a fixed template dictionary (in which the
templates might not be extracted from the same instrument
source, model, or recording conditions). The main goal is
to only detect notes for which we have a high degree of
confidence; in order to achieve this, we perform a “conser-
vative” transcription, as in [16], where the employed tran-
scription system detects notes with high precision and low
recall. In other words, the system returns few false alarms
but might miss several notes present in the recording.

In order to perform the conservative transcription pre-
processing step, we use the spectrogram factorization-based
model of [2], which is based on probabilistic latent compo-
nent analysis (PLCA) [14] and supports the use of a fixed
template dictionary. It should be noted that the system
in [2] ranked first in the MIREX transcription tasks [1].
The model of [2] takes as input a normalized log-frequency
spectrogram Vω,t ∈ R

Ω×T (ω denotes frequency and t
time) and approximates it as a bivariate probability distri-
bution P (ω, t). P (ω, t) is in turn decomposed as:

P (ω, t) = P (t)
∑
p,f,s

P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)

(1)
where p, f, s denote pitch, log-frequency shifting, and in-
strument source (in the single-instrument case, s refers to
instrument model), respectively. P (t) is the spectrogram
energy (known quantity) andP (ω|s, p, f) are pre-extracted
spectral templates for pitch p, source/model s, which are
also pre-shifted across log-frequency according to param-
eter f . Pt(f |p) is the time-varying log-frequency shifting
for pitch p, Pt(s|p) is the source contribution, and Pt(p)
is the pitch activation. As a log-frequency representation
we use the constant-Q transform [13] with 60 bins/octave,
resulting in f ∈ [1, . . . , 5], where f = 3 is the ideal tuning
position for the template (using equal temperament).

Using a fixed template dictionary, the parameters that
need to be estimated are Pt(f |p), Pt(s|p), and Pt(p). This
can be achieved using the expectation-maximization (EM)
algorithm [5], with 15-20 iterations being typically suffi-
cient. The resulting multi-pitch output is given byP (p, t) =
P (t)Pt(p).

In order to extract note events in spectrogram factorization-
based AMT algorithms, typically thresholding is performed
on the pitch activations (P (p, t) in this case). The value
of the threshold θ controls the levels of precision/recall. A
low threshold has a high recall and low precision; the oppo-
site occurs with a high threshold. By selecting a high value
of θ, in essence we perform a conservative transcription.
The final output of the pre-processing step is a collection
of pitches and time frames {p1, t1}, {p2, t2}, ..., {pN , tN}
which can be used in order to adapt the template dictionary.
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Figure 2. Top: a collection of spectra V̂ (42) (note D4)
from piano recording ‘alb se2’ taken from the MAPS
database (piano model: ENSTDkCl). Middle: extracted
normalised template P (ω|p = 42). Bottom: a D4 template
from piano model AkPnBcht from the MAPS database.

2.2 Template Adaptation

Given a collection of detected pitches, the first step re-
garding template adaptation is to collect the spectra that
correspond to the aforementioned pitches in the recording.
Thus, for each pitch p all time frames tip that contain that
pitch are collected (where i = 1, ..., Np and Np is the num-
ber of frames containing p).

Subsequently, for each pitch p we create a collection of
spectra where that pitch is observed:

V̂ (p) = Vω,t∈tip ⊗ hp (2)

where hp is a harmonic comb that serves as an indicator
function (setting to zero all frequency bins not belonging
to pitch p), and ⊗ denotes elementwise multiplication. In
other words, V̂ (p) ∈ R

Ω×Np is a collection of the spectra
corresponding to detected pitch p in the input recording.

Using information from V̂ (p), new spectral templates
are created for each p that was detected in the conservative
transcription step. In order to create the new templates,
the standard PLCA algorithm is used with one component
[14], with the input in each case being V̂ (p). The output
for each p is a spectral template w(p) which can be used in
order to expand the present dictionary.

Given that the conservative transcription step might not
have detected all possible pitches present in the recording,
information from the extracted templates can be used in or-
der to estimate missing templates. As in the user-assisted
case of [12], we can derive templates at missing pitches
by simply shifting existing templates across log-frequency.
Given a missing pitch template, we consider a neighbor-
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Figure 1. Proposed system diagram.

hood of up to 4 semitones; if a template exists in the neigh-
borhood, it is shifted accordingly in order to estimate the
missing template. Finally, the resulting template dictionary
is pre-shifted across log-frequency over a semitone range
in order to account for tuning deviations and frequency
modulations. The output of the template adaptation step
is normalized and denoted as P (ω|s = snew , p, f), where
snew refers to the new instrument source that is added to
the existing dictionary.

The template adaptation step is illustrated in Fig. 2,
where a collection of extracted spectra for note D4 of a pi-
ano recording can be seen, along with the computed tem-
plate, as well as with a template for the same note taken
from a different piano model. By comparing the two pi-
ano spectra, the importance of adapting templates to the
specific instrument source can be seen.

2.3 Transcription

Having created an expanded dictionary with a set of note
templates taken from the instrument source present in the
recording, the recording is re-transcribed using the new
dictionary and the model of (1). In order to further adapt
the extracted templates to the input source, an optional step
is also applied on updating the new template set during
the PLCA iterations. The modified iterative update rule is
based on the work of [15] (which incorporated prior infor-
mation on PLCA update rules) and is applied only for the
new set of templates. It is formulated as:

P̂ (ω|snew , p, f) =∑
t αPt(p, f, snew |ω)Vω,t + (1− α)P (ω|snew , p, f)∑

ω,t αPt(p, f, snew |ω)Vω,t + (1− α)P (ω|snew , p, f)

(3)

where Pt(p, f, s|ω) is the posterior of the model (defined
in [2]), and α is a parameter which controls the weight of
the PLCA adaptation, with (1 − α) giving weight to the
set of extracted templates from the procedure of Section
2.2. In this work, α is set to 0.05, thus the PLCA tem-
plate adaptation is only slightly changing the shape of the
templates (given that the model is unconstrained, giving a
large weight to the PLCA adaptation step would result in
non-meaningful templates).

Finally, the output of the transcription step is given by
P (p, t) = P (t)Pt(p). For converting the non-binary pitch
activation into a binary piano-roll representation, as in [6]
we perform thresholding on P (p, t) followed by a process
removing note events with a duration less than 80ms.

3. MULTIPLE-INSTRUMENT SYSTEM

In dictionary-based multiple-instrument transcription, the
dictionary typically consists of one or more sets of tem-
plates per instrument. Thus, in order to update dictionary
templates for multiple instruments, modifications need to
be made from the system presented in Section 2.

Regarding the pre-processing step, we still use the model
of (1), which supports multiple-instrument transcription.
In this case, s denotes instrument source. An advantage of
the model of (1) is that it can produce an instrument as-
signment output (i.e. each detected note is assigned to a
specific instrument). Thus, having estimated the unknown
model parameters, the instrument assignment output for
instrument sins is given by the following time-pitch rep-
resentation:

P (s = sins , p, t) = Pt(s = sins |p)Pt(p)P (t) (4)

The representation P (s, p, t) can be thresholded in the same
way as the pitch activation in order to derive a binary piano-
roll representation of the notes produced by a specific in-
strument. Here, we perform “conservative” thresholding
(i.e. use a high θ value) for every instrument in P (s, p, t)
in order to create a collection of detected pitches and time
frames per instrument:

{s1, p1, t1}, {s2, p2, t2}, ..., {sN , pN , tN} (5)

where s ∈ 1, . . . , S, p ∈ 1, . . . , 88, and t ∈ 1, . . . , T .
For performing multi-instrument template adaptation,

we collect all time frames tips that contain pitch p and in-
strument s. We create a collection of spectra V̂ (p,s) where
a pitch is observed for a specific instrument, in the same
way as in (2). Using information from V̂ (p,s), new spec-
tral templates are created for specific cases of s and p us-
ing the single-component PLCA algorithm. As in Section
2.2, templates at missing pitches are derived by translat-
ing existing templates across log-frequency. The output
of the template adaptation step is denoted as P (ω|s =
{snew1 , snew2 , ...}, p, f) where snew1 , snew2 , ... denote the
new sets of templates for the existing instruments.

Finally, the input recording is re-transcribed using the
model of (1), by utilizing the expanded dictionary. We also
apply the same optional PLCA-based dictionary adaptation
step shown in Section 2.3. The multiple-instrument tran-
scription system has two sets of outputs: the pitch activa-
tion P (p, t) (which is used for multi-pitch detection evalu-
ation) and the instrument contribution P (s, p, t) (which is
used for instrument assignment evaluation).
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Figure 3. (a) The pitch ground truth for the bassoon-violin
duet ‘Nun bitten’ from the Bach10 database. (b) The tran-
scription piano-roll without template adaptation. (c) The
transcription piano-roll with template adaptation.

An example of how template adaptation can improve
transcription performance for a multiple-instrument record-
ing (bassoon and violin) is given in Fig. 3, where the tran-
scription output with template adaptation has significantly
fewer false alarms compared with transcription without tem-
plate adaptation (in which many extra detected notes can
be seen in higher pitches).

4. EVALUATION

4.1 Datasets

For training the single-instrument system of Section 2, we
used isolated note recordings from the ‘AkPnBcht’ and ‘Sp-
tkBGCl’ piano models of the MAPS database [8]. We
used the standard PLCA algorithm with one component
[14] in order to extract a single template per note, cover-
ing the complete piano note range. For testing the single-
instrument system, we used thirty piano segments of 30s
duration from the MAPS database from the ‘ENSTDkCl’
piano model; the test dataset has in the past been used for
multi-pitch evaluation (e.g. [2,4,19]). For comparative pur-
poses, we also extracted training templates from the same
test source (‘ENSTDkCl’).

For training the multiple-instrument system of Section
3, we used isolated note samples of bassoon and violin
from the RWC database [11], covering the complete note
range of the instruments. For testing the multiple-instrument
system, we created ten duets of bassoon-violin, mixed from
single instrument tracks from the multi-track Bach10 dataset
[7]. The duration of the recordings varies from 25-41sec.
For comparative purposes, we also extracted dictionary tem-

System Pren Recn Fn

C1 66.41% 48.41% 55.33%
C2 68.07% 48.80% 56.26%
C3 67.84% 49.38% 56.56%
C4 (oracle) 70.43% 50.35% 58.17%

Table 1. Multi-pitch detection results for the single-
instrument system using the MAPS database.

plates for bassoon and violin from the single instrument
tracks of the Bach10 database, in order to demonstrate the
upper performance limit of the transcription system.

4.2 Metrics

For evaluating the performance of the proposed systems
for multi-pitch detection, we employ onset-only note-based
transcription metrics, which are used in the MIREX note
tracking task [1]. A detected note is considered correct if
its pitch matches a ground truth pitch and its onset is within
a 50ms tolerance of a ground-truth onset. The resulting
note-based precision, recall, and F-measure are defined as:

Pren =
Ntp

Nsys

Recn =
Ntp

Nref

Fn =
2RecnPren
Recn + Pren

(6)

where Ntp is the number of correctly detected pitches, Nsys

is the number of pitches detected by the system, and Nref

is the number of reference pitches.
For the instrument assignment evaluations we use the

pitch ground-truth of each instrument separately (compared
with the instrument-specific piano-roll output of the sys-
tem), and compute the F-measure metrics for bassoon (Fb)
and violin (Fv).

4.3 Results - Single Instrument Evaluation

For single-instrument transcription evaluation using the 30
MAPS recordings, results are shown in Table 1 using four
different system configurations. Configuration C1 corre-
sponds to the system without template adaptation; C2 to
the system with template adaptation; C3 to the system with
template adaptation using both the creation of the new dic-
tionary plus the PLCA update of the dictionary, as shown
in Section 2.2. Finally, C4 refers to comparative exper-
iments without template adaptation, but using templates
from the same instrument source (‘ENSTDkCl’ model in
the single-instrument case), which is meant to demonstrate
the upper performance limit of the transcription system.

From the single-instrument multi-pitch detection results,
it can be seen that an improvement of +0.9% in terms of
Fn is reported when using the template adaptation pro-
cedure; the improvement rises to +1.2% when also using
the PLCA dictionary adaptation updates. The performance
difference between the original C1 system (without knowl-
edge of the source templates) and the ‘optimal’ system
(C4) which contains templates from the same test source
is 2.8%; thus, the proposed template adaptation steps can
help bridge the gap, without requiring any knowledge of
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Figure 4. Multi-pitch detection results on the MAPS-
ENSTDkCl set using different values of θ.

the test instrument source. Regarding precision and recall,
in all cases it can be seen that the transcription system has
fewer false alarms than missed note detections. The pro-
posed template adaptation steps help in equally improving
precision and recall.

In order to determine the value of the conservative tran-
scription threshold θ, we used a training subset of 10 record-
ings from the MAPS ‘SptkBGCl’ models; the value of
θ = 0.028 was selected by maximising Pren. In Fig-
ure 4, transcription performance on the MAPS-ENSTDkCl
set is reported by selecting various values for θ. It can
be seen that the transcription performance can reach up to
Fn=57.4% with θ = 0.015, which enforces the argument
that the proposed template adaptation method can success-
fully adapt dictionary templates so that they match the in-
put instrument source.

Another comparison for the single-instrument system is
made, where the dictionary derived from Section 2.2 re-
places the dictionary of instrument ‘SptkBGCl’ (instead
of expanding the original dictionary). The resulting Fn

is 55.88%, indicating that expanding the dictionary leads
to better results compared with replacing the dictionary. It
should also be noted that the achieved transcription per-
formance outperforms the system in [19] which reports
a frame-based F-measure of 52.4%, whereas the template
adaptation system reports a frame-based F of 59.73%. Fi-
nally, no rigorous figures for statistical significance of the
results can be given since all signal frames cannot be con-
sidered as independent samples. However, the reported
tests are run on several thousands of frames which leads, if
the samples were independent, to a statistically significant
difference of the order of 0.6% (with 95% confidence).

4.4 Results - Multiple Instrument Evaluation

For multiple-instrument evaluation, we also use the four
different system configurations that were used for single-
instrument transcription. For system configuration C3, we
perform the PLCA dictionary update using 3 variants: by
updating the bassoon only, by updating the violin only, or
by updating both dictionaries. Transcription results for the
multiple-instrument case are shown in Table 2.

It can be seen that without any template adaptation (C1),
Fn = 67.72%; by performing the proposed template adap-
tation step (C2), the multi-pitch detection F-measure im-

System Pren Recn Fn Fb Fv

C1 64.79% 71.20% 67.72% 70.19% 42.10%
C2 69.71% 75.72% 72.51% 70.81% 45.98%
C3 (violin) 70.02% 75.41% 72.50% 70.54% 44.51%
C3 (bassoon) 72.49% 77.67% 74.90% 68.77% 45.87%
C3 (both) 71.30% 77.37% 74.11% 67.57% 44.08%
C4 (oracle) 74.90% 82.94% 78.64% 81.25% 62.05%

Table 2. Multi-pitch detection and instrument assign-
ment results for the multiple-instrument system using the
Bach10 dataset.

proves by +4.8%.
By performing template adaptation with C3 which also

includes the PLCA update rule of (3), although no per-
formance gain is obtained over the C2 configuration for
the violin updates, there is a +2.4% improvement over C2
when updating the bassoon dictionary only. Finally, when
updating both dictionaries, there is a performance drop for
Fb and Fv over the C2 configuration (but the system still
outperforms the original C1 system). The performance of
the PLCA-based dictionary updates can be explained by
the fact that the update rule of (3) might combine the ob-
served spectra from both instruments and produce dictio-
naries that might represent a combination of the two in-
struments. Finally, the C4 system represents the upper per-
formance limit, which is +11.7% higher than when using
a dictionary from a different instrument models or record-
ing conditions. It can be seen that the proposed template
adaptation methods help in bridging that performance gap,
resulting in a dictionary that closely matches the test in-
strument sources.

Regarding instrument assignment performance, in all
cases the bassoon note identification reports better results
compared to violin note identification. It can be seen that
with the proposed template adaptation, the bassoon identi-
fication remains relatively constant (a small improvement
of +0.6% is reported when comparing C1 with C2). On the
other hand, violin identification improves by +3.9%; this
indicates that the RWC bassoon templates closely matched
the Bach10 bassoon models, whereas the violin RWC tem-
plates could greatly benefit from template adaptation.

By comparing the MAPS and Bach10 evaluations, an
observation can be made that the performance improve-
ment using the proposed template adaptation method de-
pends on the mismatch between the original dictionary and
the spectral shape of the instruments present in the record-
ings. Thus, the 11.7% performance gap for the Bach10
dataset led to a greater improvement for the template adap-
tation method compared to the 2.8% performance gap re-
ported for the MAPS dataset (which led to a smaller, yet
consistent improvement when using the proposed template
adaptation method).

5. CONCLUSIONS

In this paper, we proposed a novel method for template
adaptation for automatic music transcription, that can be
used in dictionary-based systems. We utilized a multiple-
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instrument transcription system based on probabilistic la-
tent component analysis, and performed a conservative tran-
scription pre-processing step in order to detect notes with
a high confidence. Based on the initial transcription, the
spectra of the detected notes are collected, processed, and
are used in order to create a new dictionary that closely
matches the spectral characteristics of the input instrument
source(s). Both single-instrument and multi-instrument vari-
ants of the proposed method are presented and evaluated,
in terms of multi-pitch detection and instrument assign-
ment. Experimental results using the MAPS and Bach10
datasets show that there is a clear and consistent perfor-
mance improvement when using the proposed template adap-
tation method, especially when there is a large discrepancy
between the original dictionary and the spectral character-
istics of the test instrument sources.

In the future, we will evaluate the proposed system us-
ing multiple-instrument recordings with more than two in-
struments. Parametric models (such as source-filter mod-
els) will also be investigated for updating the note tem-
plates, along with adaptive methods for deriving the con-
servative transcription threshold. We also plan to evaluate
the proposed system in the next MIREX evaluations [1].
Finally, the proposed template adaptation steps will also
be evaluated in the context of score-informed source sepa-
ration using spectrogram factorization models [9].
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ABSTRACT

Note-level music transcription, which aims to transcribe

note events (often represented by pitch, onset and offset

times) from music audio, is an important intermediate step

towards complete music transcription. In this paper, we

present a note-level music transcription system, which is

built on a state-of-the-art frame-level multi-pitch estima-

tion (MPE) system. Preliminary note-level transcription

achieved by connecting pitch estimates into notes often

lead to many spurious notes due to MPE errors. In this

paper, we propose to address this problem by randomly

sampling notes in the preliminary note-level transcription.

Each sample is a subset of all notes and is viewed as a note-

level transcription candidate. We evaluate the likelihood

of each candidate using the MPE model, and select the

one with the highest likelihood as the final transcription.

The likelihood treats notes in a transcription as a whole

and favors transcriptions with less spurious notes. Experi-

ments conducted on 110 pieces of J.S. Bach chorales with

polyphony from 2 to 4 show that the proposed sampling

scheme significantly improves the transcription performance

from the preliminary approach. The proposed system also

significantly outperforms two other state-of-the-art systems

in both frame-level and note-level transcriptions.

1. INTRODUCTION

Automatic Music Transcription (AMT) is one of the fun-

damental problems in music information retrieval. Gen-

erally speaking, AMT is the task of converting a piece of

music audio into a musical score. A complete AMT sys-

tem needs to transcribe both the pitch and rhythmic content

[5]. On transcribing the pitch content, AMT can be per-

formed at three levels from low to high: frame-level, note-

level, and stream-level [7]. Frame-level transcription (also

called multi-pitch estimation) aims to estimate concurrent

pitches and instantaneous polyphony in each time frame.

Note-level transcription (also called note tracking) tran-

scribes notes, which are characterized not only by pitch,

c© Zhiyao Duan, David Temperley.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Zhiyao Duan, David Temperley.

“Note-level Music Transcription by Maximum Likelihood Sampling”,
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but also by onset and offset. Stream-level transcription

(also called multi-pitch streaming) organizes pitches (or

notes) into streams according to their instruments. From

the frame-level to the stream-level, more parameters and

structures need to be estimated, and the system is closer to

a complete transcription system.

While there are many systems dealing with frame-level

music transcription, only a few transcribe music at the note

level [5]. Among these systems, most are built based on

frame-level pitch estimates. The simplest way to convert

frame-level pitch estimates to notes is to connect consecu-

tive pitches into notes [4, 9, 15]. During this process, non-

significant errors in frame-level pitch estimation can cause

significant note tracking errors. False alarms in pitch es-

timates will cause many notes that are too short, while

misses can break a long note into multiple short ones. To

alleviate these errors, researchers often fill the small gaps

to merge two consecutive notes with the same pitch [2, 7],

and apply minimum length pruning to remove too-short

notes [4, 6, 7]. This idea has also been implemented with

more advanced techniques such as hidden Markov mod-

els [12]. Besides the abovementioned methods that are en-

tirely based on frame-level pitch estimates, some methods

utilize other information in note tracking, such as onset in-

formation [10, 14] and musicological information [13, 14].

In this paper, we propose a new note-level music tran-

scription system. It is built based on an existing multi-

pitch estimation method [8]. In [8], a multi-pitch likeli-

hood function was defined and concurrent pitches were es-

timated in a maximum likelihood fashion. This likelihood

function tells how well the set of pitches as a whole fit

to the audio frame. In this paper, we modify [8] to also

define a single-pitch likelihood function. It tells the likeli-

hood (salience) that a pitch is present in the audio frame.

Then preliminary note tracking is performed by connect-

ing consecutive pitches into notes and removing too-short

notes. The likelihood of each note is calculated as the prod-

uct of the likelihood of all its pitches. The next step is

the key step in the proposed system. We randomly sample

subsets of notes according to their likelihood and lengths.

Each subset is treated as a possible note-level transcrip-

tion. The likelihood of such a transcription is then defined

as the product of its multi-pitch likelihood in each frame.

Finally, the transcription with the maximum likelihood is

returned as the output of the system. We carried out exper-

iments on the Bach10 dataset [8] containing Bach chorales
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Figure 1. System overview of the proposed note-level

transcription system.

with different polyphony. Experiments show that the pro-

posed system significantly improves the transcription per-

formance from the preliminary transcription, and signifi-

cantly outperforms two state-of-the-art systems at both the

note level and frame level on the dataset.

2. PROPOSED SYSTEM

Figure 1 illustrates the overview of the system. It consists

of three main stages: multi-pitch estimation, preliminary

note tracking, and final note tracking. The first stage is

based on [8] with some modifications. The second stage

adopts the common filling/prunning strategies used in the

literature to convert pitches into notes. The third stage is

the main contribution of the paper. Figure 2 shows tran-

scription results obtained at different stages of the system

on a piece of J.S. Bach 4-part chorale.

2.1 Multi-pitch Estimation

In [8], Duan et al. proposed a maximum likelihood method

to estimate pitches from the power spectrum of each time

frame. In the maximum likelihood formulation, pitches

(and the polyphony) are the parameters to be estimated

while the power spectrum is the observation. The like-

lihood function Lmp({p1, · · · , pN}) describes how well

a set of N pitches {p1, · · · , pN} as a whole fit with the

observed spectrum, and hence is called a multi-pitch like-
lihood function. The power spectrum is represented as

peaks and the non-peak region, and the likelihood func-

tion is defined for both parts. The peak likelihood favors

pitch sets whose harmonics can explain peaks, while the

non-peak region likelihood penalizes pitch sets whose har-

monic positions are in the non-peak region. Parameters of

the likelihood function were trained from thousands of mu-

sical chords mixed with note samples whose ground-truth

pitches were pre-calculated. The maximum likelihood es-

timation process uses an iterative greedy search strategy.

It starts from an empty pitch set, and in each iteration the

pitch candidate that results in the highest multi-pitch like-

lihood increase is selected. The process is terminated by

thresholding on the likelihood increase, which also serves

for polyphony estimation. After estimating pitches in each

frame, a pitch refinement step that utilizes contextual in-

formation is performed to remove inconsistent errors.

In this paper, we use the same method to perform MPE

in each frame. Differently, we change the instantaneous

polyphony estimation parameter settings to achieve a high

recall rate of the pitch estimates. This is because the note

sampling module in Stage 3 will only remove false alarm

notes but cannot add back missing notes (detailed expla-

nation in Section 2.3). In addition, we also calculate a

single-pitch likelihood Lsp(p) for each estimated pitch p.

We define it as the multi-pitch likelihood plugged in with

the single pitch, i.e., Lsp(p) = Lmp({p}). This likelihood

describes how well the single pitch can explain the mix-

ture spectrum, which apparently will not be very good. But

from another perspective, this likelihood can be viewed as

a salience of the pitch. One important property of multi-

pitch likelihood is that it is not additive, i.e., the multi-pitch

likelihood of a set of pitches is usually much smaller than

the sum of their single-pitch likelihoods:

Lmp({p1, · · · , pN}) <
N∑
i=1

Lmp({pi}) =
N∑
i=1

Lsp(pi)

(1)

The reason is that the multi-pitch likelihood definition in

[8] considers the interaction between pitches. For exam-

ple, in the peak likelihood definition, a peak will be ex-

plained by only one pitch in the pitch set, the one whose

corresponding harmonic gives the best fit to the frequency

and amplitude of the peak, even if the peak could be ex-

plained by multiple pitches. In other words, the single-

pitch likelihood considers each pitch independently while

the multi-pitch likelihood considers the set as a whole.

The reason of calculating the single-pitch likelihood is

because we need to calculate a likelihood (salience) for

each note in the second stage, which is further because

we need to sample notes using their likelihood in the third

stage. Since pitches in the same frame belong to differ-

ent notes, we need to figure out the likelihood (salience) of

each pitch instead of the likelihood of the whole pitch set.

Figure 2(a) shows the MPE result on the example piece.

Compared to the ground-truth in (d), it is quite noisy and

contains many false alarm pitches, although the main notes

can be inferred visually.

2.2 Preliminary Note Tracking

In this stage, we implement a preliminary method to con-

nect pitches into notes, with the ideas of filling and prun-

ing that were commonly used in the literature [2, 4, 6, 7].

We first connect pitches whose frequency difference is less

than 0.3 semitones and time difference is less than 100 ms.

Each connected component is then viewed as a note. Then

notes shorter than 100 ms are removed. The 0.3 semitones

threshold corresponds to the range within which the pitch
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Figure 2. Transcription results on the first 11 seconds of Ach Lieben Christen, a piece of 4-part chorales by J.S. Bach. In

(a), each pitch is plotted as a point. In (b)-(d), each note is plotted as a line whose onset is marked by a red circle.

often fluctuates within a note, while the 100 ms threshold

is a reasonable length of a fast note, as it is the length of a

32nd note in music with a tempo of 75 beats per minute.

Each note is characterized by its pitch, onset, offset, and

note likelihood. The onset and offset times are the time of

the first and last pitch in the note, respectively. The pitch

and likelihood are calculated by averaging the pitches and

single-pitch likelihood values of all the pitches within the

note. Again, this likelihood describes the salience of the

note in the audio.

Figure 2(b) shows the preliminary note tracking result.

Compared to (a), many noisy isolated pitches have been

removed. However, compared to (d), there are still a num-

ber of spurious notes, caused by consistent MPE errors

(e.g., the long spurious note starting at 10 seconds around

MIDI number 80, and a shorter note starting at 4.3 seconds

around MIDI number 60). A closer look tells us that both

notes and many other spurious notes are higher octave er-

rors of some already estimated notes. This makes sense as

octave errors take about half of all errors in MPE [8].

Due to the spurious notes, the instantaneous polyphony

constraint is often violated. The example piece has four

monophonic parts and at any time there should be no more

than four pitches. However, it is often to see more than four

notes going simultaneous in Figure 2(b) (e.g., 0-1 seconds,

4-6 seconds, and 10-11 seconds). On the other hand, these

spurious notes are hard to remove if we consider them in-

dependently: They are long enough from being pruned by

the minimum length; They also have high enough likeli-

hood, as the note likelihood is the average likelihood of its

pitches. Therefore, we need to consider the interaction be-

tween different notes to remove these spurious notes. This

leads to the next stage of the system.

2.3 Final Note Tracking

The idea of this stage is quite simple. Thanks to the MPE

algorithm in Stage 1, the transcription obtained in Stage 2

inherits the high recall and low precision property. There-

fore, a subset of the notes that do not contain many spu-

rious notes but contain almost all correct notes must be a

better transcription. The only question now is how can we

know which subset is a good transcription. This question

can be addressed by an exploration-evaluation strategy: we

first explore a number of subsets, and then we evaluate

these subsets according to some criterion. But there are

two problems of this strategy: 1) how can we efficiently

explore the subsets? The number of all subsets is two to

the power of the number of notes, hence it is inefficient to

enumerate all the subsets. 2) What criterion should we use

to evaluate the subsets? If our criterion considers notes in-

dependently, then it would not work well, as the spurious

notes are hard to distinguish from correct notes in terms of

individual note properties such as length and likelihood.

2.3.1 Note Sampling

Our idea to address the exploration problem is to perform

note sampling. We randomly sample notes without re-

placement according to their weights. The weight equals

to the product of the note length and the inverse of the neg-

ative logarithmic note likelihood. Essentially, longer notes

with higher likelihood are more likely to be sampled into
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the subset. In this way, we can explore different note sub-

sets, and can guarantee that notes contained in each subset

are mostly correct. During the sampling, we also consider

the instantaneous polyphony constraint. A note will not be

sampled if adding it to the subset would violate the instan-

taneous polyphony constraint. The sampling process stops

if there is no valid note to sample any more.

We perform the sampling process M times to gener-

ate M subsets of the notes output in Stage 2. Each sub-

set is viewed as a transcription candidate. We then eval-

uate the transcription likelihood for each candidate and

select the one with the highest likelihood. The transcrip-

tion likelihood is defined as the product of the multi-pitch

likelihood of all time frames in the transcription. Since

multi-pitch likelihood considers interactions between si-

multaneous pitches, the transcription likelihood also con-

siders interactions between simultaneous notes. This can

help remove spurious notes which are higher octave errors

of some correctly transcribed notes. This is because all the

peaks that a higher octave error pitch can explain can also

be explained by the correct pitch, hence having the octave

error pitch in addition to the correct pitch would not in-

crease the multi-pitch likelihood much.

2.3.2 Chunking

The number of subsets (i.e., the sampling space) increases

with the number of notes exponentially. If we perform

sampling on a entire music piece that contains hundreds

of notes, it is likely to require many times of sampling to

reach a good subset (i.e., transcription candidate). In or-

der to reduce the sampling space, we segment the prelimi-

nary note tracking transcription into one-second long non-

overlapping chunks and perform sampling and evaluation

in each chunk. Finally, selected transcriptions of differ-

ent chunks are merged together to get the final transcrip-

tion of the entire piece. Notes that span across multiple

chunks can be sampled in all the chunks, and they will ap-

pear in the final transcription if they appear in the selected

transcription of some chunk. Depending on the tempo and

polyphony of the piece, the number of notes within a chunk

can be different. For the 4-part Bach chorales tested in this

paper, there are about 12 notes per chunk, and we found

sampling 100 subsets gives good accuracy and efficiency.

Figure 2(c) shows the final transcription of the system.

We can see that many spurious notes are removed from (b)

while most correct notes remain, resulting a much better

transcription. The final transcription is very close to the

ground-truth transcription.

3. EXPERIMENTS

3.1 Data Set

We use the Bach10 dataset [8] to evaluate the proposed

system. This dataset consists of real musical instrumental

performances of ten pieces of J.S. Bach four-part chorales.

Each piece is about thirty seconds long and was performed

by a quartet of instruments: violin, clarinet, tenor saxo-

phone and bassoon. Both the frame-level and note-level

ground-truth transcriptions are provided with the dataset.

In order to evaluate the system on music pieces with differ-

ent polyphony, we use the dataset-provided matlab script

to create music pieces with different polyphony, which are

different combinations of the four parts of each piece. Six

duets, four trios and one quartet for each piece was created,

totaling 110 pieces of music with polyphony from 2 to 4.

3.2 Evaluation Measure

We evaluate the proposed transcription system with com-

monly used note-level transcription measures [1]. A note

is said to be correctly transcribed, if it satisfies both the

pitch condition and the onset condition: its pitch is within

a quarter tone from the pitch of the ground-truth note, and

its onset is within 50 ms from the ground-truth onset. Off-

set is not considered in determining correct notes. Then

precision, recall, and F-measure are defined as

P =
TP

TP + FP
,R =

TP

TP + FN
,F =

2PR

(P +R)
, (2)

where TP (true positives) is the number of correctly tran-

scribed notes, FP (false positives) is the number of re-

ported notes not in the ground-truth, and FN (false nega-

tives) is the number of ground-truth notes not reported .

Although note offest is not used in determining correct

notes, we do measure the Average Overlap Ratio (AOR)

between correctly transcribed notes and their correspond-

ing ground-truth notes. It is defined as

AOR =
min(offsets)−max(onsets)

max(offsets)−min(onsets)
(3)

AOR ranges between 0 and 1, where 1 means that the tran-

scribed note overlaps exactly with the ground-truth note.

To see the improvement of different stages of the pro-

posed system, we also evaluate the system using frame-

level measures. Again, we use precision, recall, and F-

measures defined in Eq. (2), but here the counts are on the

pitches instead of notes. A pitch is considered correctly

transcribed if its frequency is within a quarter tone from a

ground-truth pitch in the same frame.

3.3 Comparison Methods

3.3.1 Benetos et al.’s System

We compare our system with a state-of-the-art note-level

transcription system proposed by Benetos et al. [3]. This

system first uses shift-invariant Probabilistic Latent Com-

ponent Analysis (PLCA) to decompose the magnitude spec-

trogram of the music audio with a pre-learned dictionary

containing spectral templates of all semitone notes of 13

kinds of instruments (including the four kinds used in the

Bach10 dataset). The activation weights of the dictionary

elements provide the soft version of the frame-level tran-

scription. It is then binarized to obtain the hard version

of the frame-level transcription. Note-level transcription

is obtained by connecting consecutive pitches, filling short

gaps between pitches, and pruning short notes.
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Figure 3. Note-level transcription performances.

The author’s own implementation is available online to

generate the soft version frame-level transcription. We then

implemented the postprocessing steps according to [3]. Since

the binarization threshold is very important in obtaining

good transcriptions, we performed a grid search between 1

and 20 with a step size of 1 on the trio pieces. We found

12 gave the best note-level F-measure and used it in all ex-

periments. The time threshold for filling and pruning were

set to 100 ms, same as the other comparison methods. We

denote this comparison system by “Benetos13”.

3.3.2 Klapuri’s System

Klapuri’s system [11] is a state-of-the-art general-purposed

frame-level transcription system. It employs an iterative

spectral subtraction approach. At each iteration, a pitch

is estimated according to a salience function and its har-

monics are subtracted from the mixture spectrum. We use

Klapuri’s original implementation and suggested param-

eters. Since Klapuri’s system does not output note-level

transcriptions, we employ the preliminary note tracking

stage in our system to convert Klapuri’s frame-level tran-

scriptions into note-level transcriptions. We denote this

comparison system by “Klapuri06+”.

3.4 Results

Figure 3 compares the note-level transcription performance

of the preliminary and final results of the proposed system

with Benetos13 and Klapuri06+. It can be seen that the

precision of the final transcription of the proposed system

is improved significantly from the preliminary transcrip-

tion for all polyphony. This is accredited to the note sam-

pling stage of the proposed system. As shown in Figure

2, note sampling removes many spurious notes and leads

to higher precision. On the other hand, the recall of the

final transcription is just slightly decreased (about 3%),

Figure 4. Frame-level transcription performances.

which means most correct notes survive during the sam-

pling. Therefore, the F-measure of the final transcription

is significantly improved from the preliminary transcrip-

tion for all polyphony, leading to a very promising per-

formance on this dataset. The average F-measure on the

60 duets is about 79%, which is about 35% higher than

the preliminary result in absolute value. The average F-

measure on the 10 quartets is about 64%, which is also

about 22% higher than the preliminary transcription.

Compared to the two state-of-the-art methods, the final

transcription of the proposed system also achieves much

higher F-measure. In fact, the preliminary transcription is

a little inferior to Benetos13. However, the note sampling

stage makes the final transcription surpass Benetos13.

In terms of average overlap ratio (AOR) of the correctly

transcribed notes with the ground-truth notes, both prelim-

inary and the final transcription of the proposed system and

Benetos13 achieve a similar performance, which is about

80% for all polyphony. This is about 5% higher than Kla-

puri06+. It is noted that 80% AOR indicates a very good

estimation of the note lengths/offsets.

Figure 4 presents the frame-level transcription perfor-

mance. In this comparison, we also include the MPE re-

sult which is the output of Stage 1. There are several in-

teresting observations. First of all, similar to the results

in Figure 3, the final transcription of the proposed system

improves from the preliminary transcription significantly

in both precision and F-measure, and degrades slightly in

recall. This is accredited to the note sampling stage. Sec-

ond, preliminary transcription of the proposed system has

actually improved from the MPE result in F-measure. This

validates the filling and pruning operations in the second

stage, although the increase is only about 3%. Third, the

final transcription of the proposed system achieves signif-

icantly higher precision and F-measure than the two com-
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parison methods, leading to about 91%, 88%, and 85% F-

measure for polyphony 2, 3, and 4, respectively. This per-

formance is very promising and may be accurate enough

for many other applications.

4. CONCLUSIONS AND DISCUSSIONS

In this paper, we built a note-level music transcription sys-

tem based on an existing frame-level transcription approach.

The system first performs multi-pitch estimation in each

time frame. It then employs a preliminary note tracking to

connect pitch estimates into notes. The key step of the sys-

tem is to perform note sampling to generate a number of

subsets of the notes, where each subset is viewed as a tran-

scription candidate. The sampling was based on the note

length and note likelihood, which was calculated using the

single-pitch likelihood of pitches in the note. Then the

transcription candidates are evaluated using the multi-pitch

likelihood of simultaneous pitches in all the frames. Fi-

nally the candidate with the highest likelihood is returned

as the system output. The system is simple and effective.

Transcription performance was significantly improved due

to the note sampling and likelihood evaluation step. The

system also significantly outperforms two other state-of-

the-art systems on both note-level and frame-level mea-

sures on music pieces with polyphony from 2 to 4.

The technique proposed in this paper is very simple, but

the performance improvement is unexpectedly significant.

We think the main reason is twofold. First, the note sam-

pling step lets us explore the transcription space, especially

the good regions of the transcription space. The single-

pitch likelihood of each estimated pitch plays an important

role in sampling the notes. In fact, we think that prob-

ably any kind of single-pitch salience function that have

been proposed in the literature can be used to perform note

sampling. The second reason is that we use the multi-

pitch likelihood, which considers interactions between si-

multaneous pitches, to evaluate these sampled transcrip-

tions. This is important because notes contained in a sam-

pled transcription must have high salience, however, when

considered as a whole, they may not fit with the audio as

well as another sampled transcription. One limitation of

the proposed sampling technique is that it can only remove

false alarm notes in the preliminary transcription but not

adding back missing notes. Therefore, it is important to

make the preliminary transcription have a high recall rate

before sampling.
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ABSTRACT

We propose a novel method for automatic drum transcrip-

tion from audio that achieves the recognition of individual

drums by classifying bar-level drum patterns. Automatic

drum transcription has to date been tackled by recognis-

ing individual drums or drum combinations. In high-level

tasks such as audio similarity, statistics of longer rhyth-

mic patterns have been used, reflecting that musical rhythm

emerges over time. We combine these two approaches by

classifying bar-level drum patterns on sub-beat quantised

timbre features using support vector machines. We train

the classifier using synthesised audio and carry out a series

of experiments to evaluate our approach. Using six dif-

ferent drum kits, we show that the classifier generalises to

previously unseen drum kits when trained on the other five

(80% accuracy). Measures of precision and recall show

that even for incorrectly classified patterns many individual

drum events are correctly transcribed. Tests on 14 acoustic

performances from the ENST-Drums dataset indicate that

the system generalises to real-world recordings. Limited

by the set of learned patterns, performance is slightly be-

low that of a comparable method. However, we show that

for rock music, the proposed method performs as well as

the other method and is substantially more robust to added

polyphonic accompaniment.

1. INTRODUCTION

The transcription of drums from audio has direct applica-

tions in music production, metadata preparation for mu-

sical video games, transcription to musical score notation

and for musicological studies. In music retrieval, robust

knowledge of the drum score would allow more reliable

style recognition and more subtle music search by exam-

ple. Yet like related tasks such as polyphonic piano tran-

scription [1], a versatile, highly reliable drum transcription

algorithm remains elusive.

Audio drum transcription methods have been classified

into two different strategies [10, 18]: segment and classify

c© Lucas Thompson, Matthias Mauch and Simon Dixon.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Lucas Thompson, Matthias Mauch and

Simon Dixon. “Drum Transcription via Classification of Bar-level Rhyth-

mic Patterns”, 15th International Society for Music Information Retrieval

Conference, 2014.
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Figure 1. Overview of the system at prediction time.

and separate and detect. Systems in the first category de-

tect a regular or irregular event grid in the signal, segment

the signal according to the grid, extract features such as

MFCCs [19] or multiple low-level features [23] and then

classify the segments using Gaussian Mixture Models [19],

k nearest neighbour classification [21], or Support Vector

Machines [23]. Systems in the second category first de-

tect multiple streams corresponding to drum types, usually

via a signal or spectral decomposition approach, e.g. [2,7],

or simpler sub-band filtering [15], and then identify onsets

in the individual streams. Other methods combine aspects

of both categories, via adaptation [24] or joint detection

of onsets and drums [18]. To ensure temporal consistency

(smoothness) many approaches make use of high-level sta-

tistical models that encode some musical knowledge, e.g.

hidden Markov models [18]. The methods greatly differ

in terms of the breadth of instruments they are capable

of detecting; most detect only bass drum, snare drum and

hi-hat [7, 14, 18, 23] or similar variants, probably because

these instruments (unlike crash and ride cymbals) can be

represented in few frames due to their very fast decay.

Despite the evident diversity of strategies, all existing

methods aim directly at detecting individual or simultane-

ous drum events. As we will see later, our approach is qual-

itatively different, using higher-level patterns as its classi-
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fication target. One advantage of this is that the long decay

of cymbals is naturally modelled at the feature level.

Since drum transcription from polyphonic audio is only

partially solved, music information retrieval tasks rely on

“soft” mid-level audio features to represent rhythm. Fluc-

tuation patterns [17] summarise the frequency content of

sub-band amplitude envelopes across 3-second windows

and were used to evaluate song similarity and to classify

pop music genres; they have also been used to describe

rhythmic complexity [13]. Bar-wise rhythmic amplitude

envelope patterns have been shown to characterise ball-

room dance music genres [5] and bar-wise pseudo-drum

patterns have been shown to correlate with popular music

genres [6]. Rhythmic patterns have also formed the basis

of beat tracking systems [11] and been used for downbeat

detection [8]. These methods share a more musically holis-

tic approach to rhythm, i.e. they summarise rhythmic com-

ponents in a longer temporal context. Drum tutorials, too,

usually focus on complete rhythms, often a bar in length,

because “with the command of just a few basic rhythms

you can make your way in a rock band” [22]. In fact, we

have recently shown that drum patterns are distributed such

that a small number of drum patterns can describe a large

proportion of actual drum events [12].

Motivated by this result and by the effectiveness of

more holistic approaches to rhythm description, we pro-

pose a novel drum transcription method based on drum

pattern classification. Our main contribution is to show

that the classification of bar-length drum patterns is a good

proxy for predicting individual drum events in synthetic

and real-world drum recordings.

2. METHOD

The proposed method is illustrated in Figure 1. It can

broadly be divided into two parts: a feature extraction step,

in which MFCC frame-wise features are calculated and

formatted into a bar-wise, sub-beat-quantised representa-

tion, and a classification step, in which bar-wise drum pat-

terns are predicted from the feature representation and then

translated into the desired drum transcription representa-

tion. For the sake of this study, we assume that correct

beat and bar annotations are given.

2.1 Feature extraction

Following Paulus and Klapuri [19], we choose Mel-

frequency cepstral coefficients (MFCCs) as basis features

for our experiments. MFCCs are extracted from audio

sampled at 44.1 kHz with a frame size of 1024 samples

(23ms) and a hop size of 256 samples (6ms), using an

adaptation of the implementation provided in the VamPy

plugin examples. 1 We extract 14 MFCCs (the mentioned

implementation uses a bank of 40 Mel-filters) per frame,

but discard the 0th coefficient to eliminate the influence of

overall signal level.

In order to obtain a tempo-independent representa-

tion, we assume that we know the positions of musi-

1 http://www.vamp-plugins.org/vampy.html

cal beats and quantise the feature frames into a metrical

grid. This is needed for subsequent bar-wise segmenta-

tion. Whereas beat-quantised chroma representations usu-

ally summarise chroma frames within a whole inter-beat

interval [16], drum information requires finer temporal res-

olution. Hence, following [12] we choose 12 sub-beats per

beat, which is sufficient to represent the timing of the most

common drum patterns. The MFCC frames belonging to

each sub-beat are summarised into a single value by taking

the mean over the sub-beat duration to give 12 quantised

frames per beat.

Since we assume we know which beat is the downbeat,

it is now trivial to extract bar representations from sub-

beat-quantised MFCC features. For example, in a 4
4 time

signature, one bar corresponds to 4 × 12 = 48 sub-beat-

quantised MFCC frames. However, slight deviations in

timing and natural decay times of cymbals and drum mem-

branes mean that information on a bar pattern will exist

even outside the bar boundaries. For this reason we also

add an extra beat either side of the bar lines (further dis-

cussion in Section 3), leading to the overlapping bar repre-

sentations illustrated in Figure 1, each 6× 12 = 72 frames

long. The features we are going to use to classify 4
4 bars

into drum patterns will therefore comprise 936 elements

(72 frames × 13 MFCCs).

2.2 Classification and transcription mapping

As our classifier, we use the one-vs-one multi class

Support Vector Machine implementation provided in the

sklearn.svm.SVC 2 package of the Python machine learn-

ing library, scikit-learn [20], with the default settings us-

ing a radial basis kernel, K(x, x′) = e−γ||x−x′||2 , where

γ = 1
N and N = 936 is the feature dimension. Once

the classifier has predicted a drum pattern for a particular

bar, we perform a simple mapping step to obtain a drum

transcription: using the information about the actual start

and end time of the bar in the recording, each of the drum

events that constitute the pattern are assigned to a time

stamp within this time interval, according to their position

in the pattern.

3. EXPERIMENTS AND RESULTS

We conducted three experiments to test the effectiveness

of the proposed method, one with synthesised test data,

and two with real recordings of human performances. In

all experiments, the drum pattern data for training was en-

coded as MIDI and then synthesised using the FluidSynth

software. Our drum pattern dictionary contains the top 50

most common drum patterns, including the empty pattern,

in a collection of 70,000 MIDI files (containing only bd -

kick, sd - snare, hh - closed hi-hat, oh - open hi-hat, ri -

ride and cr - crash cymbals) [12]. 3 Figure 2 details how

each drum class is distributed. Data examples and further

2 http://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVC.html

3 http://www.eecs.qmul.ac.uk/˜matthiasm/ndrum/
patternstats/full_1-2-3-4-5-6/patternvisual_
reduced
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Figure 2. Relative occurrence of the drum classes in terms

of overall number of drum events and the number of pat-

terns containing each class. There are 50 patterns with an

average of 11 events per pattern.

information can be found on the web page that accompa-

nies this paper. 4

We evaluate both the pattern classification performance

and the quality of transcription of drum events. Pattern

accuracy is defined as

A =
number of correctly classified bars

total number of bars in test set
. (1)

The transcription of drum events is evaluated using preci-

sion, recall and the F-measure (their harmonic mean)

P =
Nc

Nd
, R =

Nc

N
, F =

2PR

P +R
, (2)

where Nd is the number of detected drum hits, Nc is the

number of correctly detected drum hits and N the number

of drum hits in the ground truth. The individual drum hits

are solely based on the presence or absence of a drum hit at

a particular discrete position in the pattern grid used in the

dictionary. In Sections 3.2 and 3.3 the ground truth drum

hits, given as onset times, are quantised to a position in the

grid. Tanghe’s method [23] (Sections 3.2 and 3.3) is eval-

uated against the original ground truth with an acceptance

window of 30ms, as in the original paper.

3.1 Multiple Synthesised Drum Kits

The aim of this experiment is to see how well the proposed

classifier performs on synthetic data generated using mul-

tiple drum kits.

3.1.1 Training and Test Data

In order to create varied training and test data, we first

generate 100 unique songs, each of which is simply a ran-

domly permuted list of the 50 drum patterns from our dic-

tionary. These songs are encoded as MIDI files, and we

introduce randomised deviations in note velocity and on-

set times (velocity range 67–127, timing range ±20 ms) to

humanise the performances. All MIDI files are then ren-

dered to audio files (WAV) using 6 drum kits from a set

of SoundFonts we collected from the internet. In order to

avoid complete silence, which is unrealistic in real-world

scenarios, we add white noise over the entirety of each

4 http://www.eecs.qmul.ac.uk/˜matthiasm/
drummify/

overall drum events classification
drum-kit R P F accuracy

00 98.9 (98.5) 98.9 (98.7) 98.9 (98.6) 91.1 (88.8)
01 97.1 (97.1) 97.6 (97.7) 97.4 (97.4) 89.2 (87.9)
02 98.3 (97.9) 98.3 (98.0) 98.3 (98.0) 87.7 (86.5)
03 84.8 (80.3) 82.3 (85.8) 83.6 (83.0) 50.1 (47.5)
04 92.7 (92.2) 91.2 (90.8) 92.0 (91.5) 72.0 (66.4)
05 97.2 (97.1) 98.5 (98.5) 97.9 (97.8) 91.6 (88.6)

mean 94.8 (93.9) 94.5 (94.9) 94.7 (94.4) 80.3 (77.6)

Table 1. Mean classification accuracy (%) and overall

drum event R, P and F metrics for left out drum-kit from

leave-one-out cross validation on 6 different drum-kits

(see Section 3.1). Results for non-overlapping bars are in

brackets.

overall drum events
drum-type R P F

bd 96.2 (96.0) 95.4 (95.0) 95.8 (95.5)
sd 96.5 (95.4) 99.3 (99.3) 97.8 (97.0)
hh 96.5 (95.3) 93.7 (94.8) 95.0 (95.0)
ho 59.9 (57.1) 77.3 (77.3) 61.1 (56.8)
ri 86.3 (86.4) 98.3 (99.5) 88.2 (89.0)
cr 84.4 (75.8) 97.0 (96.5) 89.3 (82.5)

Table 2. R, P and F for each drum type, taken over the

whole test set and all kits from leave-one-out cross valida-

tion on 6 different drum-kits (see Section 3.1). Results for

non-overlapping bars are in brackets.

song at a SNR of 55 dB. We then calculate the bar-wise

beat-quantised MFCC features as described in section 2.1.

This yields a dataset of 6× 100 = 600 files.

We use a random 70:30 train/test split of the 100 songs,

where each of the 70 training songs appears in five varia-

tions synthesised from different drum kit SoundFonts. The

remaining 30 songs, synthesised by the sixth drum kit, are

used for testing. In order to assess performance on differ-

ent drum kits, we cycle the use of the test drum kit in a

leave-one-out fashion.

3.1.2 Results

As Table 1 shows, our method achieves a high average ac-

curacy of 80.3%, despite strong variation between drum

kits. Irrespective of whether overlapping bar-wise features

were used, the accuracy on drum kits 00, 01, 02 and 05

exceeds 85%. Performance is substantially worse on drum

kits 03 and 04 (accuracies of 50.1% and 72.0%, respec-

tively). Listening to a subset of the synthesised songs for

drum kits 03 revealed that the recording used for the closed

hi-hat sounds contains hi-hats that are slightly open, which

is likely to cause confusion between the two hi-hat sounds.

To demonstrate the benefit of considering extra beats

either side of the bar boundaries, Table 1 includes the re-

sults for non-overlapping bars. In this case we can see that

the context given by the neighbouring beats increases clas-

sification accuracy (mean increase ≈3 percentage points).

The greatest increase in accuracy (≈6 percentage points)

is observed in drum-kit 04.

To gain an insight into the types of patterns being mis-

classified, we consider those patterns for each drum-kit

that are misclassified more than a quarter of the time. Fig-

ure 3 contains a few example cases. The single undetected
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A) kit 00 – 035 misclassified as 008, error-rate 26.7% E) kit 01 - 051 as 044, error-rate 73.3%
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B) kit 00 – 044 misclassified as 032, error-rate 26.7% F) kit 02 - 039 as 001, error-rate 100.0%
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C) kit 00 – 049 misclassified as 032, error-rate 33.3% G) kit 03 - 036 as 029, error-rate 70.0%
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D) kit 00 – 051 misclassified as 005, error-rate 80.0% H) kit 04 - 011 as 001, error-rate 26.7%
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��
��
��

��
��
��
��
��
��

ground truth only detected only ground truth and detected 
(correct)

Figure 3. Examples of misclassified patterns (see Sec-

tion 3.1.2).

ride or crash cymbals on the first beat in the ground-truth

(cases F and H) are likely to be caused by the system con-

fusing them for remainders of the previous bar. For cases

A, B, D and G, the differences are subtle. In case A, the

patterns differ by one hi-hat on the first beat. Cases B,

D and G show that on occasions the classifier chooses a

pattern where the majority of the drum events are correct,

apart from a few inserted bass or snare drum events.

If we compare the individual drum events of the pre-

dicted pattern against the ground-truth and use precision

and recall measures (see Table 2) we see that the system

achieves high F-measures for the majority of drum classes

(mean 0.88–0.97 for bd, sd, hh, ri, cr over all kits), but not

for the open hi-hat class (mean F-measure 0.61).

Using audio features with overlapping bars leads to a

substantial increase of over 8 percentage points in the re-

call of crash cymbal hits (84.4%) with respect to using no

overlap (75.8%). The majority of the crash hits in our pat-

tern dictionary occur on the first beat of the bar, and many

of the patterns which were misclassified without the bene-

fit of the overlapping neighbouring beats are such patterns,

highlighting that the added context helps distinguish the

pattern from those with a decaying hi-hat or other cym-

bal at the end of the previous bar. Note that since crash

cymbals usually occur no more than once per bar, the clas-

sification accuracy in Table 1 shows larger improvement

than the overall drum event precision and recall values.

3.2 Real drums Without Accompaniment

Having evaluated the performance of our system on syn-

thesised data, we now test its robustness to real acoustic

drum data.

3.2.1 Training and test data

We use the set of 100 songs described in the previous ex-

periment (Section 3.1.1) synthesised on all 6 drum kits

(6 × 100 = 600 files). Since we have shown that over-

lapping bar-wise features provide higher accuracy (Sec-

tion 3.1.2), we use only this feature configuration to train

a re-usable model, which is used in the remainder of the

experiments.

As test data we use the ENST-Drums database [9],

which contains a wide range of drum recordings and

ground-truth annotations of drum event onset times. We

selected 13 phrase performances (15-25 s) which contain

a number of similar patterns to ones in our dictionary, with

expressional variations and fills, and one song from the

minus-one category, a 60’s rock song, which contains ex-

tensive variations and use of drum fills for which there are

no similar patterns in our dictionary. In order to convert the

provided ground-truth annotations to bar length drum pat-

tern representations of the same format as those in our pat-

tern dictionary, we annotated the beat and downbeat times

in a semi-automatic process using Sonic Visualiser [3] and

a Vamp-plugin implementation 5 of Matthew Davies’ beat-

tracker [4].

3.2.2 Results

The results for the ENST-Drums tracks are given in Ta-

ble 3. The system’s performance strongly varies by track.

Our system performs particularly well on the disco and

rock genre recordings (F-measure 0.479-0.924), for which

our pattern dictionary contains very similar patterns. The

shuffle-blues and hard-rock patterns perform much worse

(F-measure 0.037–0.525), which is largely due to the fact

that they utilise patterns outside our dictionary, bringing

the mean F-measure down to 0.563. In order to under-

stand the impact of out-of-dictionary patterns, Table 3 also

provides the maximum possible F-measure Fmax calculated

from our dictionary by choosing the transcription that re-

sults in the highest F-measure for each bar, and computing

the overall F-measure of this transcription.

For example, ENST recording 069 only achieves an F
score of 0.288, falling short of Fmax = 0.583, as it mostly

consists of a typical shuffle drum pattern utilising the ride

cymbal which is outside of the dictionary. However, the

pattern which the system predicts is in fact one that con-

tains a ride cymbal, from a total of five (see Figure 2). The

hard rock recordings make extensive use of the open hi-hat,

which is not utilised in the same fashion in our dictionary;

here, the classifier most often predicts an empty bar (hence

the very low scores). Note that all scores are obtained on a

very diverse set of 6 drum and cymbal types.

For comparison, we obtained an implementation of an

existing drum transcription method by Tanghe [23] and ran

it on the ENST recordings, using the default pre-trained

model. Since Tanghe’s method only considers bass drum,

snare drum and hi-hat, we constrain the evaluation to those

drum types, and map the open and closed hi-hat events

from our algorithm to single hi-hat events. Table 4 shows

that our system has an F-measure of 0.73; Tanghe’s system

performs better overall (0.82), which is largely due to ex-

cellent bass drum detection. Note however that our system

obtains better performance for the snare drum (F-measure

0.74 vs 0.70) particularly with respect to precision (0.93 vs

5 http://vamp-plugins.org/plugin-doc/
qm-vamp-plugins.html#qm-barbeattracker
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detected drum events
genre tempo R P F Fmax

038 disco slow 72.6 84.9 78.3 86.7
039 disco medium 90.2 94.8 92.4 95.8
040 disco fast 93.1 87.1 90.0 100.0
044 rock slow 48.1 47.6 47.9 59.8
045 rock medium 52.7 47.5 50.0 58.5
046 rock fast 54.5 52.5 53.5 63.6
055 disco slow 75.9 63.8 69.3 98.3
061 rock slow 93.8 84.3 88.8 92.5
069 SB slow 25.6 32.8 28.8 58.3
070 SB medium 50.0 55.4 52.5 59.5
075 HR slow 1.9 50.0 3.7 58.7
076 HR medium 3.8 100.0 7.4 53.2
085 SB slow 49.5 49.0 49.2 79.5
116 minus-one (60s rock) 76.8 77.1 77.0 81.7

mean 56.3 66.2 56.3 74.7

Table 3. Real drums without accompaniment: results in

percent for ENST-Drums dataset. SB: shuffle-blues; HR:

hard rock.

method metric bd sd hh overall
Proposed R 70.2 62.0 73.1 69.9

P 60.6 92.7 83.5 76.3
F 65.1 74.3 77.9 73.0

Tanghe et al. R 87.0 65.0 89.8 83.8
P 99.3 75.8 73.9 80.6
F 92.8 70.0 81.1 82.1

Table 4. Real drums without accompaniment: Results in

percent for drum classes reduced to bd, sd, hh (including

ho) for comparison with Tanghe et al. [23].

0.76). With a larger dictionary, our method would be able

to capture more details, such as drum fills, so we expect a

similar system with larger dictionary to perform better.

3.3 Polyphonic Music

For the minus-one recording, the ENST-Drums database

provides additional non-percussive accompaniment, which

allows us to test our system on polyphonic music.

3.3.1 Training and Test Data

As in the previous experiment, we use the pre-trained

model from all the synthesised drum data from the exper-

iment described in Section 3.1. The test data consists of

the minus-one recording considered in the previous exper-

iment. We add the polyphonic accompaniment at differ-

ent levels: 0dB (fully polyphonic, no attenuation), -6dB,

-12dB, -18dB, -24dB and -30dB.

3.3.2 Results

The overall F-measures obtained by the system for the var-

ious levels of attenuation are detailed in Figure 4. We pro-

vide the performance of the system on the recording with

no accompaniment as a baseline (overall F-measure 0.77,

as in Table 3). The system’s performance on all drums de-

cays rapidly between -24 dB and -18 dB, but then stays rel-

atively robust for the most difficult levels considered (0dB

to -18dB, overall F-measure scores of 0.48–0.58).

We compare the performance of our system to Tanghe’s

method once more on the reduced drum type set (bd, sd,

hh). It is interesting to observe that while the F-measure on
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Figure 4. Overall drum events F-measure for ENST

recording 116, mixed in with accompaniment at various

levels of attenuation.

the pure drums is nearly the same (Tanghe: 0.76, proposed:

0.77), susceptibility to additional instruments strongly dif-

fers between the methods. The F-measure of Tanghe’s

method first increases for low levels of added polyphonic

music (attenuation -30, -24 dB), due to the increased recall

as a result of the accompaniment being detected as correct

drum hits. For increasing levels of added accompaniment,

performance rapidly decreases to an overall F-measure of

0.35 for 0 dB. By direct comparison, the proposed method

achieves an F-measure of 0.60 even at 0 dB, demonstrat-

ing its superior robustness against high levels of accom-

paniment (-12, -6, 0 dB). Even for the more difficult task

of recognising all 6 drum types, the proposed method (F-

measure 0.48) outperforms Tanghe’s.

4. DISCUSSION

Our results show not only that the proposed bar-wise drum

pattern classification method is an effective, robust way to

transcribe drums, but also that the first step for immediate

improvement should be to increase the dictionary size in

order to obtain better coverage. In addition, relaxing the

strict holistic pattern approach by classifying patterns of

individual instruments would allow for the recognition of

combinations of patterns and hence of many new, unseen

patterns. Another obvious route for improvement is to train

our classifier on drum data with added polyphonic music

content, which is likely to further increase robustness in

polyphonic conditions.

The general approach of bar-wise drum classification is

not exhausted by our particular implementation, and we

expect to be able to gain further improvements by explor-

ing different classifiers, different amounts of neighbour-

hood context or different basic features (e.g. non-negative

matrix factorisation activations). Furthermore, to use the

method in an interactive annotation system, it would be in-

teresting to investigate bar-wise confidence scores for user

guidance. Genre-specific training data could improve the

performance of such systems. Finally, using more holistic

features instead of single frames may also be applicable to

other music informatics tasks such as chord transcription.
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5. CONCLUSIONS

We have presented a novel approach to drum transcrip-

tion from audio using drum pattern classification. Instead

of detecting individual drums, our method first predicts

whole drum patterns using an SVM classifier trained on

a large collection of diverse synthetic data, and then maps

the drums from the recognised patterns to the relative time-

stamps to achieve a transcription. The method performs

very well on synthetic data, even with tempo and velocity

variations on previously unseen sampled drum kits (mean

pattern accuracy: 80%). Even though the pattern accu-

racy range differs between drum kits (50.1%–91.6%) many

drum events are still classified with high precision and re-

call (F-measure 0.836–0.989). Unlike existing techniques,

our drum detection includes open hi-hat, closed hi-hat,

crash and ride cymbals, which are all reliably detected in

most cases. Extending the bar patterns by one beat either

side and thus obtaining overlapping patterns leads to bet-

ter accuracy, mainly due to improved recognition of crash

cymbals. On real drum recordings performance strongly

depends on genre (F-measure for rock and disco: 0.479–

0.924; hard-rock and shuffle-blues: 0.037–0.525), mainly

due to the limited types of drum patterns in our current dic-

tionary. This results in a performance slightly below that

of a comparable method. However, we show that for rock

music, the proposed method performs as well as the other

method (F-measure: 0.77) and is substantially more robust

to added polyphonic accompaniment.
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[8] D. Gärtner. Unsupervised Learning of the Downbeat in Drum
Patterns. In Proceedings of the AES 53rd International Con-
ference, pages 1–10, 2014.

[9] O. Gillet and G. Richard. ENST-Drums: An extensive audio-
visual database for drum signals processing. In Proceedings
of the 7th International Conference on Music Information Re-
trieval (ISMIR 2006), pages 156–159, 2006.

[10] O. Gillet and G. Richard. Transcription and separation of
drum signals from polyphonic music. IEEE Transactions on
Audio, Speech, and Language Processing, 16(3):529–540,
2008.

[11] M. Goto. An audio-based real-time beat tracking system for
music with or without drum-sounds. Journal of New Music
Research, 30(2):159–171, 2001.

[12] M. Mauch and S. Dixon. A corpus-based study of rhythm
patterns. In Proceedings of the 13th International Conference
on Music Information Retrieval (ISMIR 2012), pages 163–
168, 2012.

[13] M. Mauch and M. Levy. Structural change on multiple time
scales as a correlate of musical complexity. In Proceedings
of the 12th International Conference on Music Information
Retrieval (ISMIR 2011), pages 489–494, 2011.

[14] M. Miron, M. E. P. Davies, and F. Gouyon. Improving the
real-time performance of a causal audio drum transcription
system. In Proceedings of the Sound and Music Computing
Conference (SMC 2013), pages 402–407, 2013.

[15] M. Miron, M. E. P. Davies, and Fabien Gouyon. An
open-source drum transcription system for Pure Data and
Max MSP. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2013), pages 221–
225. IEEE, 2013.

[16] Y. Ni, M. McVicar, R. Santos-Rodriguez, and T. De Bie. An
end-to-end machine learning system for harmonic analysis of
music. IEEE Transactions on Audio, Speech, and Language
Processing, 20(6):1771–1783, 2012.

[17] E. Pampalk, A. Flexer, and G. Widmer. Improvements of
audio-based music similarity and genre classificaton. In Pro-
ceedings of the 6th International Conference on Music Infor-
mation Retrieval, pages 634–637, 2005.

[18] J. Paulus and A. Klapuri. Drum sound detection in poly-
phonic music with hidden Markov models. EURASIP Journal
on Audio, Speech, and Music Processing, 2009:14, 2009.

[19] J. K. Paulus and A. P. Klapuri. Conventional and periodic n-
grams in the transcription of drum sequences. In Proceed-
ings of the International Conference on Multimedia and Expo
(ICME 2003), volume 2, pages II–737. IEEE, 2003.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
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ABSTRACT

The perception of tonal structure in music seems to be

rooted both in low-level perceptual mechanisms and in en-

culturation, the latter accounting for cross-cultural differ-

ences in perceived tonal structure. Unsupervised machine

learning methods are a powerful tool for studying how mu-

sical concepts may emerge from exposure to music. In

this paper, we investigate to what degree tonal structure

can be learned from musical data by unsupervised training

of a Restricted Boltzmann Machine, a generative stochas-

tic neural network. We show that even based on a lim-

ited set of musical data, the model learns several aspects

of tonal structure. Firstly, the model learns an organiza-

tion of musical material from different keys that conveys

the topology of the circle of fifths (CoF). Although such a

topology can be learned using principal component analy-

sis (PCA) when using pitch-only representations, we found

that using a pitch-duration representation impedes the ex-

traction of the CoF topology much more for PCA than

for the RBM. Furthermore, we replicate probe-tone exper-

iments by Krumhansl and Shepard, measuring the organi-

zation of tones within a key in human perception. We find

that the responses of the RBM share qualitative character-

istics with those of both trained and untrained listeners.

1. INTRODUCTION

Modern approaches in music theory recognize that tonal-

ity can be broadly described as the organization of pitch

classes into a hierarchical structure of tensions-relaxations

around a tonal axis [10,15,16]. This conception of tonality

is not limited to western tonal classical music, but can also

be applied to modal music, popular music (e.g. jazz, rock)

and non-western folk music [3]. This notion of tonality is

not only a music theoretic construct: perceptual processing

of musical stimuli in human listeners has been found to ex-

hibit this type of organization as well [10]. Specific types

of hierarchical organization of pitch classes are partly ex-

plained by acoustic attributes of pitch, especially the con-

sonance between pairs of pitches [10], suggesting that low-

c© Carlos Eduardo Cancino Chacón, Stefan Lattner,

Maarten Grachten.

Licensed under a Creative Commons Attribution 4.0 International Li-
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level processing of acoustic stimuli may be relevant for the

perception of tonal structure.

However, tonal structure is not only reflected in the phys-

ical attributes of pitch, it is also manifest in the statistical

properties of music, such as the duration and frequency of

occurrence of pitches [17], as illustrated in Figure 1. As

Saffran et al. have shown [14], human listeners (including

infants) are sensitive to such statistical regularities, and this

leads to the view that tonal perception may be shaped by

(long time) exposure to music exhibiting statistical regular-

ities regarding frequency of occurrence of pitches, rhyth-

mic emphasis, the position of occurrence within musical

phrases, and possibly other aspects [9].

It is this process, the formation of tonal structure through

exposure to musical stimuli, that we focus on in this paper.

We choose a particularly straightforward approach, using

a Restricted Boltzmann Machine (RBM) [6] to learn the

probability distribution of melodic sequences, represented

as n-grams of notes. In a first explorative experiment, we

examine to what degree the feature space learned by the

RBM is musically meaningful. Using the resemblance of

the feature space to the circle of fifths as a quantitative cri-

terion, we investigate the impact of the n-gram length, and

compare pitch-only input representations to input repre-

sentations that include both pitch and duration. In a second

experiment, we use the RBM to simulate listener ratings in

a probe tone test, and compare the results to ratings from

human listeners of different skill levels.

The structure of the paper is as follows: In Section 2, we

discuss prior work on the induction of tonal structure us-

ing computational models. Section 3 relates the different

aspects of the unsupervised learning task to various per-

ceptual mechanisms that are assumed to be at play in the

perception of tonal structure. Section 4 briefly describes

the RBM model, the data used for training the model, and

representation of the data. The experiments on tonal or-

ganization and the organization of pitches are described in

Sections 5 and 6, respectively. Conclusions and future di-

rections are presented in Section 7.

2. RELATED WORK

The idea of studying the perception of tonal structure by

using computational models to simulate the enculturation

process is not new. For example, Tillmann et al. [18] use

a hierarchical self-organizing map (SOM) [8] to learn rep-

resentations of tonal structure from pitch-class representa-

tions of chord sequences. They find that their model is able
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to develop an organization comparable to that of empirical

data gathered from various studies on human perception

of tonality. Leman [12] presents an alternative approach

to modeling the perception of tonality. He employs a psy-

choacoustic model in combination with a SOM to learn

tonal representations starting from acoustic data. Further-

more, Toiviainen & Krumhansl examined the perception

of musical scales by projecting human ratings to the fea-

ture space of a SOM, which was trained on scale profiles

of Krumhansl [19].

A commonality among the mentioned works is the choice

of the self-organizing map as a model for accommodating

the learning process. The reason for this preference may

be that both the spatial mapping of the data, and the com-

petitive learning algorithm employed by the SOM, are bi-

ologically plausible characteristics of the human sensory

cortex [7]. The RBM model used in the work presented

here, is not explicitly presented as (nor was it designed to

be) a biologically plausible model of learning in the brain.

Nevertheless RBMs and deep belief nets based on RBMs,

in combination with sparseness constraints on the activa-

tion of hidden units, are able to learn features from vi-

sual data that strongly resemble receptive fields of neurons

in the visual cortex [11]. As such, RBMs prove to be a

valid computational modeling approach for learning bio-

logically plausible representations from musical data.

A fundamental difference between SOMs and RBMs

is that in the former, the hidden units represent points in

an explicitly defined low-dimensional feature space. In

RBMs, the feature space is defined by the set of all possi-

ble combinations of hidden unit activations, such that each

hidden unit represents a dimension of the feature space.

This allows for representations of data instances as a (non-

linear) combination of features. The topology of this high-

dimensional feature space can be visualized in a 2-D space

using PCA.

3. PERCEPTUAL MECHANISMS

As argued by Smith and Schmuckler [17], perceptual pro-

cesses like discrimination, differentiation and organization
play an important role in the perception of musical tonality.

In this Section, we will briefly describe these processes,

and show how they can be related to formal aspects of the

computational modeling methods, such as the choice of

input data representation, and the topology of the feature

space being learned.

Perceptual discrimination refers to the sensitivity of a

system to differences along some perceivable stimulus di-

mension. In computational learning models, this relates

to the form of input data representation. In general, the

type of relevant input features depends heavily on the re-

spective learning task [1]. Musical data comprises much

context-dependent information that can not be trivially in-

ferred from low-level representations. To decide on an ap-

propriate representation is thus not always an easy task.

For instance, pitch content can be represented in several

ways, such as frequency spectra, MIDI note numbers, or

pitch classes. In our current experiments, we use MIDI

note numbers as well as pitch class representations. Dura-

tion is encoded separately from pitch. An advantage of this

over combined pitch-duration representations (e.g. piano-

roll notation) is that the n-gram size is specified in the num-

ber of notes, rather than an absolute time interval. This al-

lows for comparing pitch-only to pitch-duration represen-

tations. The input data will be referred to as Input Space

(IS), and will be described in more detail in Section 4.3.

Differentiation is a higher order ability that refers to the

segregation of the perceived stimuli into elements on the

basis of its discriminable differences [17]. In an unsuper-

vised model we can identify this ability as the capacity of

the system to segregate the data in the IS into clusters in the

Feature Space (FS). In the context of tonality, an example

of differentiation would be the capacity of an unsupervised

model to cluster the data in the FS in such a way that each

cluster represents a musical key. A measure of quality of

this clustering would then be the variance of each cluster,

as smaller variances imply a better differentiation of the

data with respect to each class.

Organization builds on the concept of differentiation, as

it establishes relations between the differentiated elements,

as well as the nature of the relations themselves. In an

unsupervised model, this can be understood as the topol-

ogy of the FS. In this way, geometric features such as the

distance between clusters, as well as the relative position

between them can express similarity.

Bharucha [10, cited by Krumhansl] recognizes two types

of hierarchies regarding musical tonality. Event hierar-
chies refer to the functional significance of single note events

in a specific musical context, while tonal hierarchies ac-

count for the abstract musical structure in a particular cul-

ture or genre, e.g. the functional significance of all ele-

ments of a pitch class relative to all other pitch classes.

In our case, we compare the organization of the data in

the FS to the circle of fifths, a well known music theoretical

construct that explains the relations and the neighborhood

of keys [15]. As a measure of quality we use the Procrustes

Distance (PD) [4] of the centroids of the clustered data in

the feature space with respect to the CoF.

4. METHODS

4.1 Restricted Boltzmann Machine

A Restricted Boltzmann Machine is a stochastic Neural

Network (NN) with two layers, a visible layer with units

v ∈ {0, 1}r and a hidden layer with units h ∈ {0, 1}q
[6]. The units of both layers are fully interconnected with

weights W ∈ R
r×q , while there are no connections be-

tween the units within a layer. Given a visible vector v,

the free energy of the model can be calculated as:

F(v) = −aᵀv −
∑
i

log
(
1 + e(bi+Wiv)

)
, (1)

where a ∈ R
r and b ∈ R

q are bias vectors, and Wi is the

i-th row of the weight matrix.

Given v, a sample of h can be obtained from its condi-

tional activation probability, given by:
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Figure 1. Occurrence and duration distributions of the

fugues from Bach’s Well Tempered Clavier.

p(h = 1 | v) = σ (b+ (vᵀW)ᵀ) , (2)

where σ(x) = 1/(1+e−x) is the logistic sigmoid function.

In experiment 1, we consider the conditional activation

probability of vector h as the result of the projection of

v into the FS. In the second experiment, we calculate the

energy using Eq. (1).

4.1.1 Training

We train the model with 200 hidden units for 1000 epochs

with Contrastive Divergence (CD) [6], using 3 Gibbs sam-

pling steps and a mini-batch size of 500 for the weight up-

dates. The learning rate is set to 0.01 and the momentum

to 0.3. These parameters were empirically selected accord-

ing to the rules of thumb suggested by Hinton in [5]. In

addition, we use the well-known L2 weight-decay regular-

ization which penalizes large weight coefficients.

Based on properties of neural coding, sparsity and se-

lectivity can be used as constraints for the optimization of

the training algorithm [2]. Sparsity encourages competi-

tion between hidden units, and selectivity prevents over-

dominance by any individual unit. These constraints are

used in our training, with a linear falloff of its influence

over the first 200 epochs from 50% to 30%.

4.2 Training Corpus

J. S. Bach’s Well Tempered Clavier (WTC), composed be-

tween 1722 and 1742, is widely recognized as one of the

most influential works in music history [15]. It is also

one of the most important works that systematically spans

the whole range of major and minor keys, and is therefore

well-suited for experiments on tonality. In this paper, we

use MIDI versions of the 48 fugues of the WTC as corpus,

encoded by David Huron and taken from the KernScores

website (http://kern.ccarh.org). Each fugue is decomposed

into its voices (two to five), and we consider each voice

as a single monophonic melody in its respective key. In

Figure 1, the distributions of the occurrence and duration

of the notes of the WTC are shown. These distributions are

similar to the key profiles by Krumhansl & Kessler [19].

Figure 2. Twelve random pitch-duration training instances

of the WTC corpus as 20-grams before linearization. Notes

are ordered horizontally, the vertical dimension accounts

for pitch and duration values, respectively. The left part

of each instance shows the one-out-of-m pitch representa-

tion of 20 consecutive notes, the right part shows the cor-

responding duration representation.

. . . h

W

. . . . . . · · · . . . v

. . . stst−n+1 st−n+2

Figure 3. The RBM architecture used. An input vector v
is constituted by a linearized n-gram, where sj is a binary

representation of note j.

4.3 Input Representation

From the monophonic melodies, we construct a set of n-

grams by using a sliding window of size n and a step size

of 1. Depending on the experiment, we either use only

pitch information, or we use both the pitch and duration of

the notes. In the first case, an n-gram is a concatenation

of n bit vectors of size m, where the i-th bit vector is a

one-out-of-m representation of the pitch of note i.
In the second case, n additional vectors are added to

the n-gram, where the i-th vector now represents the du-

ration of the i-th note (see the right half of the instances

shown in Figure 2). Such a duration vector is constructed

by quantizing all durations of a melody into 12 bins and

by relating each of those to one of 12 units. A duration

that falls into bin k is represented by activating units 1 to

k. After linearization, the resulting n-gram constitutes the

visible vector v, as illustrated in Figure 3.

5. TONAL ORGANIZATION

In this experiment, we examine the ability of an RBM to

learn tonal relationships between n-grams. To that end, we

project the FS learned by the RBM into a two-dimensional

space using Randomized Principal Component Analysis

(rPCA) [13]. As the CoF is the underlying music the-

oretical construct for the relationships between keys, we

are interested to what degree we can approximate the CoF

topology. As a baseline, we compare this projection to a

direct projection of the IS, again using rPCA.

5.1 Training

We encode the WTC corpus as described in 4.3. As keys

are characterized by distributions of pitch classes, the pitch

range is set to m = 12. In order to examine the organiza-

tion ability of the RBM under different settings, we use

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

197



Randomized PCA on Feature Space

PC 1

P
C

 2

Figure 4. 2-D visualization of n-grams in the FS using

rPCA. N-grams belonging to a key have the same color,

each centroid is marked with the corresponding cluster’s

key label. (Best viewed in color)

P
ro

cr
u
st

e
s 

d
is

ta
n
ce

 t
o
 C

ir
cl

e
 o

f 
F
if
th

N-gram length

Input Space, pitch

Input Space, pitch-duration

Feature Space, pitch

Feature Space, pitch-duration

Figure 5. The average Procrustes Distances from major

key centroids to the major CoF of 5 runs for different n-

gram lengths after rPCA on the IS and on the FS. pitch and

pitch-duration representations are used as input.

n-grams of various lengths, and also compare pitch and

pitch-duration representations.

5.2 Evaluation

We use rPCA to project all n-grams in both the IS and the

FS into a two-dimensional space. In this space, for each

key we determine the mean of all n-grams created from

pieces in that key. The organization of those centroids is

then compared to the organization of keys in the CoF by

computing the PD of both shapes, separately for major and

minor keys. To make different expansions of data points in

space comparable, the PD is finally divided by the perime-

ter of the target CoF.

5.3 Results and Discussion

Figure 4 shows the organization of n-grams in the FS. Clus-

ter centers are organized similarly to how keys are orga-

nized in the CoF, which is consistent with the representa-

tions of the probe tone ratings obtained by Krumhansl and

Kessler [9,10]. Note that relative minors tend to be shifted

counterclockwise with respect to their major counterparts.

This occurs in Krumhansl’s results as well [10, pp. 43], and

can be explained by two factors, namely the alteration of

the sixth degree in the melodic minor scale, which is iden-

tical to the seventh degree of the dominant of the relative

major counterpart (e.g. the melodic Am scale shares the F#

with the G major scale, the dominant of C major), and due

to the tonal modulations concerning the form of the piece

(e.g. fugues in minor keys tend to have certain passages in

the relative major, while fugues in major keys tend to have

passages in both the relative minor and the dominant).

Figure 5 shows, that the Procrustes Distance to the CoF

tends to stabilize at a minimum with an n-gram length of

about nine. This can be explained by the fact that n-grams

of that length contain enough information to obtain the re-

spective distribution of a key well enough. Adding dura-

tion information clearly impedes the organization of clus-

ters in a CoF topology. As the occurrence of notes in the

WTC is strongly correlated to their absolute duration (see

Figure 1), and rhythmic information is not directly linked

to the CoF organization, this is not unexpected. Interest-

ingly, for larger n-gram sizes the FS of the RBM is not dis-

rupted as much by the inclusion of distractive information

as the rPCA on the IS.

6. ORGANIZATION OF PITCHES

A probe-tone test, proposed by Krumhansl et al. [9, 10],

consists of a set of musical stimuli (such as scales, chord

cadences, or musical pieces) that unambiguously instanti-

ate a specific key, and a set of probe tones, typically the set

of 12 pitch classes. Listeners are then required to rate on

a numerical scale, from 1 (“very bad”) to 7 (“very good”),

how well the probe tones fit the musical stimulus. In order

to explore the hierarchical event organization of pitches in-

duced by the RBM, we compare our model with a partic-

ular probe tone test conducted by Krumhansl and Shep-

ard [10, cited by Krumhansl]. In this specific experiment,

the musical stimulus consisted of an incomplete C major

scale (in both ascending and descending contexts), and lis-

teners were asked to give a numerical rating of the degree

to which each probe tone fits the scale. The stimuli of this

particular setup are illustrated in part Figure 6 a), while the

probe tones are shown in Figure 6 c). The participants of

the experiment were divided in three groups according to

their number of years of formal musical training.

6.1 Training

As we are only interested in the ability of the model to

learn tonal hierarchies in major and minor mode, we trans-

pose all melodies to C major and C minor, respectively. In

order to remain consistent with the aforementioned exper-

iment of Krumhansl & Shepard, rather than using pitch-

classes, we allow the training data to be in a range of three

octaves, ranging from MIDI pitch numbers 48 to 74 (such

that both the stimuli and the probe tones can be represented
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Figure 6. Stimuli/probe tones used in the probe-tone test.

without wrapping). Most of the n-grams of the transposed

WTC data fall in that range, or can be transposed octave-

wise to fall in that range. N-grams for which this is not

possible are ignored.

Since the fugues from the WTC contain certain tonal

modulations, in order to train the RBM with prototypi-

cal examples of major and minor scales, all n-grams are

classified using the Krumhansl & Kessler key-finding algo-

rithm [10, cited by Krumhansl] and those whose annotated

key is not the same as that identified by the classifier (ca.

53% of the corpus) are removed. The training is executed

as described in 4.1.1.

6.2 Evaluation

Two different probe tone tests are conducted. The first test

aims to reproduce the setup by Krumhansl and Shepard,

and thus, the stimuli consist of the major ascending (start-

ing from C3) and descending scales (starting from C5)

shown in Figure 6 a). For the second experiment, the stim-

uli consist of ascending and descending major and melodic

minor scales, but this time both are generated in the middle

C octave, as shown in Figure 6 b). For both tests, the set

of probe tones consist of all notes of the chromatic scale

(starting from C4) as shown in Figure 6 c). We construct

n-grams of length 8, consisting of the 7 notes of the target

stimulus and a probe tone as the last note. This results in

visible vectors vpt of length 36×8. The free energy corre-

sponding to each combination of stimulus and probe tone

is calculated using Eq. (1). In order to compare our results

to those of human listeners, these energies are scaled using

an affine transformation as follows:

Judgment(vpt) = αF(vpt)− β, (3)

where the constants α, β are selected such that the mean

and the variance of the scaled energy are equal to those of

the judgments reported in [10].

6.3 Results and Discussion

Figure 7 shows the results of the probe tone test, and in

Table 1 the correlations of the RBM judgments with re-

spect to those of expert and untrained listeners are pre-

sented. These results suggest that the model can learn

some event hierarchy structures, such as the prevalence of

diatonic over chromatic notes, similar to the judgment of

Group r p-value

Expert ascending 0.7213 0.0054

Untrained ascending 0.7942 0.0012

Expert descending 0.7985 0.0011

Untrained descending 0.8344 0.0004

Table 1. Pearson correlations and p-values for the judg-

ments of the probe tone tests.

trained listeners. In addition, the model develops a sense

for melodic direction, preferring probe tones close to the

final notes of the stimulus, which is consistent with the

ratings of untrained listeners. Stimulated in the middle

octave, the model is able to distinguish major and minor

modes, especially the major and minor thirds reflect the

characteristics of the respective diatonic triads. The model

responses do not show explicit octave equivalence, since C

and C’ are not equally emphasized. Still it is interesting to

note that a stimulus in the lower octave has implications on

the pitch expectations in the middle octave, and that these

implications are in correspondence with the tonal hierar-

chy of the key implied by the stimulus.

7. CONCLUSION

In this paper we show that tonal structure can be learned

from musical data with an RBM using unsupervised train-

ing with a limited set of monophonic melodies. The model

is able to reproduce the topology of the CoF using pitch n-

gram representations of the input data. We found that for

successful inference of the CoF, a minimal n-gram length

of nine notes is needed, and that longer n-grams do not lead

to better representations. Furthermore, although duration

information profoundly disturbs the learning of tonal struc-

ture through the baseline rPCA method, the RBM model is

less affected by distracting duration information.

By way of a probe tone test, we explored the organiza-

tion of pitches in the context of major and minor modes.

Our results show the model was able to learn several as-

pects of tonal structure, in particular the hierarchical preva-

lence of diatonic over chromatic tones. Comparing results

with Krumhansl’s probe tone experiments on human sub-

jects with different levels of musical training do not yield a

conclusive classification of the model: the model displays

aspects of both untrained and trained subjects.

An important feature of tonal perception in trained sub-

jects is octave equivalence. This feature was not well-

reproduced by the model. It is possible that a pre-condition

for octave-equivalence is the harmonic overlap of octaves.

In our current setup, the overtone structure of tones is not

represented. To test this hypothesis, we intend to investi-

gate whether using harmonic tone representations leads to

stronger octave-equivalence in the the model.

Furthermore we wish to investigate which factors in-

duce more expert-like perception of tonal structure. Pos-

sible factors include the size of the training data, and the

depth of the model (in terms of hidden layers).
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Figure 7. (Top) Comparison of the judgments for the probe tones between the RBM and human listeners for both ascending

(left) and descending (right) major stimulus in the lower and upper octave, respectively. (Bottom) Comparison of the

judgments for the probe tones of the RBM for both major and melodic minor stimulus in the middle octave. In all cases,

responses are measured in the middle octave.
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ABSTRACT

Synchronization of a score to an audio-visual music per-

formance recording is usually done by solving an audio-

to-MIDI alignment problem. In this paper, we focus on the

possibility to represent both the score and the performance

using information about which instrument is active at a

given time stamp. More specifically, we investigate to what

extent instrument-wise “playing” (P) and “non-playing”

(NP) labels are informative in the synchronization process

and what role the visual channel can have for the extraction

of P/NP labels. After introducing the P/NP-based repre-

sentation of the music piece, both at the score and perfor-

mance level, we define an efficient way of computing the

distance between the two representations, which serves as

input for the synchronization step based on dynamic time

warping. In parallel with assessing the effectiveness of the

proposed representation, we also study its robustness when

missing and/or erroneous labels occur. Our experimental

results show that P/NP-based music piece representation is

informative for performance-to-score synchronization and

may benefit the existing audio-only approaches.

1. INTRODUCTION AND RELATED WORK

Synchronizing an audio recording to a symbolic repre-

sentation of the performed musical score is beneficial to

many tasks and applications in the domains of music anal-

ysis, indexing and retrieval, like audio source separation

[4, 9], automatic accompaniment [2], sheet music-audio

identification [6] and music transcription [13]. As stated

in [7], “sheet music and audio recordings represent and

describe music on different semantic levels” thus making

them complementary for the functionalities they serve.

The need for effective and efficient solutions for audio-

score synchronization is especially present for genres like

symphonic classical music, for which the task remains

challenging due to the typically long duration of the pieces

and a high number of instruments involved [1]. The ex-

isting solutions usually turn this synchronization problem

c© Alessio Bazzica, Cynthia C. S. Liem, Alan Hanjalic.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Alessio Bazzica, Cynthia C. S. Liem,

Alan Hanjalic. “Exploiting Instrument-wise Playing/Non-Playing Labels

for Score Synchronization of Symphonic Music”, 15th International So-

ciety for Music Information Retrieval Conference, 2014.

Figure 1: An illustration of the representation of a symphonic
music piece using the matrix of playing/non-playing labels.

into an audio-to-audio alignment one [11], where the score

is rendered in audio form using its MIDI representation.

In this paper, we investigate whether sequences of play-

ing (P) and non-playing (NP) labels, extracted per instru-

ment continuously over time, can alternatively be used to

synchronize a recording of a music performance to a MIDI

file. At a given time stamp, the P (NP) label is assigned to

an instrument if it is (not) being played. If such labels are

available, a representation of the music piece as illustrated

in Figure 1 can be obtained: a matrix encoding the P/NP

“state” for different instruments occurring in the piece at

subsequent time stamps. Investigating the potential of this

representation for synchronization purposes, we will ad-

dress the following research questions:

• RQ1: How robust is P/NP-based synchronization in

case of erroneous or missing labels?

• RQ2: How does synchronizing P/NP labels behave

at different time resolutions?

We are particularly interested in this representation, as

P/NP information for orchestra musicians will also be

present in the signal information of a recording. While

such information will be hard to obtain from the au-

dio channel, it can be obtained from the visual channel.

Thus, in case an audio-visual performance is available,

using P/NP information opens up possibilities for video-

to-score synchronization as a means to solve a score-to-

performance synchronization problem.

The rest of the paper is structured as follows. In

Section 2, we formulate the performance-to-score syn-

chronization problem in terms of features based on P/NP

labels. Then, we explain how the P/NP matrix is con-

structed to represent the score (Section 3) and we elaborate

on the possibilities for extracting the P/NP matrix to rep-

resent the analyzed performance (Section 4). In Section 5

we propose an efficient method for solving the synchro-

nization problem. The experimental setup is described

in Section 6 and in Section 7 we report the results of our
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Figure 2: Example of a MPNP matrix with missing labels.

experimental assessment of the proposed synchronization

methodology and provide answers to our research ques-

tions. The discussion in Section 8 concludes the paper.

2. PROBLEM DEFINITION

Given an audio-visual recording of a performance and a

symbolic representation of the performed scores, we ad-

dress the problem of synchronizing these two resources by

exploiting information about the instruments which are ac-

tive over time.

Let L = {−1, 0, 1} be a set encoding the three la-

bels non-playing (NP), missing (X) and playing (P). Let

MPNP = {mij} be a matrix of NI × NT elements where

NI is the number of instruments and NT is the number

of time points at which the P/NP state is observed. The

value of mij ∈ L represents the state of the i-th instru-

ment observed at the j-th time point (1 ≤ i ≤ NI and

1 ≤ j ≤ NT). An example of MPNP is given in Figure 2.

We now assume that the matrices MAV
PNP and MS

PNP are

given and represent the P/NP information respectively ex-

tracted by the audio-visual recording and the sheet music.

The two matrices have the same number of rows and each

row is associated to each instrumental part. The number of

columns, i.e. observations over time, is in general different.

The synchronization problem can be then formulated as

the problem of finding a time map fsync : {1 . . . NAV
T } →

{1 . . . NS
T} linking the observation time points of the two

resources.

3. SCORE P/NP REPRESENTATION

For a given piece, we generate one P/NP matrix MS
PNP

for the score relying on the corresponding MIDI file as the

information source.

We start generating the representation of the score by

parsing the data of each available track in the given MIDI

file. Typically, one track per instrument is added and is

used as a symbolic representation of the instrumental part’s

score. More precisely, when there is more than one track

for the same instrument (e.g. Violin 1, Violin 2 - which

are two different instrumental parts), we keep both tracks

as separate. In the second step, we use a sliding window

that moves along the MIDI file and derive a P/NP label per

track and window position. A track receives a P label if

there is at least one note played within the window. We

work with the window in order to comply with the fact

that a played note has a beginning and end and therefore

lasts for an interval of time. In this sense, a played note

is registered when there is an overlap between the sliding

window and the play interval of that note.

The length of the window is selected such that short

rests within a musical phrase do not lead to misleading

P-NP-P switches. We namely consider a musician in the

“play” mode if she is within the “active” sequence of the

piece with respect to her instrumental part’s score, in-

dependently whether at some time stamps no notes are

played. In our experiments, we use a window length of

4 seconds which has been determined by empirical evalu-

ation, and a step-size of 1 second. This process generates

one label per track every second.

In order to generalize the parameter setting for window

length and offset, we also related them to the internal MIDI

file time unit. For this purpose, we set a reference value for

the tempo. Once the value is assigned, the sliding window

parameters are converted from seconds to beats. The eas-

iest choice is adopting a fixed value of tempo for every

performance. Alternatively, when an audio-visual record-

ing is available, the reference tempo can be estimated as

the number of beats in the MIDI file divided by the length

of the recording expressed in minutes. A detailed investi-

gation of different choices of the tempo is reported in [6].

4. PERFORMANCE P/NP REPRESENTATION

While an automated method could be thought of to extract

the P/NP matrix MAV
PNP from a given audio-visual record-

ing, developing such a method is beyond the scope of this

paper. Instead, our core focus is assessing the potential of

such a matrix for synchronization purposes, taking into ac-

count the fact that labels obtained from real-world data can

be noisy or even missing. We therefore deploy two strate-

gies which mimic the automated extraction of the MAV
PNP

matrices. We generate them: (i) artificially, by producing

(noisy) variations of the P/NP matrices derived from MIDI

files (Section 4.1), and (ii) more realistically, by deriving

the labels directly from the visual channel of a recording

in a semi-automatic way (Section 4.2).

4.1 Generating synthetic P/NP matrices

The first strategy produces synthetic P/NP matrices by an-

alyzing MIDI files as follows. Similarly to the process of

generating a P/NP matrix for the score, we apply a slid-

ing window to the MIDI file and extract labels per instru-

mental track at each window position. This time, however,

time is randomly warped, i.e. the sliding window moves

over time with non-constant velocity. More specifically,

we generate random time-warping functions by randomly

changing slope every 3 minutes and by adding a certain

amount of random noise in order to avoid perfect piecewise

linear functions. In a real audio-visual recording analysis

pipeline, we expect that erroneous and missing P/NP labels

will occur. Missing labels may occur if musicians cannot

be detected, e.g. because of occlusion or leaving the cam-

era’s angle of view in case of camera movement. In order

to simulate such sources of noise, we modify the gener-

ated P/NP tracks by randomly flipping and/or deleting pre-

determined amounts of labels at random positions of the

P/NP matrices.
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Figure 3: Example of P/NP labels extracted from the visual channel (red dots) and compared to labels extracted by the score (blue line).

4.2 Obtaining P/NP matrices from a video recording

The second strategy more closely mimics the actual video

analysis process and involves a simple, but effective

method that we introduce for this purpose. In this method,

we build on the fact that video recordings of a symphonic

music piece are typically characterized by regular close-up

shots of different musicians. From the key frames rep-

resenting these shots, as illustrated by the examples in

Figure 4, it can be inferred whether they are using their

instrument at that time stamp or not, for instance by inves-

tigating their body pose [14].

Figure 4: Examples of body poses indicating playing/non-
playing state of a musician.

In the first step, a key frame is extracted every second

in order to produce one label per second, as in the case of

the scores. Faces are detected via off-the-shelf face detec-

tors and upper-body images are extracted by extending the

bounding box’s areas of face detector outputs. We clus-

ter the obtained images using low-level global features en-

coding color, shape and texture information. Clustering

is done using k-means with the goal to isolate images of

different musicians. In order to obtain high precision, we

choose a large value for k. As a result, we obtain clus-

ters mostly containing images of the same musician, but

also multiple clusters for the same musician. Noisy clus-

ters (those not dominated by a single musician) are dis-

carded, while the remaining are labeled by linking them to

the correspondent track of the MIDI file (according to the

musician’s instrument and position in the orchestra, i.e. the

instrumental part). In order to label the upper-body images

as P/NP, we generate sub-clusters using the same features

as those extracted in the previous (clustering) step. Us-

ing once again k-means, but now with k equal to 3 (one

cluster meant for P labels, one for NP and one extra label

for possible outliers), we build sub-clusters which we label

as either playing (P), non-playing (NP) or undefined (X).

Once the labels for every musician are obtained, they are

aggregated by instrumental part (e.g. the labels from all the

Violin 2 players are combined by majority voting). An ex-

ample of a P/NP subsequence extracted by visual analysis

is given in Figure 3.

5. SYNCHRONIZATION METHODOLOGY

In this section, we describe the synchronization strat-

egy used in our experiments. The general idea is to

compare configurations of P/NP labels for every pair of

performance-score time points and produce a distance ma-

trix. The latter can then serve as input into a synchroniza-

tion algorithm, for which we adopt the well-known dy-

namic time warping (DTW) principle. This implies we will

not be able to handle undefined amounts of repeats of parts

of the score. However, this is a general issue for DTW also

holding for existing synchronization approaches, which we

consider out of the scope of this paper.

In order to find the time map between performance and

score, we need to solve the problem of finding time links

between the given MAV
PNP and MS

PNP matrices. To this end,

we use a state-of-the-art DTW algorithm [12].

5.1 Computing the distance matrix

Ten Holt et. al. [12] compute the distance matrix through

the following steps: (i) both dimensions of the matrices

are normalized to have zero mean and unit variance, (ii)

optionally a Gaussian filter is applied, and (iii) pairs of

vectors are compared using the city block distance. In our

case, we take advantage of the fact that our matrices con-

tain values belonging to the finite set of 3 different integers,

namely the set L introduced in Section 2. This enables us

to propose an alternative, just as effective, but more effi-

cient method to compute the distance matrix.

Let mAV
j and mS

k be two column vectors respec-

tively belonging to MAV
PNP and MS

PNP . To measure how

(dis-)similar those two vectors are, we define a correlation
score sjk as follows:

sjk = corr(mAV
j ,mS

k) =

NI∑
i=1

mAV
ij ·mS

ik

From such definition, it follows that a pair of observed

matching labels add a positive unitary contribution. If the

observed labels do not match, the added contribution is

unitary and negative. Finally, if one or both labels are not

observed (i.e. at least one of them is X), the contribution is

0. Hence, it also holds−NI ≤ sjk ≤ +NI. The maximum

is reached only if the two vectors are equal. Correlation

scores can be efficiently computed as dot-product of the

given P/NP matrices, namely as (MAV
PNP)

MS
PNP.

The distance matrix D = {djk}, whose values are zero

when the compared vectors are equal, can now be com-

puted as djk = NI − sjk. As a result, D will have NAV
T
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noisy MPNP very noisy MPNP

Ten Holt et. al. our method Ten Holt et. al. our method

Table 1: Comparing our distance matrix definition to Ten Holt et. al. [12]. By visual inspection, we observe comparable alignment
performances. However, the computation of our distance matrix is much faster.

rows and NS
T columns. When the correlation is the highest,

namely equal to NI, the distance will be zero.

Our approach has two properties that make the com-

putation of D fast: D is computed via the dot product

and it contains integer values only (as opposed to stan-

dard methods based on real-valued distances). As shown

in Table 1, both the distance matrix proposed in [12] and

using our definition produce comparable results. Since our

method allows significantly faster computation (up to 40

times faster), we adopt it in our experiments.

5.2 Dynamic Time Warping

Once the distance matrix D is computed, the time map

between MAV
PNP and MS

PNP is determined by solving the

optimization problem: P 
 = argminP cost(D,P ) where

P = {(p� � p�+1)} is a path through the items of D
having a cost defined by the function cost(D,P ). More

specifically, p� = (iAV� , iS� ) is a coordinate of an ele-

ment in D. The cost function is defined as cost(D,P ) =∑|P |
�=1 diAV

� ,iS�
The aforementioned problem is efficiently

solved via dynamic programing using the well-known dy-

namic time warping (DTW) algorithm. Examples of P 


paths computed via DTW are shown in the figures of

Table 1.

Once P 
 is found, the time map fsync is computed

through the linear interpolation of the correspondences in

P 
, i.e. the set of coordinates {p
� = (iAV� , iS� )}. This map

allows to define correspondences between the two matri-

ces, as shown in the example of Figure 5.

Figure 5: Example of produced alignment between two fully-
observed MPNP matrices.

6. EXPERIMENTAL SETUP

In this section, we describe our experimental setup in-

cluding details about the dataset. In order to ensure the

reproducibility of the experiments, we release the code

and share the URLs of the analyzed freely available MIDI

files 1 .

We evaluate the performances of our method on a set

of 29 symphonic pieces composed by Beethoven, Mahler,

Mozart and Schubert. The dataset consists of 114 MIDI

files. Each MIDI file contains a number of tracks cor-

responding to different parts performed in a symphonic

piece. For instance, first and second violins are typically

encoded in two different parts (e.g. “Violin 1” and “Violin

2”). In such a case, we keep both tracks separate since mu-

sicians in the visual channel can be labeled according to

the score which they perform (and not just by their instru-

ment). We ensured that the MIDI files contain tracks which

are mutually synchronized (i.e. MIDI files of type 1). The

number of instrumental parts, or MIDI tracks, ranges be-

tween 7 and 31 and is distributed as shown in Figure 7.

Figure 7: Distribution of the number of instrumental parts across
performances in the data set.

For each MIDI file, we perform the following steps.

First, we generate one MS
PNP matrix using a fixed ref-

erence tempo of 100 BPM. The reason why we use the

same value for every piece is that we evaluate our method

on artificial warping paths, hence we do not need to

adapt the sliding window parameters to any actual perfor-

mance. Then we generate one random time-warping func-

tion which has two functions: (i) it is used as ground-truth

when evaluating the alignment performance, and (ii) it is

used to make one time-warped P/NP matrix MAV
PNP. The

latter is used as template to build noisy copies of MAV
PNP

and evaluate the robustness of our method. Each tem-

plate P/NP matrix is used to generate a set of noisy P/NP

matrices which are affected by different pre-determined

amounts of noise. We consider two sources of noise: mis-

taken and missing labels. For both sources, we generate

1 http://homepage.tudelft.nl/f8j6a/ISMIR2014baz.zip
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(a) Tolerance: 1 second. (b) Tolerance: 2 seconds. (c) Tolerance: 5 seconds.

Figure 6: Average matching rates as a function of the percentage of mistaken and/or missing labels at different tolerance thresholds.

the following percentages of noisy labels: 0% (noiseless),

2%, 5%, 10%, 20%, 30%, 40% and 50%. For every pair

of noise percentages, e.g. 5% mistaken + 10% missing,

we create 5 different noisy versions of the original P/NP

matrix 2 . Therefore, for each MIDI file, the final set of

matrices has the size 1 + (8× 8− 1)× 5 = 316. Overall,

we evaluate the temporal alignment of 316×114 = 36024
P/NP sequences.

For each pair of MPNP matrices to be aligned, we com-

pute the matching rate by sampling fsync and measuring

the distance from the true alignment. A match occurs when

the distance between linked time points is below a thresh-

old. In our experiments, we evaluate the matching rate us-

ing three different threshold values: 1, 2 and 5 seconds.

Finally, we apply the video-based P/NP label extrac-

tion strategy described in Section 4.2 to a multiple cam-

era video recording of the 4th movement of Symphony

no. 3 op. 55 of Beethoven performed by the Royal Con-

certgebouw Orchestra (The Netherlands). For this perfor-

mance, in which 54 musicians play 19 instrumental parts,

we use the MIDI file and the correspondent performance-

score temporal alignment file which are shared by the au-

thors of [8]. The latter is used as ground truth when evalu-

ating the synchronization performance.

7. RESULTS

In this section, we present the obtained results and pro-

vide answers to the research questions posed in Section 1.

We start by presenting in Figure 6 the computed matching

rates in 3 distinct matrices, one for each threshold value.

Given a threshold, the overall matching rates are reported

in an 8 × 8 matrix since we separately compute the aver-

age matching rate for each pair of mistaken-missing noise

rates. Overall, we see two expected effects: (i) the average

matching rate decreases for larger amounts of noise, and

(ii) the performance increases with the increasing thresh-

old. What was not expected is the fact that the best perfor-

mance is not obtained in the noiseless case. For instance,

when the threshold is 5 seconds, we obtained an average

matching rate of 81.7% in the noiseless case and 85.0%

in the case of 0% mistaken and 10% missing labels. One

possible explanation is that 10% missing labels could give

more “freedom” to the DTW algorithm than the noiseless

2 We do not add extra copies for the pair (0%,0%), i.e. the template
matrix.

case. Such freedom may lead to a better global optimiza-

tion. In order to fully understand the reported outcome,

however, further investigation is needed, which we leave

for future work.

As for our first research question, we conclude that the

alignment through P/NP sequences is more robust to miss-

ing labels than to mistaken ones. We show this by the fact

that the performance for 0% mistaken and 50% missing la-

bels are higher than in the opposite case, namely for 50%

mistaken and 0% missing labels. In general the best perfor-

mance is obtained for up to 10% mistaken and 30% miss-

ing labels.

In the second research question we address the behav-

ior at different time resolutions. Since labels are sampled

every second, it is clear why acceptable matching rates are

only obtained at coarse resolution (namely for a threshold

of 5 seconds).

Finally, we comment on the results obtained when syn-

chronizing through the P/NP labels assigned via visual

analysis. The P/NP matrix, shown in Figure 8a, is affected

by noise as follows: there are 53.95% missing and 8.65%

mistaken labels.

(a) MAV
PNP and MS

PNP (b) DTW

Figure 8: Real data example: P/NP labels by analysis of video

We immediately notice the large amount of missing la-

bels. This is mainly caused by the inability to infer a P/NP

label at those time points when all the musicians of a cer-

tain instrumental part are not recorded. Additionally, some

of the image clusters generated as described in Section 4.2

are not pure and hence labeled as X.

The obtained synchronization performance at 1, 2 and 5

seconds of tolerance are respectively 18.74%, 34.49% and

60.70%. This is in line with the results obtained with syn-

thetic data whose performance at 10% of mistaken labels

and 50% of missing for the three different tolerances are

24.3%, 44.2% and 65.9%. Carrying out the second exper-
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iment was also useful to get insight about the distribution

of missing labels. By inspecting Figure 8a, we notice that

such a type of noise is not randomly distributed. Some

musicians are sparsely observed over time hence leading

to missing labels patterns which differ from uniform dis-

tributed random noise.

8. DISCUSSION

In this paper, we presented a novel method to synchro-

nize score information of a symphonic piece to a perfor-

mance of this piece. In doing this, we used a simple feature

(the act of playing or not) which trivially is encoded in the

score, and feasibly can be obtained from the visual channel

of an audio-visual recording of the performance. Unique

about our approach is that both for the score and the perfor-

mance, we start from measuring individual musician con-

tributions, and only then aggregate up to the full ensemble

level to perform synchronization. This makes a case for us-

ing the visual channel of an audio-visual recording. In the

audio channel, which so far has predominantly been con-

sidered for score-to-performance synchronization, even if

separate microphones are used per instrument, different in-

struments will never be fully isolated from each other in a

realistic playing setting. Furthermore, audio source sep-

aration for polyphonic orchestral music is far from being

solved. However, in the visual channel, different players

are separated by default, up to the point that a first clarinet

player can be distinguished from a second clarinet player,

and individual contributions can be measured for both.

Our method still works at a rough time resolution, and

lacks the temporal sub-second precision of typical audio-

score synchronization methods. However, it is compu-

tationally inexpensive, and thus can quickly provide a

rough synchronization, in which individual instrumental

part contributions are automatically marked over time.

Consequently, interesting follow-up approaches could be

devised, in which cross- or multi- modal approaches might

lead to stronger solutions, as already argued in [3, 10].

For the problem of score synchronization, a logical next

step is to combine our analysis with typical audio-score

synchronization approaches, or approaches generally re-

lying on multiple synchronization methods, such as [5],

to investigate whether a combination of methods improves

the precision and efficiency of the synchronization proce-

dure. Our added visual information layer can further be

useful for e.g. devising structural performance characteris-

tics, e.g. the occurrence of repeats. Our general synchro-

nization results will also be useful for source separation

procedures, since the obtained P/NP annotations indicate

active sound-producing sources over time. Furthermore,

results of our method can serve applications focusing on

studying and learning about musical performances. We can

easily output an activity map or multidimensional time-

scrolling bar, visualizing which orchestra parts are active

over time in a performance. Information about expected

musical activity across sections can also help directing the

focus of an audience member towards dedicated players or

the full ensemble.

Finally, it will be interesting to investigate points where

P/NP information in the visual and score channel clearly

disagree. For example, in Figure 3, some time after the

flutist starts playing, there is a moment where the score

indicates a non-playing interval, while the flutist keeps a

playing pose. We hypothesize that this indicates that, while

a (long) rest is notated, the musical discourse actually still

continues. While this also will need further investigation,

this opens up new possibilities for research in performance

analysis and musical phrasing, broadening the potential

impact of this work even further.
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ABSTRACT

Melodic segmentation is a fundamental yet unsolved

problem in automatic music processing. At present most

melody segmentation models rely on a ‘single strategy’

(i.e. they model a single perceptual segmentation cue).

However, cognitive studies suggest that multiple cues need

to be considered. In this paper we thus propose and eval-

uate a ‘multi-strategy’ system to automatically segment

symbolically encoded melodies. Our system combines the

contribution of different single strategy boundary detection

models. First, it assesses the perceptual relevance of a gi-

ven boundary detection model for a given input melody;

then it uses the boundaries predicted by relevant detection

models to search for the most plausible segmentation of

the melody. We use our system to automatically segment a

corpus of instrumental and vocal folk melodies. We com-

pare the predictions to human annotated segments, and to

state of the art segmentation methods. Our results show

that our system outperforms the state-of-the-art in the in-

strumental set.

1. INTRODUCTION

In Music Information Retrieval (MIR), segmentation refers

to the task of dividing a musical fragment or a complete

piece into smaller cognitively-relevant units (such as notes,

motifs, phrases, or sections). Identifying musical segments

aids (and in some cases enables) many tasks in MIR, such

as searching and browsing large music collections, or vi-

sualising and summarising music. In MIR there are three

main tasks associated with music segmentation: (1) the

segmentation of musical audio recordings into notes, as

part of transcription systems, (2) the segmentation of sym-

bolic encodings of music into phrases, and (3) the segmen-

tation of both musical audio recordings and symbolic en-

codings into sections. In this paper we focus on the second

task, i.e. identifying segments resembling the musicolog-

ical concept of phrase. Currently automatic segmentation

of music into phrases deals mainly with monophony. Thus,

this area is commonly referred to as melody segmentation.

When targeting melodies, segmentation is usually re-

c© Marcelo Rodrı́guez-López, Anja Volk, Dimitrios Boun-

touridis.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Marcelo Rodrı́guez-López, Anja

Volk, Dimitrios Bountouridis. “MULTI-STRATEGY SEGMENTATION

OF MELODIES”, 15th International Society for Music Information Re-

trieval Conference, 2014.

duced to identifying segment boundaries, i.e. locate the

points in time where one segment transitions into an-

other. 1 Computer models of melody segmentation often

focus on modelling boundary cues, i.e. the musical factors

that have been observed or hypothesised to trigger human

perception of boundaries. Two common examples of boun-

dary cues are: (a) the perception of ‘gaps’ in a melody (e.g.

the sensation of a ‘temporal gap’ due to long note durations

or rests) and (b) the perception of repetitions (e.g. recog-

nising a melodic figure as a modified instance of a previ-

ously heard figure). The first cue mentioned is thought to

signal the end of phrases, and conversely the second one is

thought to signal the start of phrases.

Findings in melodic segment perception studies suggest

that, even in short melodic excerpts, listeners are able to

identify multiple cues, and what is more, that the role and

relative importance of these cues seems to be contextual

[3,6]. Yet, most computer models of melody segmentation

rely on a single strategy, meaning that they often focus on

modelling a single type of cue. For instance, [4] focuses on

modelling cues related only to melodic gaps, while [1, 5]

aim to modelling cues related only to melodic repetitions.

In this paper we propose and evaluate a multi-strategy
system that combines single strategy models of melodic

segmentation. In brief, our system first estimates the cues

(and hence the single strategy models) that might be more

‘relevant’ for the segmentation of a particular input me-

lody, combines the boundaries predicted by the models es-

timated relevant, and then selects which boundaries result

in the ‘most plausible’ segmentation of the input melody.

Contribution: first, we bring together single strategy

models that have not been previously tested in combina-

tion; second, our evaluation results show that our system

outperforms the state-of-the-art of melody segmentation in

instrumental folk songs.

The remainder of this paper is organised as follows:

§2 reviews music segmentation related work using multi-

strategy approaches, §3 presents a theoretical overview of

the proposed system, §4 describes implementation details

of the system, §5 describes and discusses our evaluation of

the system, and finally, §6 provides conclusions and out-

lines possibilities of future work.

1 Other subtasks associated to segmentation such as boundary pairing,
as well as labelling of segments, are not considered.
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2. RELATED WORK

Melody segmentation models often focus on modelling a

single cue (e.g. [1, 4, 5]), leaving only a handful of models

that have proposed ways to combine different cues. Per-

haps the best known multi-strategy model is Grouper [11],

which relies on three cues: temporal gaps, metrical par-

allelism, and segment length. Grouper employs temporal

gap detection heuristics to infer a set of candidate bound-

aries, and uses dynamic programming to find an ‘optimal’

segmentation given the candidate boundaries and two reg-

ularisation constraints (metrical parallelism and segment

length). Grouper constitutes the current state-of-the-art in

melodic segmentation. However, Grouper relies entirely

on temporal information, and as such might have difficul-

ties segmenting melodies with low rhythmic contrast or no

discernible metric.

Another multi-strategy model is ATTA [7], which

merges gap, metrical, and self-similarity related cues. In

ATTA the relative importance of each cue is assigned man-

ually, requiring the tuning of over 25 parameters. Param-

eter tuning in ATTA is time consuming (estimated to be
∼10 mins per melody in [7]). Moreover, the parameters

are non-adaptive (set at initialization), and thus make the

model potentially insensitive to changes in the relative im-

portance of a given cue during the course of a melody.

The main differences between the research discussed

and ours are: (a) our system integrates single strategy mod-

els that have not been previously used (and systematically

tested) in combination, and (b) our system provides ways

to select which single strategy models to use for a partic-

ular melody. In §5.3.2 we compare our system to the two

models that have consistently performed best in compara-

tive studies, namely Grouper [11] and LBDM [4]. 2

3. THEORETICAL OVERVIEW OF OUR SYSTEM

In this section we describe our system, depicted in Fig-

ure 1. In module 1, our system takes a group of single

strategy segmentation models (henceforth ‘cue models’),

selects which might be more relevant to segment the cur-

rent input melody, and combines the estimated boundary

locations into a single list. In module 2, the system as-

sesses the segmentation produced by combinations of the

selected boundary candidates in respect to corpus-learnt

priors on segment contour and segment length. Below we

describe in more detail the input/output characteristics of

our system, as well as each processing module.

3.1 Input/Output

The input to our system consists of a melody and a set

of boundaries predicted by cue models. The melody is

encoded as a sequence of temporally ordered note events

e = e1, . . . ei, . . . , en. In e each note event is represented

by its chromatic pitch and quantized duration (onset, off-

set) values. The output of our system is a set of ‘opti-

mum’ boundary locations bopt of length m, constituting

2 The manual tuning feature of ATTA made it impossible to include it
in our evaluation.
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Figure 1. General diagram of our system. Within the mod-

ules � = input elements, and � = processing stages.

a set of segments Sopt = {si}1≤i<m, where each segment

si = [bi, bi+1) .

3.1.1 Cue Models Characteristics

Each cue model transforms e into a set of sequences, each

representing a melodic attribute (e.g. pitch class, inter-

onset-interval, etc.). The specific set of attribute sequen-

ces produced by each cue model used within our system is

discussed in §4.2. Each cue model processes the attribute

sequences linearly, moving in steps of one event, produc-

ing a boundary strength profile. A boundary strength pro-

file is simply a normalized vector of length n, where each

element value encodes the strength with which a cue mo-

del ‘perceives’ a boundary at the temporal location of the

element. In these profiles segment boundaries correspond

to local maxima, and thus candidate boundary locations

are obtained via peak selection. The method used to select

peaks is discussed in §4.2.

3.2 Module 1: Multiple-Cue Boundary Detection

Module 1 takes as input a set of features describing the

melody, and a set of boundary locations predicted by cue

models. Module 1 is comprised of two processing stages,

namely ‘cue relevance prediction’ and ‘voting scheme’.

The first uses the input melodic features to estimate the

‘relevance’ of a given cue for the perception of boundaries

in the input melody, and the second merges and filters the

predicted boundary locations.

3.2.1 Cue Relevance Prediction

For a given set of k cue models C = {ci}1≤i≤k,

and a set of h features describing the melodies F =
{fj}1≤j≤h, we need to estimate how well a given cue mo-

del might perform under a given performance measure M
as P (M |Ci, Fj). In this paper we use the common F1,

precision, and recall measures to evaluate performance

(see §5.2). In module 1 we focus on predicting a cue mo-

del’s precision (assuming high recall can be achieved by

the combined set of candidate boundaries).

3.2.2 Voting Scheme

Once we have estimated the relevance value of each cue

model for the input melody P (M |Ci, Fj), we combine the
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candidate boundaries by simply adding the relevance val-

ues of candidate boundaries in close proximity (i.e. ±1
note event apart). We assume that if boundaries from dif-

ferent cues are located ±1 note event apart, one of them

might be identifying a beginning and the other an end of

segment, and thus for the processing in module 2 is bene-

ficial to keep both.

The final output of this module is a single list of boun-

dary locations b, each boundary with its own relevance

value.

3.3 Module 2: Optimality-Based Segment Formation

Module 2 takes as input b, e, and length/contour 3 priors

computed from a melodic corpus. The task of this module

is to find the ‘most plausible’ set of segments Sopt from

the space of all possible candidate segmentations. The

idea is to evaluate segmentations according to two em-

pirical constraints: one, melodic segments tend to show

small deviations from a ‘typical’ segment length, and two,

melodic segments tend to show a reduced set of prototypi-

cal melodic contour shapes. We address the task of finding

the most plausible set of segments given these two con-

straints as an optimisation problem. Thus, for a given can-

didate segmentation Sc = {si}1≤i<t, derived from a sub-

set of t candidate boundaries c ∈ b, where si = [ci, ci+1),
our cost function is defined as:

C(Sc) =
t−1∑
i=1

T (si) (1)

with

T (si) = Φ(si) + α(Υ(si) + Ψ(si)) (2)

Where,

• Φ(si) is the cost associated to each candidate boun-

dary demarcating si (i.e. the inverse of the relevance

value of each candidate boundary).

• Υ(si) is a cost associated to the deviation of sk from

an expected phrase contour. The cost of Υ(si) is

computed as −log(·) of the probability of the con-

tour of the candidate phrase segment si.

• Ψ(si) is a cost of the deviation from the length of

si from an expected length. The cost of Ψ(si) is

computed as −log(·) of the probability of the length

of the candidate phrase segment si.

• α is a user defined parameter that balances the boun-

dary related costs against the segment related costs.

Details for the computation of Sopt and priors on segment

length/contour are given in §4.4.

3 Melodic contour can be seen as an overall temporal development of
pitch height

4. SYSTEM IMPLEMENTATION

In this section we first describe the selection and tuning of

the cue models used within our system, then provide some

details on the implementation of modules 1 and 2.

4.1 Cue Models: Selection

We selected and implemented four cue models based

on two conditions: (a) the models have shown relatively

high performance in previous studies, (b) the cues mod-

elled have been identified as being important for melody

segmentation within music cognition studies. All imple-

mented models follow the same processing chain, de-

scribed in §3.1, i.e. each model derives a set of melodic

attribute sequences, processes each sequence linearly, and

outputs a boundary strength profile bsp. Below we list and

briefly describe the cue models used within our system.

CM1 - gap detection: Melodic gap cues are assumed to

correspond to points of significant local change, e.g. a pitch

or duration interval that is perceived as ‘overly large’ in

respect to its immediate vicinity. We implemented a model

of melodic gap detection based on [4]. The model uses a

distance metric to measure local change, 4 and generates

a bsp where peaks correspond to large distances between

contiguous melodic events. Large local distances are taken

as boundary candidates.

CM2 - contrast detection: Melodic contrast cues are as-

sumed to correspond to points of significant change (which

require a mid-to-large temporal scale to be perceptually

discernible), e.g. a change in melodic pace, or a change of

mode. We implemented a contrast detection model based

on [9]. The model employs a probabilistic representation

of melodic attributes and uses an information-theoretic di-

vergence measure to determine contrast. The model gener-

ates a bsp where peaks correspond to large divergences be-

tween attribute distributions representing contiguous sec-

tions of the melody. The model identifies boundaries by

recursively locating points of maximal divergence.

CM3 - repetition detection: Melodic repetition cues are

assumed to correspond to salient (exact or approximate)

repetitions of melodic material. We implemented a model

to locate salient repeated fragments of a melody based on

[5]. The model uses an exact-match string pattern search

algorithm to extract repeated melodic fragments, and in-

cludes a method to score the salience of repetitions based

on the length, frequency, and temporal overlap of the ex-

tracted fragments. The model generates a bsp where peaks

correspond to the starting points of salient repetitions.

CM4 - closure detection: Tonal closure cues are assumed

to correspond to points where an ongoing cognitive process

of melodic expectation is disrupted. One way in which

expectation of continuation might be disrupted is when a

melodic event following a given context is unexpected. We

implemented an unexpected-event detection model based

on [8]. 5 The model employs unsupervised probabilistic

4 The model employs both pitch and temporal information, but in our
tests only temporal information is used

5 Our implementation is however less sophisticated than that of [8], as
it requires the user to provide an upper limit for context length (specifed
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learning and prediction to measure the degree of unexpect-

edness of each note event in the input melody, given a fi-

nite preceding context. The model generates a bsp where

peaks correspond to significant increases in (information-

theoretic) surprise. Candidate boundaries are placed before

surprising note events.

4.2 Cue Models: Tuning

We tuned the cue models used within our system to achieve

maximal precision. This involved a selection of melody

representation (choice of melodic attribute sequences to be

processed), 6 tuning of parameters exclusive to the cue mo-

del, and choice and tuning of a peak selection mechanism.

The choice of attribute sequence selection and parame-

ter tuning per cue model is listed in Table 1. The abbrevi-

ations of melodic attributes correspond to: cp: chromatic

pitch, ioi: inter onset interval, ooi: onset to offset in-

terval, cpiv: chromatic pitch interval, pcls: pitch class.

To select peaks as boundary candidates, we experimented

with several peak selection algorithms, settling for the al-

gorithm proposed in [8]. 7 This peak selection algorithm

has only one parameter k. The optimal values of k for

each cue model are given in the rightmost column of Ta-

ble 1. We also provide details on the choice of parameters

exclusive to each cue model, for an elaboration on their in-

terpretation we refer the reader to the original publications.

Cue model attribute sequence set parameters

CM1 {cpiv, ioi, ooi} k = 2

CM2 {pcls, ioi} -

CM3 {cp, ioi} F = 3

L = 3

O = 1

k = 3

CM4 {cp, pcls, cpiv} PPM-C, with exclusion

STM: order 5

LTM: order 2

LTM: 400 EFSC melodies

k = 2.5

Table 1. Attributes and parameter settings of cue models.

4.3 Module 1: Predictors and Feature Selection

To evaluate cue relevance prediction, we first select a sub-

set of 200 boundary annotated melodies from the melodic

corpora used in this paper (see §5.1), and then run the cue

models to obtain precision performance values for each

melody. To allow an estimation of precision we partition

its range into a discrete set of categories. 8

as the Markov order in Table 1).
6 While some cue models, e.g. [4, 11] have already a preferred choice

of melodic attribute representation, the other cue models used within our
system allow for many choices, and where thus selected through experi-
mental exploration.

7 This algorithm proved to work better than the alternatives for all
models but CM3, for which its own peak selection heuristic worked best.

8 In our experiments we used a set dividing a model’s precision
into two categories (1:poor, 2:good). The exact mapping precision :
[0, 1] → {1, 2} was selected manually for each cue model, to ensure a
sufficient number of melodies representing each performance category is
available for training.

To determine cue relevance prediction, we experimented

with several off-the-shelf classifiers available as part of

Weka 9 . We selected features using the common BestFirst
with a 10-fold cross validation. The selected features were

those used in all folds.

The melodic features used to predict precision by the

classifiers where taken from the Fantastic 10 and jSym-
bolic 11 feature extractor libraries, which add up to over

200. After selection, 17 features are kept: ‘melody length’,

‘pitch standard deviation, skewness, kurtosis, and entropy’,

‘pitch interval standard deviation, skewness, kurtosis, and

entropy’, ‘duration standard deviation, skewness, kurtosis,

and entropy’, ‘tonal clarity’, ‘m-type mean entropy’, ‘m-

type Simpson’s D’, ‘m-type productivity’ (please refer to

the Fantastic library documentation for definitions).

The classifiers we experimented with are Sequential Min-

imal Optimization (SMO, with the radial basis function

kernel), K-Nearest Neighbours (K*) and Bayesian Network

(BNet). To evaluate each classifier we use 10-fold cross

validation. The classifier with the best performance-to-

efficiency ratio is SMO for models CM2-CM4, with an av-

erage accuracy of 72.21%, and the simple K* for CM1 with

an average accuracy of 66.37%.

4.4 Module 2: Computation of Priors and Choice of α

To compute the optimal sequence of segments Sopt we

minimise the cost function in Eq. 1 using a formulation of

the Viterbi algorithm based on [10]. The minimisation of

Eq. 1 is subject to constraints on segment contour and seg-

ment length, and to a choice for parameter α. We tuned α
manually (a value of 0.6 worked best in our experiments).

To model constraints in segment contour and segment len-

gth we use probability priors. Below we provide details on

their computation.

A prior P (contour(sk)) is computed employing a

Gaussian Mixture Model (GMM). Phrase contours are

computed using the polynomial contour feature of the Fan-

tastic library. A contour model with four nodes was se-

lected. The GMM (one Gaussian per node) is fitted to con-

tour distributions obtained from a subset of 1000 phrases

selected randomly from the boundary annotated corpora

used in this paper (see §5.1).

A prior of segment length P (lk) is computed employing

a Gaussian fitted to a distribution of lengths obtained from

the same 1000 phrase subset used to derive contours.

5. EVALUATION

In this section we describe our test database and evaluation

metrics, and subsequently describe experiments and results

obtained by our system. A prototype of our system was im-

plemented using a combination of Matlab, R, and Python.

Source files and test data are available upon request.

9 http://www.cs.waikato.ac.nz/ml/weka/
10 http://www.doc.gold.ac.uk/∼mas03dm/
11 http://jmir.sourceforge.net/jSymbolic.html
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5.1 Melodic Corpora

To evaluate our system we employed a set of 100 instru-

mental folk songs randomly sampled from the Liederen-

bank collection 12 (LC) and 100 vocal folk songs randomly

sampled from the German subset of the Essen Folk Song

Collection 13 (EFSC). We chose to use the EFSC due to its

benchmark status in the field of melodic segmentation. Ad-

ditionally, we chose to use the LC to compare the perfor-

mance of segmentation models in vocal and non-vocal me-

lodies. 14

The EFSC consists of ∼6000 songs, mostly of German

origin. The EFSC data was compiled and encoded from

notated sources. The songs are available in EsAC and

**kern formats. The origin of phrase boundary markings

in the EFSC has not been explicitly documented (yet it is

commonly assumed markings coincide with breath marks

or phrase boundaries in the lyrics of the songs).

The instrumental (mainly fiddle) subset of the LC con-

sists of ∼2500 songs. The songs were compiled and en-

coded from notated sources. The songs are available in

MIDI and **kern formats. Segment boundary mark-

ings for this subset comprise two levels: ‘hard’ and ‘soft’.

Hard (section) boundary markings correspond with struc-

tural marks found in the notated sources. Soft (phrase)

boundary markings correspond to the musical intuition of

two experts annotators. 15

5.2 Evaluation Measures

To evaluate segmentation results, we encode both predicted

and human-annotated phrase boundary markings as binary

vectors. Using these vectors we compute the number of

true positives tp (hits), false positives fp (insertions), and

false negatives fn (misses). 16 We then quantify the simi-

larity between predictions and human annotations using

the well known F1 = 2·p·r
p+r

, where precision p = tp
tp+fp

and recall r = tp
tp+fn

. While the F1 has its downsides (it

assumes independence between boundaries), 17 it has been

used extensively in the field and thus allows us to establish

a comparison to previous research.

5.3 Experiments & Results

In our experiments we compare our system to the melody

segmentation models that have consistently scored best in

comparative studies: GROUPER [11] and LBDM [4]. The

first is a multi-strategy model, and the second a single stra-

12 http://www.liederenbank.nl/
13 http://www.esac-data.org
14 Vocal music has dominated previous evaluations of melodic segmen-

tation (especially large-scale evaluations), which might give an incom-
plete picture of the overall performance and generalisation capacity of
segmentation models

15 Instructions to annotate boundaries were related to performance prac-
tice (e.g. “where would you change movement of bow”).

16 The first and last boundaries are treated as trivial cases which cor-
respond, respectively, to the beginning and ending notes of a melodic
phrase. These trivial cases are excluded from the evaluation. Also, we
allow a tolerance of ±1 note event for the computation of tp.

17 By assuming independence between boundaries aspects such as seg-
ment length and position are discarded from the evaluation

tegy (gap detection) model. 18 We also compare our sys-

tem to its performance when only one module is active.

Additionally we compare to two naı̈ve baselines: always,

which predicts a segment boundary at every melodic event

position, and never which does not make predictions.

Table 2 shows the performance results of all models

over the instrumental and vocal melodic sets. We refer to

our model as COMPLETE, and to the configurations when

either module 1 or 2 are active as MOD1ON and MOD2ON,

respectively.

We tested the statistical significance of the paired F1

differences between the three configurations of our sys-

tem, the two state-of-the-art models, and the baselines. For

the statistical testing we used a non-parametric Friedman

test (α = 0.05). Furthermore, to determine which pairs

of measurements significantly differ, we conducted a post-

hoc Tukey HSD test. All pair-wise differences among con-

figurations were found to be statistically significant, except

those between MOD1ON and MOD2ON in the vocal set and

between LBDM and MOD2ON in the instrumental set. In

Table 2 the highest performances are highlighted in bold.

Database Instrumental Vocal

Model R P F1 R P F1

COMPLETE 0.56 0.62 0.54 0.49 0.67 0.56

GROUPER 0.81 0.31 0.44 0.60 0.62 0.61
LBDM 0.57 0.49 0.45 0.56 0.55 0.52

MOD2ON 0.51 0.49 0.44 0.48 0.45 0.47

MOD1ON 0.52 0.47 0.42 0.63 0.42 0.46

always 0.06 1.00 0.09 0.08 1.00 0.12

never 0.00 0.00 0.00 0.00 0.00 0.00

Table 2. Performance of models and baselines sorted in

order of mean recall R, precision P , and F1 for instrumen-

tal and vocal melodies. The results presented in this table

were obtained comparing predictions to the ‘soft’ boun-

dary markings of the LC.

5.3.1 Summary of Main Results

In general, F1 performances obtained by the segmentation

models in the vocal set are consistently higher than in the

instrumental set. This might be simply an indication that

in the instrumental set melodies constitute a more chal-

lenging evaluation scenario. However, the F1 differences

might also be an indication that relevant perceptual boun-

dary cues are not covered by the evaluated models.

In the instrumental set, COMPLETE outperforms both

LBDM and GROUPER by a relatively large margin (≥ 10%).

In the vocal set, on the other hand, GROUPER obtains the

best performance. Below we discuss the three configura-

tions of our system (COMPLETE, MOD1ON, MOD2ON).

5.3.2 Discussion

In both melodic sets MOD1ON shows considerably higher

recall than precision. These recall/precision differences

agree with intuition, since the output of MOD1ON con-

sists of the combination of all boundaries predicted by

18 For our tests we ran GROUPER and LBDM with their default settings.
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the cue models, and can hence be expected to contain a

relatively large number of false positives. On the other

hand, MOD2ON shows smaller differences between preci-

sion and recall values, and shows higher F1 performances

than MOD1ON in both melodic sets (although the differ-

ence between performances is significant only for the in-

strumental set). This last result highlights the robustness

of the optimisation procedure driving MOD2ON. 19

The large F1 differences between MOD1ON and

MOD2ON in respect to COMPLETE suggest that segmen-

tation at the phrase level is a perceptual process which, de-

spite happening in ‘real time’ (i.e. as music unfolds itself,

represented more closely by module 1), might still require

repeated exposure and retrospective listening (represented

more closely by module 2).

Manual examination COMPLETE reveals that, when seg-

menting the vocal melody set, the prediction stage of mo-

dule 1 tends to overestimate the importance of cue models

(i.e. it often misclassifies models as relevant when they are

not). However, when altering the settings of COMPLETE so

that the prediction stage of model 1 is more conservative

(i.e. so that it predicts fewer boundaries), there is no sig-

nificant improvement in performance. Closer analysis of

these results points to a trade-off in performance, i.e. while

a conservative setting increases precision (predictions have

fewer ‘false positives’), it also decreases recall (predictions

have fewer ‘correct positives’). This suggests that the pre-

diction stage of module 1 might require estimation of cue

relevance at a local level, i.e. on subsections of the melody

rather than on the whole melody.

6. CONCLUSION

In this paper we introduce a multi-strategy system for the

segmentation of symbolically encoded melodies. Our sys-

tem combines the contribution of single strategy models

of melody segmentation. The system works in two stages.

First, it estimates how relevant the boundaries computed by

each selected single strategy model are to the melody being

analysed, and then combines boundary predictions using

heuristics. Second, it assesses the segmentation produced

by combinations of the selected boundary candidates in re-

spect to corpus-learnt priors on segment contour and seg-

ment length.

We tested our system on 100 vocal and 100 instrumen-

tal folk song melodies. The performance of our system

showed a considerable (10% F1) improvement upon the

state-of-the-art in melody segmentation for instrumental

folk music, and showed to perform second best in the case

of vocal folk songs.

In future work we will test if the relevance of cue mod-

els can be accurately estimated for sections of the melody

(and not the whole melody as it is done in this paper). This

19 If we consider that (with MOD1ON bypassed) the number of candi-
date boundaries taken as input to MOD2ON often exceeds ‘correct’ (hu-
man annotated) boundaries by a factor 2 or 3, then the number of possible
segmentations of the melody shows an exponential increase, leading to lo-
cal minima issues, and so it would be reasonable to expect a performance
equal or worse than that of MOD1ON.

‘local’ account of relevance might play a major role in im-

proving the system’s precision. Also, we will incorporate a

more advanced model of prior segment knowledge of seg-

ment structure in our system. We hypothesise that a model

of the characteristics of [2] could constitute a good alterna-

tive to model not only segment length and contour, but also

to incorporate knowledge of ‘template’ phrase structure

forms. Lastly, we will continue testing our model’s gen-

eralisation capacity by evaluating on larger sample sizes

and genres other than folk (for the latter the authors are

currently in the process of annotating a corpus of Jazz me-

lodies).
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ABSTRACT

Schenkerian analysis, a kind of hierarchical music anal-

ysis, is widely used by music theorists. Though it is part of

the standard repertoire of analytical techniques, computa-

tional studies of Schenkerian analysis have been hindered

by the lack of available data sets containing both musical

compositions and ground-truth analyses of those composi-

tions. Without such data sets, it is difficult to empirically

study the patterns that arise in analyses or rigorously eval-

uate the performance of intelligent systems for this kind

of analysis. To combat this, we introduce the first pub-

licly available large-scale data set of computer-processable

Schenkerian analyses. We discuss the choice of musical se-

lections in the data set, the encoding of the music and the

corresponding ground-truth analyses, and the possible uses

of these data. As an example of the utility of the data set,

we present an algorithm that transforms the Schenkerian

analyses into hierarchically-organized data structures that

are easily manipulated in software.

1. CORPUS-DRIVEN RESEARCH

Corpus-driven research is now commonplace in the music

informatics community. With the wealth of raw musical

information now available in digital form, in many cases, it

is straightforward to construct and use data sets containing

numerous musical compositions. However, the problem

of collecting ground-truth metadata about the content of

the music still exists, especially where high-level features

are concerned. This is a problem that effects researchers

working with music in audio or symbolic formats.

Ground-truth data sets that include features specifi-

cally relating to music theory or music analysis are par-

ticularly labor-intensive to construct. Information about

the high-level harmonic or melodic structure of composi-

tions is often only found scattered throughout textbooks

or individual research publications, and so there are few

publicly-available corpora containing such information in

a computer-processable format. Some data sets are cre-

ated only for specific research projects and then discarded,

c© Phillip B. Kirlin.
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are not in an easy-to-use format, or are simply never made

widely available.

The lack of varied ground-truth musical metadata relat-

ing to theory and analysis — especially data sets specifi-

cally designed to align with symbolic music data — hin-

ders corpus-driven research studies because time must be

spent collecting data. Sometimes the researchers must per-

form the music analysis themselves, possibly inadvertently

introducing biases into the data. Without widely available

comprehensive data sets, it is extremely difficult to con-

duct large-scale experiments on the structure of musical

compositions in symbolic form, or quantitatively evaluate

the performance of computational systems that emulate a

music analysis process.

There is a particular dearth of empirical data available

in the realm of Schenkerian analysis, a widely used analyt-

ical system that illustrates a hierarchical structure among

the notes of a composition. Though Schenkerian anal-

ysis is one of the most comprehensive methods for mu-

sic analysis that we have available today [1], there are no

large-scale digital repositories of analyses available to re-

searchers. In addition to the reasons stated above for the

lack of corpora, Schenkerian analysis presents a number

of unique challenges to creating a useful data set. First, a

Schenkerian analysis for a composition is illustrated using

the musical score of the composition itself, and commonly

requires multiple staves to show the hierarchical structure

uncovered. This requires substantial space on the printed

page and thus is a deterrent to retaining large sets of analy-

ses. Second, there is no established computer-interpretable

format for Schenkerian analysis storage, and third, even if

there were a format, it would take a great deal of effort

to encode a number of analyses into processable computer

files.

The lack of data has kept the number of computational

studies of Schenkerian analysis requiring ground-truth data

to a bare minimum; some examples include studies using

corpora with six [7] or eight [6] pieces. Though these stud-

ies are useful, the results would likely carry more weight if

the data sets used were larger.

With all of these ideas in mind, in this paper we intro-

duce the first large-scale data set of musical compositions

along with corresponding ground-truth Schenkerian analy-

ses, called SCHENKER41 1 . The 41 musical selections in-

cluded constitute the largest-known corpus of Schenkerian

analyses in a machine-readable format. The musical selec-

1 Available at www.cs.rhodes.edu/∼kirlinp/schenker41.
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tions are standardized in mode, length, and instrumenta-

tion, and the analyses are stored in a novel text-based rep-

resentation designed to be easily processed by a computer.

We created these data with the hope that they would be

useful to researchers (a) studying the Schenkerian analysis

process itself from a quantitative standpoint (for instance,

detecting patterns in the way analysis is done), (b) need-

ing a data set of analyses for use with supervised machine

learning techniques, and (c) performing any sort of quanti-

tative evaluation requiring ground-truth hierarchical music

analyses.

2. THE DATA SET

2.1 Creation and Content

In order to create a data set of musical compositions

and corresponding ground-truth Schenkerian analyses that

would be useful to researchers with a wide variety of goals,

we restricted ourselves to music from the common prac-

tice period of European art music, and selected 41 excerpts

from works by J. S. Bach, G. F. Handel, Joseph Haydn,

M. Clementi, W. A. Mozart, L. van Beethoven, F. Schu-

bert, and F. Chopin. All of the compositions were either

for a solo keyboard instrument (or arranged for such an in-

strument) or for voice with keyboard accompaniment. All

were in major keys and did not modulate.

The musical excerpts were also selected for the ease of

locating a Schenkerian analysis for each excerpt done by

an outside expert. Analyses for the 41 excerpts chosen

came from four places: Forte and Gilbert’s textbook In-
troduction to Schenkerian Analysis [4] and the correspond-

ing instructor’s manual [3], Cadwallader and Gagné’s text-

book Analysis of Tonal Music [2], Pankhurst’s handbook

SchenkerGUIDE [9], and a professor of music theory who

teaches a Schenkerian analysis class. These four sources

are denoted by the labels F&G, C&G, SG, and Expert in

Table 1, which lists the excerpts in the corpus.

From a Schenkerian standpoint, we also chose excerpts

such that the analyses of the excerpts would all share some

commonalities. All the analyses contained a single linear

progression as the fundamental background structure: ei-

ther an instance of the Ursatz or a rising linear progression.

Some excerpts contained an Ursatz with an interruption: a

Schenkerian construct that occurs when a musical phrase

ends with an incomplete instance of the Ursatz, then re-

peats with a complete version.

We put these restrictions on the musical content in place

because we expected that if SCHENKER41 were to be used

for supervised machine learning, such algorithms would be

able to better model a corpus with less variability among

the pieces.

Overall, SCHENKER41 contains 253 measures of music

and 907 notes. The lengths of individual excerpts ranged

from 6 to 53 notes.

2.2 Encoding

With our selected musical excerpts and our corresponding

analyses in hand, we needed to translate the musical in-

formation into machine-readable form. Musical data has

many established encoding schemes; we used MusicXML,

a format that preserves more information from the original

score than say, MIDI.

Translating the Schenkerian analyses proved harder be-

cause there is no current standard for storing such analy-

ses in a format that a computer could easily process and

manipulate. Therefore, we devised a text-based encoding

scheme to represent the various notations found in a Schen-

kerian analysis. Each analysis is stored in a single text file

that is linked to a specific MusicXML file containing the

musical excerpt being analyzed.

Schenkerian analyses are primarily based on the con-

cept of a prolongation, a situation where an analyst deter-

mines that a group of notes is elaborating a group of more

structurally fundamental notes. Consider the descending

melodic pattern D–C–B–F�–G all occurring over G major

harmony, as is shown in Figure 1. We could imagine that

an analyst would determine that this passage outlines a de-

scending G-major triad (D–B–G), with the second note C

(a passing tone) serving to melodically connect the preced-

ing D to the following B. We would say the note C prolongs
the motion from D to B. Similarly, the F� prolongs the mo-

tion from B to G. Schenkerian analysis hypothesizes that

any tonal composition is structured as a nested collection

of prolongations; identifying them is a important compo-

nent of the analysis procedure.

Every prolongation identified in an analysis is encoded

in the analysis text file using the syntax X (Y ) Z, where

X and Z are individual notes in the score and Y is a non-

empty list of notes. Such a statement means that the notes

in Y prolong the motion from note X to note Z. Addi-

tionally, we permit incomplete prolongations in the text

file representation: one of X or Z may be omitted. The

notes of X , Y and Z are transcribed in the text file as is

shown in Figure 1, with a measure number, followed by a

pitch and octave, followed by a integer to distinguish be-

tween repeated notes in the same measure. Figure 2 shows

how the prolongations of Figure 1 would be encoded. Note

that the prolongation involving the F� is encoded with no

X component; this tell us that there is no strong melodic

connection from the B to the F�, only from the F� to the G.

Figure 1. A melodic sequence with note names.

1d5-1 (1c5-1) 1b4-1
(1f#4-1) 2g4-1
1d5-1 (1b4-1) 2g4-1

Figure 2. An encoding of the prolongations present.

This text format easily supports encoding prolongations

at differing hierarchical levels in the music. We can see
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how Figure 2 encodes both the “surface-level” prolonga-

tions D–C–B and F�–G, but also the deeper prolongation

D–B–G which outlines the fifth relationship in the G-major

chord.

Aside from prolongations, the encoding system supports

describing repetitions of notes that may be omitted in the

analysis on the printed page; any linear progressions, in-

cluding instances of the Ursatz; and the harmonic context

present at any point in the analysis.

2.3 Compromises

An additional challenge not previously mentioned in creat-

ing the SCHENKER41 analyses is choosing an appropriate

level of detail of the material to encode. Because the main

objects in analyses are prolongations, it is natural to at-

tempt to group them into categories like “neighbor tone”

and “passing tone.” However, not all prolongations iden-

tified in analyses are easily categorized, and so category

labels are often omitted in analyses not found in an educa-

tional context. This raises the question of whether or not to

attempt to encode the category of prolongations in this cor-

pus. To avoid the risk of incorrectly interpreting analyses,

we have chosen to encode only what is directly observ-
able on the printed page — the hierarchical relationship

between groups of notes — and not categorize the prolon-

gations found in the analyses. We recognize that this is a

compromise between staying true to the data and encoding

all potentially useful information.

3. USAGE OF THE DATA

The SCHENKER41 data set enables the undertaking of a

wide variety of tasks and studies. In addition to the already-

discussed endeavors of using the corpus for supervised ma-

chine learning or for quantitative evaluation, we theorize

that with these data it could be possible to address the fol-

lowing questions:

• Do analysts identify certain types of prolongations

more often than others under certain circumstances?

These circumstances may involve the composer, mu-

sical genre, or even the analysis source.

• Does Schenkerian analysis align well with other

forms of music analysis, such as Narmour’s

implication-realization model of melodic expecta-

tion [8]?

• How well do Schenkerian analyses align with ex-

pressive performances of the music [10]? Do fea-

tures of a performance such as phrasing, volume,

or other quantifiable measures of musicality corre-

spond to various Schenkerian annotations in an anal-

ysis?

Besides answering questions about Schenkerian analy-

sis itself, we hope that that the availability of SCHENKER41

will spur others to study the utility of Schenkerian analy-

sis in other areas of music informatics. For instance, we

suspect hierarchical analyses could prove useful in con-

structing musical similarity metrics, because Schenkerian

analyses may highlight a common melodic pattern residing

under the surface in two different musical excerpts.

Though the SCHENKER41 analyses can be directly pro-

cessed by software, the nature of the flat text file format in

which the data are encoded makes it difficult to see hierar-

chical relationships between notes not directly related by a

single prolongation. Therefore, in this section we describe

an algorithm to translate the analysis text files into hierar-

chical graph structures known as MOPs. It is possible to

use the SCHENKER41 data in MOP form to automatically

learn characteristics of Schenkerian analysis [5].

3.1 Maximal Outerplanar Graphs

Maximal outerplanar graphs, or MOPs, were first proposed

by Yust [11] as elegant structures for representing a set of

musical prolongations in a Schenkerian-style hierarchy. A

MOP represents a hierarchy of melodic intervals located

in a monophonic sequence of notes, though Yust proposed

some extensions for polyphony. For example, the prolon-

gations mentioned in Figures 1 and 2 are represented by

the MOP shown in Figure 3.

D G
B

C F#

Figure 3. A MOP representation of the music in Figure 1.

Formally, a MOP is a complete triangulation of a poly-

gon, where the vertices of the polygon are notes and the

outer perimeter of the polygon consists of the melodic in-

tervals between consecutive notes of the original music,

except for the edge connecting the first note to the last,

which is called the root edge. Each triangle in the poly-

gon specifies a prolongation. For instance, in Figure 3, the

presence of triangle D–C–B means that the melodic mo-

tion from D to B is prolonged by the C. By expressing the

hierarchy in this fashion, each edge (x, y) carries the in-

terpretation that notes x and y are “consecutive” at some

level of abstraction of the music. Edges closer to the root

edge express more abstract relationships than edges farther

away.

Outerplanarity is a property of a graph that can be drawn

such that all the vertices are on the perimeter of the graph.

Such a condition is necessary for us to enforce the strict hi-

erarchy among the prolongations. A maximal outerplanar

graph cannot have any additional edges added to it with-

out destroying the outerplanarity; such graphs are neces-

sarily polygon triangulations, and under this interpretation,

all prolongations must occur over triples of notes.

There are three representational issues with MOPs we

must address before discussing the algorithm to convert an

analysis text file into MOPs. First, Schenkerian analyses

as commonly encountered often include prolongations in-

volving more than three notes. The analysis sources used

in SCHENKER41 are no exception. For this reason, we re-

lax the “maximal” qualifier for MOPs and permit prolon-

gations involving any number of notes in our MOP repre-

sentation. A prolongation involving more than three notes
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will be translated into a polygon with more than three edges

in the MOP representation.

Second, MOPs do not have a direct way to represent

a prolongation with only a single “parent” note. Because

MOPs model prolongations as a way of moving from one

musical event to another event, every prolongation must

have two parent notes. Music sometimes presents situa-

tions, however, that an analyst would model with a one-

parent prolongation, such as an incomplete neighbor tone

(we encountered this situation in Figure 2). Yust interprets

such prolongations as having a “missing” origin or goal

note that has been elided with a nearby structural note,

which substitutes in the MOP for the missing note.

The third representational issue stems from trying to

represent prolongations involving the first or last note in

the music. Prolongations necessarily take place over time,

and in a MOP, we interpret the temporally middle notes

as prolonging the motion from the earliest note (the left

parent) to the latest (the right parent). Following this tem-

poral logic, we can infer that the root edge of a MOP must

therefore necessarily be between the first note of the music

and the last, implying these are the two most structurally

important notes of a composition. As this is not always

true in compositions, we add two pseudo-events to every

MOP: an initiation event that is located temporally before

the first note of the music, and a termination event, which

is temporally positioned after the last note. The root edge

of a MOP is fixed to always connect the initiation event

and the termination event. These extra events allow for

any melodic interval — and therefore any pair of notes in

the music — to be represented as the most structural event

in the composition. For instance, in Figure 4, which shows

the D–C–B–F�–G pattern with initiation and termination

events (labeled START and FINISH), the analyst has indi-

cated that the G is the most structurally significant note in

the passage, as this note prolongs the motion along the root

edge.

D G

B
C F#

START FINISH

Figure 4. A MOP containing initiation and termination

events.

3.2 Converting the Corpus to MOPs

We now present an algorithm to convert a text file anal-

ysis like those in SCHENKER41 to a collection of MOPs.

Because a single MOP only represents a monophonic se-

quence of notes, we may need multiple MOPs to store all

of the prolongations in a single text file analysis. Most of

the analyses in SCHENKER41 contain at least two MOPs,

one representing the structure of the main melody, and one

representing structure of the bass line.

The algorithm operates in three phases. In the first phase,

we make a pass through the analysis text file to identify

which notes will belong to which MOPs. We do this by

creating a temporary graph structure consisting of all the

notes present in the analysis and initially no edges. For

each prolongation in the analysis file X (Y ) Z, we add the

edges (X,Z) and (i, Z) for each note i in the set of notes

Y . After processing every prolongation, every connected

component in the graph will correspond to a single MOP.

Phase two adds edges to the MOP for all two-parent

prolongations. For each MOP graph identified in phase

one, we first remove all the edges, then create a “skeleton”

MOP structure consisting of edges connecting only con-

secutive notes in the music, plus the additional edges in-

volving the START and FINISH vertices. Figure 5(a) illus-

trates this skeletal structure for the prolongations described

in Figure 2. We then create edges in the MOP correspond-

ing to all prolongations in the analysis text file that have

two parent notes. Adding appropriate edges is straightfor-

ward: for a prolongation X (Y ) Z, we add an edge from

note X to the first note of the set of notes Y , an edge from

the last note of Y to note Z, and an edge from X to Z.

If the consecutive notes of Y are not already connected to

each other by edges, we also add such edges. At the end of

phase two, we would have a structure like in Figure 5(b).

D GBC F#

START FINISH

D G

B
C F#

START FINISH

(a)

(b)

Figure 5. The (a) beginning and (b) end of phase two of

creating a MOP.

Phase three involves adding edges in the MOP for one-

parent prolongations, i.e., prolongations in the analysis text

file of the form X (Y ) or (Y ) Z. We begin by adding

edges between consecutive notes of Y as in phase two.

The next step is identifying any additional edges neces-

sary to enforce that the notes of Y should be lower in the

hierarchy than X or Z, whichever parent note is present.

Fortunately, it is guaranteed that every one-parent prolon-

gation will fall into one of the six categories described be-

low, each of which we handle separately. We briefly de-

scribe the six categories here, and their processing steps

are fully described in the pseudocode of Algorithm 1. The

code refers to the “smallest interior polygon” for a one-

parent prolongation p, which is the smallest polygon in the

MOP containing all the notes of p (the parent note and all

of the child notes). This interior polygon will always exist

in a MOP because MOPs express a strict hierarchy among

the notes, and therefore all the notes of a prolongation will

be found within a single polygon.

Category 1 corresponds to a one-parent prolongation

missing a right parent, where the MOP already contains

an edge connecting the left parent X to the first note of

Y , and the edge in question already implies a hierarchical

relationship between X and Y . In this situation, there are

no extra edges to add because the necessary hierarchical

relationship already exists. Category 2 corresponds to the

same situation as Category 1, but reversed for a missing

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

216



Algorithm 1
1: procedure PROCESS-ONE-PARENT-PROLONGATIONS

2: Let S be the set of one-parent prolongations.
3: while S = ∅ do
4: p ← shortest length prolongation in S
5: I ← identify smallest interior polygon containing all notes of p
6: Assume vertices of I are numbered 0...m− 1
7: if leftParent(p) = I[0] and firstChildNote(p) = I[1] then � Category 1
8: S ← S − {p} � No additional edges needed; p’s children are already lower in the hierarchy
9: else if rightParent(p) = I[m− 1] and lastChildNote(p) = I[m− 2] then � Category 2

10: S ← S − {p} � No additional edges needed; p’s children are already lower in the hierarchy
11: else if leftParent(p) = I[0] then � Category 3
12: Add edge (leftParent(p), firstChildNote(p)) to MOP; S ← S − {p}
13: else if rightParent(p) = I[m− 1] then � Category 4
14: Add edge (rightParent(p), lastChildNote(p)) to MOP; S ← S − {p}
15: else if rightParent(p) is missing then � Category 5
16: newRight ← earliest I[x] such that I[x] is later than all of p’s children
17: if choice of newRight increases length of prolongation p then
18: Update p’s length in S; defer processing
19: else
20: Add edge (leftParent(p), newRight) to MOP; S ← S − {p}
21: else if leftParent(p) is missing then � Category 6
22: newLeft ← latest I[x] such that I[x] is earlier than all of p’s children
23: if choice of newLeft increases length of prolongation then
24: Update p’s length in S; defer processing
25: else
26: Add edge (newLeft, rightParent(p)) to MOP; S ← S − {p}

left parent note.

Category 3 corresponds to a one-parent prolongation

missing a right parent, where the the MOP does not con-

tain an edge connecting the left parent X to the first note

of Y , but other nearby edges already imply a hierarchical

relationship between X and Y . Here, we only need to add

an edge from X to the first child note of Y . Category 4 cor-

responds to the same situation as Category 3, but reversed

for a missing left parent.

Category 5 corresponds to a one-parent prolongation

missing a right parent, where the the MOP does not con-

tain an edge connecting the left parent X to the first note

of Y , and no other edges in the MOP already imply a hi-

erarchical relationship between X and Y . In this situation

we must explicitly find a suitable right parent note, which

we choose to be the temporally earliest note on the interior

polygon that is later than all the notes of Y . Category 6 cor-

responds to the same situation as Category 5, but reversed

for a missing left parent.

4. CONCLUSIONS

In this paper, we presented SCHENKER41, the first large-

scale data set of musical compositions and corresponding

Schenkerian analyses in a computer-processable format.

We anticipate that with the rise of corpus-driven research

in music informatics, this data set will be of value to re-

searchers investigating various characteristics of Schenker-

ian analysis, using machine learning techniques to study

the analytical procedure, or harnessing the analyses for use

in other music informatics tasks. We also presented an

algorithm for translating the analyses into MOPs, which

serve as useful data structures for representing the hierar-

chical organization of the analyses.
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Composer Excerpt name Analysis source

Bach Minuet in G major, BWV Anh. 114, mm. 1–16 Expert

Bach Chorale 233, Werde munter, mein Gemute, mm. 1–4 Expert

Bach Chorale 317 (BWV 156), Herr, wie du willt, so schicks mit mir, mm. 1–5 F&G manual

Beethoven Seven Variations on a Theme by P. Winter, WoO 75,

Variation 1, mm.1–8 C&G

Beethoven Seven Variations on a Theme by P. Winter, WoO 75,

Theme, mm. 1–8 C&G

Beethoven Ninth Symphony, Ode to Joy theme from finale (8 measures) SG

Beethoven Piano Sonata in F minor, Op. 2, No. 1, Trio, mm. 1–4 SG

Beethoven Seven Variations on God Save the King, Theme, mm. 1–6 SG

Chopin Mazurka, Op. 17, No. 1, mm. 1–4 SG

Chopin Grande Valse Brilliante, Op. 18, mm. 5–12 SG

Clementi Sonatina for Piano, Op. 38, No. 1, mm. 1–2 SG

Handel Trio Sonata in B-flat major, Gavotte, mm. 1–4 Expert

Haydn Divertimento in B-flat major, Hob. 11/46, II, mm. 1–8 F&G

Haydn Piano Sonata in C major, Hob. XVI/35, I, mm. 1–8 F&G

Haydn Twelve Minuets, Hob. IX/11, Minuet No. 3, mm. 1–8 SG

Haydn Piano Sonata in G major, Hob. XVI/39, I, mm. 1–2 SG

Haydn Hob. XVII/3, Variation I, mm. 19–20 SG

Haydn Hob. I/85, Trio, mm. 39–42 SG

Haydn Hob. I/85, Menuetto, mm. 1–8 SG

Mozart Piano Sonata 11 in A major, K. 331, I, mm. 1–8 F&G

Mozart Piano Sonata 13 in B-flat major, K. 333, III, mm. 1–8 F&G manual

Mozart Piano Sonata 16 in C major, K. 545, III, mm. 1–8 F&G manual

Mozart Six Variations on an Allegretto, K. Anh. 137, mm. 1–8 F&G manual

Mozart Piano Sonata 7 in C major, K. 309, I, mm. 1–8 C&G

Mozart Piano Sonata 13 in B-flat major, K. 333, I, mm. 1–4 F&G

Mozart 7 Variations in D major on “Willem van Nassau,” K. 25,

mm. 1–6 SG

Mozart Twelve Variations on “Ah vous dirai-je, Maman,” K. 265,

Var. 1, mm. 23–32 SG, C&G

Mozart 12 Variations in E-flat major on “La belle Françoise,” K. 353,

Theme, mm. 1–3 SG

Mozart Minuet in F for Keyboard, K. 5, mm. 1–4 SG

Mozart 8 Minuets, K. 315, No. 1, Trio, mm. 1–8 SG

Mozart 12 Minuets, K. 103, No. 4, Trio, mm. 15–16 SG

Mozart 12 Minuets, K. 103, No. 3, Trio mm. 7–8, SG

Mozart Untitled from the London Sketchbook, K. 15a, No. 1, mm. 12–14 SG

Mozart 9 Variations in C major on “Lison dormait,” K. 264,

Theme, mm. 5–8 SG

Mozart 12 Minuets, K. 103, No. 12, Trio, mm. 13–16 SG

Mozart 12 Minuets, K. 103, No. 1, Trio, mm. 1–8 SG

Mozart Piece in F for Keyboard, K. 33B, mm. 7–12 SG

Schubert Impromptu in B-flat major, Op. 142, No. 3, mm. 1–8 F&G manual

Schubert Impromptu in G-flat major, Op. 90, No. 3, mm. 1–8 F&G manual

Schubert Impromptu in A-flat major, Op. 142, No. 2, mm. 1–8 C&G

Schubert Wanderer’s Nachtlied, Op. 4, No. 3, mm. 1–3 SG

Table 1. The musical excerpts contained in SCHENKER41.
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ABSTRACT

This work reviews and elaborates a methodology for hi-

erarchical multi-scale set-class analysis of music pieces.

The method extends the systematic segmentation and rep-

resentation of Sapp’s ‘keyscapes’ to the description stage,

by introducing a set-class level of description. This pro-

vides a systematic, mid-level, and standard analytical lex-

icon, which allows the description of any notated music

based on fixed temperaments. The method benefits from

the representation completeness, the compromise between

generalisation and discrimination of the set-class spaces,

and the access to hierarchical inclusion relations over time.

The proposed class-matrices are multidimensional time se-

ries encoding the pitch content of every possible music

segment over time, regardless the involved time-scales, in

terms of a given set-class space. They provide the simplest

information mining methods with the ability of capturing

sophisticated tonal relations. The proposed class-vectors,

quantifying the presence of every possible set-class in a

piece, are discussed for advanced explorations of corpora.

The compromise between dimensionality and informative-

ness provided by the class-matrices and class-vectors, is

discussed in relation with standard content-based tonal de-

scriptors, and music information retrieval applications.

1. INTRODUCTION

Pitch-class set theory has been used in music analysis prac-

tice since decades. However, its general applicability to

post-tonal music has contributed, and still contributes, to

be perceived as for specialists only. This apparent diffi-

culty is far from real, and just a matter of the application

context. The systematic and objective nature of the the-

ory, together with the compactness of the basic representa-

tions, constitutes a powerful and flexible descriptive frame-

work suited for any kind of pitch-based music. 1 This de-

scription level is purposeful for several music information

1 In which the concepts of octave equivalence and fixed temperaments
are applicable. Although the pitch relations of interest may be quite dif-
ferent, depending on the temperament and the applied context, any dis-
crete pitch organization of the octave can be handled by the general math-
ematical framework. In this work, we bound to the twelve-tone equal
temperament.

c© Agustı́n Martorell, Emilia Gómez.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Agustı́n Martorell, Emilia Gómez.

“Systematic multi-scale set-class analysis”, 15th International Society for

Music Information Retrieval Conference, 2014.

retrieval (MIR) applications, such as structural analysis,

similarity, pattern finding, classification, and generation of

content-based metadata. More interestingly, it provides a

means for approaching complex topics, such as similarity,

in alternative and insightful musically-grounded scenarios.

In addition, the basic descriptors are trivial to compute, and

they can be readily exploited by standard information min-

ing techniques.

The remaining of this work is organised as follows. Sec-

tion 2 introduces the basic set-theoretical concepts, and

contextualise them in terms of our systematic analysis en-

deavour. Section 3 describes the computational approach.

Sections 4 and 5 discuss the method in several application

contexts. Section 6 summarises the proposed method, and

points to future extensions.

2. BACKGROUND

2.1 Set-class description

Pitch class [1] is defined, in the twelve-tone equal tem-

pered system (TET), as an integer representing the residue

class modulo 12 of a pitch, that is, any pitch is mapped to

a pitch class by removing its octave information. A pitch-
class set (henceforth pc-set) is a set of pitch classes with-

out repetitions in which the order of succession of the el-

ements in the set is not of interest. In the TET system,

there exist 212 = 4096 distinct pc-sets, so a vocabulary of

4096 symbols is required for describing any possible seg-

ment of music. Any pc-set can also be represented by its

intervallic content [5]. Intervals considered regardless of

their direction are referred to as interval classes. The to-

tal count of interval classes in a pc-set can be arranged as a

six-dimensional data structure called an interval vector [4].

Relevant relational concepts for analysis are the set-
class equivalences, whereby two pc-sets are considered

equivalent if and only if they belong to the same class. As

pointed out by Straus, equivalence is not the same thing

as identity, rather it is a link between musical entities that

have something in common. This commonality underlying

the surface may eventually lend unity and/or coherence to

musical works [12]. In this respect, the class equivalences

can be conceived as all or nothing similarity measures be-

tween two pc-sets. In the context of pc-sets, the number

of pitch classes in a set is referred to as its cardinality.

This is perhaps the coarsest measure of similarity. Despite

its theoretical relevance, cardinality is too general a no-

tion of similarity to be of use in many analytical situations.

Among the many equivalence systems in the set-theoretical
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literature, three of them are particularly useful:

1. Interval vector equivalence (iv-equivalence), which

groups all the pc-sets sharing the same interval vec-

tor. There exist 197 different iv-types.

2. Transpositional equivalence (Tn-equivalence), which

groups all the pc-sets related to each other by trans-

position. There exist 348 distinct Tn-types.

3. Inversional and transpositional equivalence (TnI-

equivalence), which groups all the pc-sets related by

transposition and/or inversion. There exist 220 dif-

ferent TnI-types (also referred to as Tn/TnI-types).

Aside the comprehensive coverage of every possible pc-

set, the compromise between discrimination and generali-

sation of these class-equivalence systems fits a wide range

of descriptive needs, thus their extensive usage in general-

purpose music analysis. From them, iv-equivalence is the

most general (197 classes). It shares most of its classes

with TnI-equivalence (220 classes), with some exceptions,

named Z-relations [4], for which the same interval vector

groups pc-sets which are not TnI-equivalent [7]. The most

specific from the three systems is Tn-equivalence.

2.2 Systematic approaches to set-class analysis

To date, one of the most systematic approaches to set-class

surface analysis is proposed in [6], under the concept of

‘tail-segment array’, whereby every note in a composition

is associated with all the possible segments of a given car-

dinality that contains it. This segmentation is combined

with certain set-class-based ‘detector functions’, in order

to obtain summarized information from music pieces and

collections. The usefulness of the method is comprehen-

sively discussed in the context of style characterization.

Some limitations of this technique are addressed in [8],

by first identifying the segmentation, description and rep-

resentation stages of the method, and extending system-

atization to all of them simultaneously. This is done by

combining the exhaustive segmentation and representation

of Sapp’s ‘keyscapes’ [11], with a systematic description

of the segments in terms of set-classes. The multidimen-

sional, massive and overlapping information resulting from

this method, is managed by summarising features and in-

terfacing design, targeting specific analytical tasks.

3. MULTI-SCALE SET-CLASS ANALYSIS

This work elaborates directly upon [8], in which detailed

and extended discussions can be consulted. A description

of our general method follows.

3.1 Segmentation

The input to the system is a sequence of MIDI events,

which can be of any rhythmic or polyphonic complexity.

This signal is processed by the segmentation stage, for

which two different algorithms are used: a) an approximate

technique, non comprehensive but practical for interacting

with the data; b) a fully systematic method, which exhausts

all the segmentation possibilities.

The approximate method applies many overlapping slid-

ing windows, each of them scanning the music at a differ-

ent time-scale. The minimum window size and the number

of time-scales are user parameters, and can be fine tuned as

a trade-off between resolution and computational cost. The

same hop size is applied for all the time-scales, in order to

provide a regular grid for visualisation and interfacing pur-

poses. Each segment is thus indexed by its centre location

(time) and its duration (time-scale).

The fully systematic method is required for the quanti-

tative descriptors in which completeness of representation

is necessary. It is computed by finding every change in the

pc-set content, whether the product of onsets or offsets,

and segmenting the piece by considering all the pairwise

combinations among these boundaries.

3.2 Description

Denoting pitch-classes by the ordinal convention (C=0, . . . ,

B=11), each segment is analysed as follows. Let bi =
1 if the pitch-class i is contained (totally or partially) in

the segment, or 0 otherwise. The pc-set in the segment

is encoded as an integer p =
11∑
i=0

bi · 211−i ∈ [0,4095].

This integer serves as an index for a precomputed table of

set classes, 2 including the iv-, TnI- and Tn-equivalences

(discussed in Section 2.1). For systematisation complete-

ness, the three class spaces are extended to include the so-

called trivial forms. 3 With this, the total number of inter-

val vectors rises to 200, while the TnI- and Tn-equivalence

classes sum to 223 and 351 categories respectively. In this

work, we use Forte’s cardinality-ordinal convention [4] to

name the classes, as well as the usual A/B suffix for refer-

ring to the prime/inverted forms under Tn-equivalence. We

also follow the conventional notation to name the Z-related

classes, by inserting a ‘Z’ between the hyphen and the or-

dinal. As an example, a segment containing the pitches

{G5,C3,E4,C4} is mapped to the pc-set {0,4,7} and coded

as p = 2192 (100010010000 in binary). The precom-

puted table is indexed by p, resulting in the interval vector

〈001110〉 (iv-equivalence, grouping all the sets containing

exactly 1 minor third, 1 major third, and 1 fourth), the class

3-11 (TnI-equivalence, grouping all the major and minor

trichords), and the class 3-11B (Tn-equivalence, grouping

all the major trichords). The discrimination between major

and minor trichords is thus possible under Tn-equivalence

(3-11A for minor, 3-11B for major), but not under iv- or

TnI-equivalences.

3.3 Representation

The main data structure, named class-scape, is the set-

class equivalent of Sapp’s ‘keyscapes’ [11]. It represents

the class content of every possible segment, indexed by

2 As formalised in [4]. See Supplemental material (Section 7).
3 The null set and single pitch classes (cardinalities 0 and 1, containing

no intervals), the undecachords (cardinality 11) and the universal pc-set
(cardinality 12, also referred to as the aggregate).
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Figure 1: Debussy’s Voiles. a) class-scape; b) class-matrix; c)
class-vector.

their time position and duration. The dimensionality of the

class-scapes (time, time-scale and class) is then reduced

to more manageable, yet informative, data structures. The

first reduction consists on projecting the class-scape to the

time-class plane, which results in the concept of class-
matrix. This is done by realising in time each point in the

class-scape, thus retaining a substantial information from

the lost dimension (time-scale). A further reduction sum-

marizes the class-matrix in a single vector, named class-
vector, by quantifying the presence of every possible class

in the piece as a percentage of the piece’s duration. The

class-scape, class-matrix and class-vector, computed from

Debussy’s Voiles are depicted in Figure 1, with the promi-

nent whole-tone scale (class 6-35) labelled as a reference.

4. MINING CLASS-MATRICES

In this section, we will review and elaborate upon the infor-

mation conveyed by the class-matrices. Even with the loss

of information, the reduction process from the class-scape

to the class-matrix guarantees that every instantiation of

every class is represented in the class-matrix, regardless

the involved time-scales. The class-matrix represents the

temporal activation of every possible class over time. A

time point activated for a given class in the matrix means

that it exist at least one segment containing this time point

which belongs to such class. As the representation guar-

antees a strict class-wise separation, the class matrix con-

stitutes a time-series of a special kind. It does not only

capture evidence from every class instantiation over time,

but it also informs about their set-class inclusion relations.

The class-matrix, thus, embeds a considerable hierarchical

information, allowing the analysis of the specific construc-
tions of the class instantiations.

4.1 Case study: subclass analysis

An example of this analytical potential is depicted in Fig-

ure 2. It shows the comparison between the pure diatoni-
cisms in Victoria’s parody masses in Ionian mode 4 and

Bach’s preludes and fugues in major mode from the Well

Tempered Clavier. This is done by first isolating the dia-

tonic segments (activation of 7-35 in the class-matrix) of

each movement, and constructing a subclass-matrix with

the subset content of these segments. The differences can

be quantified by computing the corresponding subclass-
vectors out of the subclass-matrices, and averaging them

across pieces in the corpora. This tells about what the par-

ticular diatonicisms (and only the diatonicisms) are made

of. Some relevant differences stand out from the compar-

ison. Victoria’s larger usage of major and minor triads

(3-11) and cadential chord sequences (5-27) stands out.

On the other hand, Bach makes more prominent usage of

the scalar formation 6-Z25: aside its instantiations as per-

fect cadences, it is recurrent in many motivic progressions,

which are not idiomatic in Victoria’s contrapuntal writing.
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Figure 2: Diatonicism in Victoria and Bach. Mean subclass-
vectors under 7-35.

4.2 Case study: structural analysis

Self-similarity matrices (SSM) are a simple standard tool

used for structural analysis [3]. Classical inputs to the SSM

are spectral or chroma feature time series. Some of the

SSM-based methods can handle different time-scales, and

some of the chroma methods allows transpositional invari-

ance [9]. These functionalities are usually implemented

at the SSM computation stage, or as a post processing.

In the class-matrices, both the equivalence mappings (in-

cluding their inherent hierarchies) and the multi-scale na-

4 Including Alma Redemptoris Mater, Ave Regina Caelorum, Laetatus
Sum, Pro Victoria, Quam Pulchri Sunt, and Trahe Me Post Te. See (Rive,
1969) for a modal classification.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

221



ture of the information are already embedded in the fea-

ture time-series, so a plain SSM can be used for finding

sophisticated recurrences. For instance, a passage com-

prised of a chord sequence can be recognized as similar

than a restated passage with different arpeggiations and/or

inversions of the chord intervals (e.g. from major to mi-

nor triads). A vertical chord and its arpeggiated version

may not be recognized as very similar at the lowest cardi-

nalities, but their common TnI-sonority will certainly do

at their corresponding time-scales. Moreover, any sonor-

ity containing the chords (supersets) will also be captured

at their proper time-scales, climbing up the hierarchy un-

til reaching the whole-piece segment, everything indexed

by a common temporal axis. A quantification of similar-

ity between variations may thus be possible at the level of

embedded sonorities.

This is discussed next for large-scale recurrence find-

ing in Webern’s Variations for piano, op.27/I. This serial

piece presents an A-B-A’ structure, built upon several in-

stantiations of the main twelve-tone row, at different trans-

positional and/or inversional levels. Figure 3 (top) depicts

the class-scape of the piece, filtered by the prominent hexa-

chordal iv-sonority 〈332232〉, and Figure 3 (bottom) shows

the well-known (extensively analysed in literature) struc-

ture of the row instantiations, annotated according to [2].

Figure 4 depicts the output of a plain SSM, computed from

three different inputs: a) the pc-set time series; 5 b) the

class-matrix under Tn; c) the class-matrix under TnI . The

pc-equivalence does not capture any large-scale recurrence.

The restatement of the first two phrases in A is captured

by the Tn-equivalence, as these phrases are mainly related

by transposition in A’. Finally, the TnI-equivalence re-

veals the complete recapitulation, including the last two

phrases of A, which are restated in A’ in both transposed

and inverted transformations. It is worth noting that the

method does not limit to compare the general sonority, the

ubiquitous 〈332232〉, but its specific construction down the

subclass hierarchy. This allows the discrimination of the B
section, built upon the same kind of row instantiations than

A and A’, but presented in distinct harmonisations.

�������	
�

����

Figure 3: Webern’s op.27/I. Top: class-scape filtered by
〈332232〉; Bottom: structure.

A relevant advantage of the pc-set-based spaces, with

respect to continuous ones, 6 is that music can be analysed

in terms of different class systems at no extra computa-

tional cost. Being finite and discrete spaces (4096 classes

at most for the TET system), the whole equivalence sys-

tems, including their inner metrics, can be precomputed.

5 In some respect, the discrete equivalent of the chroma features.
6 Such as chroma features, a finite, but continuous space.

(a) (b) (c)

Figure 4: SSM from Webern’s op.27/I. a) pc-equivalence; b) Tn-
equivalence); c) TnI-equivalence).

The mapping from pc-sets to set-classes, as well as the dis-

tances between any pair of music segments, can thus be im-

plemented by table indexing. Once the pc-set of each pos-

sible segment has been computed (which constitutes the

actual bottleneck of the method), the rest of the process is

inexpensive, and multiple set-class lenses can be changed

in real time, allowing fast interactive explorations of the

massive data. This feature, alongside with a variety of fil-

tering options for visual exploration, can be tested with our

proof-of-concept set-class analysis tool. 7

5. MINING CLASS-VECTORS

In this section, we will review and elaborate upon the in-

formation conveyed by the class-vectors. For each class,

the corresponding value in the vector accounts for the rela-

tive duration of the piece which is interpretable in terms of

the specific class, that means, the proportion of time points

which are contained in some (at least one) instance of the

class. A dataset of class-vectors, thus, can be exploited

in a variety of ways. Finding specific sonorities in large

datasets can be combined with the extraction of the actual

segments from the MIDI files. This can be exploited in

varied applications, ranging from corpora analysis to mu-

sic education.

A dataset of class-vectors was computed from 13480

MIDI tracks, including works by Albéniz, Albinoni, Alkan,

Bach, Beethoven, Brahms, Bruckner, Busoni, Buxtehude,

Byrd, Chopin, Clementi, Corelli, Couperin, Debussy, Dow-

land, Frescobaldi, Gesualdo, Guerrero, Haydn, Josquin,

Lasso, Liszt, Lully, Mahler, Morales, Mozart, Pachelbel,

Palestrina, Satie, Scarlatti, Shostakovich, Schumann, Scri-

abin, Soler, Stravinsky, Tchaikovsky, Telemann, Victoria

and Vivaldi. It also includes anonymous medieval pieces,

church hymns, and the Essen folksong collection.

5.1 Case study: query by set-class

A simple but useful application is querying the dataset for

a given set-class sonority. It can be used, for instance, to

find pieces with a relevant presence of exotic scales. Ta-

ble 1 shows 10 retrieved pieces with a notable presence

(relative duration) of the sonority 7-22, usually referred to

as the Hungarian minor scale. 8 Both monophonic and

polyphonic pieces are retrieved, ranging different styles

7 See Supplemental material (Section 7).
8 Sometimes also called Persian, major gypsy, or double harmonic

scale, among other denominations.
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and historic periods, as the unique requisite for capturing a

given sonority it its existence as a temporal segment.

retrieved piece 7-22 (%)

Scriabin - Prelude op.33 n.3 68.61
Busoni - 6 etudes op.16 n.4 63.22
Essen - 6478 62.50
Liszt - Nuages gris 42.41
Essen - 531 36.67
Scriabin - Prelude op.51 n.2 31.74
Lully - Persee act-iv-scene-iv-28 29.73
Alkan - Esquisses op.63 n.19 28.87
Satie - Gnossienne n.1 28.15
Scriabin - Mazurka op.3 n.9 24.61

Table 1: Retrieved pieces: 7-22

5.1.1 Query by combined set-classes

The strict separation of classes in the class-vectors, allows

the exploration of any class combination, whether common

or unusual. For instance, the first movement of Stravin-

sky’s Symphony of psalms is retrieved by querying for mu-

sic containing substantial diatonic (7-35) and octatonic (8-

28) material, certainly an uncommon musical combina-

tion. The class-vector also reveals the balance between

both sonorities, as 30.18 % and 29.25 % of the piece du-

ration, respectively. As discussed in Section 4, the class-

matrices allow the hierarchical analysis of specific sonori-

ties. The class-vectors, on the other hand, summarise the

information in a way in which it is not possible, in general,

to elucidate the subclass content under a given class. How-

ever, if the queried sonorities have a substantial presence

(or absence) in the piece, the class-vectors alone can of-

ten account for some hierarchical evidence. Table 2 shows

10 retrieved pieces, characterised by a notable presence

of the so-called suspended trichord (3-9), 9 constrained to

cases of mostly diatonic contexts (7-35). This situation,

as reflected in the results, is likely to be found in me-

dieval melodies, early counterpoint, or works composed

as reminiscent of them. It is worth noting that the 3-9 in-

stantiations appear in quite different settings, whether in

monophonic voices, as a combination of melody and tonic-

dominant drones, and as actual suspended (voiced) chords.

retrieved piece 3-9 (%) 7-35 (%)

Anonym - Angelus ad virginem 1 56.79 100
Anonym - Instrumental dances 7 50.41 100
Lully - Persee prologue-3c 47.11 100
Lully - Phaeton acte-i-scene-v 45.95 90.81
Lully - Persee prologue-3b 44.36 100
Anonym - Ductia 43.82 100
Anonym - Danse royale 35.58 100
Anonym - Cantigas de Santa Maria 2 32.06 100
Anonym - Instrumental dances 9 27.43 100
Frescobaldi - Canzoni da sonare-11 26.69 81.34

Table 2: Retrieved pieces: mostly 7-35 with 3-9.

As non-existing sonorities may also reveal important

characteristics of music, the dataset can be queried for com-

binations of present and absent classes. For instance, the

9 A major trichord with the third degree substituted by the fourth.

sonority of fully diatonic (7-35) pieces depends on whether

they contain major or minor trichords (3-11) or not. Re-

trieved pieces in the latter case (diatonic, not triadic) are

mostly medieval melodies or early polyphonic pieces, prior

to the establishment of the triad as a common sonority.

These results point to interesting applications related

with music similarity, such as music recommendation and

music education. We find of particular interest the poten-

tial of retrieving pieces sharing relevant tonal-related prop-

erties, but pertaining to different styles, composers, or his-

torical periods. Music similarity is, to a great extent, a

human construct, as it depends on cultural factors and mu-

sical background. It would thus be possible to learn to

appreciate non familiar similarity criteria, which could be

suggested by music discovery or recommendation systems.

5.2 On dimensionality and informativeness

In feature design, the ratio between the size of the feature

space and the informativeness of description is a relevant

factor. The class content of a piece, as described by its

class-vector, have 200, 223 or 351 dimensions, depend-

ing on the chosen equivalence (iv, TnI or Tn). Com-

pared with other tonal feature spaces, these dimensions

may seem quite large. However, the benefits of class vec-

tors are the systematicity, specificity and precision of the

description. Several relevant differences with respect to

other tonal-related features are to be noticed. A single

class-vector, computed after a fully systematic segmenta-

tion, accounts for:

1. Every different segment in the piece, regardless of

their time position or duration. No sampling arte-

facts of any kind are introduced.

2. Every possible sonority among the set-class space,

which is complete. Every instantiation of every class

is captured and represented.

3. An objective and precise description of the set-class
sonority. No probabilities or estimations are involved.

4. A description in (high level) music theoretical terms,

readable and interpretable by humans. Set-classes

constitute a standard lexicon in music analysis.

5. An objective quantification of every possible sonor-

ity in terms of relative duration in the piece. No

probabilities or estimations are involved.

6. A content-based, model-free, description of the piece.

Neither statistics nor properties learned from datasets

are involved.

7. In cases of large presence or notable absences of

some sonorities, an approximation to the hierarchi-

cal inclusion relations (fully available through the

class-matrices only).

In contrast, the most common tonal piecewise and la-

belwise feature (global key estimation) conveys:
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1. A single label for the whole piece, often misleading

for music which modulates.

2. 24 different labels, but actually two different sonori-

ties (major and minor), non representative of a vast

amount of music.

3. An estimation of the key: not only because of the

inherent ambiguity of tonality, but also because the

(most often) limited tonal knowledge of the algo-

rithms.

4. A description in (high level) music theoretical terms,

but conveying very little musical information (e.g. at

compositional level).

5. No quantification, just a global label. At most, in-

cluding an indicator of confidence (in the descriptor

terms), usually the key strength.

6. A description based on specific models (e.g. profil-

ing methods or rule-based), which do not generalize.

Some models are trained from specific datasets, bi-

asing the actual meaning of the descriptor.

7. No access to the (very rich) hierarchical relations of

the piece’s tonality.

With this in mind, it seems to us that a piecewise de-

scription in 200 dimensions is a reasonable trade-off be-

tween size and informativeness. Considering the some-

what sophisticated tonal information conveyed by the class-

vectors, they may constitute a useful complementary fea-

ture for existing content-based metadata.

6. CONCLUSIONS

The proposed systematic methodology for multi-scale set-

class analysis is purposeful for common music information

retrieval applications. An appropriate mining of the class-

matrices can bring insights about the hierarchical relations

among the sets, informing about the specific construction

of the class sonorities. In combination with simple re-

currence finding methods, the class-matrices can be used

for music structure analysis of complex music, beyond the

scope of mainstream tonal features. The proposed class-

vectors, as piecewise tonal summaries, convey a rich in-

formation in terms of every possible class sonority. They

can be mined for querying tasks of some sophistication.

Their compromise between dimensionality and informa-

tiveness, point to potential advances in music similarity

and recommendation applications. The examples in this

work show that set-classes can inform about very differ-

ent music compositions, ranging simple folk tunes, early

polyphony, common-practice period, exotic or uncommon

scales, and atonal music. Besides our ongoing musico-

logical analyses, and current research with chroma-based

transcriptions from audio, future work may explore the po-

tential of these methods in actual classification and recom-

mendation systems.

7. SUPPLEMENTAL MATERIAL

The interactive potential of the methods discussed in this

work can be tested by our multi-scale set-class analysis

prototype for Matlab, freely available from http://agustin-

martorell.weebly.com/set-class-analysis.html. A compre-

hensive table of set-classes, and a growing dataset of class-

vectors, are also available at this site.
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ABSTRACT

This paper proposes a query-by-audio system that aims to
detect temporal locations where a musical phrase given as
a query is played in musical pieces. The “phrase” in this
paper means a short audio excerpt that is not limited to
a main melody (singing part) and is usually played by a
single musical instrument. A main problem of this task
is that the query is often buried in mixture signals con-
sisting of various instruments. To solve this problem, we
propose a method that can appropriately calculate the dis-
tance between a query and partial components of a musi-
cal piece. More specifically, gamma process nonnegative
matrix factorization (GaP-NMF) is used for decomposing
the spectrogram of the query into an appropriate number of
basis spectra and their activation patterns. Semi-supervised
GaP-NMF is then used for estimating activation patterns of
the learned basis spectra in the musical piece by presuming
the piece to partially consist of those spectra. This enables
distance calculation based on activation patterns. The ex-
perimental results showed that our method outperformed
conventional matching methods.

1. INTRODUCTION

Over a decade, a lot of effort has been devoted to devel-
oping music information retrieval (MIR) systems that aim
to find musical pieces of interest by using audio signals as
the query. For example, there are many similarity-based re-
trieval systems that can find musical pieces having similar
acoustic features to those of the query [5,13,21,22]. Audio
fingerprinting systems, on the other hand, try to find a mu-
sical piece that exactly matches the query by using acoustic
features robust to audio-format conversion and noise con-
tamination [6,12,27]. Query-by-humming (QBH) systems
try to find a musical piece that includes the melody speci-
fied by users’ singing or humming [19]. Note that in gen-

c© Taro Masuda, Kazuyoshi Yoshii, Masataka Goto, Shigeo
Morishima.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Taro Masuda, Kazuyoshi Yoshii,
Masataka Goto, Shigeo Morishima. “Spotting a Query Phrase from Poly-
phonic Music Audio Signals Based on Semi-supervised Nonnegative Ma-
trix Factorization”, 15th International Society for Music Information Re-
trieval Conference, 2014.
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Figure 1. An overview of the proposed method.

eral information of musical scores [9, 16, 23, 31, 39] (such
as MIDI files) or some speech corpus [36] should be pre-
pared for a music database in advance of QBH. To over-
come this limitation, some studies tried to automatically
extract main melodies from music audio signals included
in a database [25, 34, 35]. Other studies employ chroma
vectors to characterize a query and targeted pieces without
the need of symbolic representation or transcription [2].

We propose a task that aims to detect temporal loca-
tions at which phrases similar to the query phrase appear
in different polyphonic musical pieces. The term “phrase”
means a several-second musical performance (audio clip)
usually played by a single musical instrument. Unlike
QBH, our method needs no musical scores beforehand.
A key feature of our method is that we aim to find short
segments within musical pieces, not musical pieces them-
selves. There are several possible application scenarios in
which both non-experts and music professionals enjoy the
benefits of our system. For example, ordinary users could
intuitively find a musical piece by playing just a character-
istic phrase used in the piece even if the title of the piece is
unknown or forgotten. In addition, composers could learn
what kinds of arrangements are used in existing musical
pieces that include a phrase specified as a query.

The major problem of our task lies in distance calcu-
lation between a query and short segments of a musical
piece. One approach would be to calculate the symbolic
distance between musical scores. However, this approach
is impractical because even the state-of-the-art methods of
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automatic music transcription [4,11,17,29,38] work poorly
for standard popular music. Conventional distance calcula-
tion based on acoustic features [5] is also inappropriate be-
cause acoustic features of a phrase are drastically distorted
if other sounds are superimposed in a musical piece. In
addition, since it would be more useful to find locations in
which the same phrase is played by different instruments,
we cannot heavily rely on acoustic features.

In this paper we propose a novel method that can per-
form phrase spotting by calculating the distance between a
query and partial components of a musical piece. Our con-
jecture is that we could judge whether a phrase is included
or not in a musical piece without perfect transcription, like
the human ear can. More specifically, gamma process non-
negative matrix factorization (GaP-NMF) [14] is used for
decomposing the spectrogram of a query into an appropri-
ate number of basis spectra and their activation patterns.
Semi-supervised GaP-NMF is then used for estimating ac-
tivation patterns of the fixed basis spectra in a target mu-
sical piece by presuming the piece to partially consist of
those spectra. This enables appropriate matching based on
activation patterns of the basis spectra forming the query.

2. PHRASE SPOTTING METHOD

This section describes the proposed phrase-spotting
method based on nonparametric Bayesian NMF.

2.1 Overview

Our goal is to detect the start times of a phrase in the poly-
phonic audio signal of a musical piece. An overview of the
proposed method is shown in Figure 1. Let X ∈ R

M×Nx

and Y ∈ R
M×Ny be the nonnegative power spectrogram

of a query and that of a target musical piece, respectively.
Our method consists of three steps. First, we perform NMF
for decomposing the query X into a set of basis spectra
W (x) and a set of their corresponding activations H(x).
Second, in order to obtain temporal activations of W (x)

in the musical piece Y , we perform another NMF whose
basis spectra consist of a set of fixed basis spectra W (x)

and a set of unconstrained basis spectra W (f) that are re-
quired for representing musical instrument sounds except
for the phrase. Let H(y) and H(f) be sets of activations of
Y corresponding to W (x) and W (f), respectively. Third,
the similarity between the activation patterns H(x) in the
query and the activation patterns H(y) in the musical piece
is calculated. Finally, we detect locations of a phrase where
the similarity takes large values.

There are two important reasons that “nonparametric”
“Bayesian” NMF is needed. 1) It is better to automatically
determine the optimal number of basis spectra according
to the complexity of the query X and that of the musical
piece Y . 2) We need to put different prior distributions
on H(y) and H(f) to put more emphasis on fixed basis
spectra W (x) than unconstrained basis spectra W (f). If
no priors are placed, the musical piece Y is often repre-
sented by using only unconstrained basis spectra W (f).
A key feature of our method is that we presume that the

phrase is included in the musical piece when decomposing
Y . This means that we need to make use of W (x) as much
as possible for representing Y . The Bayesian framework
is a natural choice for reflecting such a prior belief.

2.2 NMF for Decomposing a Query

We use the gamma process NMF (GaP-NMF) [14] for
approximating X as the product of a nonnegative vector
θ ∈ R

Kx and two nonnegative matrices W (x) ∈ R
M×Kx

and H(x) ∈ R
Kx×Nx . More specifically, the original ma-

trix X is factorized as follows:

Xmn ≈
Kx∑
k=1

θkW
(x)
mkH

(x)
kn , (1)

where θk is the overall gain of basis k, W (x)
mk is the power

of basis k at frequency m, and H
(x)
kn is the activation of

basis k at time n. Each column of W (x) represents a basis
spectrum and each row of H(x) represents an activation
pattern of the basis over time.

2.3 Semi-supervised NMF for Decomposing a Musical
Piece

We then perform semi-supervised NMF for decomposing
the spectrogram of the musical piece Y by fixing a part
of basis spectra with W (x). The idea of giving W as a
dictionary during inference has been widely adopted [3, 7,
15, 18, 24, 26, 28, 30, 33, 38].

We formulate Bayesian NMF for representing the spec-
trogram of the musical piece Y by extensively using the
fixed bases W (x). To do this, we put different gamma pri-
ors on H(y) and H(f). The shape parameter of the gamma
prior on H(y) is much larger than that of the gamma prior
on H(f). Note that the expectation of the gamma distribu-
tion is proportional to its shape parameter.

2.4 Correlation Calculation between Activation
Patterns

After the semi-supervised NMF is performed, we calculate
the similarity between the activation patterns H(x) in the
query and the activation patterns H(y) in a musical piece to
find locations of the phrase. We expect that similar patterns
appear in H(y) when almost the same phrases are played in
the musical piece even if those phrases are played by differ-
ent instruments. More specifically, we calculate the sum of
the correlation coefficients r at time n between H(x) and
H(y) as follows:

r(n) =
1

KxNx

Kx∑
k=1

(
h
(x)
k1 − h

(x)

k1

)T (
h
(y)
kn − h

(y)

kn

)
∥∥∥h(x)

k1 − h
(x)

k1

∥∥∥ ∥∥∥h(y)
kn − h

(y)

kn

∥∥∥ , (2)

where

h
(·)
ki =

[
H

(·)
ki · · ·H(·)

k(i+Nx−1)

]T
, (3)

h
(·)
kn =

1

Nx

Nx∑
j=1

H
(·)
k(n+j−1) × [1 · · · 1]T . (4)
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Finally, we detect a start frame n of the phrase by finding
peaks of the correlation coefficients over time. This peak
picking is performed based on the following thresholding
process:

r(n) > μ+ 4σ, (5)

where μ and σ denote the overall mean and standard de-
viation of r(n), respectively, which were derived from all
the musical pieces.

2.5 Variational Inference of GaP-NMF

This section briefly explains how to infer nonparametric
Bayesian NMF [14], given a spectrogram V ∈ R

M×N .
We assume that θ ∈ R

K , W ∈ R
M×K , and H ∈ R

K×N

are stochastically sampled according to a generative pro-
cess. We choose a gamma distribution as a prior distribu-
tion on each parameter as follows:

p(Wmk) = Gamma
(
a(W ), b(W )

)
,

p(Hkn) = Gamma
(
a(H), b(H)

)
, (6)

p(θk) = Gamma
( α

K
,αc

)
,

where α is a concentration parameter, K is a sufficiently
large integer (ideally an infinite number) compared with
the number of components in the mixed sound, and c is the
inverse of the mean value of V :

c =

(
1

MN

∑
m

∑
n

Vmn

)−1

. (7)

We then use the generalized inverse-Gaussian (GIG) dis-
tribution as a posterior distribution as follows:

q(Wmk) = GIG
(
γ
(W )
mk , ρ

(W )
mk , τ

(W )
mk

)
,

q(Hkn) = GIG
(
γ
(H)
kn , ρ

(H)
kn , τ

(H)
kn

)
, (8)

q(θk) = GIG
(
γ
(θ)
k , ρ

(θ)
k , τ

(θ)
k

)
.

To estimate the parameters of these distributions, we first
update other parameters, φkmn, ωmn, using the following
equations.

φkmn = Eq

[
1

θkWmkHkn

]−1

, (9)

ωmn =
∑
k

Eq [θkWmkHkn] . (10)

After obtaining φkmn and ωmn, we update the parameters
of the GIG distributions as follows:

γ
(W )
mk = a(W ), ρ

(W )
mk = b(W ) + Eq[θk]

∑
n

Eq[Hkn]

ωmn
,

τ
(W )
mk = Eq

[
1

θk

]∑
n

Vmnφ
2
kmnEq

[
1

Hkn

]
, (11)

γ
(H)
kn = a(H), ρ

(H)
kn = b(H) + Eq[θk]

∑
m

Eq[Wmk]

ωmn
,

τ
(H)
kn = Eq

[
1

θk

]∑
m

Vmnφ
2
kmnEq

[
1

Wmk

]
, (12)

γ
(θ)
k =

α

K
, ρ

(θ)
k = αc+

∑
m

∑
n

Eq[WmkHkn]

ωmn
,

τ
(θ)
k =

∑
m

∑
n

Vmnφ
2
kmnEq

[
1

WmkHkn

]
. (13)

The expectations of W , H and θ are required in Eqs. (9)
and (10). We randomly initialize the expectations of W ,
H , and θ and iteratively update each parameter by using
those formula. As the number of iterations increases, the
value of Eq[θk] over a certain level K+ decreases. There-
fore, if the value is 60 dB lower than

∑
k Eq[θk], we re-

move the related parameters from consideration, which
makes the calculation faster. Eventually, the number of
effective bases, K+, gradually reduces during iterations,
suggesting that the appropriate number is automatically de-
termined.

3. CONVENTIONAL MATCHING METHODS

We describe three kinds of conventional matching meth-
ods used for evaluation. The first and the second methods
calculate the Euclidean distance between acoustic features
(Section 3.1) and that between chroma vectors (Section
3.2), respectively. The third method calculates the Itakura-
Saito (IS) divergence between spectrograms (Section 3.3).

3.1 MFCC Matching Based on Euclidean Distance

Temporal locations in which a phrase appears are detected
by focusing on the acoustic distance between the query
and a short segment extracted from a musical piece. In
this study we use Mel-frequency cepstrum coefficients
(MFCCs) as an acoustic feature, which have commonly
been used in various research fields [1, 5]. More specif-
ically, we calculate a 12-dimensional feature vector from
each frame by using the Auditory Toolbox Version 2 [32].
The distance between two sequences of the feature vector
extracted from the query and the short segment is obtained
by accumulating the frame-wise Euclidean distance over
the length of the query.

The above-mentioned distance is iteratively calculated
by shifting the query frame by frame. Using a simple peak-
picking method, we detect locations of the phrase in which
the obtained distance is lower than m − s, where m and
s denote the mean and standard deviation of the distance
over all frames, respectively.
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3.2 Chromagram Matching Based on Euclidean
Distance

In this section, temporal locations in which a phrase ap-
pears are detected in the same manner as explained in Sec-
tion 3.1. A difference is that we extracted a 12-dimentional
chroma vector from each frame by using the MIRtool-
box [20]. In addition, we empirically defined the threshold
of the peak-picking method as m− 3s.

3.3 DP Matching Based on Itakura-Saito Divergence

In this section, temporal locations in which a phrase ap-
pears are detected by directly calculating the Itakura-Saito
(IS) divergence [8,37] between the query X and the musi-
cal piece Y . The use of the IS divergence is theoretically
justified because the IS divergence poses a smaller penalty
than standard distance measures such as the Euclidean dis-
tance and the Kullback-Leibler (KL) divergence when the
power spectrogram of the query is included in that of the
musical piece.

To efficiently find phrase locations, we use a dynamic
programming (DP) matching method based on the IS di-
vergence. First, we make a distance matrix D ∈ R

Nx×Ny

in which each cell D(i, j) is the IS divergence between the
i-th frame of X and the j-th frame of Y (1 ≤ i ≤ Nx and
1 ≤ j ≤ Ny). D(i, j) is given by

D(i, j) = DIS(Xi|Yj) =
∑
m

(
− log

Xmi

Ymj
+

Xmi

Ymj
− 1

)
,

(14)
where m indicates a frequency-bin index. We then let
E ∈ R

Nx×Ny be a cumulative distance matrix. First, E
is initialized as E(1, j) = 0 for any j and E(i, 1) = ∞ for
any i. E(i, j) can be sequentially calculated as follows:

E(i, j) = min

⎧⎨⎩
1) E(i−1, j−2) + 2D(i, j−1)
2) E(i−1, j−1) +D(i, j)
3) E(i−2, j−1) + 2D(i−1, j)

⎫⎬⎭
+D(i, j). (15)

Finally, we can obtain E(Nx, j) that represents the dis-
tance between the query and a phrase ending at the j-th
frame in the musical piece. We let C ∈ R

Nx×Ny be a cu-
mulative cost matrix. According to the three cases 1), 2),
and 3), C(i, j) is obtained as follows:

C(i, j) =

⎧⎨⎩
1) C(i− 1, j − 2) + 3
2) C(i− 1, j − 1) + 2
3) C(i− 2, j − 1) + 3.

(16)

This means that the length of a phrase is allowed to range
from one half to two times of the query length.

Phrase locations are determined by finding the local
minima of the regularized distance given by E(Nx,j)

C(Nx,j)
. More

specifically, we detect locations in which values of the ob-
tained distance are lower than M − S/10, where M and S
denote the median and standard deviation of the distance
over all frames, respectively. A reason that we use the me-
dian for thresholding is that the distance sometimes takes

an extremely large value (outlier). The mean of the dis-
tance tends to be excessively biased by such an outlier. In
addition, we ignore values of the distance which are more
than 106 when calculating S for practical reasons (almost
all values of E(Nx,j)

C(Nx,j)
range from 103 to 104). Once the end

point is detected, we can also obtain the start point of the
phrase by simply tracing back along the path from the end
point.

4. EXPERIMENTS

This section reports comparative experiments that were
conducted for evaluating the phrase-spotting performances
of the proposed method described in Section 2 and the
three conventional methods described in Section 3.

4.1 Experimental Conditions

The proposed method and the three conventional methods
were tested under three different conditions: 1) Exactly the
same phrase specified as a query was included in a musical
piece (exact match). 2) A query was played by a different
kind of musical instruments (timbre change). 3) A query
was played in a faster tempo (tempo change).

We chose four musical pieces (RWC-MDB-P-2001
No.1, 19, 42, and 77) from the RWC Music Database:
Popular Music [10]. We then prepared 50 queries: 1) 10
were short segments excerpted from original multi-track
recordings of the four pieces. 2) 30 queries were played
by three kinds of musical instruments (nylon guitar, clas-
sic piano, and strings) that were different from those origi-
nally used in the four pieces. 3) The remaining 10 queries
were played by the same instruments as original ones, but
their tempi were 20% faster. Each query was a short per-
formance played by a single instrument and had a duration
ranging from 4 s to 9 s. Note that those phrases were not
necessarily salient (not limited to main melodies) in musi-
cal pieces. We dealt with monaural audio signals sampled
at 16 kHz and applied the wavelet transform by shifting
short-time frames with an interval of 10 ms. The reason
that we did not use short-time Fourier transform (STFT)
was to attain a high resolution in a low frequency band.
We determined the standard deviation of a Gabor wavelet
function to 3.75 ms (60 samples). The frequency interval
was 10 cents and the frequency ranged from 27.5 (A1) to
8000 (much higher than C8) Hz.

When a query was decomposed by NMF, the hyperpa-
rameters were set as α = 1, K = 100, a(W ) = b(W ) =
a(H) = 0.1, and b(H

(x)) = c. When a musical piece
was decomposed by semi-supervised NMF, the hyperpa-
rameters were set as a(W ) = b(W ) = 0.1, a(H

(y)) = 10,
a(H

(f)) = 0.01, and b(H) = c. The inverse-scale parameter
b(H) was adjusted to the empirical scale of the spectrogram
of a target audio signal. Also note that using smaller values
of a(·) makes parameters sparser in an infinite space.

To evaluate the performance of each method, we calcu-
lated the average F-measure, which has widely been used
in the field of information retrieval. The precision rate was
defined as a proportion of the number of correctly-found
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Precision (%) Recall (%) F-measure (%)
MFCC 24.8 35.0 29.0
Chroma 33.4 61.0 43.1
DP 1.9 55.0 3.6
Proposed 53.6 63.0 57.9

Table 1. Experimental results in a case that exactly the
same phrase specified as a query was included in a musical
piece.

Precision (%) Recall (%) F-measure (%)
MFCC 0 0 0
Chroma 18.1 31.7 23.0
DP 1.1 66.3 6.2
Proposed 26.9 56.7 36.5

Table 2. Experimental results in a case that a query was
played by a different kind of instruments.

Precision (%) Recall (%) F-measure (%)
MFCC 0 0 0
Chroma 12.0 19.0 14.7
DP 0.5 20.0 2.7
Proposed 15.8 45.0 23.4

Table 3. Experimental results in a case that the query
phrases was played in a faster tempo.

phrases to that of all the retrieved phrases. The recall rate
was defined as a proportion of the number of correctly-
found phrases to that of all phrases included in the database
(each query phrase was included only in one piece of mu-
sic). Subsequently, we calculated the F-measure F by
F = 2PR

P+R , where P and R denote the precision and re-
call rates, respectively. We regarded a detected point as a
correct one when its error is within 50 frames (500 ms).

4.2 Experimental Results

Tables 1–3 show the accuracies obtained by the four meth-
ods under each condition. We confirmed that our method
performed much better than the conventional methods in
terms of accuracy. Figure 2 shows the value of r(n) ob-
tained from a musical piece in which a query phrase (orig-
inally played by the saxophone) is included. We found that
the points at which the query phrase starts were correctly
spotted by using our method. Although the MFCC-based
method could retrieve some of the query phrases in the
exact-match condition, it was not robust to timbre change
and tempo change. The DP matching method, on the other
hand, could retrieve very few correct points because the IS
divergence was more sensitive to volume change than the
similarity based on spectrograms. Although local minima
of the cost function often existed at correct points, those
minima were not sufficiently clear because it was difficult
to detect the end point of the query from the spectrogram of
a mixture audio signal. The chroma-based method worked
better than the other conventional methods. However, it
did not outperform the proposed method since the chroma-

(a)

(b)

(c)

(b)

Figure 2. Sum of the correlation coefficients r(n). The
target piece was RWC-MDB-P-2001 No.42. (a) The query
was exactly the same as the target saxophone phrase. (b)
The query was played by strings. (c) The query was played
20% faster than the target.

based method often detected false locations including a
similar chord progression.

Although our method worked best of the four, the accu-
racy of the proposed method should be improved for prac-
tical use. A major problem is that the precision rate was
relatively lower than the recall rate. Wrong locations were
detected when queries were played in staccato manner be-
cause many false peaks appeared at the onset of staccato
notes.

As for computational cost, it took 29746 seconds to
complete the retrieval of a single query by using our
method. This was implemented in C++ on a 2.93 GHz
Intel Xeon Windows 7 with 12 GB RAM.

5. CONCLUSION AND FUTURE WORK

This paper presented a novel query-by-audio method that
can detect temporal locations where a phrase given as
a query appears in musical pieces. Instead of pursuing
perfect transcription of music audio signals, our method
used nonnegative matrix factorization (NMF) for calculat-
ing the distance between the query and partial components
of each musical piece. The experimental results showed
that our method performed better than conventional match-
ing methods. We found that our method has a potential to
find correct locations in which a query phrase is played by
different instruments (timbre change) or in a faster tempo
(tempo change).

Future work includes improvement of our method, es-
pecially under the timbre-change and tempo-change con-
ditions. One promising solution would be to classify basis
spectra of a query into instrument-dependent bases (e.g.,
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noise from the guitar) and common ones (e.g., harmonic
spectra corresponding to musical notes) or to create an uni-
versal set of basis spectra. In addition, we plan to reduce
the computational cost of our method based on nonpara-
metric Bayesian NMF.
Acknowledgment: This study was supported in part by the JST
OngaCREST project.
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ABSTRACT

This paper presents a new probabilistic model that can align

multiple performances of a particular piece of music. Con-

ventionally, dynamic time warping (DTW) and left-to-right

hidden Markov models (HMMs) have often been used for

audio-to-audio alignment based on a shallow acoustic sim-

ilarity between performances. Those methods, however,

cannot distinguish latent musical structures common to all

performances and temporal dynamics unique to each per-

formance. To solve this problem, our model explicitly rep-

resents two state sequences: a top-level sequence that de-

termines the common structure inherent in the music it-

self and a bottom-level sequence that determines the actual

temporal fluctuation of each performance. These two se-

quences are fused into a hierarchical Bayesian HMM and

can be learned at the same time from the given perfor-

mances. Since the top-level sequence assigns the same

state for note combinations that repeatedly appear within

a piece of music, we can unveil the latent structure of the

piece. Moreover, we can easily compare different perfor-

mances of the same piece by analyzing the bottom-level se-

quences. Experimental evaluation showed that our method

outperformed the conventional methods.

1. INTRODUCTION

Multiple audio alignment is one of the most important tasks

in the field of music information retrieval (MIR). A piece

of music played by different people produces different ex-

pressive performances, each embedding the unique inter-

pretation of the player. To help a listener better understand

the variety of interpretation or discover a performance that

matches his/her taste, it is effective to clarify how multiple

performances differ by using visualization or playback in-

terfaces [1–3]. Given multiple musical audio signals that

play a same piece of music from the beginning to the end,

our goal is to find a temporal mapping among different sig-

nals while considering the underlying music score.

This paper presents a statistical method of offline mul-

tiple audio alignment based on a probabilistic generative
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Figure 1. An overview of generative audio alignment.

model that can integrate various sources of uncertainties in

music, such as spectral shapes, temporal fluctuations and

structural deviations. Our model expresses how a musical
composition gets performed, so it must model how they

are generated.1 Such a requirement leads to a conceptual

model illustrated in Figure 1, described using a combina-

tion of two complementary models.

To represent the generative process of a musical com-

position, we focus on the general fact that small fragments

consisting of multiple musical notes form the basic build-

ing blocks of music and are organized into a larger work.

For example, the sonata form is based on developing two

contrasting fragments known as the “subject groups,” and a

song form essentially repeats the same melody. Our model

is suitable for modeling the observation that basic melodic

patterns are reused to form the sonata or the song.

To represent the generative process of each performance,

we focus on temporal fluctuations from a common music

composition. Since each performance plays the same mu-

sical composition, the small fragments should appear in

the same order. On the other hand, each performance can

be played by a different set of musical instruments with a

unique tempo trajectory.

Since both generative processes are mutually dependent,

we integrate a generative model of music composition with

that of performance in a hierarchical Bayesian manner. In

other words, we separate the characteristics of a given mu-

sic audio signal into those originating from the underly-

ing music score and those from the unique performance.

Inspired by a typical preprocessing step in music struc-

ture segmentation [6,7], we represent a music composition

as a sequence generated from a compact, ergodic Markov

model (“latent composition”). Each music performance is

represented as a left-to-right Markov chain that traverses

the latent composition with the state durations unique to

each performance.2

1 A generative audio alignment model depends heavily on the model of
both how the music is composed and how the composition is performed.
This is unlike generative audio-to-score alignment [4, 5], which does not
need a music composition model because a music score is already given.

2 Audio samples are available on the website of the first author.
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Figure 2. The concept of our method. Music composition is modeled as a sequence (composition sequence) from an

ergodic Markov model, and each performance plays the composition sequence, traversing the composition sequence in the

order it appears, but staying in each state with different duration.

2. RELATED WORK

Audio alignment is typically formulated as a problem of

maximizing the similarity or minimizing the cost between

a performance and another performance whose time-axis

has been “stretched” by a time-dependent factor, using dy-

namic time warping (DTW) and its variants [8, 9] or other

model of temporal dynamics [10]. To permit the use of a

simple similarity measure, it is important to design robust

acoustic features [11, 12].

Alternatively, tackling alignment by a probabilistic gen-

erative model has gathered attention, especially in the con-

text of audio-to-music score alignment [4, 5]. In general,

a probabilistic model is formulated to describe how each

note in a music score translates to an audio signal. It is

useful when one wishes to incorporate, in a unified frame-

work, various sources of uncertainties present in music,

such as inclusion of parts [13], mistakes [14], or timbral

variations [15–17].

Previous studies in generative audio alignment [13, 18]

ignores the organization present in musical composition,

by assuming that a piece of music is generated from a left-

to-right Markov chain, i.e., a Markov chain whose state

appears in the same order for all performances.

3. FORMULATION

We formulate a generative model of alignment that aligns

D performances. We provide a conceptual overview, and

then mathematically formalize the concept.

3.1 Conceptual Overview

We first extract short-time audio features from each of D
performances. Let us denote the feature sequence for the

dth performance at frame t ∈ [1, Td] as xd,t, where Td is

the total number of frames for the dth audio signal. Here,

the kind of feature is arbitrary, and depends on the gener-

ative model of the short-time audio. Then, we model xd,t

as a set of D state sequences. Each state is associated with

a unique generative process of short-time audio feature. In

other words, each state represents a distinct audio feature,

e.g., distinct chord, f0 and so on, depending on how the

generative model of the feature is designed.

For audio alignment, the state sequence must abide by

two rules. First, the order in which each state appears is

the same for all D feature sequences. In other words, every

performance is described by one sequence of distinct audio

features, i.e., the musical piece that the performances play

in common. We call such a sequence the latent composi-
tion. Second, the duration that each performance resides in

a given state in the latent composition can be unique to the

performance. In other words, each performance traverses

the latent composition with a unique “tempo curve.” We

call the sequence that each performance traverses over the

latent composition sequence as the performance sequence.

The latent composition is a sequence of length N drawn

from an ergodic Markov model, which we call the latent
common structure. We describe the latent composition as

zn, a sequence of length N and S states, where each state

describes a distinct audio feature. In other words, we as-

sume that the musical piece is described by at most N dis-

tinct audio events, using at most S distinct sounds. The

latent common structure encodes the structure inherent to

the music. The transition probabilities of each state sheds

light on a “typical” performance, e.g., melody line or har-

monic progression. Therefore, the latent common structure

provides a generative model of music composition.

The performance sequence provides a generative model

of performance. Each audio signal is modeled as an emis-

sion from a N -state left-to-right Markov model, where the

nth state refers to the generative model associated with the

nth position in the latent composition. Specifically, let

us denote the performance sequence for audio d as φd,t,

which is a state sequence of length Td and N states, such

that state n refers to the nth element of the latent composi-

tion. Each performance sequence is constrained such that

(1) it begins in state 1 and ends at state N , and (2) state n
may traverse only to itself or state n+1. In other words, we
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Figure 3. Graphical model of our method. Dotted box

indicates that the arrow depends on all variables inside the

dotted box. Hyperparameters are omitted.

constrain each performance sequence to traverse the latent

composition in the same order but with a unique duration.

Such a model conveys the idea that each performance can

independently play a piece in any tempo trajectory.

3.1.1 An Example

Let us illustrate our method in Figure 2. In the example,

S = 3 and N = 5, where state “A” corresponds to a combi-

nation of notes G, C and F, “B” corresponds to the note C,

and so on; moreover, zn encodes the state sequence “AB-

BCB,” as to reflect the underlying common music compo-

sition that the performances play. Note that a single note

may be expressed using more than one state in the latent

composition, e.g., both z2 and z3 describe the note “C.”

Next, each performance aligns to the latent composition,

through the performance sequence. Each state of the per-

formance sequence is associated to a position in the latent

composition. For example, φ1,3 is associated to position

2 of z, z2. Then, at each time, the observation is gener-

ated by emitting from the state in latent common structure

referred by the current frame of the current audio. This is

determined hierarchically by looking up the state n of the

performance sequence of audio d at time t, and referring to

the state s of the nth element of the latent composition. In

the example, φ1,3 refers to state n = 2, so the generative

model corresponding to zn=2, or “B,” is referred.

3.2 Formulation of the Generative Model

Let us mathematically formalize the above concept using a

probabilistic generative model, summarized as a graphical

model shown in Fig. 3.

3.2.1 Latent Composition and Common Structure

The latent composition is described as zn={1···N}, a S-

state state sequence of length N , generated from the latent

common structure. We shall express the latent composition

zn using one-of-S representation; zn is a S-dimensional

binary variable where, when the state of zn is s, zn,s =
1 and all other elements are 0. Then, we model z as a

sequence from the latent common structure, an ergodic

Markov chain with initial state probability π and transition

probability τ :

p(z|π, τ ) =
S∏

s=1

πz1,s
s

N,S,S∏
n=2,s′=1,s=1

τ
zn−1,s′zn,s

s,s′ (1)
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Figure 4. Structural annotation on Chopin Op. 41-2 and

the similarity matrix computed from its latent composition.

Each state s is associated with an arbitrary set of param-

eters θs that describes the generative process of the audio

feature. We assume that τ s is generated from a conjugate

Dirichlet distribution, i.e., τ s ∼ Dir(τ 0,s). The same goes

for the initial state probability π, i.e., π ∼ Dir(π0). The

hyperparameters τ 0,s and π0 are set to a positive value less

than 1, which induces sparsity of τ and π, and hence leads

to a compact latent common structure.

The latent composition and structure implicitly convey

the information about how the music is structured and what

its building blocks are. Figure 4 shows a similarity matrix

derived from the estimated latent composition of Op. 41-2

by F. Chopin3 having the ternary form (a.k.a. ABA form).

The first “A” section repeats a theme of form “DEDF” re-

peated twice. The second section is in a modulated key.

Finally, the last section repeats the first theme, and ends

with a short coda, borrowing from “F” motive from the first

theme. Noting that the diagonal lines of a similarity ma-

trix represent strong similarity, we may unveil such a trend

by analyzing the matrix. The bottom-left diagonal lines in

the first section, for example, shows that a theme repeats,

and the top-left diagonal suggests that the first theme is re-

peated at the end. This suggests that the latent composition

reflects the organization of music.

Notice that this kind of structure arises because we ex-

plicitly model the organization of music, conveyed through

an ergodic Markov model; simply aligning multiple per-

formances to a single left-to-right HMM [13, 18] is insuf-

ficient because it cannot revisit a previously visited state.

3.2.2 Performance Sequence

Recall that we require the performance sequence such that

(1) it traverses in the order of latent composition, and (2)

the duration that each performance stays in a particular

state in the latent composition is conditionally indepen-

dent given the latent composition. To satisfy these require-

ments, we model the performance sequence as a N -state

left-to-right Markov chain of length Td, φd,t, where the

first state of the chain is fixed to the beginning of the latent

3 The similarity matrix Ri,j was determined by removing self-
transitions from zn and assigning it to z′, and setting Ri,j = 1 if
z′
i = z′

j , and 0 otherwise. Next, we convolved R by a two-dimensional

filter that emphasizes diagonal lines.
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Figure 5. Feature sequences (chroma vector) of two per-

formances, overlayed by points where the state of the latent

composition changes.

composition and the last state to be the end. This assumes

that there are no cuts or repeats unique to a performance.

Let us define ηd,n to be the probability for performance d to

traverse from position n of the latent composition to n+1.

Then, we model the performance sequence as follows:

p(φd,t={1···Td}) = δ(n, 1)φd,1,nδ(n, S)φd,Td,n

×
∏Td,N

t=1,n=1

[
η
φd,t−1,nφd,t,n+1

d,n

× (1− ηd,n)
φd,t−1,nφd,t,n

]
(2)

where δ(x, y) indicates the Kronecker Delta, i.e., its value

is 1 when x = y and 0 otherwise. We assume ηd,n is drawn

from a conjugate Beta distribution, i.e., ηd,n ∼ Beta(a0, b0).
The ratio a0/b0 controls the likelihood of traversing to next

states, and their magnitudes control the influence of the ob-

servation on the posterior distribution.

Figure 5 shows excerpts of the feature sequences ob-

tained from two performances, and blue lines indicating

the change of the state of the latent composition has changed.

The figure suggests that the state changes with a notable

change in the feature, such as when new notes are played.

Since, by the definition of a left-to-right Markov model, the

number of vertical lines is identical for all performances,

we can align audio signals by mapping the occurrences of

the ith vertical line for all performances, for each i.

3.2.3 Generating Audio Features

Based on the previous expositions, we can see that at time t
of performance d, the audio feature is generated by choos-

ing the state in the latent common structure that is referred

at time t for performance d. This state is extracted by re-

ferring to the performance sequence to recover the position

of the latent composition. Therefore, the observation like-

lihood is given as follows:

p(xd,t|z,φ,θ) =
∏
s,n

p(xd,t|θs)
zn,sφd,t,n (3)

Here, p(x|θs) is the likelihood of observation feature x at

state s of the latent common structure, and its parameter

θs is generated from a prior distribution p(θs|θ0).

For the sake of simplicity, we let p(xd,t|θs) be a dim(x)-
dimensional Gaussian distribution with its parameters θs

generated from its conjugate distribution, the Gaussian-

Gamma distribution. Specifically we let θs = {μs, λs},

θ0 = {m0, ν0, u0,k0}, and let xd,t|μs,λs∼N (μs,λ
−1
s ),

with p(μs,i,λs,i)∝λ
u0− 1

2
s e−(μs,i−m0,i)

2λs,iν0−k0,iλs,i . One

may incorporate a more elaborate model that better ex-

presses the observation.

3.3 Inferring the Posterior Distribution

We derive the posterior distribution to the model described

above. Since direct application of Bayes’ rule to arrive at

the posterior is difficult, we employ the variational Bayes

method [19] and find an approximate posterior of form

q(φ, z,θ,η,π, τ ) =
∏

d q(φd,·)q(z)q(π)
∏

d,n q(ηd,n)∏
s q(θs)q(τ s) that minimizes the Kullback-Leibler (KL)

divergence to the true posterior distribution.

q(φ) and q(z) can be updated in a manner analogous to

a HMM. For q(z), we perform the forward-backward al-

gorithm, with the state emission probability gn at position

n of the latent composition and the transition probability

vs from state s given as follows:

log gn,s =
∑
d,t

〈φd,t,n〉〈log p(xd,t|θs)〉 (4)

log vs,s′ = 〈log τs,s′〉 (5)

Here, 〈f(x)〉 denotes the expectation of f(x) w.r.t. q. Like-

wise, for q(φd,t), we perform the forward-backward algo-

rithm, with the state emission probability hd,n and transi-

tion probability wd,s given as follows:

log hd,t,n =
∑
s

〈zn,s〉〈log p(xd,t|θs)〉 (6)

logwd,n,n′ =

{
〈log ηd,n〉 n = n′

〈log(1− ηd,n)〉 n+ 1 = n′ (7)

We can update π as q(π) = Dir(π0+〈z1〉), η as q(ηd,n) =
Beta(a0+

∑
t〈φd,t−1,nφd,t,n〉, b0+

∑
t〈φd,t−1,n−1φd,t,n〉),

and τ as q(τ s) = Dir(τ 0,s +
∑N

n>1〈zn−1,szn〉).
Based on these parameters, the generative model of au-

dio features can be updated. Some commonly-used statis-

tics for state s include the count N̄s, the mean μ̄s and the

variance Σ̄s, which are given as follows:

N̄s =
∑
d,n,t

〈zn,s〉〈φd,t,n〉 (8)

μ̄s =
1

N̄s

∑
d,n,t

〈zn,s〉〈φd,t,n〉xd,t (9)

Σ̄s =
1

N̄s

∑
d,n,t

〈zn,s〉〈φd,t,n〉(xd,t − μ̄s)
2 (10)

For example, the Gaussian/Gaussian-Gamma model de-

scribed earlier can be updated as follows:

q(μs,λs) = NG
(
ν0 + N̄s,

ν0m0 + N̄sμ̄s

ν0 + N̄s
,

u0+
N̄s

2
,k0 +

1

2

(
N̄sΣ̄s+

ν0N̄s

ν0+N̄s
(μ̄s−m0)

2
))

(11)

Hyperparameters may be set manually, or optimized by

minimizing the KL divergence from q to the posterior.

3.4 Semi-Markov Performance Sequence

The model presented previously implicitly assumes that

the state duration of the performance sequence follows the
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geometric distribution. In such a model, it is noted, espe-

cially in the context of audio-to-score alignment [4], that

further improvement is possible by incorporating a more

explicit duration probability using an extension of the HMM

known as the hidden semi-Markov models [5, 20].

In this paper, we assume that every performance plays a

particular position in the music composition with more-or-

less the same tempo. Hence, we incorporate an explicit du-

ration probability to the performance sequence, such that

the duration of each state is concentrated about some av-

erage state duration common to each performance. To this

end, we assume that for each state n of the performance se-

quence, the state duration l follows a Gaussian distribution

concentrated about a common mean:

p(l|γn, c) = N (γn, cγ
2
n) (12)

We chose the Gaussian distribution due to convenience of

inference. By setting c appropriately, we can provide a

trade-off between the tendency for every piece to play in a

same tempo sequence, and variation of tempo among dif-

ferent performances.

To incorporate such a duration probability in the perfor-

mance sequence model, we augment the state space of the

left-to-right Markov model of the performance sequence

by a “count-down” variable l that indicates the number of

frames remaining in the current state. Then, we assume

that the maximum duration of each state is L, and repre-

sent each state of the performance φd,t as a tuple (n, l) ∈
[1 · · ·N ]× [1 · · ·L], i.e., φd,t,n,l. In this model, state (n, 1)
transitions to (n + 1, l) with probability p(l|μn+1, c), and

state (n, l) for l > 1 transitions to (n, l − 1) with prob-

ability one. Finally, we constrain the terminal state to be

(N, 1). Note that η is no longer used because state duration

is now described explicitly. The parameter γn can be op-

timized by maximum likelihood estimation of the second

kind, to yield the following:

γn =

∑
d,t,l l〈φd,t−1,n−1,1φd,t,n,l〉∑
d,t,l〈φd,t−1,n−1,1φd,t,n,l〉 (13)

c may be optimized in a similar manner, but we found that

the method performs better when c is fixed to a constant.

4. EVALUATION

We conducted two experiments to assess our method. First,

we tested the effectiveness of our method against exist-

ing methods that ignore the organization of music [13,18].

Second, we tested the robustness of our method to the length

of the latent composition, which we need to fix in advance.

4.1 Experimental Conditions

We prepared two to five recordings to nine pieces of Chopin’s

Mazurka (Op. 6-4, 17-4, 24-2, 30-2, 33-2, 41-2, 63-3, 67-

1, 68-3), totaling in 38 audio recordings. For each of the

nine pieces, we evaluated the alignment using (1) DTW us-

ing path constraints in [21] that minimizes the net squared

distance (denoted “DTW”), (2) left-to-right HMM to model

musical audio as done in existing methods [13, 18] (de-

noted “LRHMM”), (3) proposed method (denoted “Pro-
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Figure 6. Percentile of absolute alignment error. Aster-

isks indicate statistically significant difference over DTW

(p=0.05) and circles indicate statistically significant differ-

ence over LRHMM (p=0.05), using Kruskal-Wallis H-test.

posed”), and (4) proposed method with semi-Markov per-

formance sequence (denoted “Proposed (HSMM)”). For

the feature sequence xd,t, we employed the chroma vector

[11] and half-wave rectified difference of the chroma (Δ
chroma), evaluated using a frame length of 8192 samples

and a 20% overlap with a sampling frequency of 44.1kHz.

For the proposed method, the hyperparameters related

to the latent common structure were set to π0 = 0.1 and

τ0,s,s′ = 0.9 + 10δ(s, s′); these parameters encourages

sparsity of the initial state probability and the state tran-

sitions, while encouraging self-transitions. The parame-

ters related to the observation were set to u0 = k0 = 1,

ν0 = 0.1 and m0 = 0; such a set of parameters en-

courages a sparse variance, and assumes that the mean

is highly dispersed. Moreover, we used S = 100 and

N = 0.3mind Td. For the semi-Markov performance se-

quence model, we set c = 0.1. This corresponds to having

a standard deviation of γn
√
0.1, or allowing the notes to

deviate by a standard deviation of about 30%.

4.2 Experimental Results

We present below the evaluation of the alignment accu-

racy and the robustness to the length of the latent compo-

sition. On a workstation with Intel Xeon CPU (3.2GHz),

our method takes about 3 minutes to process a minute of

single musical audio.

4.2.1 Alignment Accuracy

We compared the aligned data to that given by reverse con-

ducting data of the Mazurka Project [1]. Figure 6 shows

the absolute error percentile. The figure shows that our

method (“Proposed”) performs significantly better than the

existing method based on a LRHMM. This suggests that,

for a generative model approach to alignment, not only is

model of performance difference critical but also that of the

common music that the performances play. We also note an

improved performance of the semi-Markov model perfor-

mance sequence (“Proposed (HSMM)”) over the Marko-

vian model (“Proposed”).

Note that when using the same features and squared-

error model, the semi-Markovian model performs better
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Figure 7. Median alignment error against α.

than DTW. This result suggests that with appropriate struc-

tural and temporal models, a generative model approach is

a viable alternative to audio alignment. The performance

gain from Markov to semi-Markov model illuminates the

forte of the generative model approach: temporal, spectral

and structural constraints are mixed seamlessly to attain a

trade-off among the trichotomy.

We note that our model is weak to compositional devi-

ations, such as added ornaments and repeats because we

assume every performance plays an identical composition.

We observed that our method deals with an added note as

a noise or a note that gets played very shortly by most of

the audio signals, but neither captures the nature of added

notes as structural deviations. Moreover, our method some-

times gets “trapped” in local optima, most likely due to the

strong mutual dependency between the latent variables.

4.2.2 Robustness to the Length of the Latent Composition

Since our method requires the user to set the length of la-

tent composition N , we evaluated the quality of alignment

as N is varied. To evaluate the performance of our method

with different values of N , we evaluated the alignment of

the proposed method when N is set to N = α|Td=1|, with

α ranging from α = 0.1 to α = 0.9 with an increment

of 0.1. Figure 7 shows the median alignment error. We

find that when α is too small, when there is an insuffi-

cient number of states to describe a composition, the error

increases. The error also increases when α is too large,

since the maximum total allowed deviation decreases (i.e.,
to about (1−α)Td=1). However, outside such extremities,

the performance is relatively stable for moderate values of

α around 0.5. This suggests that our method is relatively

insensitive to a reasonable choice of N .

5. CONCLUSION

This paper presented an audio alignment method based on

a probabilistic generative model. Based on the insight that

a generative model of musical audio alignment should rep-

resent both the underlying musical composition and how

it is performed by each audio signal, we formulated a uni-

fied generative model of musical composition and perfor-

mance. The proposed generative model contributed to a

significantly better alignment performance than existing

methods. We believe that our contribution brings genera-

tive alignment on par with DTW-based alignment, opening

door to alignment problem settings that require integration

of various sources of uncertainties.

Future study includes incorporating better models of

composition, performance and observation in our unified

framework. In addition, inference over highly coupled hi-

erarchical discrete state models is another future work.
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ABSTRACT

Recently, plenty of full-length concert videos have become

available on video-sharing websites such as YouTube. As

each video generally contains multiple songs, natural ques-

tions that arise include “what is the set list?” and “when

does each song begin and end?” Indeed, many full con-

cert videos on YouTube contain song lists and timecodes

contributed by uploaders and viewers. However, newly

uploaded content and videos of lesser-known artists typ-

ically lack this metadata. Manually labeling such metadata

would be labor-intensive, and thus an automated solution

is desirable. In this paper, we define a novel research prob-

lem, automatic set list segmentation of full concert videos,

which calls for techniques in music information retrieval

(MIR) such as audio fingerprinting, cover song identifica-

tion, musical event detection, music alignment, and struc-

tural segmentation. Moreover, we propose a greedy ap-

proach that sequentially identifies a song from a database

of studio versions and simultaneously estimates its prob-

able boundaries in the concert. We conduct preliminary

evaluations on a collection of 20 full concerts and 1,152

studio tracks. Our result demonstrates the effectiveness of

the proposed greedy algorithm.

1. INTRODUCTION

In recent years, the practice of sharing and watching con-

cert/performance footage on video sharing websites such

as YouTube has grown significantly [12]. In particular,

we have noticed that many concert videos consist of full-

length, unabridged footage, featuring multiple songs. For

example, the query “full concert” on YouTube returns a list

of more than 2 million relevant videos. Before watching a

full concert video, a viewer might like to know if the artist

has performed the viewer’s favorite songs, and when are

those song played in the video. Additionally, after watch-

ing a concert video, a viewer may want to know the song

titles in order to locate the studio version.

c© Ju-Chiang Wang, Ming-Chi Yen, Yi-Hsuan Yang, and

Hsin-Min Wang.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Ju-Chiang Wang, Ming-Chi Yen, Yi-

Hsuan Yang, and Hsin-Min Wang. “Automatic Set List Identification and

Song Segmentation for Full-Length Concert Videos”, 15th International

Society for Music Information Retrieval Conference, 2014.

To satisfy such a demand, the uploader or some viewers

often post the “set list” with the timecode for each song, 1

so that other viewers can easily fast-forward to the de-

sired song. This metadata can help viewers to navigate

a long concert. From a technical point of view, it also

helps to extract the live version of a song to enrich a music

database. Such a database could be used to analyze perfor-

mance style, to discover song transition [17], to train clas-

sifiers for visual event detection [28], or to generate multi-

camera mashups and summaries of concert videos [22,27].

However, newly uploaded videos and those performed

by less known artists typically lack this metadata, because

manually identifying songs and song segmentation can be

time consuming even for an expert. One reason for this is

because live performances can differ substantially from the

studio recordings. Another reason is that live performances

often contain covers of songs by other artists. Even if the

annotator can readily identify all songs, it is still necessary

to go through the entire video to locate the precise times

that each song begins and ends. Therefore, an automated

method is desirable to annotate the rapidly growing volume

of full-length concert videos available online.

The aim of this paper is threefold. First, we define a

novel research problem, i.e. automatic set list segmenta-

tion of full concert videos, and discuss its challenges. Sec-

ond, we propose a greedy approach to tackle the problem.

Third, we construct a novel dataset designed for this task

and suggest several evaluation methods.

1.1 Task Definition and Challenges

There are two sub-tasks for this research problem: set list
identification and song segmentation. Given a full concert

video, the former is to identify the sequence of song titles

played in the concert based on a large collection of stu-

dio version tracks, assuming that no prior knowledge on

the live performance of the artist(s) of the concert is avail-

able. The latter task is to estimate the boundaries of each

identified song in the set list. This problem poses some

interesting challenges as follows:

• A live song can be played in many different ways,

e.g., by changing its timbre, tempo, pitch and struc-

ture, comparing to the corresponding studio version.

1 A set list refers to a list of songs that a band/artist has played in a con-
cert, and the timecode corresponds to the starting time of a song. Here is
an example of full concert video with set list and timecodes on YouTube:
https://www.youtube.com/watch?v=qTOjiniIltQ
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Therefore, certain robustness should be considered.

• Live performances often feature transitions between

consecutive songs, or even repeated oscillations be-

tween the sections of different songs, suggesting that

one should identify songs on a small temporal scale.

• Concerts often feature sections with no reference in

the collection of studio versions, such as intros, out-

ros, solos, banter, transitions between songs, big rock

endings, and applause, amongst others. Unexpected

events such as broken instruments, sound system mal-

functions, and interrupted songs can also be found.

An ideal system should identify them or mark them

as unknown songs/events, avoiding including them

in a segmented song when appropriate.

• The artist may play cover songs from other artists

partially or entirely throughout the concert, resulting

in a much larger search space in the music database.

• The audio quality of user-contributed concert videos

can vary significantly due to recording factors such

as acoustic environment, position, device and user

expertise [14]. The quality degradation can amplify

the difficulty of the problem.

To tackle the above challenges, one may consider tech-

niques for several fundamental problems in music informa-

tion retrieval (MIR), such as audio fingerprinting/matching

[3, 7], cover song identification [5, 24], audio quality as-

sessment [14], musical event detection/tracking [32, 33],

and music signal alignment and segmentation [18]. There-

fore, automatic set list segmentation of full concert videos

may present a new opportunity for MIR researchers to link

music/audio technology to real-world applications.

1.2 Technical Contribution

Our technical contribution lies in the development of a

greedy approach that incorporates three components: seg-

mentation, song identification, and alignment (see Section

3). This approach provides a basic view as a baseline to-

wards future advance. Starting from the beginning of the

concert, our approach first identifies the candidate songs

for a “probe excerpt” of the concert based on segmented

music signals. Then, it estimates the most likely song title

and boundaries of the probe excerpt based on dynamic time

warping (DTW) [18]. This sequential process is repeated

until the entire concert video has been processed. To evalu-

ate the proposed algorithm, we collect 20 full concerts and

1,152 studio tracks from 10 artists (see Section 4). More-

over, we suggest three performance metrics for this task

(see Section 5). Finally, we demonstrate the effectiveness

of the proposed approach and observe that cover song iden-

tification works much better than audio fingerprinting for

identifying the songs in a live performance (see Section 5).

2. RELATED WORK

According to a recent user study, YouTube was the second

most preferred online music streaming service by users in

2012, just behind Pandora [12]. These community-contri-

buted concert videos have been extensively studied in the

multimedia community. Most existing works focus on han-

dling the visual content of the concert videos [1,10,22,27,

28]. Relatively little attention, however, has been paid in

the MIR community to study the audio content of this type

of data. Related work mainly focused on low-level audio

signal processing for tasks such as audio fingerprint-based

synchronization and alignment for concert video organiza-

tion [9, 11, 29], and audio quality ranking for online con-

cert videos [14]. More recently, Rafii et al. proposed a

robust audio fingerprinting system to identify a live music

fragment [23], without exploring full-length concert videos

and song segmentation. To gain deeper understanding of

the content and context of live performance, our work rep-

resents an early attempt to use the full concert video data.

We note that our work is also related to PHENICX [6],

an ongoing project which aims at enriching the user experi-

ence of watching classical music concerts via state-of-the-

art multimedia and Internet technologies. With a system

for automatic set list segmentation of full concert videos,

one could index a large amount of online musical content,

extracting information that helps link live performance to

the associated video content.

Aside from potential applications, the technical devel-

opment of our work is highly motivated by several sig-

nal matching-based music retrieval problems, which can

be categorized into audio fingerprinting (AF) [3, 30], au-

dio matching [21], and cover song identification (CSID) [5,

24], according to their specificities and granularity [4, 7].

An AF system retrieves the exact audio piece that is the

source of a query audio fragment. Audio matching is de-

fined as the task of retrieving from a database all the audio

fragments that are musically relevant to a query fragment.

In contrast, CSID aims at identifying different renditions

of a music piece in the track level (instead of fragment-

level). Unlike AF which usually holds robustness to any

noises that may apply on the same rendition of a song, au-

dio matching and CSID should handle the musically moti-

vated variations occurring in different performances or ar-

rangements of a music piece [7].

3. PROPOSED GREEDY APPROACH

The proposed approach is outlined in Algorithm 1. It em-

ploys an intuitive greedy strategy that recursively probes an

excerpt X from the beginning of the unprocessed concert

Z, identifies K song candidates (K = 5) from the studio

database D, selects the most probable song title s
, esti-

mates the boundaries (i, j) of s
 in X , and finally removes

s
 from D and X(1 : j) from Z. The process stops when

the unprocessed portion of the input concert is shorter than

a pre-defined threshold τ . We make the following assump-

tions while developing Algorithm 1: 1) the performer plays

nearly the entire part of a song rather than a certain small

portion of the song, 2) a song in the studio database is per-

formed at most once in a concert, and 3) the concert con-

tains only songs from the same artist without covers. In

practice, the artist of a concert can be easily known from

the video title. Therefore, we only take the studio tracks of

the artist to construct D. More details are given below.
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Algorithm 1: Set list identification & segmentation

Input: A concert Z; studio track database D; probe

length l; end length τ ; candidate number K;

Output: Song list S; boundary set B;

1 S ← ∅; B ← ∅;
2 while length(Z) > τ do
3 X ← Z(1 : l), if l >length(Z), l = length(Z);
4 {sk}Kk=1 ← identify the K most probable songs

that match X , based on the thumbnails of D;

5 {s
, (i, j)} ← select the best song from {sk}Kk=1

and estimate its boundaries on X , based on the

complete track of D;

6 S ← S + s
; B ← B + (i, j);
7 D ← D − s
; Z ← Z −X(1 : j);

8 end

3.1 Segmentation

In our original design, we adopt music segmentation tech-

niques to pre-process both the concert and every studio

track in the database. This enhances the robustness to vari-

ation of song structure for the music matching and identifi-

cation processes. However, operating on fine-grained seg-

ments of the concert significantly increases the computa-

tional time of the algorithm. Therefore, we make heuristic

modifications to gain more efficiency as follows.

First, we segment a sufficiently long probe excerpt from

the beginning of an unprocessed concert that could include

the first entire song played in the unprocessed concert, with-

out involving any musically motivated segmentation. Ide-

ally, we hope the probe length l is longer than the exact

song s
 plus the events prior to s
 (e.g., banter, applause).

In the experiment, we will compare different settings of

l = α×μ, where α is the parameter and μ the mean length

of all studio tracks in the database.

Second, each studio track in the database is represented

by its thumbnail for better efficiency in the later song can-

didate identification stage. Similar idea has been intro-

duced by Grosche et al. [8]. We develop a simple method

analogous to [15] based on structural segmentation. Seg-

mentino [2, 16] is utilized to discover the musically homo-

geneous sections marked by structure labels such as ‘A,’

‘B,’ and ‘N’ for each studio track. We compute a weighted

factor γ that jointly considers the repetition count and aver-

age segment length for each label. The longest segment of

the label that has the largest γ is selected as the thumbnail.

3.2 Song Candidate Identification

Song candidate identification uses the probe excerpt as a

query and ranks the studio thumbnails in the database. We

employ two strategies for the identifier: audio fingerprint-

ing (AF) and cover song identification (CSID). For sim-

plicity, we employ existing AF and CSID methods in this

work. For future work, it might be more interesting to inte-

grate the identifier with the subsequent boundary estimator.

For AF, we implement the identifier using the widely-

known landmark-based approach proposed in [31]. It ex-

tracts prominent peaks (a.k.a. landmarks) from the mag-

nitude spectrogram of a reference track (e.g. a studio ver-

sion) and characterizes each pair of landmarks by the fre-

quencies of the landmarks and the time in between them,

which provide indices to a hash table that allows fast re-

trieval of similarity information [30]. For a query (e.g. a

probe excerpt), we see whether there are sufficient num-

ber of matched landmarks between the query and a refer-

ence track by looking up the hash table. If the query track

is a noisy version of the reference track, this approach is

likely to perform fairly well, because the landmarks are

most likely to be preserved in noise and distortion.

For CSID, we implement the identifier mainly based on

the chroma DCT-reduced log pitch (CRP) features [19] and

the cross recurrence quantification (CRQ) approach [25],

which correspond to two major components in a state-of-

the-art CSID system [26]. Specifically, we first extract the

frame-based CRP features for the probe excerpt and each

studio track by the Chroma Toolbox [20]. Then, we deter-

mine the key transposition using the optimal transposition

index (OTI) [25]. To apply CRQ, we follow the standard

procedures [25], including constructing the delay coordi-

nate state space vectors, computing the cross recurrence

plot, deriving the Qmax score, and performing normaliza-

tion on the scores across the database. This CSID system

(cf. CYWW1) has led to performance comparable to the

state-of-the-art systems in the MIREX audio cover song

identification task (e.g., on Sapp’s Mazurka Collection). 2

3.3 Song Selection and Boundary Estimation

The next step is to select the most probable song k
 from

the top K studio song candidates, {Yk}Kk=1, and at the

same time estimate its boundaries on the probe excerpt X .

Accordingly, our goal is to find a Yk and the correspond-

ing subsequence X
 = X(i
 : j
) that results in the best

matching between Yk and X
, where 1 ≤ i
 < j
 ≤ N .

Such process is based on the DTW alignment between X
and each Yk, as presented in Algorithm 2.

Let X = {x1, . . . , xN} and denote the complete track

of Yk as Y ′ = {y1, . . . , yM}, where xi and yi represent the

frame-based CRP vectors and N > M . We compute the

cost by the negative cosine similarity of CRP between two

frames after the OTI key transposition. One can observe

that Algorithm 2 includes two sub-procedures of one-side

boundary estimation (cf. Algorithm 3). It first executes Al-

gorithm 3 to search for the end boundary j′ on X and then

reverses the search from j′ for the start boundary i′ using

Algorithm 3 with the cost matrix rotated by 180 degrees.

We follow the standard procedure to compute the accumu-

lated cost matrix D in [18]. Then, Algorithm 3 searches

from D(N2 + 1,M) to D(N,M) for the minimum aver-
age cost of DTW alignments, denoted by δ
k, where the

average cost is defined as the accumulated cost divided by

the length of its optimal warping path (OWP). The frame

index of δ
k is set as the boundary.

After the K candidates are processed, we pick the one

2 http://www.music-ir.org/mirex/wiki/2013:
Audio_Cover_Song_Identification_Results
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Algorithm 2: Boundaries & average cost estimation

Input: Concert excerpt X; a studio track Y ′;
Output: Boundary pair (i′, j′); average cost δ;

1 C ← N -by-M cost matrix between X and Y ′;
2 (j′, ∅)← one-side boundary estimation on C;

3 C ← rotate C(1 : j′, 1 : M) by 180 degrees;

4 (index, δ)← one-side boundary estimation on C;

5 i′ ← j′ − index+ 1;

Algorithm 3: One-side boundary estimation

Input: Cost matrix C;

Output: Boundary β; average cost δ;

1 D ← accumulated cost matrix from C(1, 1);

2 for 1← i to N
2 do

3 p
 ← compute the OWP of D(1 : N
2 + i, 1 : M);

4 Δ(i)← D(N2 + i,M)/length(p
);

5 end
6 (δ, index)← the minimum value and its index of Δ;

7 β ← index+ N
2 ;

with the lowest average cost, k
 = argmink{δk}Kk=1, and

set the boundary pair as (i′k� , j′k�). In other words, we re-

rank the top K candidates according to the results of Algo-

rithm 2, based on the content of the complete studio tracks.

4. DATA COLLECTION

We collect 20 popular full concert videos (from the first

few responses to the query “full concert” to Youtube) and

the associated set lists and timecodes from YouTube. There-

fore, the music genre is dominated by pop/rock. We man-

ually label the start and end boundaries of each song based

on the timecodes, as a timecode typically corresponds to

the start time of a song and may not be always accurate.

There are 10 artists. For each artist, we collect as many

studio tracks as possible including the songs performed in

the collected concerts to form the studio database. On aver-

age, we have 115.2 studio version tracks for each artist, and

each full concert video contains 16.2 live version tracks.

Table 1 summarizes the dataset.

5. EVALUATION

5.1 Pilot Study on Set List Identification

We conduct a pilot study to investigate which strategy (i.e.,

AF or CSID) performs better for set list identification, as-

suming that the song segmentation is perfect. For simplic-

ity, we extract all the songs from the concert videos ac-

cording to the manually labeled boundaries and treat each

entire live song as a query (instead of thumbnail). We use

mean average precision (MAP) and precision@1 with re-

spect to the studio database as the performance metrics.

We also perform random permutation ten times for each

query to generate a lower bound performance, denoted by

‘Random.’ One can observe from Table 2 that CSID per-

forms significantly better than AF in our evaluation, show-

ID Artist Name Concerts Studio Tracks
1 Coldplay 2 96
2 Maroon 5 3 62
3 Linkin’ Park 4 68
4 Muse 2 100
5 Green Day 2 184
6 Guns N’ Roses 2 75
7 Metallica 1 136
8 Bon Jovi 1 205
9 The Cranberries 2 100
10 Placebo 1 126

Table 1. The full concert dataset.

Method MAP Precision@1
AF 0.060 0.048

CSID 0.915 0.904
Random 0.046 0.009

Table 2. Result for live song identification.

ing that the landmark-based AF approach does not work

well for live version identification. This confirms our intu-

ition as live rendition can be thought of as a cover version

of the studio version [5]. In consequence, we use CSID as

the song candidate identifier in the following experiments.

5.2 Performance Metrics

We use the following performance metrics for set list iden-

tification and song segmentation: edit distance (ED), boun-
dary deviation (BD), and frame accuracy (FA). The first

metric ED is originally used to estimate the dissimilarity

of two strings and has been adopted in numerous MIR

tasks [13]. We compute the ED between an output song

sequence (a list of song indices) and the ground truth coun-

terpart via dynamic programming. The weights for inser-

tion, deletion, and substitution are all set to 1. ED can only

evaluate the accuracy of set list identification.

The second metric BD directly measures the absolute

deviation in second between the estimated boundary and

that of the ground truth for only each correctly identified

song, ignoring those wrongly inserted songs in the output

set list, as they are not presented in the ground truth. There-

fore, the average BD of a concert reflects the accuracy of

song segmentation but not set list identification.

The last metric, FA, which has been used in tasks such

as melody extraction, represents the accuracy at the frame-

level (using non-overlapped frame with length 200 ms).

Throughout the concert, we mark the frames between the

start and end boundaries of each song by its song index and

otherwise by ‘x’ (belonging to no song). Then, we calcu-

late the percentage of correct frames (the intersection rate)

by comparing the output frame sequence with the ground

truth counterpart. Therefore, FA can reflect the accuracy

of both set list identification and song segmentation.

5.3 Baseline Approach

To study the effectiveness of the song selection and bound-

ary estimation algorithms (see Section 3.3), we construct a

baseline approach using Algorithm 1 without Algorithms

2 and 3. Specifically, we select the song s
 with the largest
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ID A SG SO ED� sBD� eBD� FA
1 7 20 15 17 6.5 89.1 0.317
2 3 17 17 4 3.3 12.3 0.786
3 1 15 15 3 27.2 33.2 0.744
4 8 23 25 14 8.8 66.8 0.441
5 10 19 18 5 11.5 27.8 0.641
6 6 10 11 1 19.1 22.8 0.875
7 2 10 10 6 28.2 39.1 0.428
8 3 22 22 9 28.2 39.6 0.610
9 6 20 21 7 30.7 35.9 0.653
10 9 17 15 4 5.3 9.8 0.758
11 9 22 21 3 6 8.7 0.860
12 4 17 19 7 32.0 21.9 0.681
13 2 9 12 5 110 155 0.509
14 1 17 17 2 20.1 18.4 0.777
15 2 11 11 7 50.9 72.9 0.393
16 3 17 20 9 36.9 24.7 0.544
17 4 13 11 4 48.1 94.3 0.626
18 3 23 22 10 10 34.8 0.636
19 5 7 7 3 42.4 13.6 0.584
20 5 15 13 9 42.4 36.6 0.465
AVG(α=1.5) 16.2 16.1 6.5 23.4 42.9 0.616

AVG(α=1.2) 16.2 18 7.3 25.7 57.3 0.582
AVG(α=1.8) 16.2 14.6 8.4 29.3 45.3 0.526
Baseline 16.2 19.7 8.9 229 241 0.434

Table 3. Result of the greedy approach with α=1.5 for

the 20 full concerts and their average (AVG) performance.

While ‘AVG (α=1.2 or α=1.8)’ only shows the average per-

formance with different l settings. ‘Baseline’ represents

the average performance of the approach in Section 5.3.

Additional abbreviations: A (Artist ID), SG (number of

Songs in the Ground truth set list), SO (number of Songs

in the Output set list), sBD (start BD), and eBD (end BD).

Symbol � marks the metrics that are the smaller the better.

CSID score on a probe excerpt. The start boundary is the

start point of the probe excerpt, and the end boundary is

the length(s
). Then, we begin the next probe excerpt on a

hop of 0.1×length(s
).

5.4 Result and Discussion

Table 3 shows the quantitative result of each concert, the

average performance (AVG) with different values of l, and

the average performance of Baseline. Figure 1 depicts

the qualitative results of three concerts, including the best,

medium, and the worst cases according to FA in Table 3.

The following observations can be made. First, the AVG

performances of the complete approach are significantly

better than those of Baseline in all metrics, demonstrat-

ing the effectiveness of Algorithms 2 and 3. Second, fur-

ther comparison among AVG performances with different

l settings shows that α=1.5 performs the best, revealing

that live versions are likely longer than studio ones, but

overly large l could yield more deletions, as observed by

the smaller SO of α=1.8. Third, on average our approach

gives similar number of songs of a concert as that of ground

truth (16.1 versus 16.2). Fourth, we find an interesting

linkage between the result and the style of the live perfor-

mance. For example, we find that our approach performed

poorly for ‘Maroon 5’ (A=2) and ‘Metallica’ (A=7). As

can be observed from the last two rows of Figure 1, Ma-

roon 5 tends to introduce several non-song sections such

as jam and banter, which cannot be accurately modeled by

our approach. They also like to make the live renditions

different from their studio versions. On the other hand,

we conjecture that the riffs in the heavy metal music such

as Metallica may be the main reason degrading the per-

formance of matching thumbnails by CSID, because such

riffs lack long-term harmonic progressions. Fifth, the per-

formance for ‘Bon Jovi’ (A=8) is poor, possibly because of

the relatively large quantity of studio tracks in the search

space. Finally, owing to possible big rock endings or repet-

itive chorus in the live performance, our approach rela-

tively cannot estimate accurate end boundary of the songs

in a concert, as reflected by larger eBD than sBD. Our ap-

proach sometimes insert songs that are relatively short in

length, as can be observed in Figure 1. The above two

observations suggest that advanced methods (over Algo-

rithm 3) for boundary estimation and regularizing the song

length might be needed.

In short, while there is still much room for improve-

ment, we find that the result of the proposed greedy ap-

proach is quite satisfactory in some cases (e.g., Concert 6

in Figure 1). The greedy approach is preliminary in nature.

We believe that better result can be obtained by explicitly

addressing the challenges described in Section 1.1.

6. CONCLUSION AND FUTURE DIRECTION

In this paper, we have proposed a novel MIR research prob-

lem with a new dataset and a new greedy approach to ad-

dress the problem. We have also validated the effectiveness

of the proposed approach via both quantitative and quali-

tative results. We are currently expanding the size of the

dataset and conducting more in-depth signal-level analy-

sis of the dataset. Due to the copyright issue on the studio

track collection, however, it is not likely to distribute the

dataset. We will propose this task to MIREX to call for

more advanced approaches to tackle this problem.
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ABSTRACT

One of the central tasks in the annual MIREX evaluation

campaign is the ”Audio Music Similarity and Retrieval

(AMS)” task. Songs which are ranked as being highly

similar by algorithms are evaluated by human graders as

to how similar they are according to their subjective judg-

ment. By analyzing results from the AMS tasks of the

years 2006 to 2013 we demonstrate that: (i) due to low

inter-rater agreement there exists an upper bound of per-

formance in terms of subjective gradings; (ii) this upper

bound has already been achieved by participating algo-

rithms in 2009 and not been surpassed since then. Based

on this sobering result we discuss ways to improve future

evaluations of audio music similarity.

1. INTRODUCTION

Probably the most important concept in Music Information

Retrieval (MIR) is that of music similarity. Proper model-

ing of music similarity is at the heart of every application

allowing automatic organization and processing of music

databases. Consequently, the ”Audio Music Similarity and

Retrieval (AMS)” task has been part of the annual ”Music

Information Retrieval Evaluation eXchange” (MIREX 1 )

[2] since 2006. MIREX is an annual evaluation campaign

for MIR algorithms allowing for a fair comparison in stan-

dardized settings in a range of different tasks. As such

it has been of great value for the MIR community and an

important driving force of research and progress within the

community. The essence of the AMS task is to have human

graders evaluate pairs of query/candidate songs. The query

songs are randomly chosen from a test database and the

candidate songs are recommendations automatically com-

puted by participating algorithms. The human graders rate

whether these query/candidate pairs ”sound similar” using

both a BROAD (”not similar”, ”somewhat similar”, ”very

similar”) and a FINE score (from 0 to 10 or from 0 to 100,

depending on the year the AMS task was held, indicating

degrees of similarity ranging from failure to perfection).

1 http://www.music-ir.org/mirex

c© Arthur Flexer.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Arthur Flexer. “On inter-rater agree-

ment in audio music similarity”, 15th International Society for Music In-

formation Retrieval Conference, 2014.

It is precisely this general notion of ”sounding simi-

lar” which is the central point of criticism in this paper.

A recent survey article on the ”neglected user in music

information retrieval research” [13] has made the impor-

tant argument that users apply very different, individual

notions of similarity when assessing the output of music

retrieval systems. It seems evident that music similarity

is a multi-dimensional notion including timbre, melody,

harmony, tempo, rhythm, lyrics, mood, etc. Nevertheless

most studies exploring music similarity within the field

of MIR, which are actually using human listening tests,

are restricted to overall similarity judgments (see e.g. [10]

or [11, p. 82]) thereby potentially blurring the many im-

portant dimensions of musical expression. There is very

little work on what actually are important dimensions for

humans when judging music similarity (see e.g. [19]).

This paper therefore presents a meta analysis of all

MIREX AMS tasks from 2006 to 2013 thereby demon-

strating that: (i) there is a low inter-rater agreement due

to the coarse concept of music similarity; (ii) as a conse-

quence there exists an upper bound of performance that can

be achieved by algorithmic approaches to music similarity;

(iii) this upper bound has already been achieved years ago

and not surpassed since then. Our analysis is concluded by

making recommendations on how to improve future work

on evaluating audio music similarity.

2. RELATED WORK

In our review on related work we focus on papers directly

discussing results of the AMS task thereby adressing the

problem of evaluation of audio music similarity.

After the first implementation of the AMS task in 2006,

a meta evaluation of what has been achieved has been

published [8]. Contrary to all subsequent editions of the

AMS task, in 2006 each query/candidate pair was evalu-

ated by three different human graders. Most of the study

is concerned with the inter-rater agreement of the BROAD

scores of the AMS task as well as the ”Symbolic Melodic

Similarity (SMS)” task, which followed the same evalu-

ation protocol. To access the amount of agreement, the

authors use Fleiss’s Kappa [4] which ranges between 0

(no agreement) and 1 (perfect agreement). Raters in the

AMS task achieved a Kappa of 0.21 for the BROAD task,

which can be seen as a ”fair” level of agreement. Such

a ”fair” level of agreement [9] is given if the Kappa re-

sult is between 0.21 and 0.40, therefore positioning the
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BROAD result at the very low end of the range. Agree-

ment in SMS is higher (Kappa of 0.37), which is attributed

to the fact that the AMS task is ”less well-defined” since

graders are only informed that ”works should sound sim-

ilar” [8]. The authors also note that the FINE scores for

query/candidate pairs, which have been judged as ”some-

what similar”, show more variance then the one judged as

”very” or ”not” similar. One of the recommendations of

the authors is that ”evaluating more queries and more can-

didates per query would more greatly benefit algorithm de-

velopers” [8], but also that a similar analysis of the FINE

scores is also necessary.

For the AMS task 2006, the distribution of differ-

ences between FINE scores of raters judging the same

query/candidate pair has already been analysed [13]. For

over 50%, the difference between rater FINE scores is

larger than 20. The authors also note that this is very prob-

lematic since the difference between the best and worst

AMS 2012 systems was just 17.

In yet another analysis of the AMS task 2006, it has

been reported [20] that a range of so-called ”objective”

measures of audio similarity are highly correlated with

subjective ratings by human graders. These objective mea-

sures are based on genre information, which can be used

to automatically rank different algorithms producing lists

of supposedly similar songs. If the genre information of

the query and candidate songs are the same, a high degree

of audio similarity is achieved since songs within a genre

are supposed to be more similar than songs from differ-

ent genres. It has therefore been argued that, at least for

large-scale evaluations, these objective measures can re-

place human evaluation [20]. However, this is still a mat-

ter of controversy within the music information retrieval

community, see e.g. [16] for a recent and very outspoken

criticism of this position.

A meta study of the 2011 AMS task explored the con-

nection between statistical significance of reported results

and how this relates to actual user satisfaction in a more

realistic music recommendation setting [17]. The authors

made the fundamental clarification that the fact of ob-

serving statistically significant differences is not sufficient.

More important is whether this difference is noticeable

and important to actual users interacting with the systems.

Whereas a statistically significant difference can alway be

achieved by enlarging the sample size (i.e. the number of

query/candidate pairs), the observed difference can nev-

ertheless be so small that it is of no importance to users.

Through a crowd-sourced user evaluation, the authors are

able to show that there exists an upper bound of user satis-

faction with music recommendation systems of about 80%.

More concretely, in their user evaluation the highest per-

centage of users agreeing that two systems ”are equally

good” never exceeded 80%. This upper bound cannot be

surpassed since there will always be users that disagree

concerning the quality of music recommendations. In ad-

dition the authors are able to demonstrate that differences

in FINE scores, which are statistically significant, are so

small that they make no practical difference for users.

3. DATA

For our meta analysis of audio music similarity (AMS)

we use the data from the “Audio Music Similarity and

Retrieval” tasks from 2006 to 2013 2 within the annual

MIREX [2] evaluation campaign for MIR algorithms.

For the AMS 2006 task, 5000 songs were chosen from

the so-called ”uspop”, ”uscrap” and ”cover song” collec-

tions. Each of the participating 6 system then returned

a 5000x5000 AMS distance matrix. From the complete

set of 5000 songs, 60 songs were randomly selected as

queries and the first 5 most highly ranked songs out of

the 5000 were extracted for each query and each of the

6 systems (according to the respective distance matrices).

These 5 most highly ranked songs were always obtained

after filtering out the query itself, results from the same

artist (i.e. a so-called artist filer was employed [5]) and

members of the cover song collection (since this was es-

sentially a separate task run together with the AMS task).

The distribution for the 60 chosen random songs is highly

skewed towards rock music: 22 ROCK songs, 6 JAZZ, 6

RAP&HIPHOP, 5 ELECTRONICA&DANCE, 5 R&B, 4

REGGAE, 4 COUNTRY, 4 LATIN, 4 NEWAGE. Unfor-

tunately the distribution of genres across the 5000 songs

is not available, but there is some information concern-

ing the ”excessively skewed distribution of examples in

the database (roughly 50% of examples are labeled as

Rock/Pop, while a further 25% are Rap & Hip-Hop)” 3 .

For each query song, the returned results (candidates) from

all participating systems were evaluated by human graders.

For each individual query/candidate pair, three different

human graders provided both a FINE score (from 0 (fail-

ure) to 10 (perfection)) and a BROAD score (not simi-

lar, somewhat similar, very similar) indicating how sim-

ilar the songs are in their opinion. This altogether gives

6×60×5×3 = 5400 human FINE and BROAD gradings.

Please note that since some of the query/candidate pairs are

identical for some algorithms (i.e. different algorithms re-

turned identical candidates) and since such identical pairs

were not graded repeatedly, the actual number of different

FINE and BROAD gradings is somewhat smaller.

Starting with the AMS task 2007, a number of small

changes to the overall procedure was introduced. Each

participating algorithm was given 7000 songs chosen from

the ”uspop”, ”uscrap” and ”american” ”classical” and

”sundry” collections. Therefore there is only a partial over-

lap in music collections (”uspop” and ”uscrap”) compared

to AMS 2006. From now on 30 second clips instead of

the full songs were being used both as input to the algo-

rithms and as listening material for the human graders. For

the subjective evaluation of music similarity, from now

on 100 query songs were randomly chosen representing

the 10 genres found in the database (i.e., 10 queries per

genre). The whole database consists of songs from equally

sized genre groups: BAROQUE, COUNTRY, EDANCE,

2 The results and details can be found at:
http://www.music-ir.org/mirex/wiki/MIREX HOME

3 This is stated in the 2006 MIREX AMS results:
http://www.music-ir.org/mirex/wiki/2006:
Audio Music Similarity and Retrieval Results
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JAZZ, METAL, RAPHIPHOP, ROCKROLL, ROMAN-

TIC, BLUES, CLASSICAL. Therefore there is only a par-

tial overlap of genres compared to AMS 2006 (COUNTRY,

EDANCE, JAZZ, RAPHIPHOP, ROCKROLL). As with

AMS 2006, the 5 most highly ranked songs were then re-

turned per query as candidates (after filtering for the query

song and songs from the same artist). For AMS tasks 2012

and 2013, 50 instead of 100 query songs were chosen and

10 instead of 5 most highly ranked songs returned as can-

didates.

Probably the one most important change to the

AMS 2006 task is the fact that from now on every

query/candidate pair was only being evaluated by a single

user. Therefore the degree of inter-rater agreement cannot

be analysed anymore. For every AMS task, the subjective

evaluation therefore results in a × 100 × 5 human FINE

and BROAD gradings, with a being the number of partic-

ipating algorithms, 100 the number of query songs and 5

the number of candidate songs. For AMS 2012 and 2013

this changed to a × 50 × 10, which yields the same over-

all number. These changes are documented on the respec-

tive MIREX websites, but also in a MIREX review article

covering all tasks of the campaign [3]. For AMS 2007 and

2009, the FINE scores range from 0 to 10, from AMS 2010

onwards from 0 to 100. There was no AMS task in MIREX

2008.

4. RESULTS

In our meta analysis of the AMS tasks from years 2006

to 2013, we will focus on the FINE scores of the subjec-

tive evaluation conducted by the human graders. The rea-

son is that the FINE scores provide more information than

the BROAD scores which only allow for three categorical

values. It has also been customary for the presentation of

AMS results to mainly compare average FINE scores for

the participating algorithms.

4.1 Analysis of inter-rater agreement

Our first analysis is concerned with the degree of inter-

rater agreement achieved in the AMS task 2006, which is

the only year every query/candidate pair has been evalu-

ated by three different human graders. Previous analysis

of AMS results has concentrated on BROAD scores and

used Fleiss’s Kappa as a measure of agreement (see Sec-

tion 2). Since the Kappa measure is only defined for the

categorical scale, we use the Pearson correlation ρ between

FINE scores of pairs of graders. As can be seen in Table 1,

the average correlations range from 0.37 to 0.43. Taking

the square of the observed values of ρ, we can see that

only about 14 to 18 percent of the variance of FINE scores

observed in one grader can be explained by the values ob-

served for the respective other grader (see e.g. [1] on ρ2

measures). Therefore, this is the first indication that agree-

ment between raters in the AMS task is rather low.

Next we plotted the average FINE score of a rater i
for all query/candidate pairs, which he or she rated within

a certain interval of FINE scores v, versus the average

grader1 grader2 grader3

grader1 1.00 0.43 0.37

grader2 1.00 0.40

grader3 1.00

Table 1. Correlation of FINE scores between pairs of hu-

man graders.

grader1 grader2 grader3

grader1 9.57 6.66 5.99

grader2 6.60 9.55 6.67

grader3 6.62 6.87 9.69

Table 2. Pairwise inter-rater agreement for FINE scores

from interval v = [9, 10].

FINE scores achieved by the other two raters j �= i for

the same query/candidate pairs. We therefore explore how

human graders rate pairs of songs which another human

grader rated at a specific level of similarity. The average

results across all raters and for intervals v ranging from

[0, 1), [1, 2)... to [9, 10] are plotted in Figure 1. It is evi-

dent that there is a considerable deviation from the theoret-

ical perfect agreement which is indicated as a dashed line.

Pairs of query/candidate songs which are rated as being

very similar (FINE score between 9 and 10) by one grader

are on average only rated at around 6.5 by the two other

raters. On the other end of the spectrum, query/candidate

pairs rated as being not similar at all (FINE score between

0 and 1) receive average FINE scores of almost 3 by the re-

spective other raters. The degree of inter-rater agreement

for pairs of raters at the interval v = [9, 10] is given in

Table 2. There are 333 pairs of songs which have been

rated within this interval. The main diagonal gives the av-

erage rating one grader gave to pairs of songs in the inter-

val v = [9, 10]. The off-diagonal entries show the level

of agreement between different raters. As an example,

query/candidate pairs that have been rated between 9 and

10 by grader1 have received an average rating of 6.66 by

grader2. The average of these pairwise inter-rater agree-

ments given in Table 2 is 6.54 and is an upper bound for

the average FINE scores of the AMS task 2006. This up-

per bound is the maximum of average FINE scores that can

be achieved within such an evaluation setting. This upper

bound is due to the fact that there is a considerable lack

of agreement between human graders. What sounds very

similar to one of the graders will on average not receive

equally high scores by other graders.

The average FINE score achieved by the best partici-

pating system in AMS 2006 (algorithm EP) is 4.30 ± 8.8
(mean ± variance). The average upper bound inter-rater

grading is 6.54 ± 6.96. The difference between the best

FINE scores achieved by the system EP and the upper

bound is significant according to a t-test: |t| = | −
12.0612| > t95,df=1231 = 1.96 (confidence level of 95%,

degrees of freedom = 1231). We can therefore conclude

that for the AMS 2006 task, the upper bound on the av-
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Figure 1. Average FINE score inter-rater agreement for

different intervals of FINE scores (solid line). Dashed line

indicates theoretical perfect agreement.

erage FINE score had not yet been reached and that there

still was room for improvement for future editions of the

AMS task.

4.2 Comparison to the upper bound

We will now compare the performance of the respective

best participating systems in AMS 2007, 2009 to 2013

to the upper bound of average FINE scores we have re-

trieved in Section 4.1. This upper bound that can possibly

be achieved due to the low inter-rater agreement results

from the analysis of the AMS 2006 task. Although the

whole evaluation protocol in all AMS tasks over the years

is almost identical, AMS 2006 did use a song database that

is only overlapping with that of subsequent years. It is

therefore of course debatable how strictly the upper bound

from AMS 2006 applies to the AMS results of later years.

As outlined in Section 3, AMS 2006 has a genre distribu-

tion that is skewed to about 50% of rock music whereas

all other AMS databases consist of equal amounts of songs

from 10 genres. One could make the argument that in gen-

eral songs from the same genre are being rated as being

more similar than songs from different genres. As a conse-

quence, agreement of raters for query/candidate pairs from

identical genres might also be higher. Therefore inter-

rater agreement within such a more homogeneous database

should be higher than in a more diverse database and it can

be expected that an upper bound of inter-rater agreement

for AMS 2007 to 2013 is even lower than the one we ob-

tained in Section 4.1. Of course this line of argument is

somewhat speculative and needs to be further investigated.

In Figure 2 we have plotted the average FINE score of

the highest performing participants of AMS tasks 2007,

2009 to 2013. These highest performing participants are

the ones that achieved the highest average FINE scores in

the respective years. In terms of statistical significance, the

performance of these top algorithms is often at the same

level as a number of other systems. We have also plotted
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Figure 2. Average FINE score of best performing system

(y-axis) vs. year (x-axis) plotted as solid line. Upper bound

plus confidence interval plotted as dashed line.

year system mean var t

2007 PS 56.75 848.09 -4.3475

2009 PS2 64.58 633.76 -0.4415

2010 SSPK2 56.64 726.78 -4.6230

2011 SSPK2 58.64 687.91 -3.6248

2012 SSKS2 53.19 783.44 -6.3018

2013 SS2 55.21 692.23 -5.4604

Table 3. Comparison of best system vs. upper bound due

to lack of inter-rater agreement.

the upper bound (dashed line) and a 95% confidence inter-

val (dot-dashed lines). As can be seen the performance

peaked in the year 2009 where the average FINE score

reached the confidence interval. Average FINE scores in

all other years are always a little lower. In Table 3 we show

the results of a number of t-tests always comparing the per-

formance to the upper bound. Table 3 gives the AMS year,

the abbreviated name of the winning entry, the mean per-

formance, its variance and the resulting t-value (with 831

degrees of freedom and 95% confidence). Only the best

entry from year 2009 (PS2) reaches the performance of the

upper bound, the best entries from all other years are sta-

tistically significant below the upper bound (critical value

for all t-tests is again 1.96).

Interestingly, this system PS2 which gave the peak per-

formance of all AMS years has also participated in 2010 to

2013. In terms of statistical significance (as measured via

Friedman tests as part of the MIREX evaluation), PS2 has

performed on the same level with the top systems of all fol-

lowing years. The systems PS2 has been submitted by Tim

Pohle and Dominik Schnitzer and essentially consists of a

timbre and a rhythm component [12]. Its main ingredients

are MFCCs modeled via single Gaussians and Fluctuation

patterns. It also uses the so-called P-norm normalization

of distance spaces for combination of timbre and rhythm

and to reduce the effect of hubness (anormal behavior of
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distance spaces due to high dimensionality, see [6] for a

discussion related to the AMS task and [14] on re-scaling

of distance spaces to avoid these effects).

As outlined in Section 3, from 2007 on the same

database of songs was used for the AMS tasks. However,

each year a different set of 100 or 50 songs was chosen for

the human listening tests. This fact can explain that the one

algorithm participating from 2009 to 2013 did not always

perform at the exact same level. After all, not only the

choice of different human graders is a source of variance

in the obtained FINE scores, but also the choice of differ-

ent song material. However, the fact that the one algorithm

that reached the upper bound has so far not been outper-

formed adds additional evidence that the upper bound that

we obtained indeed is valid.

5. DISCUSSION

Our meta analysis of all editions of the MIREX ”Audio

Music Similarity and Retrieval” tasks conducted so far has

produced somewhat sobering results. Due to the lack of

inter-rater agreement there exists an upper bound of perfor-

mance in subjective evaluation of music similarity. Such

an upper bound will always exist when a number of differ-

ent people have to agree on a concept as complex as that of

music similarity. The fact that in the MIREX AMS task the

notion of similarity is not defined very clearly adds to this

general problem. After all, to ”sound similar” does mean

something quite different to different people listening to

diverse music. As a consequence, an algorithm that has

reached this upper bound of performance already in 2009

has not been outperformed ever since. Following our ar-

gumentation, this algorithm cannot be outperformed since

any additional performance will be lost in the variance of

the different human graders.

We now like to discuss a number of recommendations

for future editions of the AMS task. One possibility is to

go back to the procedure of AMS 2006 and again have

more than one grader rate the same query/candidate pairs.

This would allow to always also quantify the degree of

inter-rater agreement and obtain upper bounds specific

to the respective test songs. As we have argued above,

we believe that the upper bound we obtained for AMS

2006 is valid for all AMS tasks. Therefore obtaining spe-

cific upper bounds would make much more sense if future

AMS tasks would use an entirely different database of mu-

sic. Such a change of song material would be a healthy

choice in any case. Re-introducing multiple ratings per

query/candidate pair would of course multiply the work

load and effort if the number of song pairs to be evaluated

should stay the same. However, using so-called ”minimal

test collections”-algorithms allows to obtain accurate esti-

mates on much reduced numbers of query/candidate pairs

as has already been demonstrated for the AMS task [18]. In

addition rater-specific normalization should be explored.

While some human graders use the full range of available

FINE scores when grading similarity of song pairs, others

might e.g. never rate song pairs as being very similar or

not similar at all, thereby staying away from the extremes

of the scale. Such differences in rating style could add even

more variance to the overall task and should therefore be

taken care of via normalization.

However, all this would still not change the fundamen-

tal problem that the concept of music similarity is for-

mulated in such a diffuse way that high inter-rater agree-

ment cannot be expected. Therefore, it is probably neces-

sary to research what the concept of music similarity ac-

tually means to human listeners. Such an exploration of

what perceptual qualities are relevant to human listeners

has already been conducted in the MIR community for the

specific case of textural sounds [7]. Textural sounds are

sounds that appear stationary as opposed to evolving over

time and are therefore much simpler and constrained than

real songs. By conducting mixed qualitative-quantitative

interviews the authors were able to show that qualities like

”high-low”, ”smooth-coarse” or ”tonal-noisy” are impor-

tant to humans discerning textural sounds. A similar ap-

proach could be explored for real song material, probably

starting with a limited subset of genres. After such percep-

tual qualities have then been identified, future AMS tasks

could ask human graders how similar pairs of songs are

according to a specific quality of the music. Such qualities

might not necessarily be straight forward musical concepts

like melody, rhythm, or tempo, but rather more abstract

notions like instrumentation, genre or specific recording

effects signifying a certain style. Such a more fine-grained

approach to music similarity would hopefully raise inter-

rater agreement and make more room for improvements in

modeling music similarity.

Last but not least it has been noted repeatedly that evalu-

ation of abstract music similarity detached from a specific

user scenario and corresponding user needs might not be

meaningful at all [13]. Instead the MIR community might

have to change to evaluation of complete music retrieval

systems, thereby opening a whole new chapter for MIR

research. Such an evaluation of a complete real life MIR

system could center around a specific task for the users

(e.g. building a playlist or finding specific music) thereby

making the goal of the evaluation much clearer. Inciden-

tally, this has already been named as one of the grand chal-

lenges for future MIR research [15]. And even more im-

portantly, exactly such a user centered evaluation will hap-

pen at this year’s tenth MIREX anniversary: the ”MIREX

Grand Challenge 2014: User Experience (GC14UX)” 4 .

The task for participating teams is to create a web-based

interface that supports users looking for background music

for a short video. Systems will be rated by human evalua-

tors on a number of important criteria with respect to user

experience.

6. CONCLUSION

In our paper we have raised the important issue of the lack

of inter-rater agreement in human evaluation of music in-

formation retrieval systems. Since human appraisal of phe-

nomena as complex and multi-dimensional as music sim-

4 http://www.music-ir.org/mirex/wiki/2014:GC14UX
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ilarity is highly subjective and depends on many factors

such as personal preferences and past experiences, evalua-

tion based on human judgments naturally shows high vari-

ance across subjects. This lack of inter-rater agreement

presents a natural upper bound for performance of auto-

matic analysis systems. We have demonstrated and anal-

ysed this problem in the context of the MIREX ”Audio

Music Similarity and Retrieval” task, but any evaluation of

MIR systems that is based on ground truth annotated by

humans has the same fundamental problem. Other exam-

ples from the MIREX campaign include such diverse tasks

as ”Structural Segmentation”, ”Symbolic Melodic Simi-

larity” or ”Audio Classification”, which are all based on

human annotations of varying degrees of ambiguity. Fu-

ture research should explore upper bounds of performance

for these many other MIR tasks based on human annotated

data.
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ABSTRACT

Music is one of the strongest triggers of emotions. Re-

cent studies have shown strong emotional predispositions

for musical instrument timbres. They have also shown sig-

nificant correlations between spectral centroid and many

emotions. Our recent study on spectral centroid-equalized

tones further suggested that the even/odd harmonic ratio is

a salient timbral feature after attack time and brightness.

The emergence of the even/odd harmonic ratio motivated

us to go a step further: to see whether the spectral shape

of musical instruments alone can have a strong emotional

predisposition. To address this issue, we conducted follow-

up listening tests of static tones. The results showed that

the even/odd harmonic ratio again significantly correlated

with most emotions, consistent with the theory that static

spectral shapes have a strong emotional predisposition.

1. INTRODUCTION

Music is one of the most effective media for conveying

emotion. A lot of work has been done on emotion recog-

nition in music, especially addressing melody [4], har-

mony [18], rhythm [23, 25], lyrics [15], and localization

cues [11].

Some recent studies have shown that emotion is also

closely related to timbre. Scherer and Oshinsky found

that timbre is a salient factor in the rating of synthetic

tones [24]. Peretz et al. showed that timbre speeds up

discrimination of emotion categories [22]. Bigand et al.
reported similar results in their study of emotion similari-

ties between one-second musical excerpts [7]. It was also

found that timbre is essential to musical genre recognition

and discrimination [3, 5, 27].

Even more relevant to the current study, Eerola carried

c© Bin Wu, Andrew Horner, Chung Lee.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Bin Wu, Andrew Horner, Chung

Lee. “Emotional Predisposition of Musical Instrument Timbres with

Static Spectra”, 15th International Society for Music Information Re-

trieval Conference, 2014.

out listening tests to investigate the correlation of emotion

with temporal and spectral sound features [10]. The study

confirmed strong correlations between features such as at-

tack time and brightness and the emotion dimensions va-

lence and arousal for one-second isolated instrument tones.

Valence and arousal are measures of how pleasant and en-

ergetic the music sounds [31]. Asutay et al. also studied

valence and arousal responses to 18 environmental sounds

[2]. Despite the widespread use of valence and arousal

in music research, composers may find them rather vague

and difficult to interpret for composition and arrangement,

and limited in emotional nuance. Using a different ap-

proach than Eerola, Ellermeier et al. investigated the un-

pleasantness of environmental sounds using paired com-

parisons [12].

Recently, we investigated the correlations between

emotion and timbral features [30]. In our previous study,

listening test subjects compared tones in terms of emotion

categories such as Happy and Sad. We equalized the stim-

uli attacks and decays so that temporal features would not

be factors. This modification isolated the effects of spectral

features such as spectral centroid. Average spectral cen-

troid significantly correlated for all emotions, and spectral

centroid deviation significantly correlated for all emotions.

This correlation was even stronger than average spectral

centroid for most emotions. The only other correlation was

spectral incoherence for a few emotions.

However, since average spectral centroid and spectral

centroid deviation were so strong, listeners did not notice

other spectral features much. This raised the question: if

average spectral centroid was equalized in the tones, would

spectral incoherence be more significant? Would other

spectral characteristics emerge as significant? We tested

this idea on spectral centroid normalized tones, and found

that even/odd harmonic ratio was significant. This made

us even more curious: if musical instruments tones only

differed from one another in their spectral shapes, would

they still have strong emotional predispositions? To an-

swer this question, we conducted the follow-up experiment

described in this paper using emotion responses for static

spectra tones.
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2. LISTENING TEST

In our listening test, listeners compared pairs of eight in-

struments for eight emotions, using tones that were equal-

ized for attack, decay, and spectral centroid.

2.1 Stimuli

2.1.1 Prototype instrument sounds

The stimuli consisted of eight sustained wind and bowed

string instrument tones: bassoon (Bs), clarinet (Cl), flute

(Fl), horn (Hn), oboe (Ob), saxophone (Sx), trumpet (Tp),

and violin (Vn). They were obtained from the McGill and

Prosonus sample libraries, except for the trumpet, which

had been recorded at the University of Illinois at Urbana-

Champaign School of Music. The original of all these

tones were used in a discrimination test carried out by

Horner et al. [14], six of them were also used by McAdams

et al. [20], and all of them used in our emotion-timbre

test [30].

The tones were presented in their entirety. The tones

were nearly harmonic and had fundamental frequencies

close to 311.1 Hz (Eb4). The original fundamental fre-

quencies deviated by up to 1 Hz (6 cents), and were syn-

thesized by additive synthesis at 311.1 Hz.

Since loudness is potential factor in emotion, amplitude

multipliers were determined by the Moore-Glasberg loud-

ness program [21] to equalize loudness. Starting from a

value of 1.0, an iterative procedure adjusted an amplitude

multiplier until a standard loudness of 87.3 ± 0.1 phons

was achieved.

2.2 Stimuli Analysis and Synthesis

2.2.1 Spectral Analysis Method

Instrument tones were analyzed using a phase-vocoder al-

gorithm, which is different from most in that bin frequen-

cies are aligned with the signal’s harmonics (to obtain ac-

curate harmonic amplitudes and optimize time resolution)

[6]. The analysis method yields frequency deviations be-

tween harmonics of the analysis frequency and the corre-

sponding frequencies of the input signal. The deviations

are approximately harmonic relative to the fundamental

and within ±2% of the corresponding harmonics of the

analysis frequency. More details on the analysis process

are given by Beauchamp [6].

2.2.2 Spectral Centroid Equalization

Different from our previous study [30], the average spec-

tral centroid of the stimuli was equalized for all eight in-

struments. The spectra of each instrument was modified to

an average spectral centroid of 3.7, which was the mean

average spectral centroid of the eight tones. This modifi-

cation was accomplished by scaling each harmonic ampli-

tude by its harmonic number raised to a to-be-determined

power:

Ak(t)← kpAk(t) (1)

For each tone, starting with p = 0, p was iterated using

Newton’s method until an average spectral centroid was

obtained within ±0.1 of the 3.7 target value.

2.2.3 Static Tone Preparation

The static tones were 0.5s in duration and were generated

using the average steady-state spectrum of each spectral

centroid equalized tone with linear 0.05s attacks and de-

cays, and 0.4 sustains.

2.2.4 Resynthesis Method

Stimuli were resynthesized from the time-varying har-

monic data using the well-known method of time-varying

additive sinewave synthesis (oscillator method) [6] with

frequency deviations set to zero.

2.3 Subjects

32 subjects without hearing problems were hired to take

the listening test. They were undergraduate students and

ranged in age from 19 to 24. Half of them had music train-

ing (that is, at least five years of practice on an instrument).

2.4 Emotion Categories

As in our previous study [30], the subjects compared the

stimuli in terms of eight emotion categories: Happy, Sad,

Heroic, Scary, Comic, Shy, Joyful, and Depressed.

2.5 Listening Test Design

Every subject made pairwise comparisons of all eight in-

struments. During each trial, subjects heard a pair of tones

from different instruments and were prompted to choose

which tone more strongly aroused a given emotion. Each

combination of two different instruments was presented in

four trials for each emotion, and the listening test totaled

C8
2 × 4 × 8 = 896 trials. For each emotion, the overall

trial presentation order was randomized (i.e., all the Happy

comparisons were first in a random order, then all the Sad

comparisons were second, ...).

Before the first trial, the subjects read online definitions

of the emotion categories from the Cambridge Academic

Content Dictionary [1]. The listening test took about 1.5

hours, with breaks every 30 minutes.

The subjects were seated in a “quiet room” with less

than 40 dB SPL background noise level. Residual noise

was mostly due to computers and air conditioning. The

noise level was further reduced with headphones. Sound

signals were converted to analog by a Sound Blaster X-

Fi Xtreme Audio sound card, and then presented through

Sony MDR-7506 headphones at a level of approximately

78 dB SPL, as measured with a sound-level meter. The

Sound Blaster DAC utilized 24 bits with a maximum sam-

pling rate of 96 kHz and a 108 dB S/N ratio.
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3. RESULTS

3.1 Quality of Responses

The subjects’ responses were first screened for inconsis-

tencies, and two outliers were filtered out. Consistency

was defined based on the four comparisons of a pair of in-

struments A and B for a particular emotion the same with

our previous work [30]:

consistencyA,B =
max(vA, vB)

4
(2)

where vA and vB are the number of votes a subject

gave to each of the two instruments. A consistency of 1

represents perfect consistency, whereas 0.5 represents ap-

proximately random guessing. The mean average consis-

tency of all subjects was 0.74. Also, as in our previous

work [30], we found that the two least consistent subjects

had the highest outlier coefficients using White et al.’s
method [28]. Therefore, they were excluded from the re-

sults.

We measured the level of agreement among the remain-

ing 30 subjects with an overall Fleiss’ Kappa statistic [16].

Fleiss’ Kappa was 0.026, indicating a slight but statisti-

cally significant agreement among subjects. From this, we

observed that subjects were self-consistent but less agreed

in their responses than our previous study [30], since spec-

tral shape was the only factor that could possibly affect

emotion.

We also performed a χ2 test [29] to evaluate whether

the number of circular triads significantly deviated from

the number to be expected by chance alone. This turned

out to be insignificant for all subjects. The approximate

likelihood ratio test [29] for significance of weak stochas-

tic transitivity violations [26] was tested and showed no

significance for all emotions.

3.1.1 Emotion Results

Same with our previous work, we ranked the spectral cen-

troid equalized instrument tones by the number of positive

votes they received for each emotion, and derived scale val-

ues using the Bradley-Terry-Luce (BTL) model [8, 29] as

shown in Figure 1. The likelihood-ratio test showed that

the BTL model describes the paired-comparisons well for

all emotions. We observe that: 1) The distribution of emo-

tion ratings were much narrower than the original tones

in our previous study [30]. The reason is that spectral

shape was the only factor that could possibly affect emo-

tion, which made it more difficult for subjects to distin-

guish. 2) Opposite of our previous study [30], the horn

evoked positive emotions. It was ranked as the least Shy

and Depressed, and among the most Heroic and Comic. 3)

The clarinet and the saxophone were contrasting outliers

for all emotions (except Scary).

Figure 2 shows BTL scale values and the correspond-

ing 95% confidence intervals of the instruments for each

emotion. The confidence intervals cluster near the line

of indifference since it was difficult for listeners to make

emotional distinctions. Table 1 shows the spectral char-

acteristics of the static tones (time-domain spectral char-

acteristics are omitted since the tones are static). With

all time-domain spectral characteristics removed, spectral

shape features such as even/odd harmonic ratio became

more salient. Specifically, even/odd ratio was calculated

according to Caclin et al.’s method [9]. Pearson correlation

between emotion and spectral characteristics are shown in

Table 2. Both spectral irregularity and even/odd harmonic

ratio are measures of spectral jaggedness, where even/odd

harmonic ratio measures a particular, extreme type of spec-

tral irregularity that is typical of the clarinet. In Table

2, even/odd harmonic ratio significantly correlated with

nearly all emotions. The correlations were much stronger

than in the original tones [30], and indicate that spectral

shape by itself can arouse strong emotional responses.

4. DISCUSSION

These results are consistent with our previous results [30]

and Eerola’s Valence-Arousal results [10]. All these stud-

ies indicate that musical instrument timbres carry cues

about emotional expression that are easily and consistently

recognized by listeners. They show that spectral cen-

troid/brightness is a significant component in music emo-

tion. Beyond Eerola’s and our previous findings, we have

found that spectral shape by itself can have strong emo-

tional predispositions, and even/odd harmonic ratio is the

most salient timbral feature after attack time and brightness

in static tones.

In hindsight, perhaps it is not so surprising that static

spectra tones have emotional predispositions just as dy-

namic musical instrument tones do. It is somewhat anal-

ogous to viewers’ emotional dispositions to primary col-

ors [13, 17, 19].

Of course, just because static tones have emotional pre-

dispositions, it does not mean they are interesting to listen

to. The dynamic spectra of real acoustic instruments are

much more natural and life-like than any static tones, re-

gardless of emotional predisposition. This is reflected in

the wider range of emotion rankings of the original dy-

namic tones compared to the static tones.

For future work, it will be fascinating to see how emo-

tion varies with pitch, dynamic level, brightness, articula-

tion, and cultural backgrounds.
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Anders Genell, Penny Bergman, and Mendel Kleiner.

Emoacoustics: A Study of the Psychoacoustical

and Psychological Dimensions of Emotional Sound

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

255



B s

B s

B s

B s

B s

B s

B s

B sC l

C l

C l

C l

C l

C l

C l

C l

F l

F l

F l F l
F l

F l

F l
F l

H n

H n

H n H n

H n

H n

H n

H n

O b

O b

O b O b
O b

O b

O b

O b

S x

S x

S x S x S x

S x

S x

S x

Tp

Tp
Tp

Tp
Tp

Tp Tp

Tp
V n

V n
V n

V n

V n
V n

V n

V n

0 .0 7

0 .0 9

0 .1 1

0 .1 3

0 .1 5

0 .1 7

0 .1 9

0 .2 1

0 .2 3

0 .2 5

H ap p y S a d* H e ro ic S ca ry * C om ic* S h y* Joy fu l* D e pr e sse d *

B s

C l

F l

H n

O b

S x

T p

V n

Figure 1. Bradley-Terry-Luce scale values of the static tones for each emotion.

Design. Journal of the Audio Engineering Society,

60(1/2):21–28, 2012.

[3] Jean-Julien Aucouturier, François Pachet, and Mark

Sandler. The Way it Sounds: Timbre Models for Anal-

ysis and Retrieval of Music Signals. IEEE Transactions
on Multimedia, 7(6):1028–1035, 2005.

[4] Laura-Lee Balkwill and William Forde Thompson. A

Cross-Cultural Investigation of the Perception of Emo-

tion in Music: Psychophysical and Cultural Cues. Mu-
sic Perception, 17(1):43–64, 1999.

[5] Chris Baume. Evaluation of Acoustic Features for Mu-

sic Emotion Recognition. In Audio Engineering Soci-
ety Convention 134. Audio Engineering Society, 2013.

[6] James W Beauchamp. Analysis and Synthesis of Mu-

sical Instrument Sounds. In Analysis, Synthesis, and
Perception of Musical Sounds, pages 1–89. Springer,

2007.

[7] E Bigand, S Vieillard, F Madurell, J Marozeau, and

A Dacquet. Multidimensional Scaling of Emotional

Responses to Music: The Effect of Musical Exper-

tise and of the Duration of the Excerpts. Cognition and
Emotion, 19(8):1113–1139, 2005.

[8] Ralph A Bradley. Paired Comparisons: Some Basic

Procedures and Examples. Nonparametric Methods,

4:299–326, 1984.

[9] Anne Caclin, Stephen McAdams, Bennett K Smith,

and Suzanne Winsberg. Acoustic Correlates of Tim-

bre Space Dimensions: A Confirmatory Study Using

Synthetic Tones. Journal of the Acoustical Society of
America, 118:471, 2005.

[10] Tuomas Eerola, Rafael Ferrer, and Vinoo Alluri. Tim-

bre and Affect Dimensions: Evidence from Affect

and Similarity Ratings and Acoustic Correlates of Iso-

lated Instrument Sounds. Music Perception, 30(1):49–

70, 2012.

[11] Inger Ekman and Raine Kajastila. Localization Cues

Affect Emotional Judgments–Results from a User

Study on Scary Sound. In Audio Engineering Society
Conference: 35th International Conference: Audio for
Games. Audio Engineering Society, 2009.

[12] Wolfgang Ellermeier, Markus Mader, and Peter Daniel.

Scaling the Unpleasantness of Sounds According to the

BTL Model: Ratio-scale Representation and Psychoa-

coustical Analysis. Acta Acustica United with Acus-
tica, 90(1):101–107, 2004.

[13] Michael Hemphill. A note on adults’ color–emotion

associations. The Journal of genetic psychology,

157(3):275–280, 1996.

[14] Andrew Horner, James Beauchamp, and Richard So.

Detection of Random Alterations to Time-varying Mu-

sical Instrument Spectra. Journal of the Acoustical So-
ciety of America, 116:1800–1810, 2004.

[15] Yajie Hu, Xiaoou Chen, and Deshun Yang. Lyric-

Based Song Emotion Detection with Affective Lexicon

and Fuzzy Clustering Method. Proceedings of ISMIR,

2009.

[16] Fleiss L Joseph. Measuring Nominal Scale Agree-

ment among Many Raters. Psychological Bulletin,

76(5):378–382, 1971.

[17] Naz Kaya and Helen H Epps. Relationship between

color and emotion: A study ofcollege students. College
student journal, 38(3), 2004.

[18] Judith Liebetrau, Sebastian Schneider, and Roman

Jezierski. Application of Free Choice Profiling for the

Evaluation of Emotions Elicited by Music. In Proceed-
ings of the 9th International Symposium on Computer
Music Modeling and Retrieval (CMMR 2012): Music
and Emotions, pages 78–93, 2012.

[19] Banu Manav. Color-emotion associations and color

preferences: A case study for residences. Color Re-
search & Application, 32(2):144–150, 2007.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

256



[20] Stephen McAdams, James W Beauchamp, and

Suzanna Meneguzzi. Discrimination of Musical In-

strument Sounds Resynthesized with Simplified Spec-

trotemporal Parameters. Journal of the Acoustical So-
ciety of America, 105:882, 1999.

[21] Brian CJ Moore, Brian R Glasberg, and Thomas Baer.

A Model for the Prediction of Thresholds, Loudness,

and Partial Loudness. Journal of the Audio Engineer-
ing Society, 45(4):224–240, 1997.

[22] Isabelle Peretz, Lise Gagnon, and Bernard Bouchard.

Music and Emotion: Perceptual Determinants, Imme-

diacy, and Isolation after Brain Damage. Cognition,

68(2):111–141, 1998.

[23] Magdalena Plewa and Bozena Kostek. A Study on Cor-

relation between Tempo and Mood of Music. In Audio
Engineering Society Convention 133, Oct 2012.

[24] Klaus R Scherer and James S Oshinsky. Cue Utiliza-

tion in Emotion Attribution from Auditory Stimuli.

Motivation and Emotion, 1(4):331–346, 1977.

[25] Janto Skowronek, Martin McKinney, and Steven Van

De Par. A Demonstrator for Automatic Music Mood

Estimation. Proceedings of the International Confer-
ence on Music Information Retrieval, 2007.

[26] Amos Tversky. Intransitivity of Preferences. Psycho-
logical Review, 76(1):31, 1969.

[27] George Tzanetakis and Perry Cook. Musical Genre

Classification of Audio Signals. IEEE Transactions on
Speech and Audio Processing, 10(5):293–302, 2002.

[28] Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob

Bergsma, and Javier Movellan. Whose Vote Should

Count More: Optimal Integration of Labels from La-

belers of Unknown Expertise. Advances in Neural In-
formation Processing Systems, 22(2035-2043):7–13,

2009.

[29] Florian Wickelmaier and Christian Schmid. A Matlab

Function to Estimate Choice Model Parameters from

Paired-comparison Data. Behavior Research Methods,
Instruments, and Computers, 36(1):29–40, 2004.

[30] Bin Wu, Simon Wun, Chung Lee, and Andrew Horner.

Spectral Correlates in Emotion Labeling of Sustained

Musical Instrument Tones. In Proceedings of the 14th
International Society for Music Information Retrieval
Conference, November 4-8 2013.

[31] Yi-Hsuan Yang, Yu-Ching Lin, Ya-Fan Su, and

Homer H. Chen. A Regression Approach to Music

Emotion Recognition. IEEE TASLP, 16(2):448–457,

2008.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

257



●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30

Happy

BTL scale value

B
s

C
l

Fl
H

n
O

b
S

x
Tp

V
n

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30

Sad

BTL scale value

B
s

C
l

Fl
H

n
O

b
S

x
Tp

V
n

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30

Heroic

BTL scale value

B
s

C
l

Fl
H

n
O

b
S

x
Tp

V
n

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30

Scary

BTL scale value

B
s

C
l

Fl
H

n
O

b
S

x
Tp

V
n

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30

Comic

BTL scale value

B
s

C
l

Fl
H

n
O

b
S

x
Tp

V
n

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30

Shy

BTL scale value

B
s

C
l

Fl
H

n
O

b
S

x
Tp

V
n

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30

Joyful

BTL scale value

B
s

C
l

Fl
H

n
O

b
S

x
Tp

V
n

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30

Depressed

BTL scale value

B
s

C
l

Fl
H

n
O

b
S

x
Tp

V
n

Figure 2. BTL scale values and the corresponding 95% confidence intervals of the static tones for each emotion. The

dotted line represents no preference.

�������������Features

Instruments
Bs Cl Fl Hn Ob Sx Tp Vn

Spectral Irregularity 0.0971 0.1818 0.143 0.0645 0.119 0.1959 0.0188 0.1176

Even/odd Ratio 1.2565 0.1775 0.9493 0.9694 0.4308 1.7719 0.7496 0.8771

Table 1. Spectral characteristics of the static instrument tones.

����������Features

Emotion
Happy Sad Heroic Scary Comic Shy Joyful Depressed

Spectral Irregularity -0.1467 0.1827 -0.4859 -0.0897 -0.3216 0.1565 -0.509 0.3536

Even/odd Ratio 0.8901∗∗ -0.8441∗∗ 0.7468∗∗ -0.3398 0.8017∗∗ -0.7942∗∗ 0.6524∗ -0.7948∗∗

Table 2. Pearson correlation between emotion and spectral characteristics for static tones. ∗∗: p < 0.05; ∗ : 0.05 < p < 0.1.
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ABSTRACT

This paper presents a scalable granular acoustic fingerprint-

ing system. An acoustic fingerprinting system uses con-

densed representation of audio signals, acoustic fingerprints,

to identify short audio fragments in large audio databases.

A robust fingerprinting system generates similar fingerprints

for perceptually similar audio signals. The system pre-

sented here is designed to handle time-scale and pitch mod-

ifications. The open source implementation of the sys-

tem is called Panako and is evaluated on commodity hard-

ware using a freely available reference database with fin-

gerprints of over 30,000 songs. The results show that the

system responds quickly and reliably on queries, while han-

dling time-scale and pitch modifications of up to ten per-

cent.

The system is also shown to handle GSM-compression,

several audio effects and band-pass filtering. After a query,

the system returns the start time in the reference audio

and how much the query has been pitch-shifted or time-

stretched with respect to the reference audio. The design

of the system that offers this combination of features is the

main contribution of this paper.

1. INTRODUCTION

The ability to identify a small piece of audio by comparing

it with a large reference audio database has many practical

use cases. This is generally known as audio fingerprinting
or acoustic fingerprinting. An acousic fingerprint is a con-

densed representation of an audio signal that can be used

to reliably identify identical, or recognize similar, audio

signals in a large set of reference audio. The general pro-

cess of an acoustic fingerprinting system is depicted in Fig-

ure 1. Ideally, a fingerprinting system only needs a short

audio fragment to find a match in large set of reference

audio. One of the challenges is to design a system in a

way that the reference database can grow to contain mil-

lions of entries. Another challenge is that a robust finger-

c© Six Joren, Marc Leman.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Six Joren, Marc Leman. “Panako - A

Scalable Acoustic Fingerprinting System Handling Time-Scale and Pitch

Modification”, 15th International Society for Music Information Retrieval

Conference, 2014.

printing should handle noise and other modifications well,

while limiting the amount of false positives and processing

time [5]. These modifications typically include dynamic

range compression, equalization, added background noise

and artifacts introduced by audio coders or A/D-D/A con-

versions.

Over the years several efficient acoustic fingerprinting

methods have been introduced [1, 6, 8, 13]. These meth-

ods perform well, even with degraded audio quality and

with industrial sized reference databases. However, these

systems are not designed to handle queries with modified

time-scale or pitch although these distortions can be present

in replayed material. Changes in replay speed can occur ei-

ther by accident during an analog to digital conversion or

they are introduced deliberately.

Accidental replay speed changes can occur when work-

ing with physical, analogue media. Large music archive

often consist of wax cylinders, magnetic tapes and gramo-

phone records. These media are sometimes digitized using

an incorrect or varying playback speed. Even when cali-

brated mechanical devices are used in a digitization pro-

cess, the media could already have been recorded at an un-

desirable or undocumented speed. A fingerprinting system

should therefore allow changes in replay speed to correctly

detect duplicates in such music archives.

Deliberate time-scale manipulations are sometimes in-

troduced as well. During radio broadcasts, for example,

songs are occasionally played a bit faster to make them fit

into a time slot. During a DJ-set pitch-shifting and time-

stretching are present almost continuously. To correctly

identify audio in these cases as well, a fingerprinting sys-

tem robust against pitch-shifting and time-stretching is de-

sired.

Some fingerprinting systems have been developed that

take pitch-shifts into account [3, 7, 11] without allowing

time-scale modification. Others are designed to handle

both pitch and time-scale modification [10, 14]. The sys-

tem by Zhu et al [14] employs an image processing algo-

rithm on an auditory image to counter time-scale modifica-

tion and pitch-shifts. Unfortunately, the system is compu-

tationally expensive, it iterates the whole database to find a

match. The system by Malekesmaeili et al [10] allows ex-

treme pitch- shifting and time-stretching, but has the same

problem. To the best of our knowledge, a description of

a practical acoustic fingerprinting system that allows sub-
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Figure 1: A generalized audio fingerprinter scheme. Audio is fed into the system, features are extracted and fingerprints constructed.
The fingerprints are consecutively compared with a database containing the fingerprints of the reference audio. The original audio is
either identified or, if no match is found, labeled as unknown.

stantial pitch-shift and time-scale modification is nowhere

to be found in the literature. This description is the main

contribution of this paper.

2. METHOD

The proposed method is inspired by three works. Combin-

ing key components of those works results in a design of

a granular acoustic fingerprinter that is robust to noise and

substantial compression, has a scalable method for finger-

print storage and matching, and allows time-scale modifi-

cation and pitch-shifting.

Firstly, the method used by Wang [13] establishes that

local maxima in a time-frequency representation can be

used to construct fingerprints that are robust to quantiza-
tion effects, filtering, noise and substantial compression.

The described exact-hashing method for storing and match-
ing fingerprints has proven to be very scalable. Secondly,

Artz et al. [2] describe a method to align performances and

scores. Especially interesting is the way how triplets of

events are used to search for performances with different

timings. Thirdly, The method by Fenet et al. [7] introduces

the idea to extract fingerprints from a Constant-Q [4] trans-

form, a time-frequency representation that has a constant

amount of bins for every octave. In their system a a fin-
gerprint remains constant when a pitch-shift occurs. How-

ever, since time is encoded directly within the fingerprint,

the method does not allow time-scale modification.

Considering previous works, the method presented here

uses local maxima in a spectral representation. It combines

three event points, and takes time ratios to form time-scale

invariant fingerprints. It leverages the Constant-Q trans-

form, and only stores frequency differences for pitch-shift

invariance. The fingerprints are designed with an exact

hashing matching algorithm in mind. Below each aspect

is detailed.

2.1 Finding Local Maxima

Suppose a time-frequency representation of a signal is pro-

vided. To locate the points where energy reaches a local

maximum, a tiled two-dimensional peak picking algorithm

is applied. First the local maxima for each spectral analy-

sis frame are identified. Next each of the local maxima are

iterated and put in the center of a tile with ΔT × ΔF as

dimensions. If the local maximum is also the maximum

within the tile it is kept, otherwise it is discarded. Thus,
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Figure 2: The effect of time-scale and pitch modifications on a
fingerprint. It shows a single fingerprint extracted from reference
audio ( ) and the same fingerprint extracted from audio after
pitch-shifting ( ), time-stretching ( ) and time-scale mod-
ification ( ).

making sure only one point is identified for every tile of

ΔT ×ΔF . This approach is similar to [7,13]. This results

in a list of event points each with a frequency component

f , expressed in bins, and a time component t, expressed

in time steps. ΔT and ΔF are chosen so that there are

between 24 and 60 event points every second.

A spectral representation of an audio signal has a certain

granularity; it is essentially a grid with bins both in time as

in frequency. When an audio signal is modified, the energy

that was originally located in one single bin can be smeared

over two or more bins. This poses a problem, since the goal

is to be able to locate event points with maximum energy

reliably. To improve reliability, a post processing step is

done to refine the location of each event point by taking

its energy and mixing it with the energy of the surrounding

bins. The same thing is done for the surrounding bins. If

a new maximum is found in the surroundings of the initial

event point, the event point is relocated accordingly. Ef-

fectively, a rectangular blur with a 3 × 3 kernel is applied

at each event point and its surrounding bins.

Once the event points with local maximum energy are

identified, the next step is to combine them to form a fin-

gerprint. A fingerprint consists of three event points, as

seen in Figure 2. To construct a fingerprint, each event

point is combined with two nearby event points. Each

event point can be part of multiple fingerprints. Only be-
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tween 8 and 20 fingerprints are kept every second. Finger-

prints with event points with the least cumulative energy

are discarded. Now that a list of fingerprints has been cre-

ated a method to encode time information in a fingerprint

hash is needed.

2.2 Handling Time Stretching: Event Triplets

Figure 2 shows the effect of time stretching on points in

the time-frequency domain. There, a fingerprint extracted

from reference audio (Fig.2, ) is compared with a fin-

gerprint from time stretched audio (Fig.2, ). Both fin-

gerprints are constructed using three local maxima e1, e2, e3
and e′1, e

′
2, e

′
3 . While the frequency components stay the

same, the time components do change. However, the ra-

tios between the time differences are constant as well. The

following equation holds 1 :

t2 − t1
t3 − t1

=
t′2 − t′1
t′3 − t′1

(1)

With event point en having a time and frequency com-

ponent (tn, fn) and the corresponding event points e′n hav-

ing the components (t′n, f
′
n). Since t3 − t1 ≥ t2 − t1, the

ratio always resolves to a number in the range ]0, 1]. This

number, scaled and rounded, is a component of the even-

tual fingerprint hash (an approach similar to [2]).

Now that a way to encode time information, indiffer-

ent of time-stretching, has been found, a method to encode

frequency, indifferent to pitch-shifting is desired.

2.3 Handling Pitch-Shifts: Constant-Q Transform

Figure 2 shows a comparison between a fingerprint from

pitch shifted audio ( ) with a fingerprint from reference

audio ( ). In the time-frequency domain pitch shift-

ing is a vertical translation and time information is pre-

served. Since every octave has the same number of bins [4]

a pitch shift on event e1 will have the following effect on

it’s frequency component f1, with K being a constant,

f ′
1 = f1 + K. It is clear that the difference between the

frequency components remains the same, before and af-

ter pitch shifting: f1 − f2 = (f ′
1 + K) − (f ′

2 + K) [7].

In the proposed system three event points are available,

the following information is stored in the fingerprint hash:

f1 − f2; f2 − f3; f̃1; f̃3
The last two elements, f̃1 and f̃3 are sufficiently coarse

locations of the first and third frequency component. They

are determined by the index of the frequency band they

fall into after dividing the spectrum into eight bands. They

provide the hash with more discriminative power but also

limit how much the audio can be pitch-shifted, while main-

taining the same fingerprint hash.

2.4 Handling Time-Scale Modification

Figure 2 compares a fingerprint of reference audio (Fig.2,

) with a fingerprint from the same audio that has been

sped up (Fig.2, ). The figure makes clear that speed

1 It is assumed that the time stretch factor is constant in the time inter-
val t′3 − t′1. A reasonable assumption since t′3 − t′1 is small.

change is a combination of both time-stretching and pitch-

shifting. Since both are handled in with the previous mea-

sures, no extra precautions need to be taken. The next step

is to combine the properties into a fingerprint that is effi-

cient to store and match.

2.5 Fingerprint Hash

A fingerprint with a corresponding hash needs to be con-

structed carefully to maintain aforementioned properties.

The result of a query should report the amount of pitch-

shift and time-stretching that occurred. To that end, the

absolute value of f1 and t3 − t1 is stored, they can be used

to compare with f ′
1 and t′3 − t′1 from the query. The time

offset at which a match was found should be returned as

well, so t1 needs to be stored. The complete information

to store for each fingerprint is:

(
f1 − f2; f2 − f3; f̃1; f̃3;

t2 − t1
t3 − t1

)
; t1; f1; t3 − t1; id

(2)

The hash, the first element between brackets, can be

packed into a 32bit integer. To save space, f1 and t3 − t1
can be combined in one 32bit integer. An integer of 32bit
is also used to store t1. The reference audio identifier is

also a 32bit identifier. A complete fingerprint consists of

4×32bit = 128bit. At eight fingerprints per second a song

of four minutes is reduced to 128bit×8×60×4 = 30kB.

An industrial size data set of one million songs translates

to a manageable 28GB 2 .

2.6 Matching Algorithm

The matching algorithm is inspired by [13], but is heavily

modified to allow time stretched and pitch-shifted matches.

It follows the scheme in Figure 1 and has seven steps.

1. Local maxima are extracted from a constant-Q spectro-

gram from the query. The local maxima are combined

by three to form fingerprints, as explained in Sections

2.1, 2.3 and 2.4.

2. For each fingerprint a corresponding hash value is cal-

culated, as explained in Section 2.5.

3. The set of hashes is matched with the hashes stored

in the reference database, and each exact match is re-

turned.

4. The matches are iterated while counting how many times

each individual audio identifier occurs in the result set.

5. Matches with an audio identifier count lower than a cer-

tain threshold are removed, effectively dismissing ran-

dom chance hits. In practice there is almost always only

one item with a lot of matches, the rest being random

chance hits. A threshold of three or four suffices.

2 Depending on the storage engine used, storage of fingerprints to-
gether with an index of sorts introduces a storage overhead. Since the
data to store is small, the index can be relatively large.
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6. The residual matches are checked for alignment, both

in frequency and time, with the reference fingerprints

using the information that is stored along with the hash.

7. A list of audio identifiers is returned ordered by the

amount of fingerprints that align both in pitch and fre-

quency.

In step six, frequency alignment is checked by com-

paring the f1 component of the stored reference with f ′
1,

the frequency component of the query. If, for each match,

the difference between f1 and f ′
1 is constant, the matches

align.

Alignment in time is checked using the reference time

information t1 and t3− t1, and the time information of the

corresponding fingerprint extracted from the query frag-

ment t′1, t′3 − t′1. For each matching fingerprint the time

offset to is calculated. The time offset to resolves to the

amount of time steps between the beginning of the query

and the beginning of the reference audio, even if a time

modification took place. It stands to reason that to is con-

stant for matching audio.

to = t1 − t′1 ×
(t3 − t1)

(t′3 − t′1)
(3)

The matching algorithm also provides information about

the query. The time offset tells at which point in time the

query starts in the reference audio. The time difference

ratio (t3− t1)/(t
′
3− t′1) represents how much time is mod-

ified, in percentages. How much the query is pitch-shifted

with respect to the reference audio can be deduced from

f ′
1 − f1, in frequency bins. To convert a difference in fre-

quency bins to a percentage the following equation is used,

with n the number of cents per bin, e Eulers number, and

ln the natural logarithm: e((f
′
1−f1)×n×ln(2)/1200)

The matching algorithm ensures that random chance

hits are very uncommon, the number of false positives can

be effectively reduced to zero by setting a threshold on the

number of aligned matches. The matching algorithm also

provides the query time offset and the percentage of pitch-

shift and time-scale modification of the query with respect

to the reference audio.

3. RESULTS

To test the system, it was implemented in the Java pro-

gramming language. The implementation is called Panako

and is available under the GNU Affero General Public Li-
cense on http://panako.be. The DSP is also done in

Java using a DSP library [12]. To store and retrieve hashes,

Panako uses a key-value store. Kyoto Cabinet, BerkeyDB,

Redis, LevelDB, RocksDB, Voldemort, and MapDB were

considered. MapDB is an implementation of a storage

backed B-Tree with efficient concurrent operations [9] and

was chosen for its simplicity, performance and good Java

integration. Also, the storage overhead introduced when

storing fingerprints on disk is minimal. Panako is com-

pared with Audfprint by Dan Ellis, an implementation of a

fingerprinter system based on [13].
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Figure 3: True positive rate after pitch-shifting. Note the fluctu-
ating effect caused by the Constant-Q frequency bins.

The test data set consists of freely available music down-

loaded from Jamendo 3 . A reference database of about

30,000 songs, about 106 seconds of audio, was created.

From this data set random fragments were selected, with a

length of 20, 40 and 60 seconds. Each fragments was mod-

ified 54 times. The modifications included: pitch-shifting

(−200 tot 200 cents in steps of 25 cents), time-stretching

(−16% to +16%, in steps of 2%), time-scale modification

(−16% to +16%, in steps of 2%), echo, flanger, chorus

and a band-pass filter 4 . Another set of fragments were

created from audio not present in the reference database,

in order to measure the number of correctly unidentified

fragments. In total 3 (durations) × 600 (excerpts) ×
54 (modifications) = 97, 200 fragments were created.

Each fragment is presented to both Panako and Audf-

print and the detection results are recorded. The systems

are regarded as binary classifiers of which the amount of

true positives (TP ), false positives (FP ), true negatives

(TN ) and false negatives (FN ) are counted. During the

experiment with Panako no false positives (FP ) were de-

tected. Also, all fragments that are not present in the refer-

ence database were rejected correctly (TN ). So Panako’s

specificity is TN/(TN + FP ) = 100%. This can be ex-

plained by the design of the matching algorithm. A match

is identified as such if a number of hashes, each consist-

ing of three points in a spectrogram, align in time. A ran-

dom match between hashes is rare, the chances of a ran-

dom match between consecutively aligned hashes is almost

non-existent, resulting in 100% specificity.

The sensitivity FP/(TP + FN) of the system, how-

ever, depends on the type of modification on the fragment.

Figure 3 shows the results after pitch-shifting. It is clear

that the amount of pitch-shift affects the performance, but

3 http://jamendo.com is a website where artists share their work
freely, under various creative commons licenses. To download the data
set used in this paper, and repeat the experiment, please use the scripts
provided at http://panako.be.

4 The effects were applied using SoX, a command line audio editor.
The scripts used to generate the queries can be found at the website
http://panako.be
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Figure 5: True positive rate after time-scale modification

in a fluctuating pattern. The effect can be explained by tak-

ing into account the Constant-Q bins. Here, a bin spans 33
cents, a shift of n × 33/2 cents spreads spectral informa-

tion over two bins, if n is an odd number. So performance

is expected to degrade severely at ±49.5 cents (3%) and

±148.5 cents (9%) an effect clearly visible in figure 3. The

figure also shows that performance is better if longer frag-

ments are presented to the system. The performance of

Audfprint, however, does not recover after pitch-shifts of

more than three percent.

Figure 4 shows the results after time stretching. Due to

the granularity of the time bins, and considering that the

step size stays the same for each query type, time modi-

fications have a negative effect on the performance. Still,

a more than a third of the queries is resolved correctly af-

ter a time stretching modification of 8%. Performance im-

proves with the length of a fragment. Surprisingly, Audf-

print is rather robust against time-stretching, thanks to the

way time is encoded into a fingerprint.

Figure 5 shows the results after time-scale modification.

The performance decreases severely above eight percent.

The figure shows that there is some improvement when

comparing the results of 20s fragments to 40s fragments,

but going from 40s to 60s does not change much. Audiof-

print is unable to cope with time-scale modification due to

the changes in both frequency and time.
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Figure 6: Effect of several attacks on true positive rate.

In Figure 6, the results for other modifications like echo,

chorus, flanger, tremolo, and a band pass filter can be seen.

The parameters of each effect are chosen to represent typ-

ical use, but on the heavy side. For example the echo ef-

fect applied has a delay line of 0.5 seconds and a decay

of 30%. The system has the most problems with the cho-

rus effect. Chorus has a blurring effect on a spectrogram,

which makes it hard for the system to find matches. Still

it can be said that the algorithm is rather robust against

very present, clearly audible, commonly used audio ef-

fects. The result of the band pass filter with a center of

2000Hz is especially good. To test the systems robust-

ness to severe audio compression a test was executed with

GSM-compressed queries. The performance on 20s frag-

ments is about 30% but improves a lot with query length,

the 60s fragment yields 65%. The results for Audfprint

show that there is room for improvement for the perfor-

mance of Panako.

A practical fingerprinting system performs well, in terms

of speed, on commodity hardware. With Panako extracting

and storing fingerprints for 25s of audio is done in one sec-

ond using a single core of a dated processor 5 The test data

set was constructed in 30, 000×4×60s/25 = 80 processor

hours. Since four cores were used, it took less than a full

day. After the feature extraction, matching a 40s query

with the test database with 30, 000 songs is done within

75ms. The complete matching process for a 40s fragment

takes about one second. Monitoring multiple streams in

real-time poses no problem for the system. Building a fin-

gerprint dataset with Audfprint is faster since fingerprints

are extracted from an FFT which is less demanding than

a Constant-Q transform. The matching step performance,

however, is comparable.

5 The testing machine has an Intel Core2 Quad CPU Q9650 @
3.00GHz introduced in 2009. The processor has four cores.
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Failure analysis shows that the system does not per-

form well on music with spectrograms either with very lit-

tle energy or energy evenly spread across the range. Also

extremely repetitive music, with a spectrogram similar to

a series of dirac impulses, is problematic. Also, perfor-

mance drops when time modifications of more than 8% are

present. This could be partially alleviated by redesigning

the time parameters used in the fingerprint hash, but this

would reduce the discriminative power of the hash.

4. CONCLUSION

In this paper a practical acoustic fingerprinting system was

presented. The system allows fast and reliable identifi-

cation of small audio fragments in a large set of audio,

even when the fragment has been pitch-shifted and time-

stretched with respect to the reference audio. If a match

is found the system reports where in the reference audio

a query matches, and how much time/frequency has been

modified. To achieve this, the system uses local maxima in

a Constant-Q spectrogram. It combines event points into

groups of three, and uses time ratios to form a time-scale

invariant fingerprint component. To form pitch-shift in-

variant fingerprint components only frequency differences

are stored. For retrieval an exact hashing matching algo-

rithm is used.

The system has been evaluated using a freely available

data set of 30,000 songs and compared with a baseline

system. The results can be reproduced entirely using this

data set and the open source implementation of Panako.

The scripts to run the experiment are available as well.

The results show that the system’s performance decreases

with time-scale modification of more than eight percent.

The system is shown to cope with pitch-shifting, time-

stretching, severe compression, and other modifications as

echo, flanger and band pass.

To improve the system further the constant-Q transform

could be replaced by an efficient implementation of the

non stationary Gabor transform. This is expected to im-

prove the extraction of event points and fingerprints with-

out effecting performance. Panako could also benefit from

a more extensive evaluation and detailed comparison with

other techniques. An analysis of the minimum , most dis-

criminative, information needed for retrieval purposes could

be especially interesting.
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ABSTRACT

In this paper, we aim to raise awareness of the limitations

of the F-measure when evaluating the quality of the bound-

aries found in the automatic segmentation of music. We

present and discuss the results of various experiments where

subjects listened to different musical excerpts containing

boundary indications and had to rate the quality of the

boundaries. These boundaries were carefully generated

from state-of-the-art segmentation algorithms as well as

human-annotated data. The results show that humans tend

to give more relevance to the precision component of the F-

measure rather than the recall component, therefore mak-

ing the classical F-measure not as perceptually informative

as currently assumed. Based on the results of the experi-

ments, we discuss the potential of an alternative evaluation

based on the F-measure that emphasizes precision over re-

call, making the section boundary evaluation more expres-

sive and reliable.

1. INTRODUCTION

Over the past decade, significant effort has been made to-

ward developing methods that automatically extract large-

scale structures in music. In this paper, we use the term

musical structure analysis to refer to the task that identifies

the different sections (or segments) of a piece. In West-

ern popular music, these sections are commonly labeled as

verse, chorus, bridge, etc. Given that we now have access

to vast music collections, this type of automated analysis

can be highly beneficial for organizing and exploring these

collections.

Musical structure analysis is usually divided into two

subtasks: the identification of section boundaries and the

labeling of these sections based on their similarity. Here,

we will only focus on the former. Section boundaries usu-

ally occur when salient changes in various musical qual-

ities (such as harmony, timbre, rhythm, or tempo) take

place. See [9] for a review of some of the state of the art in

musical structure analysis.

c© Oriol Nieto, Morwaread M. Farbood, Tristan Jehan,

Juan Pablo Bello. Licensed under a Creative Commons Attribution 4.0

International License (CC BY 4.0). Attribution: Oriol Nieto, Mor-

waread M. Farbood, Tristan Jehan, Juan Pablo Bello. “Perceptual Analy-

sis of the F-Measure for Evaluating Section Boundaries in Music”, 15th

International Society for Music Information Retrieval Conference, 2014.

Typically, researchers make use of various human-anno-

tated datasets to measure the accuracy of their analysis al-

gorithms. The standard methodology for evaluating the

accuracy of estimated section boundaries is to compare

those estimations with ground truth data by means of the

F-measure (also referred to as the hit rate), which gives

equal weight to the values of precision (proportion of the

boundaries found that are correct) and recall (proportion

of correct boundaries that are located). However, it is not

entirely clear that humans perceive the type of errors those

two metrics favor or the penalties they impose as equally

important, calling into question the perceptual relevance of

the F-measure for evaluating long-term segmentation. To

the best of our knowledge, no empirical evidence or formal

study exists that can address such a question in the context

of section boundary identification. This work is an effort

to redress that.

Our work is motivated by a preliminary study we ran on

two subjects showing a preference for high precision re-

sults, thus making us reconsider the relevance of precision

and recall for the evaluation of section boundary estima-

tions. As a result, in this paper we present two additional

experiments aimed at validating and expanding those pre-

liminary findings including a larger subject population and

more controlled conditions. In our experiments, we focus

on the analysis of Western popular songs since this is the

type of data most segmentation algorithms in the MIR lit-

erature operate on, and since previous studies have shown

that most listeners can confidently identify structure in this

type of music [1].

The rest of this paper is organized as follows. We present

a review of the F-measure and a discussion of the prelimi-

nary study in section 2. We describe the design of two ex-

periments along with discussions of their results in sections

3 and 4. We explore an alternative F-measure based on our

experimental findings that could yield more expressive and

perceptually relevant outcomes in section 5. Finally, we

draw conclusions and discuss future work in section 6.

2. THE F-MEASURE FOR MUSIC BOUNDARIES

2.1 Review of the F-measure

In order to evaluate automatically computed music bound-

aries, we have to define how we accept or reject an esti-

mated boundary given a set of annotated ones (i.e., find

the intersection between these two sets). Traditionally, re-
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searchers consider an estimated boundary correct as long

as its maximum deviation to its closest annotated bound-

ary is ± 3 seconds [8] (in MIReX, 1 inspired by [16], an

evaluation that uses a shorter window of ± 0.5 seconds is

also performed). Following this convention, we use a ±
3-second window in our evaluation.

Let us assume that we have a set of correctly estimated

boundaries given the annotated ones (hits), a set of anno-

tated boundaries that are not estimated (false negatives),

and a set of estimated boundaries that are not in the an-

notated dataset (false positives). Precision is the ratio be-

tween hits and the total number of estimated elements (e.g.,

we could have 100% precision with an algorithm that only

returns exactly one boundary and this boundary is correct).

Recall is the ratio between hits and the total number of an-

notated elements (e.g. we could have a 100% recall with an

algorithm that returns one boundary every 3 seconds, since

all the annotated boundaries will be sufficiently close to an

estimated one). Precision and recall are defined formally

as

P = |hits|
|boundse|

; R = |hits|
|boundsa|

(1)

where | · | represents the cardinality of the set ·, boundse
is the set of estimated boundaries and boundsa is the set

of annotated ones. Finally, the F-measure is the harmonic

mean between P and R, which weights these two values

equally, penalizes small outliers, and mitigates the impact

of large ones:

F = 2
P ·R
P +R

(2)

When listening to the output of music segmentation al-

gorithms, it is immediately apparent that false negatives

and false positives are perceptually very different (an initial

discussion about assessing a synthetic precision of 100%

when evaluating boundaries can be found in [14]). Thus,

in the process of developing novel methods for structure

segmentation, we decided to informally assess the relative

effect that different types of errors had on human evalua-

tions of the accuracy of the algorithms’ outputs. The fol-

lowing section describes the resulting preliminary study.

2.2 Preliminary Study

For this study we compared three algorithms, which we

will term A, B and C. A is an unpublished algorithm cur-

rently in development that relies on homogeneous repeated

section blocks; B is an existing algorithm that uses nov-

elty in audio features to identify boundaries; and C com-

bines the previous two methods. All three methods were

optimized to maximize their F-measure performance on

the structure-annotated Levy dataset [5]. Table 1 shows

each method’s average F-measure, precision, and recall

values across the entire set. Note how C maximizes the F-

measure, mostly by increasing recall, whileA shows max-

imum precision.

We asked two college music majors to rank the three

algorithms for every track in the Levy set. The goal was

1 http://www.music-ir.org/mirex/wiki/MIREX HOME

Preliminary Study
Algorithm F P R

A 49% 57% 47%
B 44% 46% 46%
C 51% 47% 64%

Table 1. Algorithms and their ratings used to generate the input
for the preliminary study. These ratings are averaged across the
60 songs of the Levy dataset.

not to compare the results of the algorithms to the anno-

tated ground truth, but to compare the algorithms with each

other and determine the best one from a perceptual point

of view. The participants were asked to listen to each of

the algorithm outputs for all the songs and rank the algo-

rithms by the quality of their estimated section boundaries;

no particular constraints were given on what to look for.

We used Sonic Visualiser [3] to display the waveform and

three section panels for each of the algorithms in parallel

(see Figure 1). While playing the audio, listeners could

both see the sections and hear the boundaries indicated by

a distinctive percussive sound. The section panels were

organized at random for each song so listeners could not

easily tell which algorithm they were choosing.

Figure 1. Screenshot of Sonic Visualiser used in the preliminary
experiment. The song is “Smells Like Teen Spirit” by Nirvana.
In this case, algorithms are ordered as A, B, and C from top to
bottom.

Analysis of the results showed that 68.3% of the time,

the two participants chose the same best algorithm. In

23.3% of the cases, they disagreed on the best, and in just

8.3% of the cases, they chose opposite rankings. When

they actually agreed on the best algorithm, they chose A
58.5% of the time. A did not have the highest F-measure

but the highest precision. Perhaps more surprising, they

chose C only 14.6% of the time even though that algorithm

had the highest F-measure.

These results raised the following questions: Is the F-

measure informative enough to evaluate the accuracy of

automatically estimated boundaries in a perceptually-mea-

ningful way? Is precision more important than recall when

assessing music boundaries? Would the observed trends

remain when tested on a larger population of subjects? Can

these results inform more meaningful evaluation measures?

We decided to address these questions by running two more

formal experiments in order to better understand this ap-

parent problem and identify a feasible solution.
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3. EXPERIMENT 1: RATING BOUNDARIES

3.1 Motivation

The results of the preliminary study suggested that preci-

sion is more relevant than recall when perceiving bound-

aries. However, to fully explore this hypothesis, these two

values had to be carefully manipulated. For this experi-

ment, a set of boundaries was synthesized by setting spe-

cific values for precision and recall while maintaining a

near-constant F-measure. Moreover, we wanted to ensure

that the findings were robust across a larger pool of sub-

jects. With these considerations in mind, the experiment

was designed to be both shorter in time and available on

line.

3.2 Methodology

We selected five track excerpts from the Levy catalog by

finding the one-minute segments containing the highest num-

ber of boundaries across the 60 songs of the dataset. By

having short excerpts instead of full songs, we could re-

duce the duration of the entire experiment with negligible

effect on the results—past studies have shown that bound-

aries are usually perceived locally instead of globally [15].

We decided to use only five excerpts with the highest num-

ber of boundaries in order to maintain participants’ atten-

tion as much as possible. For each track excerpt, we syn-

thesized three different segmentations: ground truth bound-

aries (GT) with an F-measure of 100%; high precision (HP)

boundaries with a precision of 100% and recall of around

65%; and high recall (HR) boundaries with a recall of 100%

and precision of around 65%. The extra boundaries for

the HR version were randomly distributed (using a normal

distribution) across a 3 sec window between the largest re-

gions between boundaries. For the HP version, the bound-

aries that were most closely spaced were removed. Table

2 presents F-measure, precision, and recall values for the

five tracks along with the average values across excerpts.

Note the closeness between F-measure values for HP and

HR.

Experiment 1 Excerpt List
Song Name HP HR

(Artist) F P R F P R
Black & White

.809 1 .68 .794 .658 1
(Michael Jackson)

Drive
.785 1 .647 .791 .654 1

(R.E.M.)
Intergalactic

.764 1 .619 .792 .656 1
(Beastie Boys)
Suds And Soda

.782 1 .653 .8 .666 1
(Deus)

Tubthumping
.744 1 .593 .794 .659 1

(Chumbawamba)
Average .777 1 .636 .794 .659 1

Table 2. Excerpt list with their evaluations for experiment

1. The F-measure of GT is 100% (not shown in the table).

Subjects had to rate the “quality” of the boundaries for

each version of the five tracks by choosing a discrete value

between 1 and 5 (lowest and highest ratings respectively).

Although this might arguably bias the subjects towards the

existing boundaries only (reducing the influence of the miss-

ing ones), it is unclear how to design a similar experiment

that would avoid this. Excerpts were presented in random

order. Participants were asked to listen to all of the ex-

cerpts before submitting the results. As in the preliminary

experiment, auditory cues for the section boundaries were

added to the original audio signal in the form of a salient

sharp sound. For this experiment, no visual feedback was

provided because the excerpts were short enough for lis-

teners to retain a general perception of the accuracy of the

boundaries. The entire experiment lasted around 15 min-

utes (5 excerpts × 3 versions × one minute per excerpt)

and was available on line 2 as a web survey in order to fa-

cilitate participation.

An announcement to various specialized mailing lists

was sent in order to recruit participants. As such, most sub-

jects had a professional interest in music, and some were

even familiar with the topic of musical structure analysis.

A total number of 48 participants took part in the experi-

ment; subjects had an average of 3.1 ± 1.6 years of musi-

cal training and 3.7 ± 3.3 years of experience playing an

instrument.

3.3 Results and Discussion

Box plots of accuracy ratings across versions can be seen

in Figure 2. These experimental results show that higher

accuracy ratings were assigned to GT followed by HP, and

then HR.

Figure 2. Average ratings across excerpts for Experiment 1; GT
= ground truth; HP = high precition; HR = high recall.

A two-way, repeated-measures ANOVA was performed

on the accuracy ratings with type (ground truth, high pre-

cision, high recall) and excerpt (the five songs) as factors.

There were 48 data points in each Type × Excerpt cate-

gory. The main effects of type, F (2, 94) = 90.74, MSE
= 1.10, p < .001, and excerpt, F (4, 188) = 59.84, MSE
= 0.88, p < .001, were significant. There was also an

interaction effect, F (6.17, 290.01) = 9.42, MSE = 0.74,

p < .001 (Greenhouse-Geisser corrected), indicating that

rating profiles differed based on excerpt. Mean ratings by

type and excerpt are shown in Figure 3.

Looking at the data for each excerpt, there was a clear

pattern showing that subjects preferred segmentations with

2 http://urinieto.com/NYU/BoundaryExperiment/
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high precision over high recall (Figure 3). Post-hoc multi-

ple comparisons indicated that differences between means

of all three types were significant. The only excerpt where

precision was not rated more highly than recall was in Ex-

cerpt 5 (Tubthumping), a difference that contributed pri-

marily to the interaction. In this case, the excerpt contains

a distinctive chorus where the lyrics “I get knocked down”

keep repeating. This feature is likely the reason some sub-

jects were led to interpret every instance of this refrain as

a possible section beginning even though the harmony un-

derneath follows a longer sectional pattern that is anno-

tated in the ground truth. On the other hand, Excerpt 3 (In-

tergalactic) obtained similar ratings for ground truth and

high precision, likely due to the high number of different

sections and silences it contains. This can become prob-

lematic when extra boundaries are added (therefore obtain-

ing poor ratings for the high-recall version). Nevertheless,

given the subjectivity of this task [2] and the multi-layer or-

ganization of boundaries [10], it is not surprising that this

type of variability appears in the results.

Figure 3. Means for excerpt and version of the results of Exper-
iment 1.

The results of this experiment show that precision is

more perceptually relevant than recall for the evaluation

of boundaries, validating the preliminary findings (Section

2.2) in a controlled scenario and with a much larger popu-

lation of subjects. Nevertheless, the number of tracks em-

ployed in this experiment was limited. As a follow-up, we

explored these findings using a larger dataset in Experi-

ment 2.

4. EXPERIMENT 2: CHOOSING BOUNDARIES

4.1 Motivation

The results of Experiment 1 show the relative importance

of precision over recall for a reduced dataset of five tracks.

However, it remains to be seen whether the F-measure, pre-

cision, and recall can predict a listener’s preference when

faced with a real-world evaluation scenario (i.e., bound-

aries not synthesized but estimated from algorithms). How

this information can be used to redesign the metric to be

more perceptually relevant is another question. In Experi-

ment 2, we used excerpts sampled from a larger set of mu-

sic, boundaries computed with state-of-the-art algorithms

(thus recreating a real-world evaluation à la MIReX), and

limited the evaluation to pairwise preferences.

4.2 Methodology

The analysis methods used to compute the boundaries in-

cluded structural features (SF, [12]), convex non-negative

matrix factorization (C-NMF, [7]), and shift-invariant prob-

abilistic latent component analysis (SI-PLCA, [17]). These

three algorithms yield ideal results for our experimental

design since SF provides one of the best results reported

so far on boundaries recognition (high precision and high

recall) footnoteRecently challenged by Ordinal Linear Dis-

criminant Analysis [6]. C-NMF tends to over segment

(higher recall than precision), and SI-PLCA, depending on

parameter choices, tends to under segment (higher preci-

sion than recall).

We ran these three algorithms on a database of 463 songs

composed of the conjunction of the TUT Beatles dataset, 3

the Levy catalogue [5], and the freely available songs of

the SALAMI dataset [13]. Once computed, we filtered the

results based on the following criteria for each song: (1)

at least two algorithm outputs have a similar F-measure

(within a 5% threshold); (2) the F-measure of both algo-

rithms must be at least 45%; (3) at least a 10% difference

between the precision and recall values of the two selected

algorithm outputs exists.

We found 41 out of 463 tracks that met the above cri-

teria. We made a qualitative selection of these filtered

tracks (there are many free tracks in the SALAMI dataset

that are live recordings with poor audio quality or simply

speech), resulting in a final set of 20 songs. The number of

these carefully selected tracks is relatively low, but we ex-

cept it to be representative enough to address our research

questions. Given the two algorithmic outputs maximizing

the difference between precision and recall, two differently

segmented versions were created for each track: high pre-

cision (HP) and high recall (HR). Moreover, similar to Ex-

periment 1, only one minute of audio from each track was

utilized, starting 15 seconds into the song.

Table 3 shows average metrics across the 20 selected

tracks. The F-measures are the same, while precision and

recall vary.

Boundaries Version F P R
HP .65 .82 .56
HR .65 .54 .83

Table 3. Average F-measure, precision, and recall values for the
two versions of excerpts used in Experiment 2.

As in Experiment 1, the interface for Experiment 2 was

on line 4 to facilitate participation. Each participant was

presented with five random excerpts selected from the set

of 20. Instead of assessing the accuracy on a scale, listen-

ers had to choose the version they found more accurate. In

order uniformly distribute excerpts across total trials, se-

lection of excerpts was constrained by giving more prior-

ity to those excerpts with fewer collected responses. We

obtained an average of 5.75 results per excerpt. The two

versions were presented in random order, and subjects had

3 http://www.cs.tut.fi/sgn/arg/paulus/beatles sections TUT.zip
4 http://cognition.smusic.nyu.edu/boundaryExperiment2/
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to listen to the audio at least once before submitting the re-

sults. Boundaries were marked with a salient sound like in

the prior experiments.

A total 23 subjects, recruited from professional mailing

lists, participated in the experiment. Participants had an

average of 2.8 ± 1.4 years of musical training and 3.2 ±
2.9 years of experience playing an instrument.

4.3 Results and Discussion

We performed binary logistic regression analysis [11] on

the results with the goal of understanding what specific

values of the F-measure were actually useful in predicting

subject preference (the binary values representing the ver-

sions picked by the listeners). Logistic regression enables

us to compute the following probability:

P (Y |X1, . . . , Xn) =
ek+β1X1+...+βnXn

1 + ek+β1X1+...+βnXn
(3)

where Y is the dependent, binary variable, Xi are the pre-

dictors, βi are the weights for these predictors, and k is a

constant value. Parameters βi and k are learned through

the process of training the regressor. In our case, Y tells us

whether a certain excerpt was chosen or not according to

the following predictors: the F-measure (X1), the signed

difference between precision and recall (X2), and the ab-

solute difference between precision and recall (X3).

Since 23 subjects took part in the experiment and there

were five different tracks with two versions per excerpt, we

had a total of 23 × 5 × 2 = 230 observations as input to

the regression with the parameters defined above. We ran

the Hosmer & Lemeshow test [4] in order to understand

the predictive ability of our input data. If this test is not

statistically significant (p > 0.05), we know that logistic

regression can indeed help us predict Y . In our case, we

obtain a value of p = .763 (χ2 = 4.946, with 8 degrees of

freedom) which tells us that the data for this type of analy-

sis fits well, and that the regressor has predictive power.

The analysis of the results of the learned model is shown

in Table 4. As expected, the F-measure is not able to pre-

dict the selected version (p = .992), providing clear evi-

dence that the metric is inexpressive and perceptually irrel-

evant for the evaluation of segmentation algorithms. Fur-

thermore, we can see that P −R can predict the results in a

statistically significant manner (p = .000), while the abso-

lute difference |P −R|, though better than the F-measure,

has low predictive power (p = .482). This clearly illus-

trates the asymmetrical relationship between P and R: it is

not sufficient that P and R are different, but the sign mat-

ters: P has to be higher than R.

Based on this experiment we can claim that, for these

set of tracks, (1) the F-measure does not sufficiently char-

acterize the perception of boundaries, (2) precision is clearly

more important than recall, and (3) there might be a bet-

ter parameterization of the F-measure that encodes relative

importance. We attempt to address this last point in the

next section.

Logistic Regression Analysis of Experiment 2

Predictor β S.E. β Wald’s χ2 df p eβ

F-measure -.012 1.155 .000 1 .992 .988
P −R 2.268 .471 23.226 1 .000 1.023
|P −R| -.669 .951 .495 1 .482 .512

k .190 .838 .051 1 .821 1.209

Table 4. Analysis of Experiment 2 data using logistic re-

gression. According to these results, P −R can predict the

version of the excerpt that subjects will choose.

5. ENHANCING THE F-MEASURE

Based on our experiments, we have empirical evidence that

high precision is perceptually more relevant than high re-

call for the evaluation of segmentation algorithms. We can

then leverage these findings to obtain a more expressive

and perceptually informative version of the F-measure for

benchmarking estimated boundaries.

The F-measure is, in fact, a special case of the Fα-

measure:

Fα = (1 + α2)
P ·R

α2P +R
(4)

where α = 1, resulting in P and R having the same weight.

However, it is clear from the equation that we should im-

pose α < 1 in order to give more importance to P and

make the F-measure more perceptually relevant. Note that

an algorithm that outputs fewer boundaries does not nec-

essarily increase its Fα-measure, since the fewer predicted

boundaries could still be incorrect. Regardless, the ques-

tion remains: how is the value of α determined?

A possible method to answer this question is to sweep

α from 0 to 1 using a step size of 0.05 and perform logistic

regression analysis at each step using the Fα-measure as

the only predictor (X1=Fα, n = 1). The p-value of the

Fα-measure predicting subject preference in Experiment 2

across all α is shown in Figure 4.

Figure 4. Statistical significance of the Fα-measure predicting
the perceptual preference of a given evaluation for α ∈ [0, 1]

It is important to note that the data from Experiment 2

is limited as it does not include information at the limits

of the difference between precision and recall. As a re-

sult, our model predicts that decreases of α always lead

to highest predictive power. Naturally, this is undesirable

since we will eventually remove all influence from recall

in the measure and favor the trivial solutions discussed at
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the beginning of this paper. At some point, as P − R in-

creases, we expect subject preference to decrease, as pre-

serving a minimum amount of recall becomes more impor-

tant. Therefore, we could choose the first value of α (0.58)

for which Fα-based predictions of subject preference be-

come accurate at the statistically significant level of 0.01.

We can re-run the evaluation of Experiments 1 and 2

using the F0.58-measure (i.e. α = 0.58) to illustrate that it

behaves as expected. For Experiment 1, we obtain 83.3%

for HP and 72.1% for HR (instead of 77.7% and 79.4% re-

spectively). For Experiment 2, the values of HP and HR

become 71.8% and 58.9% respectively, whereas they were

both 65.0% originally. This shows how the new approxi-

mated measure is well coordinated with the preferences of

the subjects from Experiments 1 and 2, therefore making

this evaluation of section boundaries more expressive and

perceptually relevant.

This specific α value is highly dependent on the em-

pirical data, and we are aware of the limitations of using

reduced data sets as compared to the real world—in other

words, we are likely overfitting to our data. Nonetheless,

based on our findings, there must be a value of α < 1 that

better represents the relative importance of precision and

recall. Future work, utilizing larger datasets and a greater

number of participants, should focus on understanding the

upper limit of the difference between precision and recall

in order to find the specific inflection point at which higher

precision is not perceptually relevant anymore.

6. CONCLUSIONS

We presented a series of experiments concluding that pre-

cision is perceived as more relevant than recall when eval-

uating boundaries in music. The results of the two main

experiments discussed here are available on line. 5 More-

over, we have noted the shortcomings of the current F-

measure when evaluating results in a perceptually mean-

ingful way. By using the general form of the F-measure,

we can obtain more relevant results when precision is em-

phasized over recall (α < 1). Further steps should be

taken in order to determine a more specific and general-

izable value of α.
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ABSTRACT

Keyword spotting (or spoken term detection) is an inter-

esting task in Music Information Retrieval that can be ap-

plied to a number of problems. Its purposes include topi-

cal search and improvements for genre classification. Key-

word spotting is a well-researched task on pure speech, but

state-of-the-art approaches cannot be easily transferred to

singing because phoneme durations have much higher vari-

ations in singing. To our knowledge, no keyword spotting

system for singing has been presented yet.

We present a keyword spotting approach based on

keyword-filler Hidden Markov Models (HMMs) and test

it on a-capella singing and spoken lyrics. We test Mel-

Frequency Cepstral Coefficents (MFCCs), Perceptual Lin-

ear Predictive Features (PLPs), and Temporal Patterns

(TRAPs) as front ends. These features are then used to

generate phoneme posteriors using Multilayer Perceptrons

(MLPs) trained on speech data. The phoneme posteriors

are then used as the system input. Our approach produces

useful results on a-capella singing, but depend heavily on

the chosen keyword. We show that results can be further

improved by training the MLP on a-capella data.

We also test two post-processing methods on our phoneme

posteriors before the keyword spotting step. First, we aver-

age the posteriors of all three feature sets. Second, we run

the three concatenated posteriors through a fusion classi-

fier.

1. INTRODUCTION

Keyword spotting is the task of searching for certain words

or phrases (spoken term detection) in acoustic data. In con-

trast to text data, we cannot directly search for these words,

but have to rely on the output of speech recognition sys-

tems in some way.

In speech, this problem has been a topic of research since

the 1970’s [1] and has since seen a lot of development and

improvement [11]. For singing, however, we are not aware

of any fully functional keyword spotting systems.

Music collections of both professional distributors and pri-

vate users have grown exponentially since the switch to a

digital format. For these large collections, efficient search

c© Anna M. Kruspe.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Anna M. Kruspe. “Keyword spotting

in a-capella singing”, 15th International Society for Music Information

Retrieval Conference, 2014.

methods are necessary. Keyword spotting in music col-

lections has beneficial applications for both user groups.

Using keyword spotting, users are able to search their col-

lections for songs with lyrics about certain topics. As an

example, professional users might use this in the context

of synch licensing [4] (e.g., “I need a song containing

the word ’freedom’ for a car commercial”.) Private users

could, for example, use keyword spotting for playlist gen-

eration (“Generate a playlist with songs that contain the

word ‘party’.”)

In this paper, we present our approach to a keyword spot-

ting system for a-capella singing. We will first look at the

current state of the art in section 2. We then present our

data set in section 3. In section 4, we describe our own

keyword spotting system. A number of experiments on this

system and their results are presented in section 5. Finally,

we draw conclusions in section 6 and give an outlook on

future work in section 7.

2. STATE OF THE ART

2.1 Keyword spotting principles

As described in [13], there are three basic principles that

have been developed over the years for keyword spotting

in speech:

LVCSR-based keyword spotting For this approach, full

Large Vocabulary Continues Speech Recognition

(LVCSR) is performed on the utterances. This re-

sults in a complete text transcription, which can then

be searched for the required keywords. LVCSR-

based systems lack tolerance for description errors -

i.e., if a keyword is not correctly transcribed from the

start, it cannot be found later. Additionally, LVCSR

systems are complex and expensive to implement.

Acoustic keyword spotting As in LVCSR-based key-

word spotting, acoustic keyword spotting employs

Viterbi search to find the requested keyword in a

given utterance. In this approach, however, the sys-

tem does not attempt to transcribe each word, but

only searches for the specific keyword. Everything

else is treated as “filler”. This search can be per-

formed directly on the audio features using an acous-

tic example, or on phoneme posteriorgrams gener-

ated by an acoustic model. In the second case, the

algorithm searches for the word’s phonemes.

This approach is easy to implement and provides

some pronunciation tolerance. Its disadvantage is
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the lack of integration of a-priori language knowl-

edge (i.e. knowledge about plausible phoneme and

word sequences) that could improve performance.

Phonetic search keyword spotting Phonetic search key-

word spotting starts out just like LVCSR-based key-

word spotting, but does not generate a word tran-

scription of the utterance. Instead, phoneme lattices

are saved. Phonetic search for the keyword is then

performed on these lattices. This approach combines

the advantages of LVCSR-based keyword spotting

(a-priori knowledge in the shape of language mod-

els) and acoustic keyword spotting (flexibility and

robustness).

2.2 Keyword spotting in singing

The described keyword spotting principles cannot easily

be transferred to music. Singing, in contrast to speech,

presents a number of additional challenges, such as larger

pitch fluctuation, more pronunciation variation, and differ-

ent vocabulary (which means existing models cannot easily

be transferred).

Another big difference is the higher variation of phoneme

durations in singing. Both LVCSR-based keyword spot-

ting and Phonetic search keyword spotting depend heavily

on predictable phoneme durations (within certain limits).

When a certain word is pronounced, its phonemes will usu-

ally have approximately the same duration across speak-

ers. The language model employed in both approaches will

take this information into account.

We compared phoneme durations in the TIMIT speech

database [7] and our own a-capella singing database (see

section 3). The average standard deviations for vowels and

consonants are shown in figure 1. It becomes clear that

the phoneme durations taken from TIMIT do not vary a

lot, whereas some the a-capella phonemes show huge vari-

ations. It becomes clear that this especially concerns vow-

els (AA, AW, EH, IY, AE, AH, AO, EY, AY, ER, UW, OW,

UH, IH, OY). This observation has a foundation in music

theory: Drawn-out notes are usually sung on vowels.

For this reason, acoustic keyword spotting appears to be

the most feasible approach to keyword spotting in singing.

To our knowledge, no full keyword spotting system for

singing has been presented yet. In [2], an approach based

on sub-sequence Dynamic Time Warping (DTW) is sug-

gested. This is similar to the acoustic approach, but does

not involve a full acoustic model. Instead, example utter-

ances of the keyword are used to find similar sequences in

the tested utterance.

In [5], a phoneme recognition system for singing is pre-

sented. It extracts Mel-Frequency Cepstral Coefficients

(MFCCs) and Temporal Patterns (TRAPs) which are then

used as inputs to a Multilayer Perceptron (MLP). The pho-

netic output of such a system could serve as an input to a

keyword spotting system.

There are also some publications where similar principles

are applied to lyrics alignment and Query by Humming

[12] [3].

Figure 1: Average standard deviations for vowels and con-

sonants in the TIMIT speech databases (blue) and our a-

capella singing data set (green).

3. DATA SET

Our data set is the one presented in [5]. It consists of the

vocal tracks of 19 commercial pop songs. They are studio

quality with some post-processing applied (EQ, compres-

sion, reverb). Some of them contain choir singing. These

19 songs are split up into clips that roughly represent lines

in the song lyrics.

Twelve of the songs were annotated with time-aligned

phonemes. The phoneme set is the one used in CMU

Sphinx 1 and TIMIT [7] and contains 39 phonemes. All

of the songs were annotated with word transcriptions. For

comparison, recordings of spoken recitations of all song

lyrics were also made. These were all performed by the

same speaker.

We selected 51 keywords for testing our system. Most of

them were among the most frequent words in the provided

lyrics. A few were selected because they had a compara-

tively large number of phonemes. An overview is given in

table 1.

4. PROPOSED SYSTEM

Figure 2 presents an overview of our system.

1. Feature extraction We extract Mel-Frequency Cep-

stral Coefficients (MFCCs), Perceptual Linear Pre-

dictive features (PLPs), and Temporal Patterns

(TRAPs) [6]. We keep 20 MFCC coefficients and 39

PLP coefficients (13 direct coefficients plus deltas

and double-deltas). For the TRAPs, we use 8 lin-

early spaced spectral bands and a temporal context

of 20 frames and keep 8 DCT coefficients.

2. MLP training and phoneme recognition Using each

feature data set, we train Multi-Layer Perceptrons

(MLPs). MLPs are commonly used to train acoustic

models for the purpose of phoneme recognition. We

chose a structure with two hidden layers and tested

three different dimension settings: 50, 200, and 1000

dimensions per layer. MLPs were trained solely on

TIMIT data first, then on a mix of TIMIT and a-

capella in a second experiment. The resulting MLPs

are then used to recognize phonemes in our a-capella

dataset, thus generating phoneme posteriorgrams.

1 http://cmusphinx.sourceforge.net/
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Number of Phonemes Keywords

2 way, eyes

3 love, girl, away, time, over, home, sing, kiss, play, other

4 hello, trick, never, hand, baby, times, under, things, world, think, heart, tears, lights

5 always, inside, drink, nothing, rehab, forever, rolling, feeling, waiting, alright, tonight

6 something, denial, together, morning, friends, leaving, sunrise

7 umbrella, afternoon, stranger, somebody, entertain, everyone

8 beautiful, suicidal

Table 1: All 51 tested keywords, ordered by number of phonemes.

Figure 2: Overview of our keyword spotting system. Variable parameters are shown in italics.

The following two points described optional post-

processing steps on the phoneme posteriorgrams.

3a. Posteriorgram merging For this post-processing

step, we take the phoneme posterior results that

were obtained using different feature sets and

average them. We tested both the combinations of

PLP+MFCC, PLP+TRAP, and PLP+MFCC+TRAP.

3b. Fusion MLP classifier As a second post-processing

option, we concatenate phoneme posteriors obtained

by using different feature sets and run them through

a fusion MLP classifier to create better posteri-

ors. We again tested the combinations PLP+MFCC,

PLP+TRAP, and PLP+MFCC+TRAP.

4. Keyword spotting The resulting phoneme posterior-

grams are then used to perform the actual keyword

spotting. As mentioned above, we employ an acous-

tic approach. It is based on keyword-filler Hidden

Markov Models (HMMs) and has been described

in [14] and [8].

In general, two separate HMMs are created: One for

the requested keyword, and one for all non-keyword

regions (=filler). The keyword HMM is generated

using a simple left-to-right topology with one state

per keyword phoneme, while the filler HMM is a

fully connected loop of states for all phonemes.

These two HMMs are then joined. Using this com-

posite HMM, a Viterbi decode is performed on the

phoneme posteriorgrams. Whenever the Viterbi path

passes through the keyword HMM, the keyword is

detected. The likelihood of this path can then be

compared to an alternative path through the filler

HMM, resulting in a detection score. A threshold

Figure 3: Keyword-filler HMM for the keyword “greasy”

with filler path on the left hand side and two possible key-

word pronunciation paths on the right hand side. The pa-

rameter β determines the transition probability between

the filler HMM and the keyword HMM. [8]

can be employed to only return highly scored occur-

rences. Additionally, the parameter β can be tuned

to adjust the model. It determines the likelihood of

transitioning from the filler HMM to the keyword

HMM. The whole process is illustrated in figure 3.

We use the F1 measure for evaluation. Results are consid-

ered to be true positives when a keyword is spotted some-

where in an expected utterance. Since most utterances con-

tain one to ten words, we consider this to be sufficiently ex-

act. Additionally, we evaluate the precision of the results.

For the use cases described in section 1, users will usually

only require a number of correct results, but not necessarily

all the occurrences of the keyword in the whole database.

We consider a result to be correct when the keyword is

found as part of another word with the same pronuncia-

tion. The reasoning behind this is that a user who searched
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Figure 4: F1 measures for a-capella data (left) and speech

(right) when using PLP, MFCC, or TRAP features. The

MLPs for phoneme recognition had two hidden layers with

50, 200, or 1000 nodes each.

for the keyword “time” might also accept occurrences of

the word “times” as correct.

5. EXPERIMENTS

5.1 Experiment 1: Oracle search

As a precursor to the following experiments, we first tested

our keyword spotting approach on oracle posteriorgrams

for the a-capella data. This was done to test the general

feasibility of the algorithm for keyword spotting on singing

data with its highly variable phoneme durations.

The oracle posteriorgrams were generated by converting

the phoneme annotations to posteriorgram format by set-

ting the likelihoods of the annotated phonemes to 1 during

the corresponding time segment and everything else to 0.

A keyword search on these posteriorgrams resulted in F1

measures of 1 for almost all keywords. In cases where

the result was not 1, we narrowed the reasons down to an-

notation errors and pronunciation variants that we did not

account for. We conclude that our keyword-filler approach

is generally useful for keyword spotting on a-capella data,

and our focus in the following experiments is on obtaining

good posteriorgrams from the audio data.

5.2 Experiment 2: A-Capella vs. Speech

For our first experiment, we run our keyword spotting sys-

tem on the a-capella singing data, and on the same utter-

ances spoken by a single speaker. We evaluate all three fea-

ture datasets (MFCC, PLP, TRAP) separately. The recog-

nition MLP is trained on TIMIT speech data only. We also

test three different sizes for the two hidden MLP layers:

50 nodes, 200 nodes, and 1000 nodes in each layer. The

results are shown in figure 4.

As described in section 2.2, we expected keyword spotting

on singing to be more difficult than on pure speech because

of a larger pitch range, more pronunciation variations, etc.

Our results support this assumption: In speech, keywords

are recognized with an average F1 measure of 33% using

only PLP features, while the same system results in an av-

erage F1 of only 10% on a-capella singing.

For both data sets, an MLP with 200 nodes in the hidden

layers shows a notable improvement over one with just 50.

When using 1000 nodes, the result still improves by a few

percent in most cases.

When looking at the features, PLP features seem to work

Figure 5: F1 measures for a-capella data (left) and speech

(right) when the recognition is trained only on TIMIT

speech data (blue) or on a mix of TIMIT and a-capella data

(green).

best by a large margin, with TRAPs coming in second. It

is notable, however, that some keywords can be detected

much better when using MFCCs or TRAPs than PLPs (e.g.

“sing”, “other”, “hand”, “world”, “tears”, “alright”). As

described in [5] and [10], certain feature sets represent

some phonemes better than others and can therefore bal-

ance each other out. A combination of the features might

therefore improve the whole system.

Evaluation of the average precision (instead of F1 mea-

sure) shows the same general trend. The best results are

again obtained when using PLP features and the largest

MLP. The average precision in this configuration is 16%
for a-capella singing and 37% for speech. (While the dif-

ference is obvious, the result is still far from perfect for

speech. This demonstrates the difficulty of the recognition

process without a-priori knowledge.)

5.3 Experiment 3: Training including a-capella data

As a measure to improve the phoneme posteriorgrams for

a-capella singing, we next train our recognition MLP with

both TIMIT and a part of the a-capella data. We mix in

about 50% of the a-capella clips with the TIMIT data.

They make up about 10% of the TIMIT speech data. The

results are shown in figure 5 (only the results for the largest

MLP are shown).

This step improves the keyword recognition on a-capella

data massively in all feature and MLP configurations. The

best result still comes from the biggest MLP when using

PLP features and is now an average F1 of 24%. This step

makes the recognition MLP less specific to the properties

of pure speech and therefore does not improve the results

for the speech data very much. It actually degrades the best

result somewhat.

The effect on the average precision is even greater. The a-

capella results are improved by 10 to 15 percentage points

for each feature set. On speech data, the PLP precision

decreases by 7 percentage points.

5.4 Experiment 4: Posterior merging

As mentioned in experiment 2, certain feature sets seem to

represent some keywords better than others. We therefore

concluded that combining the results for all features could

improve the recognition result.
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Figure 6: F1 measures for a-capella data (left) and speech

(right) when posteriorgrams for two or three features are

merged. The configurations PLP+MFCC, PLP+TRAP, and

PLP+MFCC+TRAP are shown and compared to the PLP

only result.

Figure 7: F1 measures for a-capella data (left) and

speech (right) when posteriorgrams for two or three fea-

tures are fed into a fusion classifier. The configura-

tions PLP+MFCC, PLP+TRAP, and PLP+MFCC+TRAP

are shown and compared to the PLP only result.

To this end, we tested merging the phoneme posterior-

grams between the MLP phoneme recognition step and the

HMM keyword spotting step. In order to do this, we sim-

ply calculated the average values across the posteriors ob-

tained using the three different feature data sets. This was

done for all phonemes and time frames. Keyword spotting

was then performed on the merged posteriorgrams. We

tested the configurations PLP+MFCC, PLP+TRAP, and

PLP+MFCC+TRAP. The results are shown in figure 6.

Posterior merging seems to improve the results for a-

capella singing somewhat and works best when all three

feature sets are used. The F1 measure on a-capella singing

improves from 24% (PLP) to 27%. It does not improve the

speech result, where PLP remains the best feature set.

5.5 Experiment 5: Fusion classifier

After the posterior merging, we tested a second method

of combining the feature-wise posteriorgrams. In this

second method, we concatenated the posteriorgrams ob-

tained from two or all three of the feature-wise MLP rec-

ognizers and ran them through a second MLP classifier.

This fusion MLP was trained on a subset of the a-capella

data. This fusion classifier generates new, hopefully im-

proved phoneme posteriorgrams. HMM keyword spot-

ting is then performed on these new posteriorgrams. We

again tested the configurations PLP+MFCC, PLP+TRAP,

and PLP+MFCC+TRAP. The results are shown in figure 7.

The fusion classifier improves the F1 measure for a-capella

singing by 5 percentage points. The best result of 29% is

obtained when all three feature sets are used. Precision

improves from 24% to 31%. However, the fusion classifier

makes the system less specific towards speech and there-

fore decreases the performance on speech data.

5.6 Variation across keywords

The various results we presented in the previous exper-

iments varies widely across the 51 keywords. This is

a common phenomenon in keyword spotting. In many

approaches, longer keywords are recognized better than

shorter ones because the Viterbi path becomes more re-

liable with each additional phoneme. This general trend

can also be seen in our results, but even keywords with the

same number of phonemes vary a lot. The precisions vary

similarly, ranging between 2% and 100%.

When taking just the 50% of the keywords that can be rec-

ognized best, the average F1 measure for the best approach

(fusion MLP) jumps from 29% to 44%. Its precision in-

creases from 31% to 46%. We believe the extremely bad

performance of some keywords is in part due to the small

size of our data set. Some keywords occurred in just one

of the 19 songs and were, for example, not recognized be-

cause the singer used an unusual pronunciation in each oc-

currence or had an accent that the phoneme recognition

MLP was not trained with. We therefore believe these re-

sults could improve massively when more training data is

used.

6. CONCLUSION

In this paper, we demonstrated a first keyword spotting ap-

proach for a-capella singing. We ran experiments for 51

keywords on a database of 19 a-capella pop songs and

recordings of the spoken lyrics. As our approach, we

selected acoustic keyword spotting using keyword-filler

HMMs. Other keyword spotting approaches depend on

learning average phoneme durations, which vary a lot more

in a-capella singing than in speech. These approaches

therefore cannot directly be transferred.

As a first experiment, we tested our approach on oracle

phoneme posteriorgrams and obtained almost perfect re-

sults. We then produced “real world” posteriorgrams using

MLPs with two hidden layers which had been trained on

TIMIT speech data. We tested PLP, MFCC, and TRAP

features. The training yielded MLPs with 50, 200, and

1000 nodes per hidden layer. We observed that the 200

node MLP produced significantly better results than the 50

node MLPs in all cases (p < 0.0027), while the 1000 node

MLPs only improved upon this result somewhat. PLP fea-

tures performed significantly better than the two other fea-

ture sets. Finally, keywords were detected much better in

speech than in a-capella singing. We expected this result

due to the specific characteristics of singing data (higher

variance of frequencies, more pronunciation variants).

We then tried training the MLPs with a mixture of TIMIT

speech data and a portion of our a-capella data. This im-

proved the results for a-capella singing greatly.

We noticed that some keywords were recognized better

when MFCCs or TRAPs were used instead of PLPs. We

therefore tried two approaches to combine the results for
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all three features: Posterior merging and fusion classifiers.

Both approaches improved the results on the a-capella

data. The best overall result for a-capella data was pro-

duced by a fusion classifier that combined all three features

(29%).

As expected, keyword spotting on a-capella singing proved

to be a harder task than on speech. The results varied

widely between keywords. Some of the very low results

arise because the keyword in question only occurred in one

song where the singer used an unusual pronunciation or

had an accent. The small size of our data set also poses a

problem when considering the limited number of singers.

The acoustic model trained on speech data and a part of the

a-capella data might be subject to overfitting to the singers’

vocal characteristics.

In contrast, the recognition worked almost perfectly for

keywords with more training data. Keyword length also

played a role. When using only the 50% best keywords,

the average F1 measure increased by 15 percentage points.

Finally, there are many applications where precision plays

a greater role than recall, as described in section 4. Our

system can be tuned to achieve higher precisions than F1

measures and is therefore also useful for these applications.

We believe that the key to better keyword spotting results

lies in better phoneme posteriorgrams. A larger a-capella

data set would therefore be very useful for further tests and

would provide more consistent results.

7. FUTURE WORK

As mentioned in section 2, more sophisticated keyword

spotting systems for speech incorporate knowledge about

plausible phoneme durations (e.g. [9]). In section 2.2, we

showed why this approach is not directly transferable to

singing: The vowel durations vary too much. However,

consonants are not affected. We would therefore like to

start integrating knowledge about average consonant dura-

tions in order to improve our keyword spotting system. In

this way, we hope to improve the results for the keywords

that were not recognized well by our system.

Following this line of thought, we could include even more

language-specific knowledge in the shape of a language

model that also contains phonotactic information, word

frequencies, and phrase frequencies. We could thus move

from a purely acoustic approach to a phonetic (lattice-

based) approach.

We will also start applying our approaches to polyphonic

music instead of a-capella singing. To achieve good results

on polyphonic data, pre-processing will be necessary (e.g.

vocal activity detection and source separation).
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ABSTRACT

In this paper, we present a comparative study of several
state-of-the-art F0 trackers applied to the context of query-
by-singing-humming (QBSH). This study has been carried
out using the well known, freely available, MIR-QBSH
dataset in different conditions of added pub-style noise and
smartphone-style distortion. For audio-to-MIDI melodic
matching, we have used two state-of-the-art systems and a
simple, easily reproducible baseline method. For the evalu-
ation, we measured the QBSH performance for 189 differ-
ent combinations of F0 tracker, noise/distortion conditions
and matcher. Additionally, the overall accuracy of the F0
transcriptions (as defined in MIREX) was also measured.
In the results, we found that F0 tracking overall accuracy
correlates with QBSH performance, but it does not totally
measure the suitability of a pitch vector for QBSH. In ad-
dition, we also found clear differences in robustness to F0
transcription errors between different matchers.

1. INTRODUCTION

Query-by-singing-humming (QBSH) is a music informa-
tion retrieval task where short hummed or sung audio clips
act as queries. Nowadays, several successful commercial
applications for QBSH have been released, such as Musi-
cRadar 1 or SoundHound 2 , and it is an active field of re-
search. Indeed, there is a task for QBSH in MIREX since
2006, and every year novel and relevant approaches can be
found.

Typically, QBSH approaches firstly extract the F0 con-
tour and/or a note-level transcription for a given vocal query,
and then a set of candidate melodies are retrieved from a
large database using a melodic matcher module. In the lit-
erature, many different approaches for matching in QBSH
can be found: statistical, note vs. note, frame vs. note,
frame vs. frame. Generally, state-of-the-art systems for
QBSH typically combines different approaches in order to
achieve more reliable results [3, 12].

1 www.doreso.com
2 www.soundhound.com

c© Emilio Molina, Lorenzo J. Tardón, Isabel Barbancho,
Ana M. Barbancho.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Emilio Molina, Lorenzo J. Tardón,
Isabel Barbancho, Ana M. Barbancho. “The importance of F0 tracking in
query-by-singing-humming”, 15th International Society for Music Infor-
mation Retrieval Conference, 2014.

However, even state-of-the-art systems for QBSH have
not a totally satisfactory performance in many real-world
cases [1], so there is still room for improvement. Nowa-
days, some challenges related to QBSH are [2]: reliable
pitch tracking in noisy environments, automatic song data-
base preparation (predominant melody extraction and tran-
scription), efficient search in very large music collections,
dealing with errors of intonation and rhythm in amateur
singers, etc.

In this paper, we analyse the performance of various
state-of-the-art F0 trackers for QBSH in different condi-
tions of background noise and smartphone-style distortion.
For this study, we have considered three different melodic
matchers: two state-of-the-art systems (one of which ob-
tained the best results in MIREX 2013), and a simple, eas-
ily reproducible baseline method based on frame-to-frame
matching using dynamic time warping (DTW). In Figure
1, we show a scheme of our study.

4431 .wav
queries

Controlled audio
degradation

F0
tracking

Melodic
matching

2048 MIDI
songs Matched

songs
(Top-10)

Figure 1. Overall scheme of our study

This paper is organized as follows: Section 2 and Sec-
tion 3 present the studied algorithms for F0 tracking and
melodic matching, respectively. The evaluation strategy
is presented in Section 4. Section 5 presents the obtained
results and Section 6 draws some conclusions about the
present study.

2. F0 TRACKERS

In this section, we describe the F0 trackers considered in
our study, together with their specific set of parameters.
The literature reports a wide set of algorithms oriented to
either monophonic or polyphonic audio, so we have fo-
cused on well-known, commonly used algorithms (e.g. Yin
[4] or Praat-AC [8]), and some recently published algo-
rithms for F0 estimation (e.g. pYin [6] or MELODIA [15]).
Most of the algorithms analysed address F0 estimation in
monophonic audio, but we have also studied the perfor-
mance of MELODIA, which is a method for predominant
melody extraction in polyphonic audio, using monophonic
audio in noisy conditions. Regarding the used set of pa-
rameters, when possible, they have been adjusted by trial
and error using ten audio queries. The considered methods
for F0 tracking are the following ones:
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2.1 YIN

The Yin algorithm was developed by de Cheveigné and
Kawahara in 2002 [4]. It resembles the idea of the au-
tocorrelation method [5] but it uses the cumulative mean
normalized difference function, which peaks at the local
period with lower error rates than the traditional autocor-
relation function. In our study, we have used Matthias
Mauch’s VAMP plugin 3 in Sonic Annotator tool 4 .

Parameters used in YIN: step size = 80 samples (0.01
seconds), Block size = 512 samples, Yin threshold = 0.15.

2.2 pYIN

The pYin method has been published by Mauch in 2014
[6], and it basically adds a HMM-based F0 tracking stage
in order to find a “smooth” path through the fundamen-
tal frequency candidates obtained by Yin. Again, we have
used the original Matthias Mauch’s VAMP plugin 3 in Sonic
Annotator tool 4 .

Parameters used in PYIN: step size = 80 samples (0.01
seconds), Block size = 512 samples, Yin threshold distri-
bution = Beta (mean 0.15).

2.3 AC-DEFAULT and AC-ADJUSTED (Praat)

Praat is a well-known tool for speech analysis [7], which
includes several methods for F0 estimation. In our case,
we have chosen the algorithm created by P. Boersma in
1993 [8]. It is based on the autocorrelation method, but it
improves it by considering the effects of the window dur-
ing the analysis and by including a F0 tracking stage based
on dynamic programming. This method has 9 parameters
that can be adjusted to achieve a better performance for a
specific application. According to [9], this method signif-
icantly improves its performance when its parameters are
adapted to the input signal. Therefore, we have experi-
mented not only with the default set of parameters (AC-
DEFAULT), but also with an adjusted set of parameters in
order to limit octave jumps and false positives during the
voicing process (AC-ADJUSTED). In our case, we have
used the implementation included in the console Praat tool.

Parameters used in AC-DEFAULT: Time step = 0.01
seconds, Pitch floor = 75Hz, Max. number of candidates =
15, Very accurate = off, Silence threshold = 0.03, Voicing
threshold = 0.45, Octave cost = 0.01, Octave-jump cost =
0.35, Voiced / unvoiced cost = 0.15, Pitch ceiling = 600
Hz.

Parameters used in AC-ADJUSTED: Time step = 0.01
seconds, Pitch floor = 50Hz, Max. number of candidates =
15, Very accurate = off, Silence threshold = 0.03, Voicing
threshold = 0.45, Octave cost = 0.1, Octave-jump cost =
0.5, Voiced / unvoiced cost = 0.5, Pitch ceiling = 700 Hz.

2.4 AC-LEIWANG

In our study we have also included the exact F0 tracker
used in Lei Wang’s approach for QBSH [3], which ob-
tained the best results for most of the datasets in MIREX
2013. It is based on P. Boersma’s autocorrelation method

3 http://code.soundsoftware.ac.uk/projects/pyin
4 http://www.vamp-plugins.org/sonic-annotator/

[8], but it uses a finely tuned set of parameters and a post-
processing stage in order to mitigate spurious and octave
errors. This F0 tracker is used in the latest evolution of a
set of older methods [11, 12] also developed by Lei Wang
(an open source C++ implementation is available 5 ).

2.5 SWIPE’

The Swipe’ algorithm was published by A. Camacho in
2007 [10]. This algorithm estimates the pitch as the funda-
mental frequency of the sawtooth waveform whose spec-
trum best matches the spectrum of the input signal. The
algorithm proved to outperform other well-known F0 esti-
mation algorithms, and it is used in the F0 estimation stage
of some state-of-the-art query-by-humming systems [13].
In our study, we have used the original author’s Matlab
implementation 6 . The Matlab code does not provide a
voiced / unvoiced classification of frames, but it outputs
a strength vector S which has been used for it. Specifi-
cally, a frame is considered voiced if its strength is above
a threshold Sth, otherwise they are considered unvoiced.

Parameters used in SWIPE’: DT (hop-size) = 0.01 sec-
onds, pmin = 50 Hz, pmax = 700Hz, dlog2p = 1/48 (de-
fault), dERBs = 0.1 (default), woverlap = 0.5 (default),
voicing threshold Sth = 0.3.

2.6 MELODIA-MONO and MELODIA-POLY

MELODIA is a system for automatic melody extraction in
polyphonic music signals developed by Salamon in 2012
[15]. This system is based on the creation and character-
isation of pitch contours, which are time continuous se-
quences of pitch candidates grouped using auditory stream-
ing cues. Melodic and non-melodic contours are distin-
guished depending on the distributions of its characteris-
tics. The used implementation is MELODIA VAMP plu-
gin 7 in Sonic Annotator tool 4 . This plugin has two de-
fault sets of parameters, adapted to deal with monophonic
or polyphonic audio. We have experimented with both of
them, and therefore we have defined two methods: MELO-
DIA-MONO and MELODIA-POLY.

Parameters used in MELODIA-MONO: Program = Mono-
phonic, Min Frequency = 55Hz, Max Frequency = 700Hz,
Voicing Tolerance = 3,00, Monophonic Noise Filter = 0,00,
Audio block size = 372 (not configurable), Window incre-
ment = 23 (not configurable).

Parameters used in MELODIA-POLY: Program = Poly-
phonic, Min Frequency = 55Hz, Max Frequency = 700Hz,
Voicing Tolerance = 0,20, Monophonic Noise Filter = 0,00,
Audio block size = 372 (not configurable), Window incre-
ment = 23 (not configurable).

Note that the time-step in this case can not be directly
set to 0.01 seconds. Therefore, we have linearly interpo-
lated the pitch vector in order to scale it to a time-step of
0.01 seconds.

5 http://www.atic.uma.es/ismir2014qbsh/
6 http://www.cise.ufl.edu/ acamacho/publications/swipep.m
7 http://mtg.upf.edu/technologies/melodia
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3. AUDIO-TO-MIDI MELODIC MATCHERS

In this section, we describe the three considered methods
for audio-to-MIDI melodic matching: a simple baseline
(Section 3.1) and two state-of-the-art matchers (Sections
3.2 and 3.3).

3.1 Baseline approach
We have implemented a simple, freely available 5 base-
line approach based on dynamic time warping (DTW) for
melodic matching. Our method consists of four steps (a
scheme is shown in Figure 2):

(1) Model building: We extract one pitch vector Pk (in
MIDI number) for every target MIDI song k ∈ 1 . . .Nsongs

using a hop-size of 0.01 seconds. Then we replace un-
voiced frames (rests) in Pk by the pitch value of the pre-
vious note, except for the case of initial unvoiced frames,
which are directly removed (these processed pitch vectors
are labelled as P∗k). Then, each pitch vector P∗k ∀k ∈
1 . . .Nsongs is truncated to generate 7 pitch vectors with
lengths [500, 600, 700, 800, 900, 1000, 1100] frames (cor-
responding to the first 5, 6, 7, 8, 9, 10 and 11 seconds
of the target MIDI song, which are reasonable durations
for an user query). We label these pitch vectors as P∗k

5s ,
P∗k

6s , . . .P∗k
11s. Finally, all these pitch vectors are resam-

pled (through linear interpolation) to a length of 50 points,
and then zero-mean normalized (for a common key trans-
position), leading to P50∗k

Duration ∀Duration ∈ 5s . . . 11s and
∀k ∈ 1 . . .Nsongs. These vectors are then stored for later
usage. Note that this process must be done only once.

(2) Query pre-processing: The pitch vector PQ of a
given .wav query is loaded (note that all pitch vectors are
computed with a hopsize equal to 0.01 seconds). Then, as
in step (1), unvoiced frames are replaced by the pitch value
of the previous note, except for the case of initial unvoiced
frames, which are directly removed. This processed vector
is then converted to MIDI numbers with 1 cent resolution,
and labelled as P∗Q. Finally, P∗Q is resampled (using
linear interpolation) to a length L = 50 and zero-mean
normalized (for a common key transposition), leading to
P50∗Q.

(3) DTW-based alignment: Now we find the optimal
alignment between P50∗Q and all pitch vectors P50∗k

Duration

∀Duration ∈ 5s . . .11s and ∀k ∈ 1 . . .Nsongs using dy-
namic time warping (DTW). In our case, each cost matrix
CDuration,k is built using the squared difference:

CDuration,k(i, j) = (P 50∗Q(i)− P 50∗k
Duration(j))

2 (1)

Where k is the target song index, Duration represents the
truncation level (from 5s to 11s), and i, j are the time in-
dices of the query pitch vector P50∗Q and the target pitch
vector P50∗k

Duration, respectively. The optimal path is now
found using Dan Ellis’ Matlab implementation for DTW
[16] (dpfast.m function), with the following allowed
steps and associated cost weights [Δi,Δj,W ]: [1, 1, 1],
[1, 0, 30], [0, 1, 30], [1, 2, 5], [2, 1, 5]. The allowed steps
and weights have been selected in order to penalize 0 or 90
angles in the optimal path (associated to unnatural align-
ments), and although they lead to acceptable results, they
may not be optimal.
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Figure 2. Scheme of the proposed baseline method for
audio-to-MIDI melody matching.

(4) Top-10 report: Once the P50∗Q has been aligned
with all target pitch vectors (a total of 7 × Nsongs vectors,
since we use 7 different durations), the matched pitch vec-
tors are sorted according to their alignment total cost (this
value consists of the matrix D produced by dpfast.m
evaluated in the last position of the optimal path, Tcost =
D(p(end),q(end))). Finally, the 10 songs with mini-
mum cost are reported.

3.2 Music Radar’s approach

MusicRadar [3] is a state-of-the-art algorithm for melodic
matching, which participated in MIREX 2013 and obtained
the best accuracy in all datasets, except for the case of IOA-
CAS 8 . It is the latest evolution of a set of systems devel-
oped by Lei Wang since 2007 [11, 12]. The system takes
advantage of several matching methods to improve its ac-
curacy. First, Earth Mover’s Distance (EMD), which is
note-based and fast, is adopted to eliminate most unlikely
candidates. Then, Dynamic Time Warping (DTW), which
is frame-based and more accurate, is executed on these sur-
viving candidates. Finally, a weighted voting fusion strat-
egy is employed to find the optimal match. In our study,
we have used the exact melody matcher tested in MIREX
2013, provided by its original author.

3.3 NetEase’s approach

NetEase’s approach [13] is a state-of-the-art algorithm for
melodic matching, which participated in MIREX 2013 and

8 http://www.music-ir.org/mirex/wiki/2013:Query by -
Singing/Humming
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obtained the first position for IOACAS dataset 8 , as well
as relevant results in the rest of datasets. This algorithm
adopts a two-stage cascaded solution based on Locality
Sensitive Hashing (LSH) and accurate matching of frame-
level pitch sequence. Firstly, LSH is employed to quickly
filter out songs with low matching possibilities. In the sec-
ond stage, Dynamic Time Warping is applied to find the
N (set to 10) most matching songs from the candidate list.
Again, the original authors of NetEase’s approach (who
also authored some older works on query-by-humming [14])
collaborated in this study, so we have used the exact melody
matcher tested in MIREX 2013.

4. EVALUATION STRATEGY

In this section, we present the datasets used in our study
(Section 4.1), the way in which we have combined F0 track-
ers and melody matchers (Section 4.2) and the chosen eval-
uation measures (Section 4.3).
4.1 Datasets

We have used the public corpus MIR-QBSH 8 (used in
MIREX since 2005), which includes 4431 .wav queries
corresponding to 48 different MIDI songs. The audio que-
ries are 8 seconds length, and they are recorded in mono
8 bits, with a sample rate of 8kHz. In general, the au-
dio queries are monophonic with no background noise, al-
though some of them are slightly noisy and/or distorted.
This dataset also includes a manually corrected pitch vec-
tor for each .wav query. Although these annotations are
fairly reliable, they may not be totally correct, as stated in
MIR-QBSH documentation.

In addition, we have used the Audio Degradation Tool-
box [17] in order to recreate common environments where
a QBSH system could work. Specifically, we have com-
bined three levels of pub-style added background noise
(PubEnvironment1 sound) and smartphone-style dis-
tortion (smartPhoneRecording degradation), leading
to a total of seven evaluation datasets: (1) Original MIR-
QBSH corpus (2) 25 dB SNR (3) 25 dB SNR + smartphone
distortion (4) 15 dB SNR (5) 15 dB SNR + smartphone
distortion (6) 5 dB SNR (7) 5 dB SNR + smartphone dis-
tortion. Note that all these degradations have been checked
in order to ensure perceptually realistic environments.

Finally, in order to replicate MIREX conditions, we have
included 2000 extra MIDI songs (randomly taken from ES-
SEN collection 9 ) to the original collection of 48 MIDI
songs, leading to a songs collection of 2048 MIDI songs.
Note that, although these 2000 extra songs fit the style of
the original 48 songs, they do not correspond to any .wav
query of Jang’s dataset.

4.2 Combinations of F0 trackers and melody
matchers

For each of the 7 datasets, the 4431 .wav queries have
been transcribed using the 8 different F0 trackers men-
tioned in Section 2. Additionally, each dataset also in-
cludes the 4431 manually corrected pitch vectors of MIR-
QBSH as a reference, leading to a total of 7 datasets × (8

9 www.esac-data.org/

F0 trackers + 1 manual annotation) × 4431 queries = 63 ×
4431 queries = 279153 pitch vectors. Then, all these pitch
vectors have been used as input to the 3 different melody
matchers mentioned in Section 3, leading to 930510 lists
of top-10 matched songs. Finally, these results have been
used to compute a set of meaningful evaluation measures.

4.3 Evaluation measures

In this section, we present the evaluation measures used in
this study:

(1) Mean overall accuracy of F0 tracking (Accov):
For each pitch vector we have computed an evaluation mea-
sures defined in MIREX Audio Melody Extraction task:
overall accuracy (Accov) (a definition can be found in [15]).
The mean overall accuracy is then defined as Accov =
(1/N)

∑N

i=1 Accovi, where N is the total number of que-
ries considered and Accovi is the overall accuracy of the
pitch vector of the i:th query. We have selected this mea-
sure because it considers both voicing and pitch, which are
important aspects in QBSH. For this measure, our ground
truth consists of the manually corrected pitch vectors of
the .wav queries, which are included in the original MIR-
QBSH corpus.

(2) Mean Reciprocal Rank (MRR): This measure is
commonly used in MIREX Query By Singing Humming
task 8 , and it is defined as: MRR = (1/N)

∑N

i=1 r
−1
i ,

where N is the total number of queries considered and ri
is the rank of the correct answer in the retrieved melodies
for i:th query.

5. RESULTS & DISCUSSION

In this section, we present the obtained results and some
relevant considerations about them.

5.1 Accov and MRR for each F0 tracker - Dataset -
Matcher

In Table 1, we show the Accov and the MRR obtained for
the whole dataset of 4431 .wav queries in each combina-
tion of F0 tracker-dataset-matcher (189 combinations in
total). Note that these results are directly comparable to
MIREX Query by Singing/Humming task 8 (Jang Dataset).
As expected, the manually corrected pitch vectors produce
the best MRR in most cases (the overall accuracy is 100%
because it has been taken as the ground truth for such mea-
sure). Note that, despite manual annotations are the same
in all datasets, NetEase and MusicRadar matchers do not
produce the exact same results in all cases. It is due to the
generation of the indexing model (used to reduced the time
search), which is not a totally deterministic process.

Regarding the relationship between Accov and MRR in
the rest of F0 trackers, we find a somehow contradictory
result: the best Accov does not always correspond with
the best MRR. This fact may be due to two different rea-
sons. On the one hand, the meaning of Accov may be dis-
torted due to annotation errors in the ground truth (as men-
tioned in Section 4.1), or to eventual intonation errors in
the dataset. However, the manual annotations produce the
best MRR, what suggests that the amount of these types
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F0 Clean 25dB SNR 25 dB SNR 15dB SNR 15 dB SNR 5dB SNR 5 dB SNR
tracker dataset + distortion + distortion + distortion

(A) 100 / 0.82 / 0.89 / 0.96 100 / 0.82 / 0.89 / 0.96 100 / 0.82 / 0.89 / 0.95 100 / 0.82 / 0.89 / 0.96 100 / 0.82 / 0.89 / 0.96 100 / 0.82 / 0.89 / 0.96 100 / 0.82 / 0.88 / 0.95

(B) 89 / 0.80 / 0.89 / 0.96 89 / 0.80 / 0.89 / 0.96 88 / 0.80 / 0.88 / 0.95 88 / 0.79 / 0.88 / 0.94 84 / 0.71 / 0.86 / 0.94 78 / 0.50 / 0.73 / 0.85 67 / 0.33 / 0.57 / 0.73

(C) 90 / 0.74 / 0.85 / 0.94 90 / 0.71 / 0.85 / 0.92 86 / 0.72 / 0.84 / 0.92 89 / 0.71 / 0.84 / 0.92 85 / 0.66 / 0.81 / 0.89 72 / 0.49 / 0.58 / 0.70 64 / 0.26 / 0.39 / 0.51
(D) 90 / 0.71 / 0.83 / 0.92 90 / 0.74 / 0.85 / 0.93 85 / 0.74 / 0.85 / 0.94 90 / 0.78 / 0.87 / 0.94 85 / 0.77 / 0.87 / 0.94 79 / 0.69 / 0.79 / 0.87 72 / 0.58 / 0.69 / 0.81
(E) 89 / 0.71 / 0.83 / 0.92 89 / 0.71 / 0.84 / 0.92 84 / 0.66 / 0.80 / 0.91 88 / 0.72 / 0.84 / 0.93 83 / 0.65 / 0.80 / 0.91 75 / 0.67 / 0.67 / 0.82 66 / 0.48 / 0.53 / 0.73
(F) 86 / 0.62 / 0.81 / 0.89 86 / 0.70 / 0.83 / 0.92 81 / 0.64 / 0.78 / 0.89 82 / 0.60 / 0.77 / 0.88 75 / 0.50 / 0.67 / 0.82 48 / 0.03 / 0.08 / 0.04 44 / 0.04 / 0.04 / 0.03

(G) 88 / 0.56 / 0.81 / 0.88 87 / 0.47 / 0.79 / 0.86 83 / 0.47 / 0.76 / 0.85 86 / 0.39 / 0.78 / 0.87 81 / 0.35 / 0.73 / 0.82 70 / 0.11 / 0.32 / 0.52 63 / 0.04 / 0.20 / 0.38

(H) 87 / 0.66 / 0.83 / 0.87 87 / 0.67 / 0.82 / 0.87 83 / 0.64 / 0.78 / 0.84 86 / 0.66 / 0.81 / 0.84 82 / 0.58 / 0.74 / 0.80 83 / 0.51 / 0.73 / 0.75 73 / 0.32 / 0.55 / 0.62
(I) 84 / 0.62 / 0.76 / 0.86 84 / 0.62 / 0.76 / 0.86 79 / 0.50 / 0.64 / 0.74 84 / 0.63 / 0.76 / 0.86 79 / 0.50 / 0.65 / 0.75 83 / 0.60 / 0.73 / 0.83 75 / 0.39 / 0.55 / 0.65

Table 1: F0 overall accuracy and MRR obtained for each case. F0 trackers: (A) MANUALLY CORRECTED (B) AC-
LEIWANG (C) AC-ADJUSTED (D) PYIN (E) SWIPE’ (F) YIN (G) AC-DEFAULT (H) MELODIA-MONO (I) MELODIA-
POLY. The format of each cell is: Accov(%) / MRR-baseline / MRR-NetEase / MRR-MusicRadar.

of errors are low. On the other hand, the measure Accov

itself may not be totally representative of the suitability of
a pitch vector for QBSH. Indeed, after analysing specific
cases, we observed that two pitch vectors with same F0
tracking accuracy (according to MIREX measures) may
not be equally suitable for query-by-humming. For in-
stance, we analysed the results produced by the baseline
matcher using two different pitch vectors (Figure 3) with
exactly the same evaluation measures in MIREX Audio
Melody Extraction task: vocing recall = 99.63%, voic-
ing false-alarm = 48.40%, raw pitch accuracy= 97.41%,
raw-chroma accuracy = 97.41% and overall accuracy =
82.91%. However, we found that pitch vector (a) matches
the right song with rank ri = 1 whereas pitch vector (b)
does not matches the right song at all (ri ≥ 11). The rea-
son is that MIREX evaluation measures do not take into
account the pitch values of false positives, but in fact they
are important for QBSH. Therefore, we conclude that the
high MRR achieved by some F0 trackers (AC-LEIWANG
when background noise is low, and PYIN for highly de-
graded signals), is not only due to the amount of errors
made by them, but also to the type of such errors.

Additionally, we observed that, in most cases, the que-
ries are matched either with rank ri = 1 or ri ≥ 11 (inter-
mediate cases such as rank ri = 2 or ri = 3 are less fre-
quent). Therefore, the variance of ranks is generally high,
their distribution is not Gaussian.

5.2 MRR vs. Accov for each matcher

In order to study the robustness of each melodic matcher to
F0 tracking errors, we have represented the MRR obtained
by each one for different ranges of Accov (Figure 4). For
this experiment, we have selected only the .wav queries
which produce the right answer in first rank for the three
matchers considered (baseline, Music Radar and NetEase)
when manually corrected pitch vectors are used (around a
70% of the dataset matches this condition). In this way, we
ensure that bad singing or a wrong manual annotation is
not affecting the variations of MRR in the plots. Note that,
in this case, the results are not directly comparable to the
ones computed in MIREX (in contrast to the results shown
in Section 5.1).
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Figure 3. According to MIREX measures, these two pitch
vectors (manually manipulated) are equally accurate; how-
ever, they are not equally suitable for QBSH.

Regarding the obtained results (shown in Figure 4), we
observe clear differences in the robustness to F0 estima-
tion errors between matchers, which is coherent with the
results presented in Table 1. The main difference is found
in the baseline matcher with respect to both NetEase and
Music Radar. Given that the baseline matcher only uses
DTW, whereas the other two matchers use a combination
of various searching methods (see Sections 3.2 and 3.3),
we hypothesise that such combination may improve their
robustness to F0 tracking errors. However, further research
is needed to really test this hypothesis.

6. CONCLUSIONS

In this paper, eight different state-of-the-art F0 trackers
were evaluated for the specific application of query-by-
humming-singing in different conditions of pub-style added
noise and smartphone-style distortion. This study was car-
ried out using three different matching methods: a simple,
freely available baseline (a detailed description has been
provided in Section 3.1) and two state-of-the-art match-
ers. In our results, we found that Boersma’s AC method
[8], with an appropriate adjustment and a smoothing stage
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Figure 4. MRR obtained for each range of Overall Accu-
racy (each range is marked with coloured background rect-
angles). We have considered only the .wav queries which,
using manually corrected F0 vectors, produce MRR = 1
in all matchers.

achieves the best results when the audio is not very de-
graded. In contrast, when the audio is highly degraded, the
best results are obtained with pYIN [6], even without fur-
ther smoothing. Considering that pYIN is a very recent,
open source approach, this result is promising in order to
improve the noise robustness of future QBSH systems. Ad-
ditionally, we found that F0 trackers perform differently on
QBSH depending on the type of F0 tracking errors made.
Due to this, MIREX measures do not fully represent the
suitability of a pitch vector for QBSH purposes, so the de-
velopment of novel evaluation measures in MIREX is en-
couraged to really measure the suitability of MIR systems
for specific applications. Finally, we observed clear differ-
ences between matchers regarding their robustness to F0
estimation errors. However, further research is needed for
a deeper insight into these differences.
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ABSTRACT

Single-channel methods for the separation of the lead vocal

from mixed audio have traditionally included harmonic-

sinusoidal modeling and matrix decomposition methods,

each with its own strengths and shortcomings. In this work

we use a hybrid framework to incorporate prior knowledge

about singer and phone identity to achieve the superior sep-

aration of the lead vocal from the instrumental background.

Singer specific dictionaries learned from available poly-

phonic recordings provide the soft mask that effectively

attenuates the bleeding-through of accompanying melodic

instruments typical of purely harmonic-sinusoidal model

based separation. The dictionary learning uses NMF op-

timization across a training set of mixed signal utterances

while keeping the vocal signal bases constant across the

utterances. A soft mask is determined for each test mixed

utterance frame by imposing sparseness constraints in the

NMF partial co-factorization. We demonstrate significant

improvements in reconstructed signal quality arising from

the more accurate estimation of singer-vowel spectral en-

velope.

1. INTRODUCTION

Source separation techniques have been widely applied in

the suppression of the lead vocal in original songs to ob-

tain the orchestral background for use in karaoke and remix

creation. In stereo and multichannel recordings, spatial

cues can contribute significantly to vocal separation from

the original mixtures. However this separation is not com-

plete, depending on the manner in which the multiple in-

struments are panned in the mix. Further, an important cat-

egory of popular music recordings, dating until the 1950s

in the West and even later in the rest of the world, are

purely monophonic. Single-channel methods for the sepa-

ration of the lead vocal from the instrumental background

c© Shrikant Venkataramani, Nagesh Nayak, Preeti Rao, Ra-

jbabu Velmurugan.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Shrikant Venkataramani, Nagesh

Nayak, Preeti Rao, Rajbabu Velmurugan. “VOCAL SEPARATION US-

ING SINGER-VOWEL PRIORS OBTAINED FROM POLYPHONIC

AUDIO”, 15th International Society for Music Information Retrieval

Conference, 2014.

include harmonic sinusoidal modeling and matrix decom-

position methods. Of these, harmonic sinusoidal model-

ing has found success in situations where no clean data is

available for supervised learning [6], [10]. Based on the

assumption that the vocal is dominant in the mixture, pre-

dominant pitch detection methods are applied to obtain the

vocal pitch and hence the predicted vocal harmonic loca-

tions at each instant in time. Harmonic sinusoidal mod-

eling is then applied to reconstruct the vocal component

based on assigning a magnitude and phase to each recon-

structed harmonic from a detected sinusoidal peak in the

corresponding spectral neighborhood of the mixed signal

short-time Fourier transform (STFT). The vocal signal is

reconstructed by the amplitude and phase interpolation of

the harmonic component tracks. The instrumental back-

ground is obtained by the subtraction of the reconstructed

vocal from the original mixture. A high degree of vocal

separation is obtained when the assumption of vocal dom-

inance holds for the mixture. However some well-known

artifacts remain viz. (i) “bleeding through” of some of the

melodic instrumentation due to the blind assignment of the

total energy in the mixed signal in the vocal harmonic lo-

cation to the corresponding reconstructed harmonic; this

artifact is particularly perceptible in the sustained vowel re-

gions of singing, (ii) improper cancellation of the unvoiced

consonants and breathy voice components due to the lim-

itations of sinusoidal modeling of noise and (iii) residual

of vocal reverb if present in the original [14]. To address

the first shortcoming, recent methods rely on the availabil-

ity of non-overlapping harmonics of the same source any-

where in the entire audio [3]. We propose to replace the

binary mask (implicit in the harmonic-sinusoidal model-

ing) applied to the vocal harmonics before reconstruction

by a soft-mask (a form of Wiener filtering). An effective

soft mask would be based on an accurate estimate of the

vocal signal spectrum at any time-instant [2], [14]. This

would improve the reconstructed vocal signal and lead to

more complete suppression in the estimated background.

The vocal signal spectrum depends on several factors

such as the singer’s voice, the phone being uttered, the

pitch and the vocal effort. We cannot assume the avail-

ability of clean data for supervised training (i.e., unaccom-

panied voice of the particular singer). However popular

singers typically have a large number of songs to their
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credit, and therefore a method for learning a dictionary of

soft masks for the singer from such a training data set could

be useful. The training set thus has original single-channel

polyphonic songs where the vocal characteristics corre-

spond to the singer but the background orchestration is di-

verse. We apply non-negative matrix factorization (NMF)

methods to estimate the invariant set of basis vectors across

multiple instances of the singer’s phones in different songs.

In the recent past, several systems have been proposed that

qualify as modifications of NMF for improved performance

in various scenarios where specific prior knowledge about

the data are available [5] (and references therein). In the

present work, we attempt to formulate a NMF approach

to obtain basis elements corresponding to the singer’s ut-

terances by providing audio corresponding to a particu-

lar singer. Given the very diverse spectra of the differ-

ent phones in a language, the quality of the decomposition

can be improved by restricting the optimization to within

a phone class [11]. We exploit the availability of song-

synchronized lyrics data available in karaoke applications

to achieve this. Our main contribution is to combine the

advantages of harmonic-sinusoidal modeling in localizing

the vocal components in time-frequency with that of soft-

masking based on spectral envelope estimates from a NMF

decomposition on polyphonic audio training data. Prior

knowledge about singer identity and underlying phone tran-

scription of the training and test audio are incorporated in

the proposed framework. We develop and evaluate the con-

strained NMF optimization required for the training across

instances where a common basis function set corresponds

to the singer-vowel. On the test data, partial co-factorization

with a sparseness constraint helps obtain the correct basis

decomposition for the mixed signal at any time instant, and

thus a reliable spectral envelope estimate of the vowel for

use in the soft mask. Finally, the overall system is eval-

uated based on the achieved vocal and orchestral back-

ground separation using objective measures and informal

listening. In the next sections, we present the overall sys-

tem for vocal separation, followed by the proposed NMF-

based singer-vowel dictionary learning, estimation of the

soft mask for test mixed polyphonic utterances and exper-

imental evaluation of system performance.

2. PROPOSED HYBRID SYSTEM

A block diagram of the proposed hybrid system for vocal

separation is shown in Figure 1. The single-channel audio

mixture considered for vocal separation is assumed to have

the singing voice, when present, as the dominant source in

the mix. We assume that the sung regions are annotated at

the syllable level, as expected from music audio prepared

for karaoke use. A predominant pitch tracker [9] is applied

to the sung regions to detect vocal pitch at 10 ms intervals

throughout the sung regions of the audio. Sinusoidal com-

ponents are tracked in the computed short-time magnitude

spectrum after biasing trajectory information towards the

harmonic locations based on the detected pitch [8]. The

pitch salience and total harmonic energy are used to locate

the vowel region within the syllable. The vocal signal can
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Figure 1. Block diagram of the proposed vocal separation

system.

be reconstructed from the harmonic sinusoidal component

trajectories obtained by amplitude and phase interpolation

of the frame-level estimates from the STFT. An estimate

of the instantaneous spectral envelope of the singer’s voice

provides a soft mask to re-shape the harmonic amplitudes

before vocal reconstruction. The mel-filtered spectral en-

velope (MFS) is computed by applying a 40-band mel-

filter bank to the log-linearly interpolated envelope of the

mixture harmonic amplitudes. By using the spectral enve-

lope, we eliminate pitch dependence in the soft mask to a

large extent. The phoneme dictionary consists of a set of

basis vectors for each vowel, at various pitches. A linear

combination of these basis vectors may be used to estimate

the MFS envelope of the vocal component of the mixture,

from the MFS envelope of the mixture. These spectral en-

velope vectors are learnt from multiple polyphonic mix-

tures of the phoneme as explained in Section 3. The MFS

is used as a low-dimensional perceptually motivated repre-

sentation. The reconstructed vocal signal is subtracted in

the time-domain from the polyphonic mixture to obtain the

vocal-suppressed music background.

3. SPECTRAL ENVELOPE DICTIONARY
LEARNING USING NMF

To obtain the singer specific soft mask mentioned in the

previous section, we create a dictionary of basis vectors

corresponding to each of the vowels of the language. This
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dictionary is created from polyphonic song segments, con-

taining the vowel, of the singer under consideration. While

spectral envelope of a vowel depends on the vowel iden-

tity, there are prominent dependencies on (i) the singer,

whose physiological characteristics and singing style af-

fect the precise formant locations and bandwidths for a

given vowel. This is especially true of the higher formants

(4th and 5th), which depend primarily on the singer rather

than on the vowel; (ii) pitch, specifically in singing where

the articulation can vary with large changes in pitch due to

the “formant tuning” phenomenon [12]; (iii) loudness or

vocal effort. Raising the vocal effort reduces spectral tilt,

increasing the relative amplitudes of the higher harmonics

and consequently the brightness of the voice.

In the proposed dictionary learning, pitch dependence is

accounted for by separate dictionary entries corresponding

to 2 or 3 selected pitch ranges across the 2 octaves span

of a singer. Since the pitch and vowel identity are known

for the test song segment, the correct dictionary can be se-

lected at any time. The basis vectors for any pitch range of

the singer-vowel capture the variety of spectral envelopes

that arise from varying vocal effort and vowel context. We

have training data of several instances of a particular singer

uttering a common vowel. These utterances have been ob-

tained from different songs and hence, we may assume

that the accompaniments in the mixtures are different. The

MFS envelopes, reviewed in the previous section, are ex-

tracted for each training vowel instance in the polyphonic

audio. Based on the assumption of additivity of the spectral

envelopes of vocal and instrumental background, there is a

common partial factor corresponding to the singer-vowel

across the mixtures with changing basis vectors for the ac-

companiment.

We use NMF to extract common features (singer-vowel

spectra) across multiple song segments. The conventional

use of NMF is similar to the phoneme-dependent NMF

used for speech separation in [7] where the bases are es-

timated from clean speech. We extend the scope of NMF

further, using non-negative matrix partial co-factorization

(NMPCF ) [4] equivalent to NMF for multiblock data [15]

techniques. NMPCF and its variants have been used in

drum source separation [4], where one of the training sig-

nals is the solo drums audio. Here, we use NMPCF for

multiple MFS matrices of mixed signals across segments

of the polyphonic audio of the singer, without the use of

clean vocal signal. This will yield a common set of bases

representing the singer-vowel and other varying bases rep-

resentative of the accompaniments.

We now describe the NMPCF algorithm for learning the

singer-vowel basis. The MFS representation for one spe-

cific annotated segment of a polyphonic music is repre-

sented as Vl. This section has the vowel of interest and

instrumental accompaniments. We have MFS of M such

mixtures for i = 1, . . . ,M represented as [15],

Vi = Vc,i +Va,i, i = 1, . . .M. (1)

where Vc,i and Va,i denote the MFS of the common singer-

vowel and accompaniment, respectively. Using NMF de-

composition for the MFS spectra we have,

Vi = WcHc,i +Wa,iHa,i, i = 1, . . .M. (2)

where Wc ∈ R
F×Nc
+ denotes the basis vectors correspond-

ing to the common vowel shared by the M mixtures and

Wa,i ∈ R
F×Na
+ are the basis vectors corresponding to the

accompaniments. Here F is the number of mel-filters (40)

used, Nc and Na are the numer of basis vectors for the

vowel and accompaniments, respectively. The matrices

Hc,i and Ha,i are the activation matrices for the vowel

and accompaniment basis vectors, respectively. Our objec-

tive is to obtain the basis vectors Wc corresponding to the

common vowel across these M mixtures. We achieve this

by minimizing the Frobenius norm ‖ . ‖2F of the discrep-

ancy between the given mixtures and their factorizations,

simultaneously. Accordingly, the cost function,

D =
M∑
i=1

1

2
‖ Vi −WcHc,i −Wa,iHa,i ‖2F +

λ1

2
‖Wa,i ‖2F , (3)

is to be minimized with respect to Wc, Wa,i, Hc,i, and

Ha,i. The regularizer ‖ Wa,i ‖2F and λ1 the Lagrange

multiplier lead to dense Wa,i and Wc matrices [15]. The

basis vectors thus obtained are a good representation of

both the common vowel and the accompaniments, across

the mixture. In this work, we choose λ1 = 10 for our ex-

perimentation as it was found to result in the sparsest Hc,i

matrix for varying values of λ1. We solve (3) using the

multiplicative update algorithm. The multiplicative update

for a parameter P in solving the NMF problem takes the

general form,

P = P ∇
−
P(D)

∇+
P(D)

, (4)

where∇−
X(D) and∇+

X(D) represent the negative and pos-

itive parts of the derivative of the cost D w.r.t. the param-

eter X, respectively,  represents the Hadamard (element-

wise) product and the division is also element-wise. Cor-

respondingly, the multiplicative update for the parameter

Wc in (3) is,

Wc = Wc  
∇−

Wc
(D)

∇+
Wc

(D)
. (5)

where,

∇Wc(D) =

M∑
i=1

(WcHc,i +Wa,iHa,i −Vi)H
T
c,i. (6)

Similarly, the update equation for other terms in (3) are,

Hc,i = Hc,i  
WT

c Vi

WT
c WcHc,i +WT

c Wa,iHa,i
, (7)

Ha,i = Ha,i  
WT

a,iVi

WT
a,iWcHc,i +WT

a,iWa,iHa,i
, (8)
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Wa,i =

Wa,i  
ViH

T
a,i

WcHc,iHT
a,i +Wa,iHa,iHT

a,i + λ1 ×Wa,i
.

(9)

for i = 1, . . . ,M . The basis vectors Wc for the vari-

ous phonemes form the dictionary and act as a prior in the

spectral envelope estimation. Each dictionary entry is as-

sociated with a vowel and pitch range. We denote each

entry in the dictionary as Wc(/p/, f0) for each vowel /p/
at pitch f0.

4. SOFT MASK ESTIMATION USING
SINGER-VOWEL DICTIONARY

In this section, we describe the approach to estimate the

frame-wise soft mask for a test polyphonic vowel mixture

segment. We first obtain the MFS envelope for the mix-

ture as mentioned in Section 2. With the vowel label and

pitch range known, we obtain the corresponding set of ba-

sis vectors Wc(/p/, f0) from the dictionary. Given this

MFS representation of the mixture and the basis vectors,

our objective is to separate the vocal component from the

mixture. We do this by minimizing the cost function

DT =
1

2
‖ VT −WcHc,T −Wa,THa,T ‖2F +

λ2

2
‖ Hc,T ‖2F , (10)

where the subscript T refers to the test case. The minimiza-

tion is done with the dictionary bases Wc kept fixed and

using multiplicative updates for Hc,T , Wa,T and Ha,T .

The sparsity constraint on Hc,T in (10) accounts for the

fact that the best set of bases representing the vowel would

result in the sparsest temporal matrix Hc,T . Under this

formulation, WcHc,T will give an estimate of the vowel’s

MFS envelope Vc (as in (1)) for the mixture. An alternate

way is to use Wiener filtering to estimate Vc as,

V̂c =
WcHc,T

WcHc,T +Wa,THa,T
 VT . (11)

This estimated vowel MFS can be used to reconstruct the

spectral envelope of the vowel Ĉ. This is done by multi-

plying V̂c with the pseudoinverse of the DFT matrix M of

the mel filter bank [1] as Ĉ = M†V̂c. A soft mask cor-

responding to this spectral envelope can be obtained using

the Gaussian radial basis function [2],

Gb(f, t) = exp

⎛⎜⎝−
(
logX(f, t)− log Ĉ(f, t)

)2
2σ2

⎞⎟⎠
(12)

where, σ is the Gaussian spread, X is the magnitude spec-

trum of the mixed signal. The soft mask (12) is evaluated

with σ = 1, in a 50 Hz band around the pitch (f0) and its

harmonics [14].

Having obtained the soft mask, the vocals track is re-

constructed by multiplying the soft mask with the harmonic

amplitudes of the sinusoidally modeled signal. The resyn-

thesized signal then corresponds to the reconstructed vo-

cals. The accompaniment can be obtained by performing a

time-domain subtraction of the reconstructed vocals from

the original mixture.

5. EXPERIMENTS AND PARAMETER CHOICES

Given a polyphonic vowel segment, the vocal is separated

by applying the generated soft mask corresponding to the

given mixture. We compare the separated vocal with the

ground truth to evaluate the performance. The performance

evaluation of the proposed system is carried out in two

steps. The first step is to choose the parameters of the sys-

tem using the distance in the MFS space between the es-

timated and ground-truth MFS vectors obtained from the

clean utterance. The second step is the computation of

signal-to-distortion (SDR) measure (in dB) on the sepa-

rated vocal and instrumental time-domain signals which

will be given in Section 6. We present the training and

test data used in the experiments next.

5.1 Description of the Dataset

The training dataset comprised of nine instances of three

vowels viz., /a/, /i/, /o/ at two average pitches of 200 Hz

and 300 Hz and sung by a male singer over three different

songs with their accompaniments, annotated at the phoneme

level. The training data was chosen so as to have differ-

ent accompaniments across all the instances of a vowel.

The training audios thus contained the vowel utterances

throughout in the presence of background accompaniments.

The training mixtures were pre-emphasised using a filter

with a zero located at 0.7 to better represent the higher for-

mants. A dictionary of bases was created for all the vowels

for the two pitch ranges using the NMCPF optimization

procedure discussed in Section 3. The performance was

evaluated over a testing dataset of 45 test mixtures with 15

mixtures for each vowel over the two pitch ranges. The

mixtures used for testing were distinct from the training

mixtures. Since the audios were obtained directly from full

songs, there was a significant variation in terms of the pitch

of the vowel utterances around the average pitch ranges

and in terms of coarticulation. The training and testing

mixtures were created in a karaoke singing context and

hence, we had available, the separate vocal and accom-

paniment tracks to be used as ground truth in the perfor-

mance evaluation. All the mixtures had durations in the

range of 400 ms - 2.2 s and were sampled at a frequency of

16 kHz. The window size and hop size used for the 1024

point STFT were 40 ms and 10 ms, respectively.

5.2 Choice of Parameters

There are several training parameters likely to influence

the performance of the system. These include the ranks

of the matrices in the decomposition (Wc, Wa) and the

number of mixtures M . We obtain these parameters exper-

imentally using a goodness-of-fit measure. The goodness-

of-fit is taken to be the normalised Frobenius norm of the
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Figure 2. Goodness-of-fit, averaged over all phoneme

bases, with increasing number of mixtures (M) used in

the parallel optimization procedure for different decompo-

sition ranks. The distance measure decreases indicating an

improving fit as the number of mixtures and rank increase.

difference between the ideal envelope of a vowel in the

MFS domain Vc and its best estimate V̂c obtained as a

linear combination of the bases, for a mixture containing

the vowel and accompaniment. This estimate can be calcu-

lated as explained in Section 4. Lower the value of this dis-

tance measure, closer is the envelope estimate to the ideal

estimate. The various bases may be compared by calculat-

ing Di for different bases Wci using

Di =
‖ Vc − V̂ci ‖2F
‖ Vc ‖2F

=
‖ Vc − Wci

Hci

Wci
Hci

+Wai
Hai

 VT ‖2F
‖ Vc ‖2F

, (13)

and comparing the same. To account for variabilities in the

evaluation mixtures, the distance measure is evaluated and

averaged over a number of mixtures and combinations, for

each set of bases Wci . The goodness-of-fit is used only

to choose the appropriate parameter values for the system.

The performance of the overall system, however, is evalu-

ated in terms of SDR.

As shown in Figure 2, the goodness-of-fit measure de-

creases with increasing rank of the decomposition (num-

ber of vocal basis vectors) for a given M . The decreasing

trend flattens out and then shows a slight increase beyond

rank 35. For a fixed rank, the goodness-of-fit improves

with increasing number of mixtures. Of the configurations

tried, the distance measure is minimum when four mix-

tures (M = 4) are used in the NMPCF optimization to

obtain the dictionary. Thus, a rank 35 decomposition with

M = 4 is chosen for each singer-vowel dictionary for sys-

tem performance evaluation.

As for the rank of the accompaniment basis, it is ob-

served that the regularization term in the joint optimiza-

tion (3) seems to make the algorithm robust to choice of

number of basis vectors for the accompaniment. Eight

basis vectors were chosen for each mixture term in the

joint optimization. Although the number of accompani-

Separated Binary Soft mask

track mask Original singer Alternate singer

Vocal 8.43 9.06 8.66

Instrumental 13.63 14.16 14.10

Table 1. SDR values (in dB) for separated vocals and in-

struments obtained using a binary mask, soft mask from

the original singer’s training mixtures and soft mask from

an alternate singer’s vocals.

ment bases seems to be comparatively low, eight bases

were sufficient to reconstruct the accompaniment signals

from the mixtures. A high value for λ2 in the test opti-

mization problem of (10) results in a decomposition in-

volving a linear combination of the least number of bases

per time frame. This sparse decomposition may not neces-

sarily lead to the best reconstruction in more challenging

scenarios involving articulation variations. Thus a small

value of λ2 = 0.1 was chosen.

6. RESULTS AND DISCUSSION

We evaluate the performance of the system using the SDR.

The SDR is evaluated using the BSS eval toolbox [13].

The SDR values averaged across 45 vowel test mixtures,

separately for the reconstructed vocals and instrumental

background are given in Table 1. To appreciate the im-

provement, if any, the SDR is also computed for the har-

monic sinusoidal model without soft masking (i.e., binary

masking only). While the proposed soft masking shows an

increase in SDR, closer examination revealed that the im-

provements were particularly marked for those mixtures

with overlapping vocal and instrumental harmonics (ac-

companiments) in some spectral regions. This was also

borne out by informal listening. When we isolated these

samples, we observed SDR improvements of up to 4 dB in

several instances. This is where the selective attenuation of

the harmonic amplitudes in accordance with the estimated

vowel spectral envelope is expected to help most. The har-

monics in the non-formant regions are retained in the in-

strumental background rather than being canceled out as

in binary masking, contributing to higher SDR 1 .

To understand the singer dependence of the dictionary,

we carried out soft mask estimation from the polyphonic

test mixtures using the basis vectors of an alternate singer.

This basis was a set of clean vowel spectral envelopes ob-

tained from another male singer’s audio with the same vow-

els and pitches corresponding to our training dataset. We

observe from Table 1 that the alternate singer soft mask

does better than the binary mask, since it brings in the

vowel dependence of the soft mask. However, it does not

perform as well as the original singer’s soft mask even

though the latter is obtained from clean vowel utterances.

As depicted in Figure 3 (for a sample case), the envelope

obtained using the original singer’s data closely follows the

1 Audio examples are available at http://www.ee.iitb.ac.
in/student/˜daplab/ISMIR_webpage/webpageISMIR.
html.
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Figure 3. Comparison of the reconstructed phoneme en-

velope of the phoneme /a/ obtained from training mixtures

of the same singer and with that obtained from pure vocals

of a different singer.

ideal envelope of the phoneme.

Although the NMF optimization converges slowly, the

number of iterations to be carried out to obtain the enve-

lope is low, for both training and testing procedures. It

is observed that the bases and envelopes attain their final

structure after 4000 and 1000 iterations, respectively.

7. CONCLUSION

Soft masks derived from a dictionary of singer-vowel spec-

tra are used to improve upon the vocal-instrumental music

separation achieved by harmonic sinusoidal modeling for

polyphonic music of the particular singer. The main con-

tribution of this work is an NMF based framework that ex-

ploits the amply available original polyphonic audios of the

singer as training data for learning the dictionary of singer

spectral envelopes. Appropriate constraints are introduced

in the NMF optimization for training and test contexts. The

availability of lyric-aligned audio (and therefore phone la-

bels) helps to improve the homogeneity of the training data

and have a better model with fewer basis vectors. Signifi-

cant improvements in reconstructed signal quality are ob-

tained over binary masking. Further it is demonstrated that

a vowel-dependent soft mask obtained from clean data of

a different available singer is not as good as the singer-

vowel dependent soft mask even if the latter is extracted

from polyphonic audio.
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tion, which similarity comparison can handle possible 
insertion/deletion errors. Once normalization is per-
formed, we can apply similarity comparison to find the 
similarity between the IOI query vector and that of each 
database song. The system can then return a ranked list of 
all database songs according to their similarity to the 
query input. 

Normalization and the similarity comparison are de-
tailed in the following sections. 

2.1 Normalization of IOI Vectors 

In most cases, the tempo of the user's query input is dif-
ferent from those of the candidate songs in the database. 
To deal with this problem, we need to normalize the IOI 
vectors of the input query and the candidate songs. There 
are 2 common methods for normalization. The first one is 
to convert the summation of all IOI to a constant value 
[5]. 

(1)

where {qi, i=1~m} is the input query IOI vector, and {rj, 
j=1~��} is a reference IOI vector from the song database. 
Note that the reference IOI vector of a song is truncated to 
a variety of lengths in order to match the query IOI. For 
instance, �� may be set to a value from m-2 to m+2 in or-
der to deal with possible insertions and deletions in the 
query input. Thus all these variant normalized versions of 
the IOI vectors for a song must be compared for similarity 
with the query IOI vector. The second method is to 
represent the normalized IOI vector as the ratio of the cur-
rent IOI element to its preceding element [7]. That is: 

(2)

where {si} is the original input query or reference IOI 
vector, and {���}  is its normalized version. The advantage 
of this method is that computation-wise it is much simp-
ler than the first one.  However, this method is suscepti-
ble to the problem of magnified insertion and deletion 

errors of the original IOI vectors, if any. For example, an 
IOI vector is [1, 2, 1], then its normalized vector is [1, 2, 
0.5]. If this IOI vector is wrongly tapped as [1, 1, 1, 1] 
(i.e., with one insertion in the second IOI), the normalized 
will become [1, 1, 1, 1], which has a larger degree of dif-
ference from the groundtruth after normalization. This 
kind of amplified difference is harder to recover in the 
step of similarity comparison. 

2.2 Similarity Comparison 

A robust QBT system should be able to handle insertion 
and deletion errors since most of the common users are 
not likely to tap the correct note sequence of the intended 
song precisely. In particular, a common user is likely to 
lose one or several notes when the song has a fast tempo, 
which leads to deletion errors. On the other hand, though 
less likely, a user may have a wrong impression of the 
intended song and taps more notes instead, which lead to 
insertion errors. Several methods have been proposed to 
compare IOI vectors for QBT, including the earth mov-
er’s distance [4] and several DP-based methods [5], [6], 
[7] which can deal with two input vectors of different 
lengths. In general, the earth mover’s distance is faster 
than DP-based methods, but its retrieval accuracy is not 
as good [11]. Our goal is to obtain a good accuracy with a 
reasonable amount of computing time. Therefore, the 
proposed method is based on a highly efficient DP-based 
method for better accuracy. 

3. THE SHIFTED ALIGNMENT ALGORITHM 

This section presents the proposed method to QBT. The 
method can also be divided into two stages of IOI norma-
lization and similarity comparison. We shall describe 
these two steps and explain the advantages over the state-
of-art QBT methods. 

Normalization: In QBT, though the query IOI vector 
and its target song IOI vector are not necessarily of the 
same size, the ratio of their tempos should be close to a 
constant. In other words, the ratios of an IOI element of a 
query to the corresponding one of the target song should 
be close to a constant. To take advantage of this fact, we 
can shift the query IOI vector (relatively to the target 
song IOI vector) to construct an IOI ratio matrix in order 
to find the optimum mapping between IOI elements of 
these two sequences. An example is shown in Fig. 2(a), 
where the input query IOI vector is represented by {qi, 
i=1~m}, and the reference IOI vector from the song data-
base by {rj, j=1~n}. As displayed in the figure, the refer-
ence IOI vector is shown at the top and the shifted query 
IOI vectors are shown below. Each element of a shifted 
query IOI vector is mapped to that of the reference IOI 
vector in the same column. Take the first shifted query 
IOI vector as an example, its second element q2 is 
mapped to r1 of the reference IOI vector, q3 is mapped to 
r2, etc. For each matched element pair, we divide the 
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query IOI by its mapping reference IOI to construct an 
IOI ratio matrix M according to the following formula: 

(3)

where the size of the matrix M is min(m,n)*( is + ie +1). 
is and ie are the left- and right-shift amount of the query 
IOI vector, respectively. Fig. 2(b) is the IOI ratio matrix 
of fig. 2(a). In this example, is and ie are 1 and 2, respec-
tively. Since the length of the query is usually shorter, m
is generally much less than n. Besides, in practice, if the 
anchor position is the beginning of a song, then we can 
improve the computation efficiency by truncating a refer-
ence IOI vector to a length slightly longer (e.g., 5-
element longer) than the length of query IOI vector. 

Unlike the equation (1) which requires many different 
versions of normalized reference IOI vectors for similari-
ty comparison, the proposed approach requires only one-
time normalization to generate a single IOI ratio table for 
computing the similarity. So the proposed approach is 
guaranteed to more efficient. 

Similarity comparison: In order to handle insertions 
and deletions in a flexible yet robust manner, we propose 
a dynamic programming method to compute the similari-
ty between the query and the reference IOI vectors. The 
basic principle is to identify a path over the IOI ratio ma-
trix M where the elemental values along the path should 
be as close as possible to one another. In other words, the 
accumulated IOI ratio variation should be minimal along 
the optimal path. Fig. 3 illustrates two typical numeric 
examples that involve insertion and deletion in the optim-
al path. In fig. 3(a), query IOI vector and reference IOI 
vector have the same tempo, so their elements are pretty 
much the same except that there is an insertion in the 
query. That is, the fourth element of the reference IOI 

vector is equally split into 2 elements in the query. Fig. 
3(b) is the IOI ratio matrix derived from the fig. 3(a), 
with the optimal path surrounded by dashed lines. The 
horizontal direction within the optimal path represent 
one-to-one sequential mapping between the two vectors 
without insertion or deletion. The vertical direction with-
in the path indicates an insertion, where the 4th and 5th 
query IOI elements should be mapped to the 4th reference 
IOI element. On the other hand, Fig. 3(c) demonstrates an 
example of deletion where the query misses the 4th onset 
of the reference vector. Fig. 3(d) shows the corresponding 
IOI ratio matrix with the optimal path surrounded by 
dashed lines. The vertical shift of the path indicates a de-
letion where the 4th query IOI element should be mapped 
to the 4th and 5th reference IOI elements. 

If there is no insertion or deletion in the query, each 
element along the optimal path should have a value close 
to its preceding element. With insertion or deletion, then 
the optimal path exhibits some specific behavior. There-
fore our goal is to find the optimal path with minimal var-
iations between neighboring elements in the path, with 
special consideration for specific path behavior to ac-
commodate insertion and deletion. The variation between 
neighboring IOI ratio elements can be represented as the 
deviation between 1 and the ratio of one IOI ratio element 
to the preceding modified IOI ratio element, which takes 
into consideration the specific path behavior for accom-
modating insertion and deletion. The resulting recurrent 
equation for the optimum-value function 

jiD ,
for DP is 

shown next: 
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Fig. 2. Example of the normalization step of the shifted
alignment algorithm: (a) Reference IOI vector and the
shifted query IOI vectors. (b) IOI ratio matrix. 
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Fig. 3. Typical examples of the shifted alignment algo-
rithm: (a) is an example where the query IOI vector has 
an insertion; (b) is the corresponding IOI ratio matrix; (c) 
is another example where the query IOI vector has a dele-
tion; and (d) is the corresponding IOI ratio matrix. The 
path enclosed by dashed line in (b) and (d) represents the 
optimal DP path. 
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(4)

where Hi,j is the modified IOI ratio element with values in 
the set {Mi,j,  Mi+1,j+Mi,j,  Mi-1,j-1Mi,j/(Mi-1,j-1+Mi,j)}. The 
actual value of Hi,j depends on the backtrack index in the 
above formula. Specifically, Hi,j will respectively be set 
to the first, second or third element in the set if Di,j takes 
its value from the first, second or third row of the above 
recurrent formula. The first row in the formula indicates 
one-by-one sequential mapping of the query and the ref-
erence IOI. The second row considers the case when the 
user commits an insertion error by taking one note as two, 
with the addition of a constant �1 as its penalty. The third 
row considers the case when the user commits a deletion 
error by taking two notes as one, with the addition of a 
constant �2 as its penalty. Fig. 4 illustrates these three 
conditions with three allowable local paths in the DP ma-
trix D. Note that equation (4) does not consider some 
special cases of n-to-1 insertion or 1-to-n deletion when n 
is greater than 2. We can easily modify the equation in 
order to take such considerations, but we choose not to do 
so since these special cases rarely occur. Moreover, we 
want to keep the formula simple for straightforward im-
plementation and better efficiency. 

The degree of similarity between two IOI vectors can 
thus be determined from the matrix D. The strategy com-
pares the elements in the corresponding positions of the 
last non-zeros element in each row of the matrix M. For 
example, if the DP matrix D is derived from the IOI ratio 
matrix M in Fig. 2(b), we need to compare the next-to-
last element of the first row with the last element of the 
other rows in D.  The optimal cost is the minimal value of 
these elements. The size of the DP matrix is 
min(m,n)*(is+ie+1), which is less than the size (m*n) of 
the DP algorithms in [6], [7], [9]. In addition, our algo-

rithm can be easily extended to the QBT system with 
“anywhere” anchor positions by setting the ie to the 
length of the reference IOI vector. 

4. PERFORMANCE EVALUATION 

To evaluate the proposed method, we design 3 experi-
ments and compare the performance with that of the 
state-of-art algorithm. The first experiment compares the 
recognition rate with algorithms in MIREX QBT task. 
The second experiment compares their computing speeds. 
The third experiment demonstrates the robustness of the 
proposed method using a larger dataset. These experi-
ments are described in the following sub-sections. 

4.1 MIREX QBT Evaluation Task 

We have submitted our algorithm to the 2012 MIREX 
QBT task [12], which involves two subtasks for symbolic 
and acoustic inputs, respectively. Because the onset de-
tection of acoustic input is not the focus of this paper, the 
following experiments only consider the case of queries 
with symbolic input. There are 2 datasets of symbolic in-
put, including Jang's dataset of 890 queries (with 
groundtruth onsets to be used as the symbolic input) and 
136 monophonic MIDIs, and Hsiao's dataset of 410 sym-
bolic queries and 143 monophonic MIDIs. The queries of 
both datasets are all tapped from the beginning of the tar-
get song. These datasets are published in 2009 and can be 
downloaded from the MIREX QBT webpage. The top-10 
hit rate and the mean reciprocal rank (MRR) are used as 
the performance indices of a submitted QBT method. Fig. 
5 shows the performance of 5 submitted algorithms, with 
(a) and (b) are respectively the results of Jang's and 
Hsiao’s datasets. Out of these five submissions, “HL” and 
“ML” do not have clear descriptions about their algo-
rithms in the MIREX abstracts. Therefore, these 2 algo-
rithms are not included in the experiments in section 4.2 
and 4.3. “HAFR” is the implementation of [9], which 
claimed that its results outperformed other submissions, 
including the methods of [5] and [6], in MIREX 2008. 
The algorithm “CJ” is an improved version of [6]. The 
submission of "SA" is the proposed algorithm in this pa-
per. 

As shown in fig. 5(a), our algorithm outperforms al-
most all the other submissions except for the MRR in 
Jang's dataset where our submission is ranked the second. 
In fact, the MRR of our algorithm is only 0.3% lower 
than that of "CJ". On the other hand, the top-10 hit rate of 
our submission is 0.3% higher than that of "CJ". So the 
performances of “CJ” and “SA” are very close in this da-
taset. From fig. 5(b), it is obvious that our algorithm 
simply outperforms all the other submission in both MRR 
and top-10 hit rate. As a whole, the proposed method ob-
tains good results in MIREX QBT contest. 
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4.2 Evaluation of Computation Efficiency 

In this experiment, we want to compare the efficiency of 
several QBT algorithms. We implemented three submis-
sions (including ours) to 2012 MIREX QBT tasks in C 
language. The “ML” and “HL” algorithms were not in-
cluded in this experiment due to the lack of clear descrip-
tions about their algorithms in the MIREX abstracts. The 
experiment was conducted on a PC with an AMD Athlon 
2.4GHz CPU and 1G RAM. Each algorithm was repeated 
10 times over Jang’s dataset to obtain the average compu-
ting time of a single query. The results are shown in Ta-
ble 1 which indicates that our algorithm is at least 3 times 
faster than the other two algorithms. This is due to the 
fact that our algorithm has an efficient way of normaliza-
tion for IOI vectors (as described in section 3), leading to 
a smaller table for DP optimal path finding. 

�������	
 ������
��
��
$�%& ���
�' ���
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Table 1. Speed comparison of QBT algorithms 

From these two experiments, we can claim that our al-
gorithm strike a good balance between the recognition 
rate and computation efficiency. 

4.3 Experiment with Larger Databases 

The MIREX QBT datasets are well organized for QBT 
research. However, both datasets contain song databases 
of slightly more than 100 songs. These small database 
sizes lead to high accuracy for all submissions in MIREX 
QBT task. Therefore, we designed another experiment to 
demonstrate how the performance varies with the dataset 

sizes. We collected 1000 MIDIs which are different from 
the MIDIs in the MIREX QBT datasets. And we enlarge 
the original databases by adding 250 noise MIDIs each 
time, and evaluate the performance in both MRR and top-
10 hit rate. 

Fig. 6 shows the experimental results. As the number 
of noise MIDIs increases, the recognition rate of each al-
gorithm gradually decreases. In Jang’s dataset of the fig. 
6(a), the top-10 hit rate of “SA” is the best among all al-
gorithms (left subplot). However, the MRR of “SA” and 
“CJ” are very close and the value of one is slightly higher 
than the other in different number of noise MIDIs (right 
subplot). In fig. 6(b), our algorithm notably outperforms 
the others in both top-10 hit rate (left subplot) and MRR 
(right subplot). It is interesting to note that the decay of 
the top-10 hit rate of “SA” is slower than the others in 
both datasets, especially in Jang’s dataset. This indicates 
that our algorithm has better resistance to these noise 
MIDIs in top-10 hit rate. In both datasets, “SA” still had 
>85% top-10 rate and >60% MRR. Therefore we can 
conclude that the proposed method is more robust in deal-
ing with a large song database. 

5. CONCLUSION 

In this paper, we have proposed a shifted-alignment algo-
rithm for QBT by constructing an IOI ratio matrix, in 
which each element is the ratio of relative IOI elements 
of the query and a reference song. The similarity compar-
ison is based on DP to deal with possible insertions and 
deletions of query IOI vectors. We evaluated the perfor-
mance of the proposed method with two datasets. The 
experimental results showed that our algorithm exhibited 
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(a) Result 1: Jang’s dataset 
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(b) Result 2: Hsiao’s dataset 

Fig. 5. Results of MIREX QBT evaluation task 
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Fig. 6. Results of the performance versus database sizes. 
(a) is the performance of top-10 hit rate (left subplot) and 
MRR (right subplot) using Jang’s dataset. (b) is the per-
formance of top-10 hit rate (left subplot) and MRR (right 
subplot) using Hsiao’s dataset. 
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an overall better accuracy than other submissions to 2012 
MIREX query-by-taping task. Moreover, the computation 
time is at least 3 times faster than others. We also con-
ducted an experiment to demonstrate that our algorithm 
performs better and more robustly than other existing 
QBT algorithms in the case of large databases. In particu-
lar, our algorithm has a top-10 hit rate larger than 85% 
and MRR larger than 60% in both databases when the 
number of noise MIDIs is as high as 1000.  

Although the proposed method performs well in the 
experiments, the recognition rate still has room for further 
improvement, especially in the case of “anywhere” anc-
hor position, that is, the user is allowed to start tapping 
from anywhere in the middle of a song. From the experi-
mental results, we can observe that each algorithm has its 
strength and weakness in dealing with different queries 
and database songs. Therefore, one direction of our im-
mediate future work is to find an optimal way to combine 
these methods for better accuracy. 
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ABSTRACT

Automatic timbre characterization of audio signals can

help to measure similarities between sounds and is of in-

terest for automatic or semi-automatic databases indexing.

The most effective methods use machine learning approa-

ches which require qualitative and diversified training data-

bases to obtain accurate results. In this paper, we intro-

duce a diversified database composed of worldwide non-

western instruments audio recordings on which is evalu-

ated an effective timbre classification method. A compar-

ative evaluation based on the well studied Iowa musical

instruments database shows results comparable with those

of state-of-the-art methods. Thus, the proposed method

offers a practical solution for automatic ethnomusicologi-

cal indexing of a database composed of diversified sounds

with various quality. The relevance of audio features for

the timbre characterization is also discussed in the context

of non-western instruments analysis.

1. INTRODUCTION

Characterizing musical timbre perception remains a chal-

lenging task related to the human auditory mechanism and

to the physics of musical instruments [4]. This task is full

of interest for many applications like automatic database

indexing, measuring similarities between sounds or for au-

tomatic sound recognition. Existing psychoacoustical stud-

ies model the timbre as a multidimensional phenomenon

independent from musical parameters (e.g. pitch, dura-

tion or loudness) [7, 8]. A quantitative interpretation of

instrument’s timbre based on acoustic features computed

from audio signals was first proposed in [9] and pursued

in more recent studies [12] which aim at organizing au-

dio timbre descriptors efficiently. Nowadays, effective au-

tomatic timbre classification methods [13] use supervised

statistical learning approaches based on audio signals fea-

tures computed from analyzed data. Thus, the performance

obtained with such systems depends on the taxonomy, the

size and the diversity of training databases. However, most

c© Dominique Fourer, Jean-Luc Rouas, Pierre Hanna,

Matthias Robine.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Dominique Fourer, Jean-Luc Rouas,

Pierre Hanna, Matthias Robine. “Automatic timbre classification of

ethnomusicological audio recordings”, 15th International Society for Mu-

sic Information Retrieval Conference, 2014.

of existing research databases (e.g. RWC [6], Iowa [5])

are only composed of common western instruments an-

notated with specific taxonomies. In this work, we re-

visit the automatic instrument classification problem from

an ethnomusicological point of view by introducing a di-

versified and manually annotated research database pro-

vided by the Centre de Recherche en Ethno-Musicologie
(CREM). This database is daily supplied by researchers

and has the particularity of being composed of uncommon

non-western musical instrument recordings from around

the world. This work is motivated by practical applications

to automatic indexing of online audio recordings database

which have to be computationally efficient while providing

accurate results. Thus, we aim at validating the efficiency

and the robustness of the statistical learning approach us-

ing a constrained standard taxonomy, applied to recordings

of various quality. In this study, we expect to show the

database influence, the relevance of timbre audio features

and the choice of taxonomy for the automatic instrument

classification process. A result comparison and a cross-

database evaluation is performed using the well-studied

university of Iowa musical instrument database. This pa-

per is organized as follows. The CREM database is in-

troduced in Section 2. The timbre quantization principle

based on mathematical functions describing audio features

is presented in Section 3. An efficient timbre classification

method is described in Section 4. Experiments and results

based on the proposed method are detailed in Section 5.

Conclusion and future works are finally discussed in Sec-

tion 6.

2. THE CREM ETHNOMUSICOLOGICAL
DATABASE

The CREM research database 1 is composed of diversified

sound samples directly recorded by ethnomusicologists in

various conditions (i.e. no recording studio) and from di-

versified places all around the world. It contains more than

7000 hours of audio data recorded since 1932 to nowadays

using different supports like magnetic tapes or vinyl discs.

The vintage audio recordings of the database were care-

fully digitized to preserve the authenticity of the originals

and contain various environment noise. The more recent

audio recordings can be directly digital recorded with a

high-quality. Most of the musical instruments which com-

1 CREM audio archives freely available online at:
http://archives.crem-cnrs.fr/
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pose this database are non-western and can be uncommon

while covering a large range of musical instrument families

(see Figure 1(a)). Among uncommon instruments, one can

find the lute or the Ngbaka harp as cordophones. More un-

common instruments like Oscillating bamboo, struck ma-

chete and struck girder were classified by ethnomusicolo-

gists as idiophones. In this paper, we restricted our study

to the solo excerpts (where only one monophonic or poly-

phonic instrument is active) to reduce the interference prob-

lems which may occur during audio analysis. A descrip-

tion of the selected CREM sub-database is presented in

Table 1. According to this table, one can observe that

this database is actually inhomogeneous. The aerophones

are overrepresented while membranophones are underrep-

resented. Due to its diversity and the various quality of

the composing sounds, the automatic ethnomusicological

classification of this database may appear as challenging.

Class name Duration (s) #
aerophones-blowed 1,383 146
cordophones-struck 357

1,229
37

128cordophones-plucked 715 75
cordophones-bowed 157 16
idiophones-struck 522

753
58

82idiophones-plucked 137 14
idiophones-clinked 94 10
membranophones-struck 170 19
Total 3,535 375

Table 1. Content of the CREM sub-database with duration

and number of 10-seconds segmented excerpts.

3. TIMBRE QUANTIZATION AND
CLASSIFICATION

3.1 Timbre quantization

Since preliminaries works on the timbre description of per-

ceived sounds, Peeters et al. proposed in [12] a large set of

audio features descriptors which can be computed from au-

dio signals. The audio descriptors define numerical func-

tions which aim at providing cues about specific acoustic

features (e.g. brightness is often associated with the spec-

tral centroid according to [14]). Thus, the audio descriptors

can be organized as follows:

• Temporal descriptors convey information about the

time evolution of a signal (e.g. log attack time, tem-

poral increase, zero-crossing rate, etc.).

• Harmonic descriptors are computed from the detected

pitch events associated with a fundamental frequency

(F0). Thus, one can use a prior waveform model of

quasi-harmonic sounds which have an equally spaced

Dirac comb shape in the magnitude spectrum. The

tonal part of sounds can be isolated from signal mix-

ture and be described (e.g. noisiness, inharmonicity,

etc.).

• Spectral descriptors are computed from signal time-

frequency representation (e.g. Short-Term Fourier

Transform) without prior waveform model (e.g. spec-

tral centroid, spectral decrease, etc.)

• Perceptual descriptors are computed from auditory-

filtered bandwidth versions of signals which aim at

approximating the human perception of sounds. This

can be efficiently computed using Equivalent Rect-

angular Bandwidth (ERB) scale [10] which can be

combined with gammatone filter-bank [3] (e.g. loud-

ness, ERB spectral centroid, etc.)

In this study, we focus on the sound descriptors listed in

table 2 which can be estimated using the timbre toolbox 2

and detailed in [12]. All descriptors are computed for each

analyzed sound excerpt and may return null values. The

harmonic descriptors of polyphonic sounds are computed

using the prominent detected F0 candidate (single F0 es-

timation). To normalize the duration of analyzed sound,

we separated each excerpt in 10-seconds length segments

without distinction of silence or pitch events. Thus, each

segment is represented by a real vector where the corre-

sponding time series of each descriptor is summarized by

a statistic. The median and the Inter Quartile Range (IQR)

statistics were chosen for their robustness to outliers.

Acronym Descriptor name #

Att Attack duration (see ADSR model [15]) 1
AttSlp Attack slope (ADSR) 1
Dec Decay duration (ADSR) 1
DecSlp Decay slope (ADSR) 1
Rel Release duration (ADSR) 1
LAT Log Attack Time 1
Tcent Temporal centroid 1
Edur Effective duration 1
FreqMod, AmpMod Total energy modulation (frequency,amplitude) 2
RMSenv RMS envelope 2
ACor Signal Auto-Correlation function (12 first coef.) 24
ZCR Zero-Crossing Rate 2

HCent Harmonic spectral centroid 2
HSprd Harmonic spectral spread 2
HSkew Harmonic skewness 2
HKurt Harmonic kurtosis 2
HSlp Harmonic slope 2
HDec Harmonic decrease 2
HRoff Harmonic rolloff 2
HVar Harmonic variation 2
HErg, HNErg, HFErg, Harmonic energy, noise energy and frame energy 6
HNois Noisiness 2
HF0 Fundamental frequency F0 2
HinH Inharmonicity 2
HTris Harmonic tristimulus 6
HodevR Harmonic odd to even partials ratio 2
Hdev Harmonic deviation 2

SCent, ECent Spectral centroid of the magnitude and energy spectrum 4
SSprd, ESprd Spectral spread of the magnitude and energy spectrum 4
SSkew, ESkew Spectral skewness of the magnitude and energy spectrum 4
SKurt, EKurt Spectral kurtosis of the magnitude and energy spectrum 4
SSlp, ESlp Spectral slope of the magnitude and energy spectrum 4
SDec, EDec Spectral decrease of the magnitude and energy spectrum 4
SRoff, ERoff Spectral rolloff of the magnitude and energy spectrum 4
SVar, EVar Spectral variation of the magnitude and energy spectrum 4
SFErg, EFErg Spectral frame energy of the magnitude and energy spectrum 4
Sflat, ESflat Spectral flatness of the magnitude and energy spectrum 4
Scre, EScre Spectral crest of the magnitude and energy spectrum 4

ErbCent, ErbGCent ERB scale magnitude spectrogram / gammatone centroid 4
ErbSprd, ErbGSprd ERB scale magnitude spectrogram / gammatone spread 4
ErbSkew, ErbGSkew ERB scale magnitude spectrogram / gammatone skewness 4
ErbKurt, ErbGKurt ERB scale magnitude spectrogram / gammatone kurtosis 4
ErbSlp, ErbGSlp ERB scale magnitude spectrogram / gammatone slope 4
ErbDec, ErbGDec ERB scale magnitude spectrogram / gammatone decrease 4
ErbRoff, ErbGRoff ERB scale magnitude spectrogram / gammatone rolloff 4
ErbVar, ErbGVar ERB scale magnitude spectrogram / gammatone variation 4
ErbFErg, ErbGFErg ERB scale magnitude spectrogram / gammatone frame energy 4
ErbSflat, ErbGSflat ERB scale magnitude spectrogram / gammatone flatness 4
ErbScre, ErbGScre ERB scale magnitude spectrogram / gammatone crest 4

Total 164

Table 2. Acronym, name and number of the used timbre

descriptors.

2 MATLAB code available at http://www.cirmmt.org/research/tools
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instrument

bowed plucked struck plucked struck

membranophonesidiophones

clinked struckblowed

cordophonesaerophones

(a) Hornbostel and Sachs taxonomy (T1)

instrument

pizzicato sustained

struck strings plucked strings bowed strings flute/reeds brass

piano violin
viola
cello
doublebass

violin
viola
cello
doublebass

flute
clarinet
oboe
saxophone
bassoon

trumpet
trombone
tuba

(b) Musician’s instrument taxonomy (T2)

Figure 1. Taxonomies used for the automatic classifica-

tion of musical instruments as proposed by Hornbostel and

Sachs taxonomy in [16] (a) and Peeters in [13] (b).

3.2 Classification taxonomy

In this study, we use two databases which can be anno-

tated using different taxonomies. Due to its diversity, the

CREM database was only annotated using the Hornbostel

and Sachs taxonomy [16] (T1) illustrated in Figure 1(a)

which is widely used in ethnomusicology. This hierarchi-

cal taxonomy is general enough to classify uncommon in-

struments (e.g. struck bamboo) and conveys information

about sound production materials and playing styles. From

an another hand, the Iowa musical instruments database [5]

used in our experiments was initially annotated using a mu-

sician’s instrument taxonomy (T2) as proposed in [13] and

illustrated in Figure 1(b). This database is composed of

common western pitched instruments which can easily be

annotated using T1 as described in Table 3. One can notice

that the Iowa database is only composed of aerophones and

cordophones instruments. If we consider the playing style,

only 4 classes are represented if we apply T1 taxonomy to

the Iowa database.

T1 class name T2 equivalence Duration (s) #
aero-blowed reed/flute and brass 5,951 668
cordo-struck struck strings 5,564 646
cordo-plucked plucked strings 5,229 583
cordo-bowed bowed strings 7,853 838
Total 24,597 2,735

Table 3. Content of the Iowa database using musician’s

instrument taxonomy (T2) and equivalence with the Horn-

bostel and Sachs taxonomy (T1).

4. AUTOMATIC INSTRUMENT TIMBRE
CLASSIFICATION METHOD

The described method aims at estimating the correspond-

ing taxonomy class name of a given input sound.

4.1 Method overview

Here, each sound segment (cf. Section 3.1) is represented

by vector of length p = 164 where each value corresponds

to a descriptor (see Table 2). The training step of this

method (illustrated in Figure 2) aims at modeling each tim-

bre class using the best projection space for classification.

A features selection algorithm is first applied to efficiently

reduce the number of descriptors to avoid statistical over-

learning. The classification space is computed using dis-

criminant analysis which consists in estimating optimal

weights over the descriptors allowing the best discrimina-

tion between timbre classes. Thus, the classification task

consists in projecting an input sound into the best classifi-

cation space and to select the most probable timbre class

using the learned model.

features
computation

features selection
(LDA, MI, IRMFSP)

classification space
computation

(LDA)

class affectation
(annotated)

input sound

class modeling

Figure 2. Training step of the proposed method.

4.2 Linear discriminant analysis

The goal of Linear Discriminant Analysis (LDA) [1] is to

find the best projection or linear combination of all descrip-

tors which maximizes the average distance between classes

(inter-class distance) while minimizing distance between

individuals from the same class (intra-class distance). This

method assumes that the class affectation of each individ-

ual is a priori known. Its principle can be described as

follows. First consider the n×p real matrix M where each

row is a vector of descriptors associated to a sound (indi-

vidual). We assume that each individual is a member of a

unique class k ∈ [1,K]. Now we define W as the intra-

class variance-covariance matrix which can be estimated

by:

W =
1

n

K∑
k=1

nkWk, (1)

where Wk is the variance-covariance matrix computed from

the nk × p sub-matrix of M composed of the nk individ-

uals included into the class k.

We also define B the inter-class variance-covariance ma-

trix expressed as follows:

B =
1

n

K∑
k=1

nk(μk − μ)(μk − μ)T , (2)
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where μk corresponds to the mean vector of class k and μ
is the mean vector of the entire dataset. According to [1],

it can be shown that the eigenvectors of matrix D = (B +
W )−1B solve this optimization problem. When the matrix

A = (B + W ) is not invertible, a computational solution

consists in using pseudoinverse of matrix A which can be

calculated using AT (AAT )−1.

4.3 Features selection algorithms

Features selection aims at computing the optimal relevance

of each descriptor which can be measured with a weight or

a rank. The resulting descriptors subset has to be the most

discriminant as possible with the minimal redundancy. In

this study, we investigate the three approaches described

below.

4.3.1 LDA features selection

The LDA method detailed in Section 4.2 can also be used

for selecting the most relevant features. In fact, the com-

puted eigenvectors which correspond to linear combination

of descriptors convey a relative weight applied to each de-

scriptor. Thus, the significance (or weight) Sd of a descrip-

tor d can be computed using a summation over a defined

range [1, R] of the eigenvectors of matrix D as follows:

Sd =

R∑
r=1

|vr,d|, (3)

where vr,d is the d-th coefficient of the r-th eigenvector as-

sociated to the eigenvalues sorted by descending order (i.e.

r = 1 corresponds to the maximal eigenvalue of matrix

D). In our implementation, we fixed R = 8.

4.3.2 Mutual information

Features selection algorithms aim at computing a subset of

descriptors that conveys the maximal amount of informa-

tion to model classes. From a statistical point of view, if

we consider classes and feature descriptors as realizations

of random variables C and F . The relevance can be mea-

sured with the mutual information defined by:

I(C,F ) =
∑
c

∑
f

P (c, f)
P (c, f)

P (c)P (f)
, (4)

where P (c) denotes the probability of C = c which can

be estimated from the approximated probability density

functions (pdf) using a computed histogram. According

to Bayes theorem one can compute P (c, f) = P (f |c)P (c)
where P (f |c) is the pdf of the feature descriptor value f
into class c. This method can be improved using [2] by re-

ducing simultaneously the redundancy by considering the

mutual information between previously selected descrip-

tors.

4.3.3 Inertia Ratio Maximisation using features space
projection (IRMFSP)

This algorithm was first proposed in [11] to reduce the

number of descriptors used by timbre classification meth-

ods. It consists in maximizing the relevance of the de-

scriptors subset for the classification task while minimiz-

ing the redundancy between the selected ones. This itera-

tive method (ι ≤ p) is composed of two steps. The first one

selects at iteration ι the non-previously selected descriptor

which maximizes the ratio between inter-class inertia and

the total inertia expressed as follow:

d̂(ι) = argmax
d

K∑
k=1

nk(μd,k − μd)(μd,k − μd)
T

n∑
i=1

(f
(ι)
d,i − μd)(f

(ι)
d,i − μd)

T

, (5)

where f
(ι)
d,i denotes the value of descriptor d ∈ [1, p] af-

fected to the individual i. μd,k and μd respectively denote

the average value of descriptor d into the class k and for

the total dataset. The second step of this algorithm aims at

orthogonalizing the remaining data for the next iteration as

follows:

f
(ι+1)
d = f

(ι)
d −

(
f
(ι)
d · gd̂

)
gd̂ ∀d �= d̂(ι), (6)

where f
(ι)

d̂
is the vector of the previously selected descrip-

tor d̂(ι) for all the individuals of the entire dataset and

gd̂ = f
(ι)

d̂
/‖f (ι)

d̂
‖ is its normalized form.

4.4 Class modeling and automatic classification

Each instrument class is modeled into the projected classi-

fication space resulting from the application of LDA. Thus,

each class can be represented by its gravity center μ̂k which

corresponds to the vector of the averaged values of the pro-

jected individuals which compose the class k. The classi-

fication decision which affect a class k̂ to an input sound

represented by a projected vector x̂ is simply performed by

minimizing the Euclidean distance with the gravity center

of each class as follows:

k̂ = argmin
k

‖μ̂k − x̂‖2 ∀k ∈ [1,K], (7)

where ‖v‖2 denotes the l2 norm of vector v. Despite its

simplicity, this method seems to obtain good results com-

parable with those of the literature [12].

5. EXPERIMENTS AND RESULTS

In this section we present the classification results obtained

using the proposed method described in Section 4.

5.1 Method evaluation based on self database
classification

In this experiment, we evaluate the classification of each

distinct database using different taxonomies. We applied

the 3-fold cross validation methodology which consists in

partitioning the database in 3 distinct random subsets com-

posed with 33% of each class (no collision between sets).

Thus, the automatic classification applied on each subset

is based on training applied on the remaining 66% of the
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database. Figure 5.1 compares the classification accuracy

obtained as a function of the number of used descriptors.

The resulting confusion matrix of the CREM database us-

ing 20 audio descriptors is presented in Table 4 and shows

an average classification accuracy of 80% where each in-

strument is well classified with a minimal accuracy of 70%
for the aerophones. These results are good and seems com-

parable with those described in the literature [11] using

the same number of descriptor. The most relevant feature

descriptors (selected among the top ten) estimated by the

IRMSFP and used for the classification task are detailed in

Table 7. This result reveals significant differences between

the two databases. As an example, harmonic descriptors

are only discriminative for the CREM database but not for

the Iowa database. This may be explained by the pres-

ence of membranophone in the CREM database which are

not present in the Iowa database. Contrarily, spectral and

perceptual descriptors seems more relevant for the Iowa

database than for the CREM database. Some descriptors

appear to be relevant for both database like the Spectral

flatness (Sflat) and the ERB scale frame energy (ErbFErg)

which describe the spectral envelope of signal.

aero c-struc c-pluc c-bowed i-pluc i-struc i-clink membr

aero 70 3 9 5 7 5

c-struc 6 92 3

c-pluc 5 8 73 4 8 1

c-bowed 13 80 7

i-pluc 79 14 7

i-struc 9 2 5 2 79 4

i-clink 100
membr 11 17 72

Table 4. Confusion matrix (expressed in percent of the

sounds of the original class listed on the left) of the CREM

database using the 20 most relevant descriptors selected by

IRMSFP.

5.2 Cross-database evaluation

In this experiments (see Table 5), we merged the two data-

bases and we applied the 3-fold cross validation method

based on the T1 taxonomy to evaluate the classification ac-

curacy on both database. The resulting average accuracy

is about 68% which is lower than the accuracy obtained

on the distinct classification of each database. The results

of cross-database evaluation applied between databases us-

ing the T1 taxonomy are presented in Table 6 and obtain a

poor average accuracy of 30%. This seems to confirm our

intuition that the Iowa database conveys insufficient infor-

mation to distinguish the different playing styles between

the non-western cordophones instruments of the CREM

database.

6. CONCLUSION AND FUTURE WORKS

We applied a computationally efficient automatic timbre

classification method which was successfully evaluated on

an introduced diversified database using an ethnomusico-

logical taxonomy. This method obtains good classification

results (> 80% of accuracy) for both evaluated databases

which are comparable to those of the literature. However,
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Figure 3. Comparison of the 3-fold cross validation classi-

fication accuracy as a function of the number of optimally

selected descriptors.

the cross-database evaluation shows that each database can-

not be used to infer a classification to the other. This can

be explained by significant differences between these data-

bases. Interestingly, results on the merged database obtain

an acceptable accuracy of about 70%. As shown in pre-

vious work [11], our experiments confirm the efficiency

of IRMFSP algorithm for automatic features selection ap-

plied to timbre classification. The interpretation of the
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aero c-struc c-pluc c-bowed i-pluc i-struc i-clink membr

aero 74 14 5 3 2 1

c-struc 12 69 10 5 1 2

c-pluc 1 7 58 29 1 2 2

c-bowed 3 6 33 52 1 3

i-pluc 7 14 79
i-struc 2 2 4 11 2 51 30

i-clink 11 89
membr 6 17 78

Table 5. Confusion matrix (expressed in percent of the

sounds of the original class listed on the left) of the evalu-

ated fusion between the CREM and the Iowa database us-

ing the 20 most relevant descriptors selected by IRMSFP.

aero c-struc c-pluc c-bowed

aero 72 9 10 9

c-struc 12 12 34 42

c-pluc 23 47 28 3

c-bowed 28 34 24 14

Table 6. Confusion matrix (expressed in percent of the

sounds of the original class listed on the left) of the CREM

database classification based on Iowa database training.

CREM T1 Iowa T1 Iowa T2 CREM+Iowa T1

Edur AttSlp AttSlp AmpMod
Acor Dec Acor Acor

ZCR RMSenv

Hdev
Hnois
HTris3

Sflat SFErg Sflat Sflat
ERoff SRoff SVar

SSkew SKurt
Scre

ErbGKurt ErbKurt ErbSprd
ErbFErg ErbFErg ErbFErg
ErbRoff ErbRoff
ErbSlp ErbGSprd
ErbGCent

Table 7. Comparison of the most relevant descriptors esti-

mated by IRMFSP.

most relevant selected features shows a significant effect of

the content of database rather than on the taxonomy. How-

ever the timbre modeling interpretation applied to timbre

classification remains difficult. Future works will consist

in further investigating the role of descriptors by manually

constraining selection before the classification process.
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ABSTRACT

In this paper we present a novel approach to music analysis,

in which a grammar is automatically generated explain-

ing a musical work’s structure. The proposed method is

predicated on the hypothesis that the shortest possible gram-

mar provides a model of the musical structure which is a

good representation of the composer’s intent. The effec-

tiveness of our approach is demonstrated by comparison of

the results with previously-published expert analysis; our

automated approach produces results comparable to human

annotation. We also illustrate the power of our approach

by showing that it is able to locate errors in scores, such as

introduced by OMR or human transcription. Further, our ap-

proach provides a novel mechanism for intuitive high-level

editing and creative transformation of music. A wide range

of other possible applications exists, including automatic

summarization and simplification; estimation of musical

complexity and similarity, and plagiarism detection.

1. INTRODUCTION

In his Norton Lectures [1], Bernstein argues that music can

be analysed in linguistic terms, and even that there might be

“a worldwide, inborn musical grammar”. Less specifically,

the prevalence of musical form analyses, both large-scale

(e.g. sonata form) and at the level of individual phrases,

demonstrates that patterns, motifs, etc., are an important

facet of a musical composition, and a grammar is certainly

one way of capturing these artefacts.

In this paper we present a method for automatically

deriving a compact grammar from a musical work and

demonstrate its effectiveness as a tool for analysing musical

structure. A key novelty of this method is that it operates au-
tomatically, yet generates insightful results. We concentrate

in this paper on substantiating our claim that generating

parsimonious grammars is a useful analysis tool, but also

suggest a wide range of scenarios to which this approach

could be applied.

Previous research into grammar-based approaches to

modelling music has led to promising results. Treating har-

monic phenomena as being induced by a generative gram-

mar has been proposed in [9, 24, 27], and the explanatory

© Kirill Sidorov, Andrew Jones, David Marshall.

Licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: Kirill Sidorov, Andrew Jones, David Marshall.
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power of such grammars has been demonstrated. The use of

musical grammar based of the Generative Theory of Tonal

Music [19] has been proposed in [11–13], for the analysis

of music. Similarly, there is a number of grammar-based ap-

proaches to automatic composition, including some which

automatically learn stochastic grammars or derive gram-

mars in an evolutionary manner, although some researchers

continue to craft grammars for this purpose by hand [7].

However, in these works the derivation of grammar rules

themselves is performed manually [27] or semi-automati-

cally [11–13] from heuristic musicological considerations.

In some cases generative grammars (including stochastic

ones) are derived or learned automatically, but they describe

general patterns in a corpus of music, e.g. for synthesis [16,

22], rather than being precise analyses of individual works.

In a paper describing research carried out with a different,

more precise aim of visualising semantic structure of an

individual work, the authors remark that they resorted to

manual retrieval of musical structure data from descriptive

essays “since presently there is no existing algorithm to

parse the high-level structural information automatically

from MIDI files or raw sound data” [5].

In this paper we present a method which addresses the

above concern expressed by Chan et al. in [5], but which

at the same time takes a principled, information-theoretical

approach. We argue that the best model explaining a given

piece of music is the most compact one. This is known as

Minimum Description Length principle [23] which, in turn,

is a formal manifestation of the Occam’s razor principle:

the best explanation for data is the most compressive one.

Hence, given a piece of music, we seek to find the short-

est possible context free grammar that generates this piece

(and only this piece). The validity of our compressive mod-

elling approach in this particular domain is corroborated by

evidence from earlier research in predictive modelling of

music [6] and from perception psychology [14,25]: humans

appear to find strongly compressible music (which therefore

has a compact grammar) appealing.

2. COMPUTING THE SMALLEST GRAMMAR

Given a piece of music, we treat it as a sequence(s) of

symbols (see Section 2.1) and we seek to find the shortest
possible context-free grammar that generates this (and only

this) piece. Following [21], we define the size of a gram-

mar G to be the total length of the right hand sides of all

the production rules Ri plus one for each rule (length of a

separator or cost of introducing a new rule):
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|G| =
∑

i

(|Ri| + 1) . (1)

Searching for such a grammar is known as the smallest
grammar problem. It has recently received much attention

due its importance in compression and analysis of DNA

sequences, see e.g. [4]. For an overview of the smallest

grammar problem the reader is referred to [3].

Computing the smallest grammar is provably NP-hard

(see [18] Theorem 3.1), therefore in practice we are seeking

an approximation to the smallest grammar.

Various heuristics have been proposed in order to tackle

the smallest grammar problem in tractable time by greedy

algorithms [4, 21]. A fast on-line (linear time) algorithm

called SEQUITUR has been proposed in [20]. While the fo-

cus of [20] was fast grammar inference for large sequences,

rather than strong compression, [20] contains an early men-

tion that such techniques may be applied to parsing of mu-

sic. (In Section 3 we compare grammars produced by SE-

QUITUR with our approach.)

In [4, 21], a class of algorithms involving iterative re-

placement of a repeated substring is considered (termed

there iterative repeat replacement (IRR)). We employ a

similar procedure here, summarised in Alg. 1. First, the

grammar G is initialised with top level rule(s), whose right-

hand sides initially are simply the input string(s). Then, in

the original IRR scheme, a candidate substring c is selected

according to some scoring function F. All non-overlapping

occurrences of this substring in the grammar are replaced

with a new symbol Rn+1, and a new rule is added to the gram-

mar: Rn+1 → c. Replacement of a substring of length m in a

string of length n can be done using the Knuth-Morris-Pratt

algorithm [17] in O(m+n) time. The replacement procedure

repeats until no further improvement is possible.

In [4, 21] the various heuristics according to which such

candidate substitutions can be selected are examined; the

conclusion is that the “locally most compressive” heuristic

results in the shortest final grammars. Suppose a substring

of length L occurring N times is considered for replacement

with a new rule. The resulting saving is, therefore [21]:

F = Δ|G| = (LN) − (L + 1 + N). (2)

Hence, we use Eq. (2) (the locally most compressive heuris-

tic) as our scoring function when selecting candidate sub-

strings (in line 2 of Alg. 1). We found that the greedy

iterative replacement scheme of [21] does not always pro-

duce optimal grammars. We note that a small decrease

in grammar size may amount to a substantial change in

the grammar’s structure, therefore we seek to improve the

compression performance.

To do so, instead of greedily making a choice at each

iteration, we recursively evaluate (line 9) multiple (w) candi-

date substitutions (line 2) with backtracking, up to a certain

depth dmax (lines 9–15). Once the budgeted search depth

has been exhausted, the remaining substitutions are done

greedily (lines 4–7) as in [21]. This allows us to control

the greediness of the algorithm from completely greedy

(dmax = 0) to exhaustive search (dmax = ∞). We observed

that using more than 2–3 levels of backtracking usually does

not yield any further reduction in the size of the grammar.

Algorithm 1 CompGram (Compress grammar)

Require: Grammar G; search depth d.

(Tuning constants: max depth dmax; width w)

1: loop
2: Find w best candidate substitutions C = {ci} in G.

3: if C = ∅ then return G; end if
4: if recursion depth d > dmax then
5: Greedily choose best cbest

6: G′ := replace(G, cbest, new symbol)

7: return CompGram(G′, d + 1)
8: else
9: Evaluate candidates:

10: for ci ∈ C do
11: G′ := replace(G, ci, new symbol)

12: G′′i := CompGram(G′, d + 1)
13: end for
14: b := arg mini |G′′i |
15: return G′′b
16: end if
17: end loop

Selecting a candidate according to Eq. (2) in line 2 in-

volves maximising the number of non-overlapping occur-

rences of a substring, which is known as the string statistics
problem, the solutions to which are not cheap [2]. There-

fore, as in [4] we approximate the maximal number of

non-overlapping occurrences with the number of maximal
repeats [10]. All z maximal repeats in a string (or a set of

strings) of total length n can be found very fast (in O(n + z)

time) using suffix arrays [10]. In principle, it is possible

to construct an example in which this number will be dras-

tically different from the true number of non-overlapping

occurrences (e.g. a long string consisting of a repeated

symbol). However, this approximation was shown to work

well in [4] and we have confirmed this in our experiments.

Further, this concern is alleviated by the backtracking pro-

cedure we employ.

2.1 Representation of Music

In this paper, we focus on music that can be represented

as several monophonic voices (such as voices in a fugue,

or orchestral parts), that is, on the horizontal aspects of the

music. We treat each voice, or orchestral part, as a string.

We use (diatonic) intervals between adjacent notes, ignoring

rests, as symbols in our strings. For ease of explanation of

our algorithm we concentrate on the melodic information

only, ignoring rhythm (note durations). Rhythmic invari-

ance may be advantageous when melodic analysis is the

prime concern. However, it is trivial to include note dura-

tions, and potentially even chord symbols and other musical

elements, as symbols in additional (top level) strings.

Note that even though we take no special measures to

model the relationship between the individual voices, this

is happening automatically: indeed, all voices are encom-

passed in the same grammar and are considered for the

iterative replacement procedure on equal rights as the gram-

mar is updated.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

302



Rule R9 R8 R5 R18 R10 R11 R4 R19 R7 R20

Freq. 2 2 4 2 5 5 2 2 3 3
Len. 16 12 6 7 5 5 4 6 5 4
E. len. 99 94 24 47 11 11 37 34 17 16

Comp. 96 91 67 44 38 38 34 31 30 28

Table 1. Grammar statistics for Fugue№10. The ten most
compressing rules are shown. For each rule Ri: Freq. is

the number of times a rule occurs in the grammar, Len. is

its right hand side length, E. len. is the length of the rule’s

expansion, and Comp. is the total saving due to this rule.

3. RESULTS AND APPLICATIONS

3.1 Automatic Structural Analysis

We have applied our method to automatically detect the

structure of a selection of Bach’s fugues. (Eventually we

intend to analyse all of them in this way.) Figure 1 shows

one example of such analysis. We show the voices of the

fugue in piano roll representation, with the hierarchy of

the grammar on top: rules are represented by brackets la-

belled by rule number. For completeness, we give the entire

grammar (of size |G| = 217) obtained for Fugue№10 later,

in Fig. 7. Figure 2 zooms in onto a fragment of the score

with the rules overlaid. For comparison, we show manual

analysis by a musicologist [26] in Fig. 3. Observe that all

the main structural elements of the fugue have been cor-

rectly identified by our method (e.g. exp. and 1st dev. in

rule R8, re-exp. and 4th dev. in rule R9, variant of re-exp.

and 2nd dev in R18 and R19) and our automatic analysis is

comparable to that by a human expert.

It is possible to use structures other than individual notes

or intervals as symbols when constructing grammars. Fig-

ure 4 shows the simplified grammar for Fugue №10 gen-

erated using entire bars as symbols. In this experiment we

first measured pairwise similarity between all bars (using

Levenshtein distance [8]) and denoted each bar by a sym-

bol, with identical or almost identical bars being denoted

by the same symbol. The resulting grammar (Fig. 4) can be

viewed as a coarse-grained analysis. Observe again that it

closely matches human annotation (Fig. 3).

Our approach can also be used to detect prominent high-

level features in music. We can compute the usage fre-

quency for each rule and the corresponding savings in

grammar size (as shown in Table 1 for Fugue№10). Most

compressing rules, we argue, correspond to structurally im-

portant melodic elements. The present example illustrates

our claim: rule R8 corresponds to the fugue’s exposition,

R9 to re-exposition, and R5 to the characteristic chromatic

figure in the opening (cf. Figs. 1 to 3 and the score).

In addition to high-level analysis, our approach can be

used to detect the smallest constituent building blocks of a

piece. For example, Fig. 5 shows the lowest level rules (that

use only terminals) produced in analysis of Fugue №10,

and the frequency of each rule. These are the elementary

“bricks” from which Bach has constructed this fugue.

In [20], SEQUITUR is applied to two Bach chorales.

In Fig. 6 we replicate the experiment from [20] and com-
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Figure 1. Automatic analysis of Bach’s Fugue№10 from

WTK book I. On top: sensitivity to point errors as measured

by the increase in grammar size Δ|G|.
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Figure 2. Close-up view of the first four bars: rules R4, R5,

R10, and R12 overlaid with the score (lower level rules are

not shown).

Figure 3. Manual analysis of Fugue№10 by a musicologist

(from [26] with permission).
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Figure 4. Simplified automatic analysis of Fugue №10

using whole bars as symbols.

pare the grammars of these two chorales generated by SE-

QUITUR and by our approach. The chorales are very similar

except for a few subtle differences. We note that our method

was able to produce a shorter grammar (|Gour| = 50 vs.

|GSequitur| = 59) and hence revealed more of the relevant

structure, while the grammar of the more greedy (and hence

less compressing) SEQUITUR was compromised by the

small differences between the chorales.

3.2 Error Detection and Spell-checking

We investigated the sensitivity of the grammars generated

by our method to alterations in the original music. In one

experiment, we systematically altered each note in turn

(introducing a point error) in the 1st voice of Fugue№10

and constructed a grammar for each altered score. The

change in grammar size relative to that of the unaltered

score is plotted in Fig. 1 (top) as a function of the alteration’s

position. Observe that the grammar is more sensitive to

alterations in structurally dense regions and less sensitive

elsewhere, e.g. in between episodes. Remarkably, with

R15(10) R12(9) R21(4) R23(4) R24(4) R14(3)

Figure 5. Atomic (lowest level) rules with their frequencies

in brackets.
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Figure 6. The grammars for the Bach chorales (from [20])

produced by SEQUITUR (above), |GSequitur| = 59, and by

the proposed approach (below), |Gour| = 50.

very few exceptions (e.g. bars 10, 26) altering the piece

consistently results in the grammar size increasing. We

observed a similar effect in other Bach fugues and even in

19th century works (see below). We propose, only partially

in jest, that this indicates that Bach’s fugues are close to

structural perfection which is ruined by even the smallest

alteration.

Having observed the sensitivity of the grammar size

to point errors (at least in highly structured music), we

propose that grammar-based modelling can be used for

musical “spell-checking” to correct errors in typesetting

(much like a word processor does for text), or in optical

music recognition (OMR). This is analogous to compressive

sensing which is often used in signal and image processing

(see e.g. [15]) for denoising: noise compresses poorly. We

can regard errors in music as noise and use the grammar-

based model for locating such errors. We investigated this

possibility with the following experiment.

As above, we introduce a point error (replacing one note)

at a random location in the score to simulate a “typo” or

an OMR error. We then systematically alter every note

in the score and measure the resulting grammar size in

each case. When the error is thus undone by one of the

modifications, the corresponding grammar size should be

noticeably smaller, and hence the location of the error may

thus be revealed. We rank the candidate error positions

by grammar size and consider suspected error locations

with grammar size less than or equal to that of the ground

truth error, i.e. the number of locations that would need

to be manually examined to pin-point the error, as false

positives. We then report the number of false positives as

a fraction of the total number of notes in the piece. We

repeat the experiment for multiple randomly chosen error
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S1 → R8 2↑ R18 R12 1↑ R19 5↓ 7↑ R11 1↑ R22 3↓ R10 2↓ R24 4↓ R5 R20

R24 0 R10 R12 R24 6↓ R6 2↓ 1↑ 1↓ 3↑ R9 R22 R13 R15 3↑ R15 R12 1↓
R12 R23 R17 1↓ 4↑
S2 → R5 R20 9↓ R20 9↓ 5↑ R6 R12 1↓ 2↑ R9 R8 3↑ R18 2↓ 2↓ 2↑ 3↑ R19

7↓ 9↑ R11 1↑ 3↓ 2↓ 2↓ 11↑ 1↑ R15 1↓ R12 R15 7↑ R13 R23 7↓ 4↓
R3 → R15 R15 R4 → R5 5↑ 4↑ R10

R5 → R22 R13 3↑ 1↓ R17 R15 R6 → R21 R21 1↑
R7 → 2↓ R22 5↓ 5↑ R11

R8 → R4 R12 1↑ 4↓ R16 6↓ R16 2↓ 4↓ R6 R6 1↓
R9 → R3 R15 R12 R24 4↑ R10 1↓ R21 4↓ R5 R7 1↓ R7 3↑ R11 1↑
R10 → 1↑ R3 2↑ R3 1↑
R11 → R3 1↓ 5↑ R3 1↓ R12 → 1↑ 2↓ 1↑
R13 → R23 R23 2↓ 2↑ 2↓ 2↑ 3↓ R14 → 2↑ 2↑
R15 → 1↓ 1↓
R16 → R14 2↑ 4↓ R14 2↑ R15 2↑ R3 R3 5↑
R17 → 1↑ 4↓ 2↑ 3↓ 1↓ R21 2↓
R18 → R3 R15 5↑ 6↓ 5↑ 6↓ R4

R19 → R11 1↓ R7 1↓ 2↓ R22 R20 → 5↑ 7↑ R10 R12

R21 → 1↑ 1↑ R22 → R14 3↑
R23 → 1↓ 1↑ R24 → 2↓ 5↑

Figure 7. Automatically generated shortest grammar for

Fugue№10. Here, Ri are production rules (Si are the top

level rules corresponding to entire voices), numbers with

arrows are terminal symbols (diatonic intervals with the

arrows indicating the direction).

Piece F/P Piece F/P

Fugue№11 6.07% Fugue№2 2.28%

Fugue№10 1.55% Fugue№9 9.07%

Bvn. 5th str. 2.28% Elgar Qrt. 14.22%

Blz. SF. str. 16.71% Mndsn. Heb. 16.28%
1Fugues are from WTC book I.

Table 2. Spell-checking performance: fraction of false

positives.

|G| = 217 |G| = 208

Figure 8. Selecting between two editions of Fugue №10

using grammar size.

locations and report median performance over 100 exper-

iments in Table 2. We have performed this experiment

on Bach fugues, romantic symphonic works (Beethoven’s

5th symphony 1st mvt., Berlioz’s “Symphonie Fantastique”

1st mvt., Mendelssohn’s “Hebrides”) and Elgar’s Quartet

3rd mvt. We observed impressive performance (Table 2)

on Bach’s fugues (error location narrowed down to just a

few percent of the score’s size), and even in supposedly

less-structured symphonic works the algorithm was able to

substantially narrow down the location of potential errors.

This suggests that our approach can be used to effectively

locate errors in music: for example a notation editor using

our method may highlight potential error locations, thus

warning the user, much like word processors do for text.

A variant of the above experiment is presented in Fig. 8.

We want to select between two editions of Fugue №10

in which bar 33 differs. We measured the total grammar

size for the two editions and concluded that the variant in
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Figure 9. High-level editing. Above: automatic analysis of

Fugue№16 (fragment); middle: original; below: rules R6

and R8 were edited with our method to obtain a new fugue.

Edition B is more logical as it results in smaller grammar

size |G| = 208 (vs. |G| = 217 for Edition A).

3.3 High-level Editing

A grammar automatically constructed for a piece of music

can be used as a means for high-level editing. For exam-

ple, one may edit the right-hand sides of individual rules

to produce a new similarly-structured piece, or, by oper-

ating on the grammar tree, alter the structure of a whole

piece. We illustrate such editing in Fig. 9. We have auto-

matically analysed Fugue№16 with our method and then

edited two of the detected rules (R6 and R8) to obtain a new

fugue (expanding the grammar back). This new fugue is

partially based on new material, yet maintains the structural

perfection of the original fugue. We believe this may be a

useful and intuitive next-generation method for creatively

transforming scores.

3.4 Further Applications

We speculate that in addition to the applications discussed

above, the power of our model may be used in other ways:

for estimation of complexity and information content in

a musical piece; as means for automatic summarisation

by analysing the most compressive rules; for improved de-

tection of similarity and plagiarism (including structural

similarity); for automatic simplification of music (by trans-

forming a piece so as to decrease its grammar size); and for

classification of music according to its structural properties.

Having observed that size of grammar is a good measure

of the “amount of structure” in a piece, we suggest that our

model can even be used to tell good music from bad music.
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Hypothetically, a poor composition would remain poor even

when (random) alterations are made to it and hence its

grammar size would be insensitive to such alterations, while

well-constructed works (like those of Bach in our examples)

would suffer, in terms of grammar size, from perturbation.

4. CONCLUSIONS AND FUTURE WORK

We have posed the analysis of music as a smallest grammar

problem and have demonstrated that building parsimonious

context-free grammars is an appealing tool for analysis of

music, as grammars give insights into the underlying struc-

ture of a piece. We have discussed how such grammars may

be efficiently constructed and have illustrated the power of

our model with a number of applications: automatic struc-

tural analysis, error detection and spell-checking (without

prior models), high-level editing.

Future work would include augmenting the presented

automatic grammatical analysis to allow inexact repetitions

(variations or transformations of material) to be recognised

in the grammar, and, in general, increasing the modelling

power by recognising more disguised similarities in music.
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ABSTRACT

Large-scale musical works such as operas may last sev-

eral hours and typically involve a huge number of mu-

sicians. For such compositions, one often finds differ-

ent arrangements and abridged versions (often lasting less

than an hour), which can also be performed by smaller en-

sembles. Abridged versions still convey the flavor of the

musical work containing the most important excerpts and

melodies. In this paper, we consider the task of automati-

cally segmenting an audio recording of a given version into

semantically meaningful parts. Following previous work,

the general strategy is to transfer a reference segmentation

of the original complete work to the given version. Our

main contribution is to show how this can be accomplished

when dealing with strongly abridged versions. To this end,

opposed to previously suggested segment-level matching

procedures, we adapt a frame-level matching approach for

transferring the reference segment information to the un-

known version. Considering the opera “Der Freischütz” as

an example scenario, we discuss how to balance out flex-

ibility and robustness properties of our proposed frame-

level segmentation procedure.

1. INTRODUCTION

Over the years, many musical works have seen a great

number of reproductions, ranging from reprints of the

sheet music to various audio recordings of performances.

For many works this has led to a wealth of co-existing ver-

sions including arrangements, adaptations, cover versions,

and so on. Establishing semantic correspondences between

different versions and representations is an important step

for many applications in Music Information Retrieval. For

example, when comparing a musical score with an audio

version, the goal is to compute an alignment between mea-

sures or notes in the score and points in time in the au-

dio version. This task is motivated by applications such as

score following [1], where the score can be used to navi-

gate through a corresponding audio version and vice versa.

The aligned score information can also be used to param-

eterize an audio processing algorithm such as in score-

c© Thomas Prätzlich, Meinard Müller.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Thomas Prätzlich, Meinard Müller.

“Frame-Level Audio Segmentation for Abridged Musical Works”, 15th

International Society for Music Information Retrieval Conference, 2014.

Act I Overture Act II Act III 

Abridged version 

Annotation of complete reference version 

Transfer of segmentation and label information 

Figure 1. Illustration of the proposed method. Given the

annotated segments on a complete reference version of a

musical work, the task is to transfer the segment informa-

tion to an abridged version.

informed source separation [4, 12]. When working with

two audio versions, alignments are useful for comparing

different performances of the same piece of music [2,3]. In

cover song identification, alignments can be used to com-

pute the similarity between two recordings [11]. Align-

ment techniques can also help to transfer meta data and

segmentation information between recordings. In [7], an

unknown recording is queried against a database of music

recordings to identify a corresponding version of the same

musical work. After a successful identification, alignment

techniques are used to transfer the segmentation given in

the database to the unknown recording.

A similar problem was addressed in previous work,

where the goal was to transfer a labeled segmentation of

a reference version onto an unknown version of the same

musical work [10]. The task was approached by a segment-

level matching procedure, where one main assumption was

that a given reference segment either appears more or less

in the same form in the unknown version or is omitted com-

pletely.

In abridged versions of an opera, however, this assump-

tion is often not valid. Such versions strongly deviate from

the original by omitting a large portion of the musical ma-

terial. For example, given a segment in a reference ver-

sion, one may no longer find the start or ending sections of

this segment in an unknown version, but only an intermedi-

ate section. Hence, alignment techniques that account for

structural differences are needed. In [5], a music synchro-

nization procedure accounting for structural differences in

recordings of the same piece of music is realized with an

adaption of the Needleman-Wunsch algorithm. The algo-

rithm penalizes the skipping of frames in the alignment

by adding an additional cost value for each skipped frame.
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Thus, the cost for skipping a sequence of frames is depen-

dent on the length of the sequence. In abridged versions,

however, omission may occur on an arbitrary scale, rang-

ing from several musical measures up to entire scenes of

an opera. In such a scenario, a skipping of long sequences

should not be more penalized as a skipping of short se-

quences. In this work, we will therefore use a different

alignment strategy.

In this paper, we address the problem of transferring a

labeled reference segmentation onto an unknown version

in the case of abridged versions, see Figure 1. As our main

contribution, we show how to approach this task with a

frame-level matching procedure, where correspondences

between frames of a reference version and frames of an

unknown version are established. The labeled segment in-

formation of the reference version is then transferred to the

unknown version only for frames for which a correspon-

dence has been established. Such a frame-level procedure

is more flexible than a segment-level procedure. However,

on the downside, it is less robust. As a further contribution,

we show how to stabilize the robustness of the frame-level

matching approach while preserving most of its flexibility.

The remainder of this paper is structured as follows:

In Section 2, we discuss the relevance of abridged mu-

sic recordings and explain why they are problematic in a

standard music alignment scenario. In Section 3, we re-

view the segment-level matching approach from previous

work (Section 3.2), and then introduce the proposed frame-

level segmentation pipeline (Section 3.3). Subsequently,

we present some results of a qualitative (Section 4.2) and a

quantitative (Section 4.3) evaluation and conclude the pa-

per with a short summary (Section 5).

2. MOTIVATION

For many musical works, there exists a large number of

different versions such as cover songs or different perfor-

mances in classical music. These versions can vary greatly

in different aspects such as the instrumentation or the struc-

ture. Large-scale musical works such as operas usually

need a huge number of musicians to be performed. For

these works, one often finds arrangements for smaller en-

sembles or piano reductions. Furthermore, performances

of these works are usually very long. Weber’s opera “Der

Freischütz”, for example, has an average duration of about

two hours. Taking it to an extreme, Wagner’s epos “Der

Ring der Nibelungen”, consists of four operas having an

overall duration of about 15 hours. For such large-scale

musical works, one often finds abridged versions. These

versions usually present the most important material of

a musical work in a strongly shortened and structurally

modified form. Typically, these structural modifications

include omissions of repetitions and other “non-essential”

musical passages. Abridged versions were very common

in the early recording days due to space constraints of the

sound carriers. The opera “Der Freischütz” would have

filled 18 discs on a shellac record. More recently, abridged

versions or excerpts of a musical work can often be found

as bonus tracks on CD records. In a standard alignment
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Figure 2. Illustration of the proposed frame-level segmen-

tation pipeline. A reference recording with a reference la-

bel function ϕr is aligned with an unknown version. The

alignment L is used to transfer ϕr to the unknown version

yielding ϕe.

scenario, abridged versions are particularly problematic as

they omit material on different scales, ranging from the

omission of several musical measures up to entire parts.

3. METHODS

In this section, we show how one can accomplish the task

of transferring a given segmentation of a reference version,

say X , onto an unknown version, say Y . The general idea

is to use alignment techniques to find corresponding parts

between X and Y , and then to transfer on those parts the

given segmentation from X to Y .

After introducing some basic notations on alignments

and segmentations (Section 3.1), we review the segment-

level matching approach from our previous work (Section

3.2). Subsequently, we introduce our frame-level segmen-

tation approach based on partial matching (Section 3.3).

3.1 Basic Notations

3.1.1 Alignments, Paths, and Matches

Let [1 : N ] := {1, 2, . . . , N} be an index set represent-

ing the time line of a discrete signal or feature sequence

X = (x1, x2, . . . , xN ). Similarly, let [1 : M ] be the time

line of a second sequence Y = (y1, . . . , yM ). An align-
ment between two time lines [1 : N ] and [1 : M ] is mod-

eled as a set L = (p1, . . . , pL) ⊆ [1 : N ] × [1 : M ].
An element p� = (n�,m�) ∈ L is called a cell and en-

codes a correspondence between index n� ∈ [1 : N ] of

the first time line and index m� ∈ [1 : M ] of the second

one. In the following, we assume L to be in lexicographic

order. L is called a match if (p�+1 − p�) ∈ N × N for

� ∈ [1 : L − 1]. Note that this condition implies strict

monotonicity and excludes the possibility to align an index

of the first time line with many indices of the other and vice

versa. An alignment can also be constrained by requiring

(p�+1 − p�) ∈ Σ for a given set Σ of admissible step sizes.

A typical choice for this set is Σ = {(1, 1), (1, 0), (0, 1)},

which allows to align an index of one time line to many

indices of another, and vice versa. Sometimes other sets

such as Σ = {(1, 1), (1, 2), (2, 1)} are used to align se-

quences which are assumed to be structurally and tempo-

rally mostly consistent. If L fulfills a given step size con-

dition, P = L is called a path. Note that alignments that

fulfill Σ1 and Σ2 are both paths, but only an alignment ful-

filling Σ2 is also a match.
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3.1.2 Segments and Segmentation

We formally define a segment to be a set α = [s : t] ⊆
[1 : N ] specified by its start index s and its end index t. Let

|α| := t−s+1 denote the length of α. We define a (partial)

segmentation of size K to be a set A := {α1, α2, . . . , αK}
of pairwise disjoint segments: αk ∩ αj = ∅ for k, j ∈
[1 : K], k �= j.

3.1.3 Labeling

Let [0 : K] be a set of labels. The label 0 plays a spe-

cial role and is used to label everything that has not been

labeled otherwise. A label function ϕ maps each index

n ∈ [1 : N ] to a label k ∈ [0 : K]:

ϕ : [1 : N ] → [0 : K].

The pair ([1 : N ], ϕ) is called a labeled time line. Let

n ∈ [1 : N ] be an index, α = [s : t] be a segment, and

k ∈ [0 : K] be a label. Then the pair (n, k) is called

a labeled index and the pair (α, k) a labeled segment. A

labeled segment (α, k) induces a labeling of all indices

n ∈ α. Let A := {α1, α2, . . . , αK} be a segmentation

of [1 : N ] and [0 : K] be the label set. Then the set

{(αk, k) | k ∈ [1 : K]} is called a labeled segmentation
of [1 : N ]. From a labeled segmentation one obtains a la-

bel function on [1 : N ] by setting ϕ(n) := k for n ∈ αk

and ϕ(n) := 0 for n ∈ [1 : N ] \⋃k∈[1:K] αk. Vice versa,

given a label function ϕ, one obtains a labeled segmenta-

tion in the following way. We call consecutive indices with

the same label a run. A segmentation of [1 : N ] is then de-

rived by considering runs of maximal length. We call this

segmentation the segmentation induced by ϕ.

3.2 Segment-Level Matching Approach

The general approach in [10] is to apply segment-level

matching techniques based on dynamic time warping

(DTW) to transfer a labeled reference segmentation to an

unknown version. Given a labeled segmentation A of

X , each αk ∈ A is used as query to compute a ranked

list of matching candidates in Y . The matching candi-

dates are derived by applying a subsequence variant of

the DTW algorithm using the step size conditions Σ =
{(1, 1), (1, 2), (2, 1)}, see [8, Chapter 5]. The result of the

subsequence DTW procedure is a matching score and an

alignment path P = (p1, . . . , pL) with p� = (n�,m�). P
encodes an alignment of the segment αk := [n1 : nL] ⊆
[1 : N ] and the corresponding segment [m1 : mL] ⊆
[1 : M ] in Y . To derive a final segmentation, one seg-

ment from each matching candidate list is chosen such that

the sum of the alignment scores of all chosen segments is

maximized by simultaneously fulfilling the following con-

straints. First, the chosen segments have to respect the tem-

poral order of the reference segmentation and second, no

overlapping segments are allowed in the final segmenta-

tion. Furthermore, the procedure is adapted to be robust

to tuning differences of individual segments, see [10] for

further details.
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Figure 3. Excerpt of similarity matrices of the reference

Kle1973 and Kna1939 before (top) and after enhance-

ment (bottom), shown without match (left) and with match

(right).

3.3 Frame-Level Segmentation Approach

The basic procedure of our proposed frame-level segmen-

tation is sketched in Figure 2. First, we use a partial match-
ing algorithm (Section 3.3.1) to compute an alignment L.

Using L and the reference label function ϕr obtained from

the reference annotation A of X , an induced label function
ϕe to estimate the labels on Y is derived (Section 3.3.2).

Finally, we apply a mode filter (Section 3.3.3) and a filling

up strategy (Section 3.3.4) to derive the final segmentation

result.

3.3.1 Partial Matching

Now we describe a procedure for computing a partial

matching between two sequences as introduced in [8]. To

compare the two feature sequences X and Y , we com-

pute a similarity matrix S(n,m) := s(xn, ym), where s
is a suitable similarity measure. The goal of the partial

matching procedure is to find a score-maximizing match

through the matrix S. To this end, we define the accu-
mulated score matrix D by D(n,m) := max{D(n −
1,m), D(n,m − 1), D(n − 1,m − 1) + S(n,m)} with

D(0, 0) := D(n, 0) := D(0,m) := 0 for 1 ≤ n ≤ N
and 1 ≤ m ≤ M . The score maximizing match can then

be derived by backtracking through D, see [8, Chapter 5].

Note that only diagonal steps contribute to the accumulated

score in D. The partial matching algorithm is more flexi-

ble in aligning two sequences than the subsequence DTW

approach, as it allows for skipping frames at any point in

the alignment. However, this increased flexibility comes

at the cost of loosing robustness. To improve the robust-

ness, we apply path-enhancement (smoothing) on S, and

suppress other noise-like structures by thresholding tech-

niques [9, 11]. In this way, the algorithm is less likely to

align small scattered fragments. Figure 3 shows an excerpt

of a similarity matrix before and after path-enhancement

together with the computed matches.
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3.3.2 Induced Label Function

Given a labeled time line ([1 : N ], ϕr) and an alignment

L, we derive a label function ϕe on [1 : M ] by setting:

ϕe(m) :=

{
ϕr(n) if (n,m) ∈ L
0 else,

for m ∈ [1 : M ]. See Figure 4 for an illustration.

3.3.3 Local Mode Filtering

The framewise transfer of the labels may lead to very

short and scattered runs. Therefore, to obtain longer

runs and a more homogeneous labeling, especially at

segment boundaries, we introduce a kind of smoothing

step by applying a mode filter. The mode of a se-

quence S = (s1, s2, . . . , sN ) is the most frequently ap-

pearing value and is formally defined by mode(S) :=
argmaxs∈S |{n ∈ [1 : N ] : sn = s}| . A local mode filter
of length L = 2q + 1 with q ∈ N replaces each element

sn ∈ S , n ∈ [1 : N ], in a sequence by the mode of its

neighborhood (sn−q, . . . , sn+q):

modefiltq (S) (n) := mode(sn−q, . . . , sn+q).

Note that the mode may not be unique. In this case, we ap-

ply the following strategy in the mode filter. If the element

sn is one of the modes, sn is left unmodified by the filter.

Otherwise, one of the modes is chosen arbitrarily.

In our scenario, we apply the local mode filter on a la-

beled time line ([1 : N ], ϕe) by inputting the sequence

ϕe([1 : N ]) := (ϕe(1), ϕe(2), . . . , ϕe(N))) into the fil-

ter, see Figure 4 for an illustration. The reason to use the

mode opposed to the median to filter segment labels, is that

labels are nominal data and therefore have no ordering (in-

teger labels were only chosen for the sake of simplicity).

3.3.4 From Frames to Segments (Filling Up)

In the last step, we derive a segmentation from the label

function ϕe. As indicated in Section 3.1.3, we could sim-

ply detect maximal runs and consider them as segments.

However, even after applying the mode filter, there may

still be runs sharing the same label that are interrupted by

non-labeled parts (labeled zero). In our scenario, we as-

sume that all segments have a distinct label and occur in

the same succession as in the reference. Therefore, in the

case of a sequence of equally labeled runs that are inter-

rupted by non-labeled parts, we can assume that the runs

belong to the same segment. Formally, we assign an in-

dex in between two indices with the same label (excluding

the zero label) to belong to the same segment as these in-

dices. To construct the final segments, we iterate over each

k ∈ [1 : K] and construct the segments αk = [sk : ek],
such that sk = min{m ∈ [1 : M ] : ϕ(m) = k}, and

ek = max{m ∈ [1 : M ] : ϕ(m) = k}, see Figure 4 for an

example.

4. EVALUATION

In this section, we compare the previous segment-level

matching procedure with our novel frame-level segmenta-

1 1 1 0 1 2 2 2 2 2 0 0 0 2 3 3 0 0 3 3 

1 1 1 1 1 2 2 2 2 2 0 0 0 0 3 3 0 0 3 3 

1 1 1 1 1 2 2 2 2 2 0 0 0 0 3 3 3 3 3 3 

1 1 1 1 1 1 2 2 2 2 2 2 2 0 0 0 3 3 3 3 3 3 3 3 3 

1 1 1 1 2 2 2 2 2 2 0 0 0 0 3 3 3 3 3 0 


�����������
����������

(a)

(b)

(c)

(d)

(e)

�	 

�� 

�� 

Figure 4. Example of frame-level segmentation. The ar-

rows indicate the match between the reference version and

the unknown version. (a): Reference label function. (b):
Induced label function. (c): Mode filtered version of (b)

with length L = 3. (d): Filling up on (c). (e): Ground

truth label function.

tion approach based on experiments using abridged ver-

sions of the opera “Der Freischütz”. First we give an

overview of our test set and the evaluation metric (Sec-

tion 4.1). Subsequently, we discuss the results of the

segment-level approach and the frame-level procedure on

the abridged versions (Section 4.2). Finally, we present

an experiment where we systematically derive synthetic

abridged versions from a complete version of the opera

(Section 4.3).

4.1 Tests Set and Evaluation Measure

In the following experiments, we use the recording of Car-

los Kleiber performed in 1973 with a duration of 7763
seconds as reference version. The labeled reference seg-

mentation consists of 38 musical segments, see Figure 5.

Furthermore, we consider five abridged versions that were

recorded between 1933 and 1994. The segments of the

opera that are performed in these versions are indicated by

Figure 5. Note that the gray parts in the figure correspond

to dialogue sections in the opera. In the following exper-

iments, the dialogue sections are considered in the same

way as non-labeled (non-musical) parts such as applause,

noise or silence. In the partial matching algorithm, they are

excluded from the reference version (by setting the simi-

larity score in these regions to minus infinity), and in the

segment-level matching procedure, the dialogue parts are

not used as queries.

Throughout all experiments, we use CENS features

which are a variant of chroma features. They are com-

puted with a feature rate of 1 Hz (derived from 10 Hz pitch

features with a smoothing length of 41 frames and a down-

sampling factor of 10), see [8]. Each feature vector covers

roughly 4.1 seconds of the original audio.

In our subsequent experiments, the following segment-

level matching (M4) and frame-level segmentation (F1–

F4) approaches are evaluated:

(M4) – Previously introduced segment-level matching, see

Section 3.2 and [10] for details.

(F1) – Frame-level segmentation using a similarity matrix

computed with the cosine similarity s defined by s(x, y) =
〈x, y〉 for features x and y, see Section 3.3.

(F2) – Frame-level segmentation using a similarity matrix

with enhanced path structures using the SM Toolbox [9].

For the computation of the similarity matrix, we used for-

ward/backward smoothing with a smoothing length of 20
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Figure 5. Visualization of relative lengths of the abridged

versions compared to the reference version Kle1973.

The gray segments indicate dialogues whereas the colored

segments are musical parts.

frames (corresponding to 20 seconds) with relative tempi

between 0.5−2, sampled in 15 steps. Afterwards, a thresh-

olding technique that retained only 5% of the highest val-

ues in the similarity matrix and a scaling of the remaining

values to [0, 1] is applied. For details, we refer to [9] and

Section 3.3.

(F3) – The same as in F2 with a subsequent mode filtering

using a filter length L = 21 frames, see Section 3.3.3 for

details.

(F4) – The segmentation derived from F3 as described in

Section 3.3.4.

4.1.1 Frame Accuracy

To evaluate the performance of the different segmentation

approaches, we calculate the frame accuracy, which is de-

fined as the ratio of correctly labeled frames and the total

number of frames in a version. Given a ground truth label

function ϕa and an induced label function ϕe, the frame

accuracy Af is computed as following:

Af :=

∑
k∈[0:K]

∣∣ϕa
−1(k) ∩ ϕe

−1(k)
∣∣∑

k∈[0:K] |ϕa
−1(k)|

We visualize the accuracy by means of an agreement se-
quence Δ(ϕa, ϕe) which we define as Δ(ϕa, ϕe) (m) :=
1 (white) if ϕa(m) = ϕe(m) and Δ(ϕa, ϕe) (m) := 0
(black) otherwise. The sequences Δ(ϕa, ϕe) visually cor-

relates well with the values of the frame accuracy Af , see

Table 1 and the Figure 6. Note that in structural segmenta-

tion tasks, it is common to use different metrics such as the

pairwise precision, recall, and f-measure [6]. These met-

rics disregard the absolute labeling of a frame sequence by

relating equally labeled pairs of frames in an estimate to

equally labeled frames in a ground truth sequence. How-

ever, in our scenario, we want to consider frames that are

differently labeled in the ground truth and the induced la-

bel function as wrong. As the pairwise f-measure showed

the same tendencies as the frame accuracy (which can be

easily visualized), we decided to only present the frame

accuracy values.

4.2 Qualitative Evaluation

In this section, we qualitatively discuss the results of our

approach in more detail by considering the evaluation of

the version Kna1939. For each of the five approaches,

the results are visualized in a separate row of Figure 6,

(M4)
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Figure 6. Segmentation results on Kna1939 showing the

ground truth label function ϕa, the induced label function

ϕe, and the agreement sequence Δ := Δ(ϕa, ϕe). White

encodes an agreement and black a disagreement between

ϕa and ϕe. (M4),(F1),(F2),(F3),(F4): See Section 4.1.

showing the ground truth ϕa, the induced label function

ϕe and the agreement sequence Δ(ϕa, ϕe).

For Kna1939, the segment-level matching approach

M4 does not work well. Only 28% of the frames are la-

beled correctly. The red segment, for example, at around

1500 seconds is not matched despite the fact that it has

roughly the same overall duration as the corresponding

segment in the reference version, see Figure 5. Under

closer inspection, it becomes clear that it is performed

slower than the corresponding segment in the reference

version, and that some material was omitted at the start,

in the middle and the end of the segment. The frame-level

matching approach F1 leads to an improvement, having a

frame accuracy of Af = 0.520. However, there are still

many frames wrongly matched. For example, the overture

of the opera is missing in Kna1939, but frames from the

overture (yellow) of the reference are matched into a seg-

ment from the first act (green), see Figure 6. Considering

that the opera consists of many scenes with harmonically

related material and that the partial matching allows for

skipping frames at any point in the alignment, it sometimes

occurs that not the semantically corresponding frames are

aligned, but harmonically similar ones. This problem is

better addressed in approach F2, leading to an improved

frame accuracy of 0.788. The enhancement of path struc-

tures in the similarity matrix in this approach leads to an

increased robustness of the partial matching. Now, all high

similarity values are better concentrated in path structures

of the similarity matrix.

As a result, the algorithm is more likely to follow se-

quences of harmonically similar frames, see also Figure 3.

However, to follow paths that are not perfectly diagonal,

the partial matching algorithm needs to skip frames in the

alignment, which leads to a more scattered label function.

This is approached by F3 which applies a mode filter on

the label function from F2, resulting in an improved frame

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

311



dur.(s) M4 F1 F2 F3 F4
Kna1939 1965 0.283 0.520 0.788 0.927 0.934
Kri1933 1417 0.390 0.753 0.777 0.846 0.870
Mor1939 1991 0.512 0.521 0.748 0.841 0.919
Ros1956 2012 0.887 0.749 0.817 0.850 0.908
Sch1994 2789 0.742 0.895 0.936 0.986 0.989

mean 2035 0.563 0.687 0.813 0.890 0.924

Table 1. Frame accuracy values on abridged versions. M4:

Segment-level matching, F1: Frame-level segmentation,

F2: Frame-level segmentation with path-enhanced similar-

ity matrix, F3: Mode filtering with L = 21 seconds on F2.

F4: Derived Segmentation on F4.

accuracy of 0.927. In F4, the remaining gaps in the label

function of F3 are filled up, which leads to a frame accu-

racy of 0.934.

4.3 Quantitative Evaluation

In this section, we discuss the results of Table 1. Note that

all abridged versions have less than 50% of the duration

of the reference version (7763 seconds). From the mean

frame accuracy values for all approaches, we can conclude

that the segment-level matching (0.563) is not well suited

for dealing with abridged versions, whereas the different

strategies in the frame-level approaches F1 (0.687) – F4

(0.924) lead to a subsequent improvement of the frame ac-

curacy. Using the segment-level approach, the frame ac-

curacies for the versions Ros1956 (0.887) and Sch1994
(0.742) stand out compared to the other versions. The seg-

ments that are performed in these versions are not short-

ened and therefore largely coincide with the segments of

the reference version. This explains why the segment-level

matching still performs reasonably well on these versions.

In Figure 7, we show the frame accuracy results for

the approaches M4 and F4 obtained from an experiment

on a set of systematically constructed abridged versions.

The frame accuracy values at 100% correspond to a subset

of 10 segments (out of 38) that were taken from a com-

plete recording of the opera “Der Freischütz” recorded by

Keilberth in 1958. From this subset, we successively re-

moved 10% of the frames from each segment by remov-

ing 5% of the frames at the start, and 5% of the frames

at the end sections of the segments. In the last abridged

version, only 10% of each segment remains. This exper-

iment further supports the conclusions that the segment-

level approach is not appropriate for dealing with abridged

versions, whereas the frame-level segmentation approach

stays robust and flexible even in the case of strong abridg-

ments.

5. CONCLUSIONS

In this paper, we approached the problem of transferring

the segmentation of a complete reference recording onto an

abridged version of the same musical work. We compared

the proposed frame-level segmentation approach based on

partial matching with a segment-level matching strategy.

In experiments with abridged recordings, we have shown

that our frame-level approach is robust and flexible when

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
0

0.2

0.4
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0.8

1

 

 

(M4) Segment-level

(F4) Frame-levelA
f

Percentage of remaining material per segment

Figure 7. Performance of segment-level approach (M4)

versus frame-level approach (F4) on constructed abridged

versions. See Section 4.3

enhancing the path structure of the used similarity matrix

and applying a mode filter on the labeled frame sequence

before deriving the final segmentation.
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ABSTRACT 

Jingju (Beijing opera) is a Chinese traditional performing 
art form in which theatrical and musical elements are in-
timately combined. As an oral tradition, its musical di-
mension is the result of the application of a series of pre-
defined conventions and it offers unique concepts for mu-
sicological research. Computational analyses of jingju 
music are still scarce, and only a few studies have dealt 
with it from an MIR perspective. In this paper we present 
the creation of a corpus of jingju music in the framework 
of the CompMusic project that is formed by audio, edito-
rial metadata, lyrics and scores. We discuss the criteria 
followed for the acquisition of the data, describe the con-
tent of the corpus, and evaluate its suitability for compu-
tational and musicological research. We also identify 
several research problems that can take advantage of this 
corpus in the context of computational musicology, espe-
cially for melodic analysis, and suggest approaches for 
future work. 

1. INTRODUCTION 

Jingju (also known as Peking or Beijing opera) is one of 
the most representative genres of xiqu, the Chinese tradi-
tional form of performing arts. Just as its name suggests, 
it consists of a theatrical performance, xi, in which the 
main expressive element is the music, qu. Although it has 
commonalities with theatre and opera, it cannot be fully 
classified as any of those. In xiqu there are not equivalent 
figures to that of the theatre director or opera composer; 
instead, the actor is the main agent for creativity and per-
formance. Each of the skills that the actor is expected to 
master, encompassing poetry, declamation, singing, 
mime, dance and martial arts, is learned and executed as 
pre-defined, well established conventions. It is precisely 
the centrality of the actor and the acting through conven-
tions what make xiqu unique. Its musical content is also 
created by specific sets of such conventions. 

Xiqu genres developed as adaptations of the general 
common principles of the art form to a specific region, 
especially in terms of dialect and music. The adoption of 
local dialects was a basic requirement for the intelligibil-

ity of the performance by local audiences. The phonetic 
features of these dialects, including intonation and espe-
cially linguistic tones, establish a melodic and rhythmic 
framework for the singing. The musical material itself 
derives from local tunes, which is precisely the literal 
meaning of qu. This implies that music in xiqu is not an 
original creation by the actors, but an adaptation of pre-
existing material. Furthermore, each genre employs also 
the most representative instruments of the region for ac-
companiment, conveying the regional filiation also tim-
brally. These local features are what define each xiqu
genre’s individuality. Jingju is then the regional genre of 
xiqu that formed in Beijing during the 19th Century, 
achieving one of the highest levels of refinement and 
complexity. 

Despite the uniqueness of this tradition, the interesting 
aspects for musicological analysis it offers, and its inter-
national recognition, jingju music has barely been ap-
proached computationally. Most of the few studies of 
jingju in MIR have focused on its acoustic and timbral 
characteristics. Zhang and Zhou have drawn on these fea-
tures for classification of jingju in comparison with other 
music traditions [18, 19] and other xiqu genres [20]. 
Sundberg et al. have analyzed acoustically the singing of 
two role-types [14], whilst Tian et al. have extracted tim-
bral features for onset detection of percussion instruments 
[15]. More recently, Zhang and Wang have integrated 
domain knowledge for musically meaningful segmenta-
tion of jingju arias [21]. Related to melodic analysis, 
Chen [3] has implemented a computational analysis of 
jinju music for the characterization of pitch intonation. 

The main concepts that define jingju music are 
shengqiang, banshi  and role-type. As stated previously, 
the melodic material used in xiqu genres is not original, 
but derived from local tunes. These tunes share common 
features that allow them to be recognized as pertaining to 
that specific region, such as usual scale, characteristic 
timbre, melodic structure, pitch range and tessitura, or-
namentation, etc. This set of features is known as 
shengqiang, usually translated into English as ‘mode’ or 
‘modal system’ [16]. Each xiqu genre can use one or 
more shengqiang, and one single shengqiang can be 
shared by different genres. There are two main 
shengqiang in jingju, namely xipi and erhuang (see Table 
2). Their centrality in the genre is such that jingju music 
as a whole has been also named by the combination of 
these two terms, pihuang. 
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The melodic features determined by the shengqiang
are rhythmically rendered through a series of metrical 
patterns called banshi. These banshi are individually la-
belled and defined by a unit of metre, a tempo value and a 
degree of melodic density; they are associated as well to 
an expressive function. The system of banshi is con-
ceived as derived from an original one, called yuanban,
so that the rest of them are expansions, reductions or free 
realizations of the first one [8]. The banshi system in 
jingju consists of a core of eight patterns commonly used,
plus some variants. 

Each of the characters of a play is assigned to one spe-
cific, pre-defined acting class, according to their gender, 
age, social status, psychological profile and emotional 
behavior. These acting classes are known as hangdang or 
role-types, and each actor is specialized in the perfor-
mance of one of them. Each role-type determines the spe-
cific set of conventions that must be used for the creation 
of the character, including those attaining to music. Con-
sequently, shengqiang and banshi will be expressed dif-
ferently by each role-type, so that these concepts cannot 
be studied without referencing each other. In jingju there 
are four general categories of role-types, with further 
subdivisions. We consider that the five main role-types 
regarding musical expression are sheng (male characters), 
dan (female characters), jing (painted-face), xiaosheng
(young males), and laodan (old females). They are usual-
ly classified into two styles of singing, the male style,
characterized for using chest voice, used by sheng, jing 
and laodan, and the female one, sung in falsetto and 
higher register, used by dan and xiaosheng. 

The fullest expression of such melodic concepts occurs 
in the singing sections called changduan, which can be 
compared, but not identified, with the concept of aria in 
Western opera (to ease readability, we will use the term 
‘aria’ throughout the paper). Consequently, we have de-
termined the aria as our main research object, and it has 
been the main concern for the creation of our corpus and 
the analyses suggested. 

In this paper we present a corpus of jingju music that 
we have gathered for its computational analysis. We ex-
plain the criteria followed for the collection of its differ-
ent types of data, describe the main features of the corpus 
and discuss its suitability for research. Thereupon we ex-
plore the possibilities that the corpus offers to computa-
tional musicology, focusing in melodic analysis, specifi-
cally in the concepts of shengqiang and role-type. 

2. JINGJU MUSIC RESEARCH CORPUS 

In order to undertake a computational analysis of jingju 
music, and to exploit the unique musical concepts of this 
tradition from an MIR perspective, we have gathered in 
the CompMusic project a research corpus [12] that in-
cludes audio, editorial metadata, lyrics and scores. We 
introduce here the criteria for the selection of the data,
describe its content and offer a general evaluation. 

2.1 Criteria for data collection 

For the collection of audio recordings, which is the core 
of the corpus, we have considered three main criteria: 
repertoire to be covered, sound quality and recording 
unit. In order to take maximum advantage of the unique 
features of jingju music, we have gathered recordings of 
mostly traditional repertoire, as well as some modern 
compositions based on the traditional methods. The so-
called contemporary plays, since they have been created 
integrating compositional techniques from the Western 
tradition, have been disregarded for our corpus. Regard-
ing the sound quality needed for a computational analy-
sis, and considering the material to which we have had 
access, the recordings that best suited our requirements 
have been commercial CDs released in the last three dec-
ades in China. Finally, since our main research object is 
the aria, we have acquired CDs releases of single arias 
per track. This means that full play or full scene CDs, and 
video material in VCD and DVD have not been consid-
ered. These CDs have been the source from which we 
have extracted the editorial metadata contained in the 
corpus, which have been stored in MusicBrainz. 1 This 
platform assigns one unique ID to each entity in the cor-
pus, so that they can be easily searchable and retrievable. 

Our aim has been to include for each audio recording,
whenever possible, its corresponding lyrics and music 
score. All releases gathered included the lyrics in their 
leaflets for the arias recorded. However, since they are 
not usable for computational purposes, we get them from 
specialized free repositories in the web.2 As for the scores, 
an explanation of its function in the tradition is first need-
ed. Since jingju music has been created traditionally by 
actors, no composers, drawing on pre-existing material, 
scores appeared only as an aide-mémoire and a tool for
preserving the repertoire. Although barely used by pro-
fessional actors, scores have been widely spread among 
amateur singers and aficionados, and are a basic resource 
for musicological research. In fact, in the last decades 
there has been a remarkable effort to publish thoroughly 
edited collections of scores. Although many scores are 
available in the web, they have not been systematically 
and coherently stored, what makes them not easily re-
trievable. Furthermore, they consist of image or pdf files, 
not usable computationally. Consequently, we have ac-
quired printed publications that meet the academic stand-
ards of edition, but that will require to be converted into a
machine readable format.

2.2 Description of the corpus 

The audio data collection of the corpus is formed by 78 
releases containing 113 CDs, consisting of collections of 
single arias per track. Besides these, due to the fact that 

                                                          
1http://musicbrainz.org/collection/40d0978b-0796-4734-9fd4-2b3ebe0f664c  
2Our main sources for lyrics are the websites http://www.jingju.com,
http://www.jingju.net and http://www.xikao.com.
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many of the consumers of these recordings are amateur 
singers, many releases contain extra CDs with just the 
instrumental accompaniment of the arias recorded in the 
main ones. Consequently, the corpus also contains 19 
CDs with just instrumental accompaniments.  

Although we do not have complete figures yet, we 
have computed statistics for different aspects of the cor-
pus. The releases contain recordings by 74 singers, be-
longing to 7 different role-types, as indicated in Table 1. 

As for the works, the corpus covers 653 arias from 215 
different plays. Table 2 shows the distribution of these 
arias according to role-type and shengqiang. Since the 
number of banshi is limited and all of them frequently 
used, an estimation of its appearance in the corpus is not 
meaningful. As shown in Table 2, the corpus contains 
highly representative samples for the research of the two 
main shengqiang and the five main role-types as de-
scribed in section 1. Table 3 displays more detailed num-
bers concerning these specific entities. The editorial 
metadata stored in MusicBrainz include textual infor-
mation as well as cover art. For the former the original 
language has been maintained, that is, Chinese in simpli-
fied characters, with romanizations in the Pinyin system, 
stored either as pseudo-releases or aliases. 

Regarding the scores, the corpus contains two collec-
tions of full play scores [5, 22] and an anthology of se-
lected arias [6]. The two collections contain a total of 155 
plays, 26 of which appear in both publications; the an-
thology contains 86 scores. This material offers scores for 
317 arias of the corpus, that is 48.5% of the total. 

Apart from the research corpus, but related to it, spe-
cific test corpora will be developed, consisting of collec-
tions of data used as ground truth for specific research 
tasks, as defined by Serra [12]. The test corpora created 
in the framework of the CompMusic project are accessi-
ble from the website http://compmusic.upf.edu/datasets.
To date there are two test corpora related to the jingju 
music corpus, namely the Beijing opera percussion in-

strument dataset,3 which contains 236 audio samples of 
jingju percussion instruments, used by Tian et al. [15] for 
onset detection of these instruments, and the Beijing 
opera percussion pattern dataset, 4 formed by 133 audio 
samples of five jingju percussion patterns, supported by 
transcriptions both in staff and syllable notations. Srini-
vasamurthy et al. [13] have used this dataset for the au-
tomatic recognition of such patterns in jingju recordings. 

2.3 Evaluation of the corpus 

For the evaluation of the corpus, we will draw on some of 
the criteria defined by Serra [12] for the creation of cul-
ture specific corpora, specifically coverage and com-
pleteness, and discuss as well the usability of the data for 
computational analyses. 

2.3.1. Coverage 

Assessing the coverage of the jingu music corpus is not 
an easy task, since, to the best of our knowledge, there is 
no reference source that estimates the number of plays in 
this tradition. However, compared with the number of 
total plays covered in our collections of full play scores, 
which are considered to be the most prominent publica-
tions in this matter, the number of plays represented in 
our corpus is considerable higher. Besides, these releases 
have been purchased in the specialized bookshop located 
in the National Academy of Chinese Theatre Arts, Bei-
jing, the only institution of higher education in China 
dedicated exclusively to the training of xiqu actors, and 
one of the most acclaimed ones for jingju. Our corpus 
contains all the releases available in this bookshop at the 
time of writing this paper that met the criteria settled in 
section 2.1. Regarding the musical concepts represented 
in the corpus, Table 2 shows that both systems of role-
type and shengqiang are equally fully covered, with une-
qual proportion according to their relevance in the tradi-
tion, as explained in the introduction. As for the banshi,
as stated previously, they are fully covered due to their 
limited number and varied use. Consequently, we argue 
that the coverage of our corpus is highly satisfactory, in 
terms of variety of repertoire, availability in the market 
and representation of musical entities. 

2.3.2. Completeness 

Considering the musicological information needed for 
each recording according to our purposes, the editorial 
metadata contained in the releases are fully complete, 
with the exception of the 5 arias mentioned in Table 2 
(0.8% of the total), which lack information about 
shengqiang and banshi. One important concept for afi-
cionados of this tradition is the one of liupai, or perform-
ing schools. However, this concept is far from being well 
defined, and depends both on the play and on the per-
                                                          
3http://compmusic.upf.edu/bo-perc-dataset
4http://compmusic.upf.edu/bopp-dataset

Role-types Shengqiang
Laosheng 224 Xipi 324
Jing 55 Erhuang 200
Laodan 66 Fan’erhuang 31
Dan 257 Nanbangzi 25
Xiaosheng 43 Sipingdiao 23
Wusheng 3 Others 45
Chou 5 Unknown 5

Table 2. Distribution of the arias in the corpus according 
to role-type and shengqiang.

Laosheng 20 Xiaosheng 9
Jing 7 Wusheng 3
Laodan 8 Chou 3
Dan 24

Table 1. Number of singers per role-type in the corpus.
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former, and usually is not specifically stated in the releas-
es. Finally, the information related to the publication of 
the recordings is not consistent. Usually, the dates of re-
cording and releasing are not available from the CDs. 
However, the releasing period has been restricted to the 
last three decades by our criteria, as stated in section 2.1, 
although in some rare cases some of these releases may 
contain recordings from earlier periods. 

2.3.3. Usability 

The data contained in the corpus are fully suitable for 
analysis of jingju music according to the musical con-
cepts explained in section 1. However, not all the data are 
equally usable. The main difficulty is presented by the 
scores, to date available only in printed edition. Conse-
quently, for their computational exploitation they need to 
be converted into a machine readable format. In the 
CompMusic project we intend to use MusicXML, main-
taining the so called jianpu notation used in the originals.
As for the lyrics, although most of them are freely acces-
sible on the web, due to the fact that singers may make 
some changes according to their needs, some problems 
for the recognition of related lyrics for a specific aria 
might rise. 

To access the corpus for research purposes, we refer to 
the website http://compmusic.upf.edu/corpora. The cor-
pus will eventually be also available through Dunya [9],5

a web based browsing tool developed by the CompMusic 
project, which also displays content-based analyses car-
ried out in its framework for each of the culturally specif-
ic corpora that it has gathered. 

3. RESEARCH POSSIBILITIES FOR THE JINGJU 
MUSIC CORPUS 

In this section we introduce research issues of relevance 
for each data type in our corpus with a special focus on 
the melodic analysis. We discuss the application of state 
of the art analytic approaches to our corpus, and propose 
specific future work. 

3.1 Analyses of audio, lyrics and scores 

According to the research objectives in the CompMusic 
project, in whose framework our corpus has been gath-

                                                          
5http://dunya.compmusic.upf.edu

ered, audio data is the main research object, supported by 
information from metadata, lyrics and scores. For the 
analysis of the musical elements described in the first sec-
tion, the vocal line of the arias is the most relevant ele-
ment, since it renders the core melody of the piece. Con-
sequently, segmentation of the vocal part and extraction 
of its pitch are needed steps. However, the timbral and 
textural characteristics of jingju music pose important 
challenges for these tasks. The timbre of the main ac-
companying instrument, the jinghu, a small, two-stringed 
spike fiddle, is very similar to that of the voice. Besides, 
the typical heterophonic texture results in the simultane-
ous realization of different versions of the same melody. 
These features make the extraction of the vocal line from 
the accompaniment difficult. Besides, octave errors are 
still frequent to state of the art algorithms for predomi-
nant melody extraction, especially for role-types of the 
male style of singing. 

If audio is the main research objet, the other types of 
data in our corpus offer equally interesting and challeng-
ing tasks for computational analysis. The delivery of the 
lyrics is the main goal of singing in jingju; therefore their 
analysis is essential for the understanding of the genre. Of 
special importance for its musical implications is the 
analysis of the poetic structure of the lyrics, since it de-
termines the musical one, as well as their meaning, what 
would help to better define the expressive function of 
shengqiang and banshi. Methods from natural language 
processing can be applied for the identification of poetic 
formulae, commonly used by actors for the creation of 
new lyrics. As for the scores, their analysis will be bene-
ficial for the computation of intervallic preferences, crea-
tion of cadential schemata and detection of stable pitches. 

However, as stated previously, the main use of lyrics 
and scores according to our research purposes will be as 
supporting elements for audio analysis. To that aim, the 
main computational task is the alignment of both data 
types to audio. This is a challenging task, since the actors, 
in a tradition without the authority of a composer or 
playwright, have certain margins to modify lyrics and 
melody according to their own interpretation, as far as the 
main features of the aria, as sanctioned by the tradition, 
are maintained. In the case of lyrics, this task is even 
more complex due to the fact that jinju uses an art lan-
guage of its own, that combines linguistic features from 
two dialects, the Beijing dialect and the Huguang dialect 

Role-type Singers Xipi Erhuang Total
Recordings Duration Recordings Duration Recordings Duration

Laosheng 18 179 12h 09m 47s 147 13h 30m 51s 326 25h 40m 38s
Jing 6 41 3h 04m 30s 43 3h 21m 39s 84 6h 26m 09s
Laodan 8 30 2h 00m 54s 52 4h 37m 54s 82 6h 38m 48s
Dan 24 224 17h 26m 00s 101 11h 13m 02s 325 28h 39m 02s
Xiaosheng 9 40 3h 19m 00s 7 41m 14s 47 4h 00m 14s
Total 65 514 38h 00m 11s 350 33h 24m 40s 864 71h 24m 51s

Table 3. Data in our corpus for the analysis of the two main shengqiang and five main role-types.
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from the South [8, 16]. This combination is far from be-
ing systematic and consistent, what in many cases poses 
difficulties to the prediction of the phonetic representa-
tion required for lyrics to audio alignment. The music 
traditions researched in the CompMusic project present 
similar problems for these tasks, and specific approaches 
have been proposed by Şentürk et al. [11] and Dzhamba-
zov et al. [4]. We intend to benefit from these works for 
the development of specific methods for jingju music. 

Alignment of lyrics and scores to audio will be an im-
portant step for several analytical tasks. The information 
from these data types combined with the audio will allow 
a musically informed segmentation of the recording, ei-
ther in vocal or instrumental sections, or in different 
structural units, from the couplet, a poetic structure which 
is the basic unit also for the musical one, to the syllable 
level. The absolute pitch value of the first degree can be 
computed by the combined information from the score 
and the pitch track. Finally, an especially interesting topic 
is the study of how the tonal information of the syllable is 
expressed in the melody. Zhang et al. [17] have applied 
computational methods to this issue within the context of 
the CompMusic project. 

3.2. Characterization of shengqiang and role-type 

As stated in the introduction, the two more relevant con-
cepts for the melodic aspect of jingju are shengqiang and 
role-type. Chen [3] has attempted a characterization of 
these entities by means of pitch histograms. For the clas-
sification of audio fragments as vocal and non-vocal 
Chen drew on machine learning, and extracted the pitch 
of the vocal line with the algorithm proposed by Salamon 
and Gómez [10]. In order to overcome some limitations 
of the results in this work, we have carried out an initial 
experiment in which we have extracted pitch tracks for a 
subset of 30 arias from our corpus that have been manual-
ly pre-processed. The sample contains three arias for each 
of the ten combinations of the two main shengqiang and 
the five main role-types. We use mp3 mono files with a 
sampling rate of 44,100 Hz, and have annotated them 
with Praat [1] to the syllable level for segmentation. Pitch 
tracks have been obtained with the aforementioned algo-
rithm [10] implemented in Essentia [2], whose parame-
ters have been manually set for each aria.

The obtained pitch tracks have been used for the com-
putation of pitch histograms. Koduri et al. have success-
fully characterized Carnatic ragas by histogram peak par-
ametrization [7]. Chen has applied this methodology for 
the characterization of male and female styles of singing 
in jingju. We have expanded the same approach to our 
subset of 30 arias, with the aim of characterizing the ten 
combinations of shengqiang and role-types. Our initial 
observations give some evidence that pitch histograms 
will help describe some aspects of shengqiang and role-
types as stated in the musicological literature, such us 
modal center, register with respect to the first degree, 

range and hierarchy of scale degrees, so that differences 
can be established between each category. Our results al-
so show that the approach is efficient for the characteriza-
tion of different role-types for the same shengqiang.
However, differences are not meaningful when the two 
shengqiang are compared for one single role-type. Figure 
1 shows how the modal center for both xipi and erhuag in 
a dan role-type is located around the fifth and sixth de-
grees, register with respect to the first degree and range 
are practically identical, and the differences in the hierar-
chy of scale degrees are not relevant enough. 

Xipi Erhuang

Figure 1. Pitch histograms for the dan role-type in the 
two shengqiang.

In our future work we propose to expand this approach 
by integrating the information obtained from the lyrics 
and the scores. In the specific case of shengqiang, a work 
of melodic similarity between arias of the shengqiang ac-
cording to their musical structure, specially determined 
by the banshi, will shed light on the melodic identity of 
these entities. As for the role-type, we argue that an anal-
ysis of timbre, dynamics and articulation for each catego-
ry, especially at the syllable level, will offer characteriz-
ing features that complete the information obtained from 
the pitch histograms. 

3.3. Other research tasks 

Beyond the tasks described previously, jingju music offer 
a wide range of research possibilities. One important as-
pect is the rhythmic component of the arias, mainly de-
termined by the concept of banshi. An automatic identifi-
cation of banshi and segmentation of the aria in these sec-
tions is a musically meaningful, but computational chal-
lenging task, due to the different renditions of the same 
banshi by different role-types and even different actors, 
as well as to the rhythmic flexibility that characterizes 
jingju music. The instrumental sections of the jingju arias 
are also an interesting research topic, especially regarding 
their relationship with the melody of the vocal part and 
how shengqiang and banshi define their features. To this 
task, the CDs with only accompaniment tracks will be 
valuable. In the framework of the CompMusic project, 
Srinivasamurthy et al. [13] have presented a computa-
tional model for the automatic recognition of percussion 
patterns in jingju. Finally, due to the importance of the 
acting component of this genre, and its intimate relation-
ship with the music, jingju is a perfect case for a com-
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bined research of visual and musical features, integrating 
computational analysis of video and audio material. 
Should this task be undertaken, our corpus should be ex-
panded to include also video material. 

4. SUMMARY 

In this paper we have presented a corpus of jingju music, 
gathered with the purpose of researching its musical fea-
tures from an MIR methodology. After discussing the cri-
teria for its creation, describing its different data types 
and offering a general evaluation, we have suggested ana-
lytical tasks for its computational exploitation, especially 
focused on melodic analysis. Some state of the art ap-
proaches have been applied to a small sample of the cor-
pus, in order to analyze their results and propose conse-
quently further work and future tasks. 

5. ACKNOWLEDGEMENTS 

This research was funded by the European Research 
Council under the European Union’s Seventh Framework 
Program, as part of the CompMusic project (ERC grant 
agreement 267583). We are thankful to G. K. Koduri for 
providing and helping with his code. 

6. REFERENCES 

[1] P. Boersma and D. Weenink: “Praat, a system for 
doing phonetics by computer,” Glot International,
Vol. 5, No. 9/10, pp. 341–345.

[2] D. Bogdanov, N. Wack, E. Gómez, S. Gulati, P. 
Herrera, O. Mayor, G. Roma, J. Salamon, J. Zapata, 
and X. Serra: “ESSENTIA: an Audio Analysis 
Library for Music Information Retrieval,” ISMIR 
2013, pp. 423–498, 2013.

[3] K. Chen: Characterization of Pitch Intonation of 
Beijing Opera, Master thesis, Universitat Pompeu 
Fabra, Barcelona, 2013. 

[4] G. Dzhambazov, S. Şentürk, and X. Serra:
“Automatic Lyrics-to-Audio Alignment in Classical 
Turkish Music,” The 4th International Workshop on 
Folk Music Analysis, pp. 61–64 , 2014. 

[5] Jingju qupu jicheng (Collection of 
jingju scores), 10 vols., Shanghai wenyi chubanshe, 
Shanghai, 1998.

[6] Jingju qupu jingxuan (Selected 
scores of jingju), 2 vols., Shanghai yinyue 
chubanshe, Shanghai, 1998–2005.

[7] G. K. Koduri, V. Ishwar, J. Serrà, X. Serra, and H. 
Murthy: “Intonation analysis of ragas in Carnatic 
music,” Journal of New Music Research, Vol. 43, 
No. 1, pp. 72–93. 

[8] J. Liu : Jingju yinyue gailun
(Introduction to jingju music), Renmin yinyue 
chubanshe, Beijing, 1993.

[9] A. Porter, M. Sordo, and X. Serra: “Dunya: A 
system for browsing audio music collections 
exploiting cultural context,” ISMIR 2013, pp. 101–
106, 2013. 

[10] J. Salamon and E. Gómez: “Melody Extraction From 
Polyphonic Music Signals Using Pitch Contour 
Characteristics,” IEEE Transactions on Audio, 
Speech, and Language Processing, Vol. 20, No. 6, 
pp. 1759–1770, 2012. 

[11] S. Şentürk, A. Holzapfel, and X. Serra: “Linking 
Scores and Audio Recordings in Makam Music of 
Turkey,” JNMR, Vol. 43, No. 1, pp. 34–52, 2014. 

[12] X. Serra: “Creating Research Corpora for the 
Computational Study of Music: the case of the 
CompMusic Project,” Proceedings of the AES 53rd

International Conference, pp. 1–9, 2014. 

[13] A. Srinivasamurthy, R. Caro Repetto, S. 
Harshavardhan, and X. Serra: “Transcription and 
Recognition of Syllable based Percussion Patterns: 
The Case of Beijing Opera,” ISMIR 2014. 

[14] J. Sundberg, L. Gu, Q. Huang, and P. Huang: 
“Acoustical study of classical Peking Opera 
singing,” Journal of Voice, Vol. 26, No. 2, pp. 137–
143, 2012. 

[15] M. Tian, A. Srinivasamurthy, M. Sandler, and X. 
Serra: “A study of instrument-wise onset detection 
in Beijing opera percussion ensembles,” ICASSP 
2014, pp. 2174–2178 , 2014. 

[16] E. Wichmann: Listening to theatre: the aural 
dimension of Beijing opera, University of Hawaii 
Press, Honolulu, 1991. 

[17] S. Zhang, R. Caro Repetto, and X. Serra: “Study of 
similarity between linguistic tones and melodic 
contours in Beijing Opera,” ISMIR 2014.

[18] Y. Zhang and J. Zhou: “A Study on Content-Based 
Music Classification,” Proceedings of the Seventh 
International Symposium on Signal Processing and 
Its Applications, pp. 113–162, 2003. 

[19] Y. Zhang and J. Zhou: “Audio Segmentation Based 
on Multi-Scale Audio Classification,” ICASSP 2004,
pp. 349–352, 2004. 

[20] Y. Zhang, J. Zhou, and X. Wang: “A Study on 
Chinese Traditional Opera,” Proceedings of the 
Seventh International Conference on Machine 
Learning and Cybernetics, pp. 2476–2480, 2008. 

[21] Z. Zhang and X. Wang: “Structure Analysis of 
Chinese Peking Opera,” Seventh International 
Conference on Natural Computation,  pp. 237–241, 
2011.

[22] Zhongguo jingju liupai jumu jicheng
(Collection of plays of Chinese jingju 

schools), 21 vols., Xueyuan chubanshe, Beijing, 
2006–2010. 

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

318



MODELING TEMPORAL STRUCTURE IN MUSIC FOR EMOTION
PREDICTION USING PAIRWISE COMPARISONS

Jens Madsen, Bjørn Sand Jensen, Jan Larsen
Technical University of Denmark,

Department of Applied Mathematics and Computer Science,
Richard Petersens Plads, Building 321,

2800 Kongens Lyngby, Denmark
{jenma,bjje,janla}@dtu.dk

ABSTRACT

The temporal structure of music is essential for the cogni-

tive processes related to the emotions expressed in music.

However, such temporal information is often disregarded

in typical Music Information Retrieval modeling tasks of

predicting higher-level cognitive or semantic aspects of mu-

sic such as emotions, genre, and similarity. This paper

addresses the specific hypothesis whether temporal infor-

mation is essential for predicting expressed emotions in

music, as a prototypical example of a cognitive aspect of

music. We propose to test this hypothesis using a novel pro-

cessing pipeline: 1) Extracting audio features for each track

resulting in a multivariate ”feature time series”. 2) Using

generative models to represent these time series (acquiring

a complete track representation). Specifically, we explore

the Gaussian Mixture model, Vector Quantization, Autore-

gressive model, Markov and Hidden Markov models. 3)

Utilizing the generative models in a discriminative setting

by selecting the Probability Product Kernel as the natural

kernel for all considered track representations. We evaluate

the representations using a kernel based model specifically

extended to support the robust two-alternative forced choice

self-report paradigm, used for eliciting expressed emotions

in music. The methods are evaluated using two data sets

and show increased predictive performance using temporal

information, thus supporting the overall hypothesis.

1. INTRODUCTION

The ability of music to represent and evoke emotions is an

attractive and yet a very complex quality. This is partly a

result of the dynamic temporal structures in music, which

are a key aspect in understanding and creating predictive

models of more complex cognitive aspects of music such

as the emotions expressed in music. So far the approach

c© Jens Madsen, Bjørn Sand Jensen, Jan Larsen.

Licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: Jens Madsen, Bjørn Sand Jensen, Jan Larsen.

“Modeling Temporal Structure in Music for Emotion Prediction using

Pairwise Comparisons”, 15th International Society for Music Information

Retrieval Conference, 2014.

of creating predictive models of emotions expressed in mu-

sic has relied on three major aspects. First, self-reported

annotations (rankings, ratings, comparisons, tags, etc.) for

quantifying the emotions expressed in music. Secondly,

finding a suitable audio representation (using audio or lyri-

cal features), and finally associating the two aspects using

machine learning methods with the aim to create predic-

tive models of the annotations describing the emotions ex-

pressed in music. However the audio representation has

typically relied on classic audio-feature extraction, often

neglecting how this audio representation is later used in the

predictive models.

We propose to extend how the audio is represented by

including feature representation as an additional aspect,

which is illustrated on Figure 1. Specifically, we focus on

including the temporal aspect of music using the added fea-

ture representation [10], which is often disregarded in the

classic audio-representation approaches. In Music Informa-

tion Retrieval (MIR), audio streams are often represented

with frame-based features, where the signal is divided into

frames of samples with various lengths depending on the

musical aspect which is to be analyzed. Feature extraction

based on the enframed signal results in multivariate time

series of feature values (often vectors). In order to use these

features in a discriminative setting (i.e. predicting tags, emo-

tion, genre, etc.), they are often represented using the mean,

a single or mixtures of Gaussians (GMM). This can reduce

the time series to a single vector and make the features

easy to use in traditional linear models or kernel machines

such as the Support Vector Machine (SVM). The major

problem here is that this approach disregards all temporal

information in the extracted features. The frames could be

randomized and would still have the same representation,

however this randomization makes no sense musically.

In modeling the emotions expressed in music, the tempo-

ral aspect of emotion has been centered on how the labels

are acquired and treated, not on how the musical content is

treated. E.g. in [5] they used a Conditional Random Field

(CRF) model to essentially smooth the predicted labels of

an SVM, thus still not providing temporal information re-

This work was supported in part by the Danish Council for Strategic
Research of the Danish Agency for Science Technology and Innovation
under the CoSound project, case number 11-115328.
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Figure 1. Modeling pipeline.

garding the features. In [12] a step to include some temporal

information regarding the audio features was made, by in-

cluding some first and second order Markov properties for

their CRF model, however still averaging the features for

one second windows. Other approaches have ranged from

simple feature stacking in [13] to actually using a genera-

tive temporal model to represent features in [17]. The latter

showed that using a Dynamical Texture Mixture model to

represent the feature time series of MFCCs, taking tempo-

ral dynamics into account, carried a substantial amount of

information about the emotional content. In the present

work, in contrast to prior work, we focus on creating a com-

mon framework by using generative models to represent

the multivariate feature time series for the application of

modeling aspects related to the emotions expressed in mu-

sic. Since very little work has been done within this field,

we make a broad comparison of a multitude of generative

models of time series data. We consider how the time se-

ries are modeled on two aspects: whether the observations

are continuous or discrete, and whether temporal informa-

tion should be taken into account or not. This results in

four different combinations, which we investigate: 1) a

continuous, temporal, independent representation which

includes the mean, single Gaussian and GMM models; 2) a

temporal, dependent, continuous representation using Au-

toregressive models; 3) a discretized features representation

using vector quantization in a temporally independent Vec-

tor Quantization (VQ) model; and finally 4) a representation

including the temporal aspect fitting Markov and Hidden

Markov Models (HMM) on the discretized data. A mul-

titude of these models have never been used in MIR as

a track-based representation in this specific setting. To

use these generative models in a discriminative setting, the

Product Probability Kernel (PPK) is selected as the natural

kernel for all the feature representations considered. We

extend a kernel-generalized linear model (kGLM) model

specifically for pairwise observations for use in predicting

emotions expressed in music. We specifically focus on

the feature representation and the modeling pipeline and

therefore use simple, well-known, frequently used MFCC

features. In total, eighteen different models are investigated

on two datasets of pairwise comparisons evaluated on the

valence and arousal dimensions.

2. FEATURE REPRESENTATION

In order to model higher order cognitive aspects of music,

we first consider standard audio feature extraction which

results in a frame-based, vector space representation of the

music track. Given T frames, we obtain a collection of T
vectors with each vector at time t denoted by xt ∈ R

D,

where D is the dimension of the feature space.The main

concern here is how to obtain a track-level representation

of the sequence of feature vectors for use in subsequent

modelling steps. In the following, we will outline a number

of different possibilities — and all these can be considered

as probabilistic densities over either a single feature vector

or a sequence of such (see also Table. 1).

Continuous: When considering the original feature

space, i.e. the sequence of multivariate random variables,

a vast number of representations have been proposed de-

pending on whether the temporal aspects are ignored (i.e.

considering each frame independently of all others) or mod-

eling the temporal dynamics by temporal models.

In the time-independent case, we consider the feature as

a bag-of-frames, and compute moments of the independent

samples; namely the mean. Including higher order moments

will naturally lead to the popular choice of representing the

time-collapsed time series by a multivariate Gaussian dis-

tribution (or other continuous distributions). Generalizing

this leads to mixtures of distributions such as the GMM

(or another universal mixture of other distributions) used in

an abundance of papers on music modeling and similarity

(e.g. [1, 7]).

Instead of ignoring the temporal aspects, we can model

the sequence of multivariate feature frames using well-

known temporal models. The simplest models include AR

models [10].

Discrete: In the discrete case, where features are natu-

rally discrete or the original continuous feature space can

be quantized using VQ with a finite set of codewords re-

sulting in a dictionary(found e.g. using K-means). Given

this dictionary each feature frame is subsequently assigned

a specific codeword in a 1-of-P encoding such that a frame

at time t is defined as vector x̃t with one non-zero element.

At the track level and time-independent case, each frame

is encoded as a Multinomial distribution with a single draw,

x̃ ∼ Multinomial(λ, 1), where λ denotes the probability

of occurrence for each codeword and is computed on the

basis of the histogram of codewords for the entire track.

In the time-dependent case, the sequence of codewords,

x̃0, x̃1, ..., x̃T , can be modeled by a relatively simple (first

order) Markov model, and by introducing hidden states this

may be extended to the (homogeneous) Hidden Markov

model with Multinomial observations (HMMdisc).

2.1 Estimating the Representation

The probabilistic representations are all defined in terms

of parametric densities which in all cases are estimated

using standard maximum likelihood estimation (see e.g. [2]).

Model selection, i.e. the number of mixture components,

AR order, and number of hidden states, is performed using
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Obs. Time Representation Density Model θ Base

C
on

tin
uo

us
Indp.

Mean p (x|θ) ≡ δ (μ) μ, σ Gaussian

Gaussian p (x|θ) = N (x|μ,Σ) μ,Σ Gaussian

GMM p (x|θ) =
L∑

i=1

λiN (x|μi,Σi) {λi, μi,Σi}i=1:L Gaussian

Temp. AR p (x0,x1, ..,xP |θ) = N
(
[x0,x1, ..,xP ]

�|m,Σ|A,C

)
m,Σ|A,C Gaussian

D
is

cr
et

e Indp. VQ p (x̃|θ) = λ λ Multinomial

Temp.
Markov p (x̃0, x̃1, .., x̃T |θ) = λx̃0

T∏
t=1

Λx̃t,x̃t−1 λ,Λ Multinomial

HMMdisc p (x̃0, x̃1, .., x̃T |θ) = ∑
z0:T

λz0

T∏
t=1

Λzt,zt−1Φt λ,Λ,Φ Multinomial

Table 1. Continuous, features, x ∈ R
D, L is the number of components in the GMM, P indicates the order of the AR

model, A and C are the coefficients and noise covariance in the AR model respectively and T indicates the length of the

sequence. Discrete, VQ: x̃ ∼ Multinomial (λ), Λzt,zt−1 = p (zt|zt−1), Λx̃t,x̃t−1 = p (x̃t|x̃t−1), Φt = p (x̃t|zt). The

basic Mean representation is often used in the MIR field in combination with a so-called squared exponential kernel [2],

which is equivalent to formulating a PPK with a Gaussian with the given mean and a common, diagonal covariance matrix

corresponding to the length scale which can be found by cross-validation and specifically using q = 1 in the PPK.

Bayesian Information Criterion (BIC, for GMM and HMM),

or in the case of the AR model, CV was used.

2.2 Kernel Function

The various track-level representations outlined above are

all described in terms of a probability density as outlined in

Table 1, for which a natural kernel function is the Probabil-

ity Product Kernel [6]. The PPK forms a common ground

for comparison and is defined as,

k
(
p (x|θ) , p

(
x|θ′)) = ∫ (

p (x|θ) p
(
x|θ′))qdx, (1)

where q > 0 is a free model parameter. The parameters of

the density model, θ, obviously depend on the particular

representation and are outlined in Tab.1. All the densities

discussed previously result in (recursive) analytical compu-

tations. [6, 11]. 1

3. PAIRWISE KERNEL GLM

The pairwise paradigm is a robust elicitation method to the

more traditional direct scaling approach and is reviewed

extensively in [8]. This paradigm requires a non-traditional

modeling approach for which we derive a relatively simple

kernel version of the Bradley-Terry-Luce model [3] for

pairwise comparisons. The non-kernel version was used for

this particular task in [9].

In order to formulate the model, we will for now assume

a standard vector representation for each of N audio ex-

cerpts collected in the set X = {xi|i = 1, ..., N}, where

xi ∈ R
D, denotes a standard, D dimensional audio fea-

ture vector for excerpt i. In the pairwise paradigm, any

two distinct excerpts with index u and v, where xu ∈ X
and xv ∈ X , can be compared in terms of a given aspect

1 It should be noted that using the PPK does not require the same length
T of the sequences (the musical excerpts). For latent variable models,
such as the HMM, the number of latent states in the models can also be
different. The observation space, including the dimensionality D, is the
only thing that has to be the same.

(such as arousal/valance). With M such comparisons we de-

note the output set as Y = {(ym;um, vm)|m = 1, ...,M},
where ym ∈ {−1,+1} indicates which of the two excerpts

had the highest valence (or arousal). ym = −1 means that

the um’th excerpt is picked over the vm’th and visa versa

when ym = 1.

The basic assumption is that the choice, ym, between the

two distinct excerpts, u and v, can be modeled as the differ-

ence between two function values, f(xu) and f(xv). The

function f : X → R hereby defines an internal, but latent,

absolute reference of valence (or arousal) as a function of

the excerpt (represented by the audio features, x).

Modeling such comparisons can be accomplished by the

Bradley-Terry-Luce model [3, 16], here referred to more

generally as the (logistic) pairwise GLM model. The choice

model assumes logistically distributed noise [16] on the

individual function value, and the likelihood of observing a

particular choice, ym, for a given comparison m therefore

becomes

p (ym|fm) ≡ 1

1 + e−ym·zm , (2)

with zm = f(xum
)−f(xvm

) and fm = [f(xum
), f(xvm

)]T .

The main question is how the function, f(·), is modeled. In

the following, we derive a kernel version of this model in the

framework of kernel Generalized Linear Models (kGLM).

We start by assuming a linear and parametric model of

the form fi = xiw
 and consider the likelihood defined

in Eq. (2). The argument, zm, is now redefined such that

zm =
(
xum

w − xvm
w). We assume that the model

parameterized by w is the same for the first and second in-

put, i.e. xum
and xvm

. This results in a projection from the

audio features x into the dimensions of valence (or arousal)

given by w, which is the same for all excerpts. Plugging

this into the likelihood function we obtain:

p (ym|xum
,xvm

,w) =
1

1 + e−ym((xum
−xum)w�)

. (3)
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Following a maximum likelihood approach, the effective

cost function, ψ(·), defined as the negative log likelihood

is:

ψGLM (w) = −
∑M

m=1
log p (ym|xum

,xvm
,w). (4)

Here we assume that the likelihood factorizes over the ob-

servations, i.e. p (Y|f) = ∏M
m=1 p (ym|fm). Furthermore,

a regularized version of the model is easily formulated as

ψGLM−L2 (w) = ψGLM + γ ‖w‖22 , (5)

where the regularization parameter γ is to be found using

cross-validation, for example, as adopted here. This cost is

still continuous and is solved with a L-BFGS method.

This basic pairwise GLM model has previously been

used to model emotion in music [9]. In this work, the

pairwise GLM model is extended to a general regularized

kernel formulation allowing for both linear and non-linear

models. First, consider an unknown non-linear map of an

element x ∈ X into a Hilbert space,H, i.e., ϕ(x) : X !→ H.

Thus, the argument zm is now given as

zm = (ϕ (xum)− ϕ (xvm))wT (6)

The representer theorem [14] states that the weights, w —

despite the difference between mapped instances — can be

written as a linear combination of the inputs such that

w =
∑M

l=1
αl (ϕ (xul

)− ϕ (xvl
)) . (7)

Inserting this into Eq. (6) and applying the ”kernel trick” [2],

i.e. exploiting that 〈ϕ (x)ϕ (x′)〉H = k (x,x′), we obtain

zm = (ϕ (xum)− ϕ (xvm))

M∑
l=1

αl (ϕ(xul
)− ϕ(xvl

))

=
M∑
l=1

αl(ϕ (xum
)ϕ(xul

)− ϕ (xum
)ϕ(xvl

)

− ϕ (xvm
)ϕ(xul

) + ϕ (xvm
)ϕ(xvl

))

=
M∑
l=1

αl(k (xum
,xul

)− k (xum
,xvl

)

− k (xvm
,xul

) + k (xvm
,xvl

))

=
M∑
l=1

αlk ({xum ,xvm}, {xul
,xvl

}). (8)

Thus, the pairwise kernel GLM formulation leads exactly to

standard kernel GLM like [19], where the only difference is

the kernel function which is now a (valid) kernel between

two sets of pairwise comparisons 2 . If the kernel function

is the linear kernel, we obtain the basic pairwise logistic

regression presented in Eq. (3), but the the kernel formula-

tion easily allows for non-vectorial inputs as provided by

the PPK. The general cost function for the kGLM model is

2 In the Gaussian Process setting this kernel is also known as the Pair-
wise Judgment kernel [4], and can easily be applied for pairwise leaning
using other kernel machines such as support vector machines

defined as,

ψkGLM−L2 (α) = −
M∑

m=1

log p (ym|α,K) + γαKα,

i.e., dependent on the kernel matrix, K, and parameters

α. It is of the same form as for the basic model and we

can apply standard optimization techniques. Predictions for

unseen input pairs {xr,xs} are easily calculated as

Δfrs = f (xr)− f (xs) (9)

=
∑M

m=1
αm k ({xum

,xvm
}, {xr,xs}). (10)

Thus, predictions exist only as delta predictions. However

it is easy to obtain a “true” latent (arbitrary scale) function

for a single output by aggregating all the delta predictions.

4. DATASET & EVALUATION APPROACH

To evaluate the different feature representations, two datasets

are used. The first dataset (IMM) consists of NIMM = 20 ex-

cerpts and is described in [8]. It comprises all MIMM = 190
unique pairwise comparisons of 20 different 15-second

excerpts, chosen from the USPOP2002 3 dataset. 13 par-

ticipants (3 female, 10 male) were compared on both the

dimensions of valence and arousal. The second dataset

(YANG) [18] consists of MYANG = 7752 pairwise compar-

isons made by multiple annotators on different parts of the

NYANG = 1240 different Chinese 30-second excerpts on

the dimension of valence. 20 MFCC features have been

extracted for all excerpts by the MA toolbox 4 .

4.1 Performance Evaluation

In order to evaluate the performance of the proposed repre-

sentation of the multivariate feature time series we compute

learning curves. We use the so-called Leave-One-Excerpt-

Out cross validation, which ensures that all comparisons

with a given excerpt are left out in each fold, differing from

previous work [9]. Each point on the learning curve is

the result of models trained on a fraction of all available

comparisons in the training set. To obtain robust learning

curves, an average of 10-20 repetitions is used. Further-

more a ’win’-based baseline (Baselow) as suggested in [8]

is used. This baseline represents a model with no informa-

tion from features. We use the McNemar paired test with

the Null hypothesis that two models are the same between

each model and the baseline, if p < 0.05 then the models

can be rejected as equal on a 5% significance level.

5. RESULTS

We consider the pairwise classification error on the two out-

lined datasets with the kGLM-L2 model, using the outlined

pairwise kernel function combined with the PPK kernel

(q=1/2). For the YANG dataset a single regularization pa-

rameter γ was estimated using 20-fold cross validation used

3 http://labrosa.ee.columbia.edu/projects/
musicsim/uspop2002.html

4 http://www.pampalk.at/ma/
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Obs. Time Models Training set size
1% 5% 10% 20% 40% 80 % 100 %

C
on

tin
uo

us

Indp.

Mean 0.468 0.386 0.347 0.310 0.277 0.260 0.252

N (x|μ, σ) 0.464 0.394 0.358 0.328 0.297 0.279 0.274

N (x|μ,Σ) 0.440 0.366 0.328 0.295 0.259 0.253 0.246

GMMdiag 0.458 0.378 0.341 0.304 0.274 0.258 0.254

GMMfull 0.441 0.362 0.329 0.297 0.269 0.255 0.252

Temp.
DARCV 0.447 0.360 0.316 0.283 0.251 0.235 0.228
VARCV 0.457 0.354 0.316 0.286 0.265 0.251 0.248

D
is

cr
et

e

Indp.

VQp=256 0.459 0.392 0.353 0.327 0.297 0.280 0.279*

VQp=512 0.459 0.394 0.353 0.322 0.290 0.272 0.269

VQp=1024 0.463 0.396 0.355 0.320 0.289 0.273 0.271

Temp.

Markovp=8 0.454 0.372 0.333 0.297 0.269 0.254 0.244

Markovp=16 0.450 0.369 0.332 0.299 0.271 0.257 0.251

Markovp=24 0.455 0.371 0.330 0.297 0.270 0.254 0.248

Markovp=32 0.458 0.378 0.338 0.306 0.278 0.263 0.256

HMMp=8 0.461 0.375 0.335 0.297 0.267 0.250 0.246

HMMp=16 0.451 0.370 0.328 0.291 0.256 0.235 0.228
HMMp=24 0.441 0.366 0.328 0.293 0.263 0.245 0.240

HMMp=32 0.460 0.373 0.337 0.299 0.268 0.251 0.247

Baseline 0.485 0.413 0.396 0.354 0.319 0.290 0.285

Table 2. Classification error on the IMM dataset applying

the pairwise kGLM-L2 model on the valence dimension.

Results are averages of 20 folds, 13 subjects and 20 rep-

etitions. McNemar paired tests between each model and

baseline all result in p� 0.001 except for results marked

with * which has p > 0.05 with sample size of 4940.

across all folds in the CV. The quantization of the multi-

variate time series, is performed using a standard online

K-means algorithm [15]. Due to the inherent difficulty of

estimating the number of codewords, we choose a selection

specifically (8, 16, 24 and 32) for the Markov and HMM

models and (256, 512 and 1024) for the VQ models. We

compare results between two major categories, namely with

continuous or discretized observation space and whether

temporal information is included or not.

The results for the IMM dataset for valence are pre-

sented in Table 2. For continuous observations we see a

clear increase in performance between the Diagonal AR

(DAR) model of up to 0.018 and 0.024, compared to tra-

ditional Multivariate Gaussian and mean models respec-

tively. With discretized observations, an improvement of

performance when including temporal information is again

observed of 0.025 comparing the Markov and VQ mod-

els. Increasing the complexity of the temporal represen-

tation with latent states in the HMM model, an increase

of performance is again obtained of 0.016. Predicting the

dimension of arousal shown on Table 3, the DAR is again

the best performing model using all training data, outper-

forming the traditional temporal-independent models with

0.015. For discretized data the HMM is the best performing

model where we again see that increasing the complex-

ity of the temporal representation increases the predictive

performance. Considering the YANG dataset, the results

are shown in Table 4. Applying the Vector AR models

(VAR), a performance gain is again observed compared to

the standard representations like e.g. Gaussian or GMM.

For discretized data, the temporal aspects again improve

the performance, although we do not see a clear picture that

increasing the complexity of the temporal representation

increases the performance; the selection of the number of

hidden states could be an issue here.

Obs. Time Models Training set size
1% 5% 10% 20% 40% 80 % 100 %

C
on

tin
uo

us

Indp.

Mean 0.368 0.258 0.230 0.215 0.202 0.190 0.190

N (x|μ, σ) 0.378 0.267 0.241 0.221 0.205 0.190 0.185

N (x|μ,Σ) 0.377 0.301 0.268 0.239 0.216 0.208 0.201

GMMdiag 0.390 0.328 0.301 0.277 0.257 0.243 0.236

GMMfull 0.367 0.303 0.279 0.249 0.226 0.216 0.215

Temp.
DARCV 0.411 0.288 0.243 0.216 0.197 0.181 0.170
VARCV 0.393 0.278 0.238 0.213 0.197 0.183 0.176

D
is

cr
et

e

Indp.

VQp=256 0.351 0.241 0.221 0.208 0.197 0.186 0.183

VQp=512 0.356 0.253 0.226 0.211 0.199 0.190 0.189

VQp=1024 0.360 0.268 0.240 0.219 0.200 0.191 0.190

Temp.

Markovp=8 0.375 0.265 0.238 0.220 0.205 0.194 0.188

Markovp=16 0.371 0.259 0.230 0.210 0.197 0.185 0.182

Markovp=24 0.373 0.275 0.249 0.230 0.213 0.202 0.200

Markovp=32 0.374 0.278 0.249 0.229 0.212 0.198 0.192

HMMp=8 0.410 0.310 0.265 0.235 0.211 0.194 0.191

HMMp=16 0.407 0.313 0.271 0.235 0.203 0.185 0.181

HMMp=24 0.369 0.258 0.233 0.215 0.197 0.183 0.181
HMMp=32 0.414 0.322 0.282 0.245 0.216 0.200 0.194

Baseline 0.483 0.417 0.401 0.355 0.303 0.278 0.269

Table 3. Classification error on the IMM dataset applying

the pairwise kGLM-L2 model on the arousal dimension.

Results are averages of 20 folds, 13 participants and 20

repetitions. McNemar paired tests between each model and

baseline all result in p� 0.001 with a sample size of 4940.

Obs. Time Models Training set size
1% 5% 10% 20% 40% 80 % 100 %

C
on

tin
uo

us
Indp.

Mean 0.331 0.300 0.283 0.266 0.248 0.235 0.233

N (x|μ, σ) 0.312 0.291 0.282 0.272 0.262 0.251 0.249

N (x|μ,Σ) 0.293 0.277 0.266 0.255 0.241 0.226 0.220

GMMdiag 0.302 0.281 0.268 0.255 0.239 0.224 0.219

GMMfull 0.293 0.276 0.263 0.249 0.233 0.218 0.214

Temp.
DARp=10 0.302 0.272 0.262 0.251 0.241 0.231 0.230

VARp=4 0.281 0.260 0.249 0.236 0.223 0.210 0.206

D
is

cr
et

e

Indp.

VQp=256 0.304 0.289 0.280 0.274 0.268 0.264 0.224

VQp=512 0.303 0.286 0.276 0.269 0.261 0.254 0.253

VQp=1024 0.300 0.281 0.271 0.261 0.253 0.245 0.243

Temp.

Markovp=8 0.322 0.297 0.285 0.273 0.258 0.243 0.238

Markovp=16 0.317 0.287 0.272 0.257 0.239 0.224 0.219

Markovp=24 0.314 0.287 0.270 0.252 0.235 0.221 0.217
Markovp=32 0.317 0.292 0.275 0.255 0.238 0.223 0.217

HMMp=8 0.359 0.320 0.306 0.295 0.282 0.267 0.255

HMMp=16 0.354 0.324 0.316 0.307 0.297 0.289 0.233

HMMp=24 0.344 0.308 0.290 0.273 0.254 0.236 0.234

HMMp=32 0.344 0.307 0.290 0.272 0.254 0.235 0.231

Baseline 0.500 0.502 0.502 0.502 0.503 0.502 0.499

Table 4. Classification error on the YANG dataset applying

the pairwise kGLM-L2 model on the valence dimension.

Results are averages of 1240 folds and 10 repetitions. Mc-

Nemar paired test between each model and baseline results

in p� 0.001. Sample size of test was 7752.

6. DISCUSSION

In essence we are looking for a way of representing an entire

track based on the simple features extracted. That is, we are

trying to find generative models that can capture meaningful

information coded in the features specifically for coding

aspects related to the emotions expressed in music.

Results showed that simplifying the observation space

using VQ is useful when predicting the arousal data. Intro-

ducing temporal coding of VQ features by simple Markov

models already provides a significant performance gain,

and adding latent dimensions (i.e. complexity) a further

gain is obtained. This performance gain can be attributed

to the temporal changes in features and potentially hidden

structures in the features not coded in each frame of the fea-

tures but, by their longer term temporal structures, captured

by the models.

We see the same trend with the continuous observations,

i.e. including temporal information significantly increases
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predictive performance. These results are specific for the

features used, the complexity, and potentially the model

choice might differ if other features were utilized. Future

work will reveal if other structures can be found in features

that describe different aspects of music; structures that are

relevant for describing and predicting aspects regarding

emotions expressed in music.

Another consideration when using the generative models

is that the entire feature time series is replaced as such

by the model, since the distances between tracks are now

between the models trained on each of the tracks and not

directly on the features 5 . These models still have to be

estimated, which takes time, but this can be done offline

and provide a substantial compression of the features used.

7. CONCLUSION

In this work we presented a general approach for evaluat-

ing various track-level representations for music emotion

prediction, focusing on the benefit of modeling temporal as-

pects of music. Specifically, we considered datasets based

on robust, pairwise paradigms for which we extended a

particular kernel-based model forming a common ground

for comparing different track-level representations of mu-

sic using the probability product kernel. A wide range

of generative models for track-level representations was

considered on two datasets, focusing on evaluating both

using continuous and discretized observations. Modeling

both the valence and arousal dimensions of expressed emo-

tion showed a clear gain in applying temporal modeling

on both the datasets included in this work. In conclusion,

we have found evidence for the hypothesis that a statisti-

cally significant gain is obtained in predictive performance

by representing the temporal aspect of music for emotion

prediction using MFCC’s.
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ABSTRACT 

This paper, we present the publication of our analysis da-
ta and analyzing tool based on the generative theory of 
tonal music (GTTM). Musical databases such as score 
databases, instrument sound databases, and musical piec-
es with standard MIDI files and annotated data are key to 
advancements in the field of music information technolo-
gy. We started implementing the GTTM on a computer in 
2004 and ever since have collected and publicized test 
data by musicologists in a step-by-step manner. In our 
efforts to further advance the research on musical struc-
ture analysis, we are now publicizing 300 pieces of anal-
ysis data as well as the analyzer. Experiments showed 
that for 267 of 300 pieces the analysis results obtained by 
a new musicologist were almost the same as the original 
results in the GTTM database and that the other 33 pieces 
had different interpretations. 

1. INTRODUCTION 

For over ten years we have been constructing a musical 
analysis tool based on the generative theory of tonal 
music (GTTM) [1, 2]. The GTTM, proposed by Lerdahl 
and Jackendoff, is one in which the abstract structure of 
a musical piece is acquired from a score [3]. Of the 
many music analysis theories that have been proposed 
[4–6], we feel that the GTTM is the most promising in 
terms of its ability to formalize musical knowledge be-
cause it captures aspects of musical phenomena based 
on the Gestalt occurring in music and then presents 
these aspects with relatively rigid rules. 
   The time-span tree and prolongational trees acquired 
by GTTM analysis can be used for melody morphing, 
which generates an intermediate melody between two 
melodies with a systematic order [7]. It can also be 
used for performance rendering [8–10] and reproduc-
ing music [11] and provides a summarization of the 
music that can be used as a search representation in 
music retrieval systems [12]. 

In constructing a musical analyzer, test data from 
musical databases is very useful for evaluating and 
improving the performance of the analyzer. The Essen 
folk song collection is a database for folk-music re-
search that contains score data on 20,000 songs along 
with phrase segmentation information and also pro-
vides software for processing the data [13]. The Réper-

toire International des Sources Musicales (RISM), an 
international, non-profit organization with the aim of 
comprehensively documenting extant musical sources 
around the world, provides an online catalogue con-
taining over 850,000 records, mostly for music manu-
scripts [14]. The Variations3 project provides online 
access to streaming audio and scanned score images 
for the music community with a flexible access control 
framework [15], and the Real World Computing 
(RWC) Music Database is a copyright-cleared music 
database that contains the audio signals and corre-
sponding standard MIDI files for 315 musical pieces 
[16,17]. The Digital Archive of Finnish Folk Tunes 
provides 8613 finish folk song midi files with annotat-
ed meta data and Matlab data matrix encoded by midi 
toolbox [18]. The Codaich contains 20,849 MP3 re-
cordings, from 1941 artists, with high-quality annota-
tions [19], and the Latin Music Database contains 
3,227 MP3 files from different music genres [20].  

When we first started constructing the GTTM analyzer, 
however, there was not much data that included both a 
score and the results of analysis by musicologists. This 
was due to the following reasons: 

There were no computer tools for GTTM analysis. 
Only a few paper-based analyses of GTTM data had 

been done because a data-saving format for computer 
analysis had not yet been defined. We therefore defined 
an XML-based format for analyzing GTTM results and 
developed a manual editor for the editing. 

Editing the tree was difficult. 
Musicologists using the manual editor to acquire anal-

ysis results need to perform a large number of manual 
operations. This is because the time-span and prolonga-
tional trees acquired by GTTM analysis are binary trees, 
and the number of combinations of tree structures in a 
score analysis increases exponentially with the number of 
notes. We therefore developed an automatic analyzer 
based on the GTTM. 

There was a lack of musicologists. 
Only a few hundred musicologists can analyze scores 

by using the GTTM. In order to encourage musicologists 
to co-operate with expanding the GTTM database, we 
publicized our analysis tool and analysis data based on 
the GTTM. 

The music analysis was ambiguous. 
A piece of music generally has more than one interpre-

tation, and dealing with such ambiguity is a major prob-
lem when constructing a music analysis database. We 
performed experiments to compare the different analysis 
results obtained by different musicologists. 

 © Masatoshi Hamanaka, Keiji Hirata, Satoshi Tojo. 
Licensed under a Creative Commons Attribution 4.0 International 
License (CC BY 4.0). Attribution: Masatoshi Hamanaka, Keiji Hirata,
Satoshi Tojo. “Musical Structural Analysis Database based on GTTM”,
15th International Society for Music Information Retrieval Conference, 
2014. 
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We started implementing our GTTM analyzer on a 
computer in 2004, immediately began collecting test data 
produced by musicologists, and in 2009 started publiciz-
ing the GTTM database and analysis system. We started 
the GTTM database with 100 pairs of scores and time-
span trees comprising and then added the prolongational 
trees and chord progression data. At present, we have 300 
data sets that are being used for researching music struc-
tural analysis [1]. The tool we use for analyzing has 
changed from its original form. We originally constructed 
a standalone application for the GTTM-based analysis 
system, but when we started having problems with bugs 
in the automatic analyzer, we changed the application to a 
client-server system. 

In experiments we compared the analysis results of two 
different musicologists, one of whom was the one who 
provided the initial analysis data in the GTTM database. 
For 267 of 300 pieces of music the two results were the 
same, but the other 33 pieces had different interpretations. 
Calculating the coincidence of the time-spans in those 33 
pieces revealed that 233 of the 2310 time-spans did not 
match. 

This rest of this paper is organized as follows. In sec-
tion 2 we describe the database design policy and data 
sets, in section 3 we explain our GTTM analysis tool, in 
section 4 we present the experimental results, and in sec-
tion 5 we conclude with a brief summary. 

2. GTTM DATABASE 

The GTTM is composed of four modules, each of which 
assigns a separate structural description to a listener’s 
under-standing of a piece of music. Their output is a 
grouping structure, a metrical structure, a time-span tree, 
and a prolongational tree (Fig. 1). 
   The grouping structure is intended to formalize the in-
tuitive belief that tonal music is organized into groups 
comprising subgroups. The metrical structure describes 
the rhythmical hierarchy of the piece by identifying the 
position of strong beats at the levels of a quarter note, 
half note, one measure, two measures, four measures,  

  

Figure 1. Grouping structure, metrical structure, time-
span tree, and prolongational tree. 

and so on. The time-span tree is a binary tree and is a hi-
erarchical structure describing the relative structural im-
portance of notes that differentiate the essential parts of 
the melody from the ornamentation. The prolongational 
tree is a binary tree that expresses the structure of tension 
and relaxation in a piece of music. 

2.1 Design policy of analysis database 

As at this stage several rules in the theory allow only 
monophony, we restrict the target analysis data to mono-
phonic music in the GTTM database. 

2.1.1 Ambiguity in music analysis 

We have to consider two types of ambiguity in music 
analysis. One involves human understanding of music 
and tolerates subjective interpretation, while the latter 
concerns the representation of music theory and is 
caused by the incompleteness of a formal theory like the 
GTTM. We therefore assume because of the former type 
of ambiguity that there is more than one correct result. 

2.1.2 XML-based data structure 

We use an XML format for all analysis data. MusicXML 
[22] was chosen as a primary input format because it 
provides a common ‘interlingua’ for music notation, 
analysis, retrieval, and other applications. We designed 
GroupingXML, MetricalXML, TimespanXML, and Pro-
longationalXML as the export formats for our analyzer. 
We also designed HarmonicXML to express the chord 
progression. The XML format is suitable for expressing 
the hierarchical grouping structures, metrical structures, 
time-span trees, and prolongational trees. 

2.2 Data sets in GTTM database 

The database should contain a variety of different musi-
cal pieces, and when constructing it we cut 8-bar-long 
pieces from whole pieces of music because the time re-
quired for analyzing and editing would be too long if 
whole pieces were analyzed. 

2.2.1 Score data 

We collected 300 8-bar-long monophonic classical music 
pieces that include notes, rests, slurs, accents, and articu-
lations entered manually with music notation software 
called Finale [22]. We exported the MusicXML by using 
a plugin called Dolet. The 300 whole pieces and the 
eight bars were selected by a musicologist. 

2.2.2 Analysis data 

We asked a musicology expert to manually analyze the 
score data faithfully with regard to the GTTM, using the 
manual editor in the GTTM analysis tool to assist in edit-
ing the grouping structure, metrical structure, time-span 
tree, and prolongational tree. She also analyzed the chord 
progression. Three other experts crosschecked these 
manually produced results. 

Grouping  
structure 

Grouping

Metrical 
structure 

Time-span Tree 

Prolongational Tree 
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3. INTERACTIVE GTTM ANALYZER 

Our GTTM analysis tool, called the Interactive GTTM 
analyzer, consists of automatic analyzers and an editor 
that can be used to edit the analysis results manually (Fig. 
2). The graphic user interface of the tool was constructed 
in Java, making it usable on multiple platforms. However, 
some functions of the manual editor work only on 
MacOSX, which must use the MacOSX API. 

3.1 Automatic analyzer for GTTM 

We have constructed four types of GTTM analyzers: 
ATTA, FATTA, �GTTM, and �GTTMII [2, 23–25]. 
The Interactive GTTM analyzer can use either the ATTA 
or the �GTTMII, and there is a trade-off relationship be-
tween the automation of the analysis process and the var-
iation of the analysis results (Fig. 3). 

 
Figure 3. Trade-off between automation of analysis pro-
cess and variation of analysis results.  

3.1.1 ATTA: Automatic Time-Span Tree Analyzer 

We extended the original theory of GTTM with a full 
externalization and parameterization and proposed a ma-
chine-executable extension of the GTTM called 
exGTTM [2]. The externalization includes introducing 
an algorithm to generate a hierarchical structure of the 
time-span tree in a mixed top-down and bottom-up man-
ner and the parameterization includes introducing a pa-
rameter for controlling the priorities of rules to avoid 
conflict among the rules as well as parameters for con-
trolling the shape of the hierarchical time-span tree. We 
implemented the exGTTM on a computer called the 
ATTA, which can output multiple analysis results by 
configuring the parameters. 

3.1.2 FATTA: Full Automatic Time-Span Tree Analyzer 

Although the ATTA has adjustable parameters for control-
ling the weight or priority of each rule, these parameters 
have to be set manually. This takes a long time because 
finding the optimal values of the settings themselves takes 
a long time. The FATTA can automatically estimate the 
optimal parameters by introducing a feedback loop from 
higher-level structures to lower-level structures on the ba-
sis of the stability of the time-span tree [23]. The FATTA 
can output only one analysis result without manual config-
uration. However, our experimental results showed that the 
performance of the FATTA is not good enough for group-
ing structure or time-span tree analyses.  

Analysis processAnalysis process
AutomaticManual

User labor User labor 
SmallBig

Analysis results
Only oneVarious

lAnAn
ATTA �GTTM

ocessocess
�GTTM II GTTM

ATTA

Figure 2. Interactive GTTM analyzer. 
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3.1.3 �GTTM 

We have developed �GTTM, a system that can detect the 
local grouping boundaries in GTTM analysis, by combin-
ing GTTM with statistical learning [24]. The �GTTM 
system statistically learns the priority of the GTTM rules 
from 100 sets of score and grouping structure data ana-
lyzed by a musicologist and does this by using a decision 
tree. Its performance, however, is not good enough be-
cause it can construct only one decision tree from 100 
data sets and cannot output multiple results. 

3.1.4 �GTTM II 

The �GTTM II system assumes that a piece of music has 
multiple interpretations and thus it constructs multiple 
decision trees (each corresponding to an interpretation) 
by iteratively clustering the training data and training the 
decision trees. Experimental results showed that the 
�GTTM II system outperformed both the ATTA and 
�GTTM systems [25]. 

3.2 Manual editor for the GTTM 

In some cases the GTTM analyzer may produce an ac-
ceptable result that reflects the user’s interpretation, but 
in other cases it may not. A user who wants to change 
the analysis result according to his or her interpretation 
can use the GTTM manual editor. This editor has nu-
merous functions that can load and save the analysis re-
sults, call the ATTA or �GTTM II analyzer, record the 
editing history, undo the editing, and autocorrect incor-
rect structures. 

3.3 Implementation on client-server system 

Our analyzer is updated frequently, and sometimes it is a 
little difficult for users to download an updated program. 
We therefore implement our Interactive GTTM analyzer 
on a client-server system. The graphic user interface on 
the client side runs as a Web application written in Java, 
while the analyzer on the server side runs as a program 
written in Perl. This enables us to update the analyzer 
frequently while allowing users to access the most recent 
version automatically. 

4. EXPERIMENTAL RESULTS 

GTTM analysis of a piece of music can produce multiple 
results because the interpretation of a piece of music is 
not unique. We compared the different analysis results 
obtained by different musicologists. 

4.1 Condition of experiment 

A new musicologist who had not been involved in the 
construction of the GTTM database was asked to manu-
ally analyze the 300 scores in the database faithfully with 
regard to the GTTM. We provided only the 8-bar-long 
monophonic pieces of music to the musicologist, but she 

could refer the original score as needed. When analyzing 
pieces of music, she could not see the analysis results 
already in GTTM database. She was told to take however 
much time she needed, and the time needed for analyzing 
one song ranged from fifteen minutes to six hours. 

4.2 Analysis results 

Experiments showed that the analysis results for 267 of 
300 pieces were the same as the original results in the 
GTTM database. The remaining 33 pieces had different 
interpretations, so we added the 33 new analysis results 
to the GTTM database after they were cross-checked by 
three other experts. 
   For those 33 pieces with different interpretations, we 
found the grouping structure in the database to be the 
same as the grouping structure obtained by the new mu-
sicologist. And for all 33 pieces, in the time-span tree the 
root branch and branches directly connected to the root 
branch in the database were the same as the ones in the 
new musicologist’s results. 
   We also calculated the coincidence of time-spans in 
both sets of results for those 33 pieces. A time-span tree 
is a binary tree and each branch of a time-span tree has a 
time-span. In the ramification of two branches, there is a 
primary (salient) time-span and secondary (nonsalient) 
time-span in a parent time-span (Fig. 4). Two time-
spans match when the start and end times of the primary 
and secondary time-spans are the same. We found that 
233 of the 2310 time-spans in those 33 pieces of music 
did not match.  

 
Figure 4. Parent and primary and secondary time-spans.  

4.3 An example of analysis 

"Fuga C dur" composed by Johann Pachelbel had the 
most unmatched time-spans when the analysis results in 
the GTTM database (Fig. 5a) were compared with the 
analysis results by the new musicologist (Fig. 5b). From 
another musicologist we got the following comments 
about different analysis results for this piece of music. 

(a) Analysis result in GTTM database 
In the analysis result (a), note 2 was interpreted as the 
start of the subject of the fuga. Note 3 is more salient 
than note 2 because note 2 is a non-chord tone. Note 5 is 
the most salient note in the time-span tree of first bar be-
cause notes 4 to 7 are a fifth chord and note 5 is a tonic 
of the chord. The reason that note 2 was interpreted as 

� �

Primary (salient) branch

Secondary (nonsalient) branch

Parent time-span

Primary 
time-span

Secondary
time-span
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the start of the subject of the fuga is uncertain, but a mu-
sicologist who is familiar with music before the Baroque 
era should be able to see that note 2 is the start of the 
subject of the fuga.   

(b) Analysis result by the musicologist 

The analysis result (b) was a more simple interpretation 
than (a) that note 1 is the start of the subject of the fuga. 
However, it is curious that the trees of second and third 
beats of the third bar are separated, because both are the 
fifth chord. 

The musicologist who made this comment said that it 
is difficult to analyze a monophonic piece of music from 
the contrapuntal piece of music without seeing other 
parts. Chord information is necessary for GTTM analysis, 
and a musicologist who is using only a monophonic 
piece of music has to imagine other parts. This imagining 
results in multiple interpretations. 

5. CONCLUSION 

We described the publication of our Interactive GTTM 
analyzer and the GTTM database. The analyzer and da-
tabase can be downloaded from the following website: 

http://www.gttm.jp/ 

The GTTM database has the analysis data for the three 
hundred monophonic music pieces. Actually, the manual 
editor in our Interactive GTTM analyzer enables one to 
deal with polyphonic pieces. Although the analyzer itself 
works only on monophonic pieces, a user can analyze 
polyphonic pieces by using the analyzers’s manual editor 
to divide polyphonic pieces into monophonic parts. We 
also attempted to extend the GTTM framework to enable 
the analysis of polyphonic pieces [23]. We plan to publi-
cize a hundred pairs of polyphonic score and musicolo-
gists’ analysis results. 

Although the 300 pieces in the current GTTM data-
base are only 8 bars long, we also plan to analyse whole 
pieces of music by using the analyzer’s slide bar for 
zooming piano roll scores and GTTM structures. 
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ABSTRACT

The bag of frames (BOF) approach commonly used in

music emotion recognition (MER) has several limitations.

The semantic gap is believed to be responsible for the glass
ceiling on the performance of BOF MER systems. How-

ever, there are hardly any alternative proposals to address

it. In this article, we introduce the theoretical framework

of a computational model of auditory memory that incor-

porates temporal information into MER systems. We ad-

vocate that the organization of auditory memory places

time at the core of the link between musical meaning and

musical emotions. The main goal is to motivate MER re-

searchers to develop an improved class of systems capable

of overcoming the limitations of the BOF approach and

coping with the inherent complexity of musical emotions.

1. INTRODUCTION

In the literature, the aim of music emotion recognition

(MER) is commonly said to be the development of systems

to automatically estimate listeners’ emotional response to

music [2, 7, 8, 11, 18, 19, 33] or simply to organize or clas-

sify music in terms of emotional content [14, 17]. Appli-

cations of MER range from managing music libraries and

music recommendation systems to movies, musicals, ad-

vertising, games, and even music therapy, music educa-

tion, and music composition [11]. Possibly inspired by au-

tomatic music genre classification [28, 29], a typical ap-

proach to MER categorizes emotions into a number of

classes and applies machine learning techniques to train

a classifier and compare the results against human annota-

tions, considered the “ground truth” [14, 19, 28, 32]. Kim

et. al [14] presented a thorough state-of-the-art review, ex-

ploring a wide range of research in MER systems, focusing

particularly on methods that use textual information (e.g.,

websites, tags, and lyrics) and content-based approaches,

as well as systems combining multiple feature domains

(e.g., features plus text). Commonly, music features are

c© Marcelo Caetano, Frans Wiering.
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estimated from the audio and used to represent the mu-

sic. These features are calculated independently from each

other and from their temporal progression, resulting in the

bag of frames (BOF) [11, 14] paradigm.

The ‘Audio Mood Classification’ (AMC) task in

MIREX [5, 10] epitomizes the BOF approach to MER,

presenting systems whose performance range from 25 %

to 70 % (see Table 1). Present efforts in MER typically

concentrate on the machine learning algorithm that per-

forms the map in an attempt to break the ‘glass ceiling’ [1]

thought to limit system performance. The perceived mu-

sical information that does not seem to be contained in

the audio even though listeners agree about its existence,

called ‘semantic gap’ [3, 31], is considered to be the cause

of the ‘glass ceiling.’ However, the current approach to

MER has been the subject of criticism [2, 11, 28, 31].

Knowledge about music cognition, music psychology,

and musicology is seldom explored in MER. It is widely

known that musical experience involves more than mere

processing of music features. Music happens essentially in

the brain [31], so we need to take the cognitive mechanisms

involved in processing musical information into account if

we want to be able to model people’s emotional response

to music. Among the cognitive processes involved in lis-

tening to music, memory plays a major role [27]. Music

is intrinsically temporal, and time is experienced through

memory. Studies [12,16,25] suggest that the temporal evo-

lution of the musical features is intrinsically linked to lis-

teners’ emotional response to music.

In this article, we speculate that the so called ‘semantic

gap’ [3] is a mere reflection of how the BOF approach mis-

represents both the listener and musical experience. Our

goal is not to review MER, but rather emphasize the lim-

itations of the BOF approach and propose an alternative

model that relies on the organization of auditory memory

to exploit temporal information from the succession of mu-

sical sounds. For example, BOF MER systems typically

encode temporal information in delta and delta-delta co-

efficients [1], capturing only local instantaneous temporal

variations of the feature values. In a previous work [2],

we discussed different MER systems that exploit tempo-

ral information differently. Here, we take a step further

and propose the theoretical framework of a computational

model of auditory memory for MER . Our aim is to moti-

vate MER research to bridge the ‘semantic gap’ and break

the so called ‘glass ceiling’ [1, 3, 31].
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The next section discusses the complexity of musical

emotions and how this relates to the glass ceiling prevent-

ing BOF MER systems to improve their performance as

a motivation for proposing a paradigm change. Then, we

briefly introduce the model of auditory memory adopted,

followed by the proposed framework and considerations

about its implementation. Finally, we present the conclu-

sions and discuss future directions of this theoretical work.

2. MACHINE LEARNING AND MER

It is generally agreed that music conveys and evokes emo-

tions [9, 13]. In other words, listeners might feel happy

listening to a piece or simply perceive it as happy [9].

Research on music and emotions usually investigates the

musical factors involved in the process as well as listen-

ers’ response to music. There are many unanswered ques-

tions [13, 21], such as “which emotions does music ex-

press?”, “in what context do musical emotions occur?”,

“how does music express emotions?”, and “which factors

in music are expressive of emotions?” Researchers need to

address controversial issues to investigate these questions.

On the one hand, the relevant musical factors, and on the

other hand, the definition and measurement of emotion.

There is evidence [13] of emotional reactions to mu-

sic in terms of various subcomponents, such as subjective
feeling, psychophysiology, brain activation, emotional ex-
pression, action tendency, emotion regulation and these,

in turn, feature different psychological mechanisms like

brain stem reflexes, evaluative conditioning, emotional
contagion, visual imagery, episodic memory, rhythmic en-
trainment, and musical expectancy. Each mechanism is re-

sponsive to its own combination of information in the mu-

sic, the listener, and the situation. Among the causal fac-

tors that potentially affect listeners’ emotional response to

music are personal, situational, and musical [21]. Personal

factors include age, gender, personality, musical training,

music preference, and current mood; situational factors can

be physical such as acoustic and visual conditions, time

and place, or social such as type of audience, and occa-

sion. Musical factors include genre, style, key, tuning, or-

chestration, among many others.

Most modern emotion theorists suggest that an emotion

episode consists of coordinated changes in three major re-

action components: physiological arousal, motor expres-

sion, and subjective feeling (the emotion triad). Accord-

ing to this componential approach to emotion, we would

need to measure physiological changes, facial and vocal

expression, as well as gestures and posture along with self

reported feelings using a rich emotion vocabulary to esti-

mate the listeners’ emotional response. In MER, the emo-

tional response to music is commonly collected as self-

reported annotations for each music track, capturing “sub-

jective feelings” associated or experienced by the listener.

Some researchers [9] speculate that musical sounds can ef-

fectively cause emotional reactions (via brain stem reflex,

for example), suggesting that certain music dimensions

and qualities communicate similar affective experiences to

many listeners. The literature on the emotional effects of

music [9,13] has accumulated evidence that listeners often

agree about the emotions expressed (or elicited) by a par-

ticular piece, suggesting that there are aspects in music that

can be associated with similar emotional responses across

cultures, personal bias or preferences.

It is probably impractical to hope to develop a MER sys-

tem that could account for all facets of this complex prob-

lem. There is no universally accepted model or explanation

for the relationship between music and emotions. How-

ever, we point out that it is widely known and accepted that

MER systems oversimplify the problem when adopting the

BOF approach [11]. In this context, we propose a theoreti-

cal framework that uses the organization of auditory mem-

ory to incorporate temporal information into MER. We ar-

gue that time lies at the core of the complex relationship

between music and emotions and that auditory memory

mediates the processes involved. In what follows, we fo-

cus on the link between musical sounds and self-reported

subjective feelings associated to them through music lis-

tening. In other words, the association between the audio

features and perceived emotions.

2.1 The Glass Ceiling on System Performance

The performance of music information retrieval (MIR) sys-

tems hasn’t improved satisfactorily over the years [1, 10]

due to several shortcomings. Aucouturier and Pachet [1]

used the term ‘glass ceiling’ to suggest that there is a lim-

itation on system performance at about 65% R-precision

when using BOF and machine learning in music similar-

ity. Similarly, Huq et. al [11] examined the limitations of

the BOF approach to MER. They present the results of a

systematic study trying to maximize the prediction perfor-

mance of an automated MER system using machine learn-

ing. They report that none of the variations they considered

leads to a substantial improvement in performance, which

they interpret as a limit on what is achievable with machine

learning and BOF.

MIREX [10] started in 2005 with the goal of systemati-

cally evaluating state-of-the-art MIR algorithms, promot-

ing the development of the field, and increasing system

performance by competition and (possibly) cooperation.

MIREX included an “Audio Mood Classification” (AMC)

task for the first time in 2007 ‘inspired by the growing

interest in classifying music by moods, and the difficulty

in the evaluation of music mood classification caused by

the subjective nature of mood’ [10]. MIREX’s AMC task

uses a categorical representation of emotions divided in

five classes. These five ‘mood clusters’ were obtained by

analyzing ‘mood labels’ (user tags) for popular music from

the All Music Guide 1 .

The MIREX wiki 2 presents the “Raw Classification

Accuracy Averaged Over Three Train/Test Folds” per sys-

tem. Table 1 summarizes system performance over the

years for the MIREX task AMC, showing the minimum,

maximum, average, and standard deviation of these val-

ues across systems. Minimum performance has steadily

1 All Music Guide http://www.allmusic.com/
2 http://www.music-ir.org/mirex/wiki/MIREX_HOME
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Table 1: MIREX AMC performance from 2007 to 2013.

Minimum Maximum Average STD

2007 25.67% 61.50% 52.65% 11.19%

2008 30.33% 63.67% 52.39% 7.72%

2009 34.67% 65.67% 57.67% 6.17%

2010 36.12% 63.78% 56.48% 6.36%

2011 39.81% 69.48% 57.98% 9.33%

2012 46.14% 67.80% 62.67% 6.17%

2013 28.83% 67.83% 59.81% 10.29%

improved, but maximum performance presents a less sig-

nificant improvement. The standard deviation of perfor-

mance across systems has a general trend towards decreas-

ing (suggesting more homogeneity over the years). Most

algorithms are also tested in different classification tasks

(musical genre, for example), and the best in one task

are often also very good at other tasks, maybe indicating

there is more machine learning than musical knowledge

involved. Sturm [28] discusses the validity of the current

evaluation in MER. He argues that the current paradigm of

classifying music according to emotions only allows us to

conclude how well an MER system can reproduce “ground

truth” labels of the test data, irrespective of whether these

MER systems use factors irrelevant to emotion in music.

2.2 Bridging the Semantic Gap

In MIR, audio processing manipulates signals generated

by musical performance, whereas music is an abstract and

intangible cultural construct. The sounds per se do not

contain the essence of music because music exists in the

mind of the listener. The very notion of a ‘semantic gap’

is misleading [31]. The current BOF approach to MER

views music simply as data (audio signals) and therefore

misrepresents musical experience. Machine learning per-

forms a rigid map from “music features” to “emotional la-

bels”, as illustrated in part a) of Fig. 1, treating music as a

stimulus that causes a specific emotional response irrespec-

tive of personal and contextual factors which are known to

affect listeners’ emotional response [12, 16, 25] such as

listeners’ previous exposure and the impact of the unfold-
ing musical process. Memory is particularly important in

the recognition of patterns that are either stored in long-

term memory (LTM) from previous pieces or in short-term

memory (STM) from the present piece. Music seems to be

one of the most powerful cues to bring emotional experi-

ences from memory back into awareness.

Wiggins [31] suggests to look at the literature from mu-

sicology and psychology to study the cognitive mecha-

nisms involved in human music perception as the starting

point of MIR research, particularly musical memory, for

they define music. He argues that music is not just pro-

cessed by the listeners, it is defined by them. Wiggins

states that “music is a cognitive model”, therefore, only

cognitive models are likely to succeed in processing music

in a human-like way. He writes that “to treat music in a

way which is not human-like is meaningless, because mu-

sic is defined by humans. Finally, he concludes that the

Figure 1: Approaches to MER. Part a) illustrates the BOF

approach, which uses machine learning to map music fea-

tures to a region of a model of emotion. Part b) illustrates

the proposed approach, which relies on the organization of

auditory memory to estimate musical emotions as a form

of musical meaning emerging from musical structure.

human response to memory is key to understanding the

psychophysiological effect of musical stimuli, and that this

domain is often missing altogether from MIR research. In

this work, we view perceived musical emotions as a par-

ticular form of musical meaning [12, 16, 25], which is in-

timately related to musical structure by the organization of

auditory memory [27], as represented in part b) of Fig. 1.

3. AUDITORY MEMORY AND MER

Conceptually, memory can be divided into three processes

[27]: sensory memory (echoic memory and early process-

ing); short-term memory (or working memory); and long-

term memory. Each of these memory processes functions

on a different time scale, which can be loosely related to

levels of musical experience, the “level of event fusion”,

the “melodic and rhythmic level”, and the “formal level”,

respectively. Echoic memory corresponds to early process-

ing, when the inner ear converts sounds into trains of nerve

impulses that represent the frequency and amplitude of in-

dividual acoustic vibrations. During feature extraction, in-

dividual acoustic features (e.g., pitch, overtone structure)

are extracted and then bound together into auditory events.

The events then trigger those parts of long-term memory

(LTM) activated by similar events in the past, establishing

a context that takes the form of expectations, or memory of

the recent past. Long-term memories that are a part of this

ongoing context can persist as current “short-term mem-

ory” (STM). Short-term memories disappear from con-

sciousness unless they are brought back into the focus of

awareness repeatedly (e.g. by means of the rehearsal loop).

When the information is particularly striking or novel, it

may be passed back to LTM and cause modifications of

similar memories already established, otherwise it is lost.

The three types of processing define three basic time

scales on which musical events and patterns take place,

which, in turn, affect our emotional response to music.

The event fusion level of experience (echoic memory) is

associated with pitch perception. The main characteristic

of the melodic and rhythmic level is that separate events

on this time scale are grouped together in the present as

melodic grouping and rhythmic grouping, associated with

STM. Units on the formal level of musical experience con-

sist of entire sections of music and are associated with
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System Input System Output

Figure 2: The proposed framework for MER. The blocks

are system components and the arrows indicate the flow of

information. In the shaded area is pattern recognition, and

outside are the proposed processes, namely, the “unfolding

musical process” and the listener’s “previous exposure”.

The figure also illustrates how the organization of auditory

memory is related to system blocks.

LTM and our previous musical exposure. Echoic mem-

ory and early processing provide our immediate experi-

ence of the present moment of music in the focus of con-

scious awareness, and help to segment it into manageable

units; STM establishes the continuity and discontinuity of

that movement with the immediate past; and LTM provides

the context that gives it meaning, by relating the moment

to a larger framework of ongoing experience and previous

knowledge. The organization of memory and the limits of

our ability to remember have a profound effect on how we

perceive patterns of events and boundaries in time. Time is

a key element in memory processes and should be brought

to the foreground of MER [2].

4. THE PROPOSED FRAMEWORK

Fig. 2 shows the framework we propose to incorporate

memory processes in MER systems to illustrate how au-

ditory memory affects musical experience. The blocks as-

sociated with the system have a white background, while

memory processes have a dark background. The arrows

represent the flow of information, while the dashed line

represents the relationship between memory processes and

system blocks. The proposed framework can be interpreted

as an extension of the traditional approach (shaded area) by

including two blocks, previous exposure and unfolding mu-
sic process. In the BOF approach, the music features are

associated with echoic memory, related to very short tem-

poral scales and uncorrelated with the past or predictions

of future events. The framework we propose includes the

“Unfolding Musical Process” and “Previous Exposure” to

account for LTM and STM. The “Unfolding Musical Pro-

cess” represents the listeners’ perception of time (related

to musical context and expectations), while “Previous Ex-

posure” represents the personal and cultural factors that

makes listeners unique.

4.1 Unfolding Musical Process

The unfolding music process uses temporal information

from the current music stream to account for repeti-

tions and expectations. As Fig. 2 suggests, the unfold-

ing musical process acts as feedback loop that affects

the map between the music features and the listener re-

sponse. The dynamic aspect of musical emotion relates

to the cognition of musical structure [12, 16, 25]. Mu-

sical emotions change over time in intensity and qual-

ity, and these emotional changes covary with changes in

psycho-physiological measures [16, 25]. The human cog-

nitive system regulates our expectations to make predic-

tions [12]. Music (among other stimuli) influences this

principle, modulating our emotions. As the music unfolds,

the model is used to generate expectations, which are im-

plicated in the experience of listening to music. Musical

meaning and emotion depend on how the actual events in

the music play against this background of expectations.

4.2 Previous Exposure

The framework in Fig. 2 illustrates that previous exposure
accounts for musical events stored in LTM that affect the

listeners’ emotional response to music. Musical emotions

may change according to musical genre [6], cultural back-

ground, musical training and exposure, mood, physiolog-

ical state, personal disposition and taste [9, 12]. This in-

formation is user specific and depends on context thus it

cannot be retrieved from the current music stream, rather,

it has to be supplied by the listener.

5. IMPLEMENTATION ISSUES

Here we address how to treat individual components of the

model, which parts need human input and which are auto-

matic, and how the different system components communi-

cate and what information they share. The proposed frame-

work urges for a paradigm change in MER research rather

than simply a different kind of MER systems, including

representing the music stream, collecting time-stamped an-

notations, and system validation and evaluation [28]. Thus

we propose a class of dynamic MER systems that contin-

uously estimate how the listener’s perceived emotions un-

fold in time from a time-varying input stream of audio fea-

tures calculated from different musically related temporal

levels.

5.1 Music Stream as System Input

The proposed system input is a music stream unfolding

in time rather than a static (BOF) representation. To in-

corporate time into MER, the system should monitor the

temporal evolution of the music features [25] at different

time scales, the “level of event fusion”, the “melodic and

rhythmic level”, and the “formal level”. The feature vec-

tor should be calculated for every frame of the audio sig-

nal and kept as a time series (i.e., a time-varying vector of

features). Time-series analysis techniques such as linear

prediction and correlations (among many others) might be

used to extract trends and model information at later stages.
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5.2 Music Features

Eerola [6, 7] proposes to select musically relevant fea-

tures that have been shown to relate to musical emotions.

He presents a list of candidate features for a computa-

tional model of emotions that can be automatically esti-

mated from the audio and that would allow meaningful

annotations of the music, dividing the features into musi-

cally relevant levels related to three temporal scales. Sny-

der [27] describes three different temporal scales for mu-

sical events based on the limits of human perception and

auditory memory. Coutinho et. al [4] sustain that the

structure of affect elicited by music is largely dependent

on dynamic temporal patterns in low-level music structural

parameters. In their experiments, a significant part of the

listeners’ reported emotions can be predicted from a set of

six psychoacoustic features, namely, loudness, pitch level,

pitch contour, tempo, texture, and sharpness. Schubert [26]

used loudness, tempo, melodic contour, texture, and spec-

tral centroid as predictors in linear regression models of

valence and arousal.

Fig. 1 suggests that MER systems should use the mu-

sical structure to estimate musical meaning such as emo-

tions. Musical structure emerges from temporal patterns

of music features. In other words, MER systems should

include information about the rate of temporal change of

music features, such as how changes in loudness correlate

with the expression of emotions rather than loudness val-

ues only. These loudness variations, in turn, form patterns

of repetition on a larger temporal scale related to the struc-

ture of the piece that should also be exploited. Thus the

features should be hierarchically organized in a musically

meaningful way according to auditory memory [27].

5.3 Listener Response and System Output

Recently, some authors started investigating how the emo-

tional response evolves in time as the music unfolds.

Krumhansl [16] proposes to collect listener’s responses

continuously while the music is played, recognizing that

retrospective judgements are not sensitive to unfolding

processes. Recording listener’s emotional ratings over

time as time-stamped annotations requires listeners to

write down the emotional label and a time stamp as the mu-

sic unfolds, a task that has received attention [20]. Emo-

tions are dynamic and have distinctive temporal profiles

that are not captured by traditional models (boredom is

very different from astonishment in this respect, for exam-

ple). In this case, the temporal profiles would be matched

against prototypes stored in memory. Some musical web-

sites allow listeners to ‘tag’ specific points of the waveform

(for instance, SoundCloud 3 ), a valuable source of tempo-

ral annotations for popular music.

5.4 Unfolding Musical Process

The unfolding musical process acts as feedback loop that

exploits the temporal evolution of music features at the

three different time scales. The temporal correlation of

3 http://soundcloud.com/

each feature must be exploited and fed back to the map-

ping mechanism (see ‘unfolding musical process’) to esti-

mate listeners’ response to the repetitions and the degree

of “surprise” that certain elements might have [26]. Schu-

bert [25] studied the relationship between music features

and perceived emotion using continuous response method-

ology and time-series analysis. Recently, MER systems

started tracking temporal changes [4,22–24,30]. However,

modeling the unfolding musical process describes how the

time-varying emotional trajectory varies as a function of

music features. Korhonen et al. [15] use auto-regressive

models to predict current musical emotions from present

and past feature values, including information about the

rate of change or dynamics of the features.

5.5 Previous Exposure

Previous exposure is responsible for system customization

and could use reinforcement learning to alter system re-

sponse to the unfolding musical process. Here, the user

input tunes the long-term system behavior according to ex-

ternal factors (independent from temporal evolution of fea-

tures) such as context, mood, genre, cultural background,

etc. Eerola [6] investigated the influence of musical genre

on emotional expression and reported that there is a set

of music features that seem to be independent of musical

genre. Yang et al. [33] studied the role of individuality in

MER by evaluating the prediction accuracy of group-wise
and personalized MER systems by simply using annota-

tions from a single user as “ground truth” to train the MER

system.

6. CONCLUSIONS

Research on music emotion recognition (MER) commonly

relies on the bag of frames (BOF) approach, which uses

machine learning to train a system to map music features to

a region of the emotion space. In this article, we discussed

why the BOF approach misrepresents musical experience,

underplays the role of memory in listeners’ emotional re-

sponse to music, and neglects the temporal nature of mu-

sic. The organization of auditory memory plays a major

role in the experience of listening to music. We proposed

a framework that uses the organization of auditory mem-

ory to bring time to the foreground of MER. We prompted

MER researchers to represent music as a time-varying vec-

tor of features and to investigate how the emotions evolve

in time as the music develops, representing the listener’s

emotional response as an emotional trajectory. Finally, we

discussed how to exploit the unfolding music process and

previous exposure to incorporate the current musical con-

text and personal factors into MER systems.

The incorporation of time might not be enough to ac-

count for the subjective nature of musical emotions. Cul-

ture, individual differences and the present state of the lis-

tener are factors in understanding aesthetic responses to

music. Thus a probabilistic or fuzzy approach could also

represent a significant step forward in understanding aes-

thetic responses to music. We prompt MER researchers to
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adopt a paradigm change to cope with the complexity of

human emotions in one of its canonical means of expres-

sion, music.
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ABSTRACT

Methods for music structure discovery usually process a

music track by first detecting segments and then labeling

them. Depending on the assumptions made on the sig-

nal content (repetition, homogeneity or novelty), different

methods are used for these two steps. In this paper, we deal

with the segmentation in the case of repetitive content. In

this field, segments are usually identified by looking for

sub-diagonals in a Self-Similarity-Matrix (SSM). In order

to make this identification more robust, Goto proposed in

2003 to cumulate the values of the SSM over constant-lag

and search only for segments in the SSM when this sum

is large. Since the various repetitions of a segment start

simultaneously in a self-similarity-matrix, Serra et al. pro-

posed in 2012 to cumulate these simultaneous values (us-

ing a so-called structure feature) to enhance the novelty of

the starting and ending time of a segment. In this work,

we propose to combine both approaches by using Goto

method locally as a prior to the lag-dimensions of Serra

et al. structure features used to compute the novelty curve.

Through a large experiment on RWC and Isophonics test-

sets and using MIREX segmentation evaluation measure,

we show that this simple combination allows a large im-

provement of the segmentation results.

1. INTRODUCTION

Music structure segmentation aims at estimating the large-

scale temporal entities that compose a music track (for ex-

ample the verse, chorus or bridge in popular music). This

segmentation has many applications such as browsing a

track by parts, a first step for music structure labeling or

audio summary generation [15], music analysis, help for

advanced DJ-ing.

The method used to estimate the music structure seg-

ments (and/or labels) depends on the assumptions made

on the signal content. Two assumptions are commonly

used [13] [14]. The first assumption considers that the au-

dio signal can be represented as a succession of segments

with homogeneous content inside each segment. This as-

sumption is named “homogeneity assumption” and the es-

c© Geoffroy Peeters, Victor Bisot.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Geoffroy Peeters, Victor Bisot. “Im-

proving Music Structure Segmentation using lag-priors”, 15th Interna-

tional Society for Music Information Retrieval Conference, 2014.

timation approach named “state approach”. It is closely re-

lated to another assumption, named “novelty”, that consid-

ers that the transition between two distinct homogeneous

segments creates a large “novelty”. The second assump-

tion considers that some segments in the audio signal are

repetitions of other ones. This assumption is named “rep-

etition assumption”. In this case the “repeated” segments

can be homogeneous or not. When they are not, the ap-

proach is named “sequence approach”.

In this paper, we deal with the problem of estimat-

ing the segments (starting and ending times) in the case

of repeated/ non-homogeneous segments (“sequence” ap-

proach).

1.1 Related works

Works related to music structure segmentation are numer-

ous. We refer the reader to [13] or [3] for a complete

overview on the topic. We only review here the most im-

portant works or the ones closely related our proposal.

Methods relying on the homogeneity or novelty as-
sumption. Because homogeneous segments form

“blocks” in a time-time-Self-Similarity-Matrix (SSM) and

because transitions from one homogeneous segment to the

next looks like a checkerboard kernel, Foote [5] proposes

in 2000 to convolve the matrix with a 2D-checkerboard-

kernel. The result of the convolution along the main di-

agonal leads to large value at the transition times. Since,

an assumption on the segment duration has to be made for

the kernel of Foote, Kaiser and Peeters [9] propose in 2013

to use multiple-temporal-scale kernels. They also intro-

duce two new kernels to represent transitions from homo-

geneous to non-homogeneous segments (and vice versa).

Other approaches rely on information criteria (such as BIC,

Akaike or GLR) applied to the sequence of audio fea-

tures. Finally, labeling methods (such as k-means, hierar-

chical agglomerative clustering of hidden-Markov-model)

also inherently allow performing time-segmentation.

Methods relying on the repetition assumption. Be-

cause repeated segments (when non-homogeneous) form

sub-diagonals in a Self-Similarity Matrix (SSM), most

methods perform the segmentation by detecting these sub-

diagonals in the SSM.

If we denote by S(i, j) = S(ti, tj) i, j ∈ [1, N ] the

time-time-SSM between the pairs of times ti and tj , the

time-lag-SSM [1] is defined as L(i, l) = L(ti, l = tj− ti),
since tj − ti ≥ 0 the matrix is upper-diagonal. The lag-

matrix can be computed using L(i, l) = S(i, j = i + l)
with i+ l ≤ N .
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In [6], Goto proposes to detect the repetitions in a time-

lag-SSM using a two-step approach. He first detects the

various lags lk at which potential repetitions may occur.

This is done by observing that when a repetition (at the

same-speed) occurs, a vertical line (at constant lag) ex-

ists in the time-lag-SSM (see Figure 1). Therefore, the

sum over the times of the time-lag-SSM for this specific

lag will be large. He proposes to compute the function

f(l) =
∑

ti∈[0,N−l]
1

N−lL(ti, l). A peak in f(l) indicates

that repetitions exist at this specific lag. Then, for each de-

tected peaks lk, the corresponding column of L(ti, lk) is

analyzed in order to find the starting and ending times of

the segments.

Serra et al. method [16] for music structure segmenta-

tion also relies in the time-lag-SSM but works in the op-

posite way. In order to compute the lower-diagonal part

of the matrix (tj − ti < 0), They propose to apply cir-

cular permutation. The resulting matrix is named circular-

time-lag-matrix (CTLM) and is computed using L∗(i, l) =
S(i, k + 1), for i, l ∈ [1, N ] and k = i+ l − 2 modulo N.

They then use the fact that the various repetitions of a same

segment start and end at the same times in the CTLM. They

therefore define a N-dimensional feature, named ”structure

feature” g(i), defined as the row of the CTLM at ti. Start

and end of the repetitions create large frame-to-frame vari-

ations of the structure feature. They therefore compute a

novelty curve defined as the distance between successive

structure features g(i): c(i) = ||g(i + 1) − g(i)||2 (see

Figure 1). Large values in this curve indicate starts or ends

times of repetitions.

Tim
e t

Goto: 

Serra:

0

N

g(i)

g(i+1)
ti

lk

Lag l N0 c(i)

f(l)

Figure 1. Illustration of Goto method [6] on a time-lag

Self-Similarity-Matrix (SSM) and Serra et al. method [16]

on a circular-time-lag-matrix (CTLM).

1.2 Paper objective and organization

In this paper, we deal with the problem of estimat-

ing the segments (starting and ending times) in the case

of repeated/ non-homogeneous segments (“sequence” ap-

proach). We propose a simple, but very efficient, method

that allows using Goto method as a prior lag-probability

of segments in Serra et al. method. Indeed, Serra et al.

method works efficiently when the “structure” feature g(i)
is clean, i.e. contains large values when a segment crosses

g(i) and is null otherwise. Since, this is rarely the case,

we propose to create a prior assumption f(l) on the di-

mensions of g(i) that may contain segments. To create

this prior assumption, we use a modified version of Goto

method applied locally in time to the CTLM (instead of to

the time-lag-SSM).

Our proposed method for music structure segmentation

is presented in part 2. We then evaluate it and compare its

performance to state-of-the-art algorithms in part 3 using

the RWC-Popular-Music and Isophonics/Beatles test-sets.

Discussions of the results and potential extensions are dis-

cussed in part 4.

2. PROPOSED METHOD

2.1 Feature extraction

In order to represent the content of an audio signal, we

use the CENS (Chroma Energy distribution Normalized

Statistics) features [12] extracted using the Chroma Tool-

box [11]. The CENS feature is a sort of quantized version

of the chroma feature smoothed over time by convolution

with a long duration Hann window. The CENS features

xa(ti) i ∈ [1, N ] are 12-dimensional vector with a sam-

pling rate of 2 Hz. xa(ti) is in the range [0, 1]. It should be

noted that these features are l2-normed 1 .

2.2 Self-Similarity-Matrix

From the sequence of CENS features we compute a time-

time Self-Similarity-Matrix (SSM) [4] S(i, j) using as

similarity measure the scalar-product 2 between the feature

vector at time ti and tj : S(i, j) =< xa(ti), xa(tj) >.

In order to highlight the diagonal-repetitions in the SSM

while reducing the influence of noise values, we then apply

the following process.

1. We apply a low-pass filter in the direction of the diag-

onals and high-pass filter in the orthogonal direction. For

this, we use the kernel [−0.3, 1,−0.3] replicated 12 times

to lead to a low-pass filter of duration 6 s.

2. We apply a threshold τ ∈ [0, 1] to the resulting SSM.

τ is chosen such as to keep only β % of the values of the

SSM. Values below τ are set to a negative penalty-value α.

The interval [τ, 1] is then mapped to the interval [0, 1].
3. Finally, we apply a median filter over the diagonals of

the matrix. For each value S(i, j), we look in the backward

and forward diagonals of δ-points duration each [(i−δ, j−
δ) . . . (i, j) . . . (i + δ, j + δ)]. If more than 50% of these

points have a value of α, S(i, j) is also set to α.

By experiment, we found β = 6% (percentage of values

kept), α = −2 (lower values) and δ = 10 frames (interval

duration 3 ) to be good values.

1
∑

a=[1,12] x
2
a(ti) = 1

2 Since the vectors are l2-normed, this is equivalent to the use of a
cosine-distance.

3 Since the sampling rate of xa(ti) is 2 Hz, this corresponds to a du-
ration of 5 s. The median filter is then applied on a window of 10 s total
duration.
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2.3 Proposed method: introducing lag-prior

As mentioned before, Serra et al. method works efficiently

when the “structure” feature g(i) is clean, i.e. contains

large values when a segment crosses g(i) and is null other-

wise. Unfortunately, this is rarely the case in practice.

If we model the structure feature g(i) as the true con-

tribution of the segments ĝ(i) and a background noise

(modeled as a centered Gaussian noise) Nμ=0,σ: g(i) =
ĝ(i) + Nμ=0,σ , one can easily shows that the expectation

of c(i) = ||g(i+ 1)− g(i)||2 is equal to

• K + 2σ2 for the starting/ending of K segments at ti

• 2σ2 otherwise.

If σ (the amount of background noise in the CTLM) is

large, then it may be difficult to discriminate between both

case for small K. In the opposite, the expectation of the

values of Goto function f(l) =
∑

ti
L∗(ti, l) remains in-

dependent of σ hence on the presence of background noise

(in the case of a centered Gaussian noise).

We therefore propose to use f(l) as a prior on the lags,

i.e. the dimensions of g(i). This will favor the discrimi-

nation provided by c(i) (in Serra et al. approach, all the

lags/dimensions of g(i) are considered equally).

For this, we consider, the circular time-lag (CMLT)

L∗(t, l) as a joint probability distribution p(t, l).
Serra et al. novelty curve c(i) can be expressed as

c1(t) =

∫
l

∣∣∣∣ ∂∂tp(t, l)
∣∣∣∣2 dl (1)

In our approach, we favor the lags at which segments

are more likely. This is done using a prior p(l):

c2(t) =

∫
l

p(l)

∣∣∣∣ ∂∂tp(t, l)
∣∣∣∣2 dl (2)

In order to compute the prior p(l) we compute f(l)
as proposed by Goto but applied to the CMLT. In other

words, we compute, the marginal of p(t, l) over t: p(l) =∫ t=N

t=0
p(t, l)dt.

As a variation of this method, we also propose to com-

pute the prior p(l) locally on t: pt(l) =
∫ τ=t+Δ

τ=t−Δ
p(τ, l)dt.

This leads to the novelty curve

c3(t) =

∫
l

pt(l)

∣∣∣∣ ∂∂tp(t, l)
∣∣∣∣2 dl (3)

By experiment, we found Δ = 20 (corresponding to

10 s), to be a good value.

2.4 Illustrations

In Figure 2, we illustrate the computation of c1(t), c2(t)
and c3(t) on a real signal (the track 19 from RWC Popular

Music).

In Figure 2 (A) we represent Serra et al. [16] method.

On the right of the time-lag-circular-matrix (CTLM), we

represent the novelty curve c1(t) (red-curve) and super-

imposed to it, the ground-truth segments (black dashed

lines).

(A) Computation of c1(t)
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(B) Computation of c2(t)
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(C) Computation of c3(t)
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Figure 2. Illustration of the computation of c1(t), c2(t)
and c3(t) on Track 19 from RWC Popular Music. See text

of Section 2.4 for explanation.

In Figure 2 (B) we represent the computation of c2(t)
(using a global lag-prior). Below the CTLM we repre-

sent the global prior p(l) (blue curve) obtained using Goto

method applied to the CMLT. On the right of the CTLM
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we represent c2(t) using this global lag-prior. Compared

to the above c1(t), we see that c2(t) allows a larger dis-

crimination between times that correspond to ground-truth

starts and ends of segments and that do not.

In Figure 2 (C) we represent the computation of c3(t)
(using a local lag-prior). Below the CTLM we represent

the local prior pt(l) in matrix form obtained using Goto

method applied locally in time to the CMLT. On the right

of the CTLM we represent c3(t) using this local lag-prior.

Compared to the above c1(t) and c2(t), we see that c3(t)
allows an even larger discrimination.

2.5 Estimation of segments start and end times

Finally, we estimate the starting and ending time of the

repetitions from the novelty curves c1(t), c2(t) or c3(t).
This is done using a peak picking process. c∗(t) is first

normalized by min-max to the interval [0, 1]. Only the val-

ues above 0.1 are considered. ti is considered as a peak if

i = argmaxj c∗(tj) with j ∈ [i − 10, i + 10], i.e. if ti is

the maximum peak within a ± 5 s duration interval.

The flowchart of our Music Structure Segmentation

method is represented in the left part of Figure 3.

Self Similarity Matrix S(i,j) 
using cosine distance

Audio

CENS feature xa(ti)

Low-pass in t / High-pass in l

Circular Time Lag Matrix p(t,l)

Novelty c1,2,3(t)

Peak-Picking of c1,2,3(t)

Prior lag probability 
p(l) or pt(l)

Segment start and end time

Threshold

Median Filter

Serra et al. [17]

Vector stacking

Self Similarity Matrix S(i,j)  
using KNN ranking

Convolution with bi-variate 
Kernel

Circular Time Lag Matrix p(t,l)

Part 2.1

Part 2.3

Part 2.5

Part 2.2 Part 3.4

Figure 3. Flowchart of the proposed Music Structure Seg-

mentation method.

3. EVALUATION

In this part, we evaluate the performances of our proposed

method for estimating the start and end times of music

structure segments. We evaluate our algorithm using the

three methods described in part 2.3: – without lag-prior

c1(t) (this is equivalent to the original Serra et al. algo-

rithm although our features and the pre-processing of the

CTLM differ from the ones of Serra et al.), – with global

lag-prior c2(t), – with local lag-prior c3(t).

3.1 Test-Sets

In order to allow comparison with previously published re-

sults, we evaluate our algorithm on the following test-sets:

RWC-Pop-A: is the RWC-Popular-Music test-set [8],

which is a collection of 100 music tracks. The anno-

tations into structures are provided by the AIST [7].

RWC-Pop-B is the same test-set but with annotations pro-

vided by IRISA [2] 4 .

Beatles-B Is the Beatles test-set as part of the Isophonics

test-set, which is a collection of 180 music tracks

from the Beatles. The annotations into structure are

provided by Isophonics [10].

3.2 Evaluation measures

To evaluate the quality of our segmentation we use, as it is

the case in the MIREX (Music Information Retrieval Eval-

uation eXchange) Structure Segmentation evaluation task,

the Recall (R), Precision (P) and F-Measure (F). We com-

pute those with a tolerance window of 3 and 0.5 s.

3.3 Results obtained applying our lag-prior method to
the SSM as computed in part 2.2.

In Table 1 we indicate the results obtained for the various

configurations and test-sets. We compare our results with

the ones published in Serra et al. [16] and to the best score

obtained during the two last MIREX evaluation campaign:

MIREX-2012 and MIREX-2013 on the same test-sets 5 6 .

For the three test-sets, and a 3 s tolerance window,

the use of our lag-prior allows a large increase of the F-

measure:

RWC-Pop-A: c1(t) : 66.0%, c2(t) : 72.9%, c3(t) : 76.9%.

RWC-Pop-B: c1(t) : 67.3%, c2(t) : 72.6%, c3(t) : 78.2%.

Beatles-B: c1(t) : 65.7%, c2(t) : 69.8%, c3(t) : 76.1%.

For the 0.5 s tolerance window, the F-measure also in-

crease but in smaller proportion.

The F-measure obtained by our algorithm is just be-

low the one of [16], but our features and pre-processing

of the SSM much simpler. This means that applying our

lag-priors to compute c2,3(t) on Serra et al. pre-processed

matrix could even lead to larger results. We discuss this in

the next part 3.4. We see that for the two RWC test-sets

and a 3 s tolerance window, our algorithm achieves bet-

ter results than the best results obtained in MIREX (even

the ones obtained by Serra et al. – SMGA1). It should be

noted that the comparison for the Beatles-B test-set cannot

be made since MIREX use the whole Isophonics test-set

and not only the Beatles sub-part.

Statistical tests: For a @3s tolerance window, the dif-

ferences of results obtained with c3(t) and c2(t) are statis-

tically significant (at 5%) for all three test-sets. They are

not for a @0.5s tolerance window.

Discussion: For the RWC-Pop-B test-set, using c3(t)
instead of c1(t) allows increasing the F@3s for 88/100

tracks, for the Beatles-B for 144/180 tracks. In Figure 4,

4 These annotations are available at http://musicdata.
gforge.inria.fr/structureAnnotation.html.

5 The MIREX test-set named ”M-2010 test-set Original” corresponds
to RWC-Pop-A, ”M-2010 test-set Quaero” to RWC-Pop-B.

6 SMGA1 stands for [Joan Serra, Meinard Mueller, Peter Grosche,
Josep Lluis Arcos]. FK2 stands for [Florian Kaiser and Geoffroy Peeters].
RBH1 stands [Bruno Rocha, Niels Bogaards, Aline Honingh].
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Table 1. Results of music structure segmentation using our lag-prior method applied to the SSM as computed in part 2.2.
RWC-Pop-A

Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
Serra et al. [16] 0.791 0.817 0.783
MIREX-2012 (SMGA1 on M-2010 test-set Original) 0.7101 0.7411 0.7007 0.2359 0.2469 0.2319
MIREX-2013 (FK2 on M-2010 test-set Original) 0.6574 0.8160 0.5599 0.3009 0.3745 0.2562

c1(t) (without lag-prior) 0.660 0.700 0.648 0.315 0.338 0.308
c2(t) (with global lag-prior) 0.729 0.739 0.737 0.349 0.354 0.353
c3(t) (with local lag-prior) 0.769 0.770 0.78 0.386 0.392 0.390

RWC-Pop-B
Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
Serra et al. [16] 0.8 0.81 0.805
MIREX-2012 (SMGA1 on M-2010 test-set Quaero) 0.7657 0.8158 0.7352 0.2678 0.2867 0.2558
MIREX-2013 (RBH1 on M-2010 test-set Quaero) 0.6727 0.7003 0.6642 0.3749 0.3922 0.3682

c1(t) (without lag-prior) 0.673 0.6745 0.689 0.238 0.223 0.263
c2(t) (with global lag-prior) 0.726 0.704 0.766 0.250 0.231 0.281
c3(t) (with local lag-prior) 0.782 0.782 0.816 0.281 0.264 0.31

Beatles-B
Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
Serra et al. [16] 0.774 0.76 0.807

c1(t) (without lag-prior) 0.657 0.674 0.658 0.232 0.240 0.238
c2(t) (with global lag-prior) 0.698 0.696 0.718 0.254 0.258 0.265
c3(t) (with local lag-prior) 0.761 0.745 0.795 0.262 0.259 0.278

we illustrate one of the examples for which the use of c3(t)
decreases the results over c1(t). As before the discrimina-

tion obtained using c3(t) (right sub-figure) is higher than

the ones obtained using c1(t) (left sub-figure). However,

because of the use of the prior pt(l) which is computed on a

long duration window ([t−Δ, t+Δ] represents 20 s), c3(t)
favors the detection of long-duration segments. In the ex-

ample of Figure 4, parts of the annotated segments (black

dashed lines) are very short segments which therefore can-

not be detected with the chosen duration Δ for pt(l).
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Figure 4. Illustration of a case for which c3(t) (right

sub-figure) decrease the results over c1(t) (left sub-figure).

F@3s(c1(t)) = 0.93 and F@3s(c3(t)) = 0.67 [Track 20

form RWC-Pop-B].

3.4 Results obtained applying our lag-prior method to
the SSM as computed by Serra et al. [16]

In order to assess the use of c2,3(t) as a generic process

to improve the estimation of the segments on a SSM; we

applied c∗(t) to the SSM computed as proposed in [16] in-

stead of the SSM proposed in part 2.2. The SSM will be

computed using the CENS features instead of the HPCP

used in [16]. For recall, in [16] the recent past of the fea-

tures is taken into account by stacking the feature vectors

of past frames (we used a value m corresponding to 3 s).

The SSM is then computed using a K nearest neighbor al-

gorithm (we used a value of κ = 0.04). Finally the SSM

matrix is convolved with a long bivariate rectangular Gaus-

sian kernel G = gtg
T
l (we used sl =0.5 s st =30 s and

σ2 = 0.16). c∗(t) is then computed from the resulting

SSM. The flowchart of this method is represented in the

right part of Figure 3.

Results are given in Table 2 for the various configura-

tions and test-sets. c1(t) represents Serra et al. method

[16]. As one can see, the use of a global prior (c2(t)) al-

lows to increase the results over c1(t) for the three test-sets

and the two tolerance window (@3s and @0.5s). Surpris-

ingly, this time, results obtained with a local prior (c3(t))
are lower than the ones obtained with a global prior (c2(t)).
This can be explained by the fact that Serra et al. method

applies a long duration low-pass filter (st =30s) to the

SSM. It significantly delays in time the maximum value

of a segment in the SSM, hence delays pt(l), hence delays

c3(t). In the opposite, because c2(t) is global, it is not

sensitive to Serra et al. delay.

Statistical tests: For a @3s tolerance window, the dif-

ference of results obtained with c2(t) (0.805) and c1(t)
(0.772) is only statistically significant (at 5%) for the

Beatles-B test-set. For a @0.5s tolerance window, the dif-

ferences are statistically significant (at 5%) for all three

test-sets.
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Table 2. Results of music structure segmentation using our lag-prior method applied to the SSM as computed by [16] .
RWC-Pop-A

Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
c1(t) (without lag-prior) with Serra front-end 0.780 0.846 0.742 0.254 0.271 0.246
c2(t) (with global lag-prior) with Serra front-end 0.784 0.843 0.750 0.289 0.316 0.275
c3(t) (with local lag-prior) with Serra front-end 0.735 0.827 0.682 0.245 0.300 0.215

RWC-Pop-B
Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
c1(t) (without lag-prior) with Serra front-end 0.799 0.795 0.818 0.338 0.326 0.359
c2(t) (with global lag-prior) with Serra front-end 0.823 0.846 0.820 0.389 0.408 0.381
c3(t) (with local lag-prior) with Serra front-end 0.797 0.856 0.765 0.336 0.369 0.318

Beatles-B
Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
c1(t) (without lag-prior) with Serra front-end 0.772 0.792 0.773 0.371 0.365 0.394
c2(t) (with global lag-prior) with Serra front-end 0.805 0.813 0.817 0.439 0.430 0.450
c3(t) (with local lag-prior) with Serra front-end 0.799 0.790 0.827 0.422 0.416 0.442

4. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a simple, but very efficient,

method that allows using Goto 2003 method as a prior lag-

probability on Serra et al. structure feature method. We

provided the rational for such a proposal, and proposed

two versions of the method: one using a global lag prior,

one using a local lag prior. We performed a large-scale

experiment of our proposal in comparison to state-of-the-

art algorithms using three test-sets: RWC-Popular-Music

with two sets of annotations and Isophonics/Beatles. We

showed that the introduction of the lag-prior allows a large

improvement of the F-Measure results (with a tolerance

window of 3 s) over the three sets. Also, our method im-

proves over the best results obtained by Serra et al. or dur-

ing MIREX-2012 and MIREX-2013.

Future works will concentrate on integrating this prior

lag probability on an EM (Expectation-Maximization) al-

gorithm to estimate the true p(t, l). Also, we would like to

use this segmentation as a first step to a segment labeling

algorithm.
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ABSTRACT

Features of linguistic tone contours are important factors

that shape the distinct melodic characteristics of different

genres of Chinese opera. In Beijing opera, the presence of

a two-dialectal tone system makes the tone-melody rela-

tionship more complex. In this paper, we propose a novel

data-driven approach to analyze syllable-sized tone-pitch

contour similarity in a corpus of Beijing Opera (381 arias)

with statistical modeling and machine learning methods.

A total number of 1,993 pitch contour units and attributes

were extracted from a selection of 20 arias. We then build

Smoothing Spline ANOVA models to compute matrixes

of average melodic contour curves by tone category and

other attributes. A set of machine learning and statisti-

cal analysis methods are applied to 30-point pitch contour

vectors as well as dimensionality-reduced representations

using Symbolic Aggregate approXimation(SAX). The re-

sults indicate an even mixture of shapes within all tone cat-

egories, with the absence of evidence for a predominant

dialectal tone system in Beijing opera. We discuss the key

methodological issues in melody-tone analysis and future

work on pair-wise contour unit analysis.

1. INTRODUCTION

Recent development in signal processing and cognitive

neuroscience, among other fields, has revived the research

on the relationship between speech and musical melody

[10]. Singing in tone languages offers a particularly conve-

nient entry point to compare musical and speech melodies,

allowing us to gain insight into the ways the prosody of a

particular language shapes its music. In a tone language,

as opposed to an intonation language, the pitch contour of

a speech sound (often a syllable) can be used to distinguish

lexical meaning. In singing, however, such pitch contour

can be overridden by the melody of the music, making the

lyrics difficult to decode by listeners.

In such consideration, musicologists have observed that

features of the prosody of the local dialect often play an

c© Shuo Zhang, Rafael Caro Repetto, Xavier Serra .

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Shuo Zhang, Rafael Caro Repetto,

Xavier Serra . “STUDY OF THE SIMILARITY BETWEEN LIN-

GUISTIC TONES AND MELODIC PITCH CONTOURS IN BEIJING

OPERA SINGING”, 15th International Society for Music Information

Retrieval Conference, 2014.

important role in shaping the melodic characteristics of the

regional operas in China [9, 15]. On the other hand, it is

generally assumed that Beijing opera had incorporated lin-

guistic tone systems from both the Hu-Guang (HG) dialect

and Beijing (BJ) dialect [22]. 1 Xu [19] reviewed 90 years

of research on the dialect tone system in Beijing opera, and

concluded that there is no agreement as to which system is

predominant in shaping the melodic characteristics of the

genre.

In sum, previous work indicates that the overall degree

and manner of the melody-tone relationship is not entirely

clear, partly due to the limitation that music scholars typ-

ically were not able to go beyond analyzing a few arias

by hand [19]. In this paper, we propose a novel approach

to melody-tone similarity by applying statistical modeling

and machine learning methods to a set of 20 arias selected

from a corpus of 381 arias of Beijing opera audio record-

ing. The research questions are defined as follows: (1)

How similar are syllable-sized melodic contours within a

given tone category? (2) How similar is the ”average”

melodic contour to its corresponding prototype contour in

speech in the same tone category? (3)Which tone system

(BJ or HG) better predicts the shape of melodic contours?

Following preprocessing, we apply clustering algo-

rithms and statistical analysis to 30-point feature vectors of

pitch contours, as well as dimensionality-reduced feature

vectors represented symbolically using the Symbolic Ag-

gregate approXimation (SAX) algorithm [8]. Special con-

siderations are given to existing hypotheses regarding the

distribution of the tone systems in Beijing opera. Lastly,

we build Smoothing Spline ANOVA Models to compute

matrixes of average melodic contour curves by tone cate-

gory and other attributes.

2. KEY ISSUES IN STUDYING MELODY-TONE
SIMILARITY

2.1 Beijing Opera: Performance Practice

Several features of Beijing opera may explain why the

melody tone relationship remains challenging. First, the

composition process of Beijing opera assumes no desig-

nated composer for any given opera. Rather, each opera is

composed by re-arranging prototype arias from a inventory

of arias according to the rhythmic type, role type, tempo,

1 A schematic representation of the four tones in these two systems is
shown in Figure 1.
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and other factors. Lyrics, taken from libretto, are relatively

fixed whereas the specific melody may change according

to each performer / performance. While there has been ev-

idence [15] that the performers do take special considera-

tion of tones in their singing, it is not clear in what manner

and to what degree they are doing this. Next,we discuss

several key issues and assumptions as a bridge from previ-

ous work to the novel approach proposed in this paper.

Figure 1. Schematic representation of the BJ and HG tone

system

2.2 Key Issues in Studying Tone-Melodic Similarity

First, the melody-tone relationship as a problem of tone

perception (and production). A key assumption underly-

ing previous works is that speech comprehension in tone

language crucially depends on the availability of tone con-

tour information. However, recent development in tone

perception and modeling has challenged this view and re-

vealed the great capacity of human listeners in identify-

ing words in tone languages, with the minimum amount

of tone information and despite a great amount of vari-

ances in tone signals. We consider the following aspects

of evidence: (1) tone contour shapes in connected speech

deviates significantly from its standard (canonical) shapes

due to co-articulation, limit of maximum speed of pitch

change in vocal folds, and other factors [18], introducing a

great amount of variances; (2) Patel et al [11] demonstrated

that Mandarin speech in monotone is over 90% intelligible

to native speakers in a non-noise background, pointing to

a low entropy (i.e., high predicability) of the information

that is carried by segmental contrast in context; (3) Gating

experiments [21] have demonstrated that Mandarin speak-

ers are able to correctly detect tone category based on only

the initial fractions of second of a tone signal. From these

evidence, we should use caution in making the aforemen-

tioned assumption about tone information in music. Sim-

ilarly, we may also expect to find a even larger amount of

variation in the syllable-sized melodic contours in a given

tone category. 2

2 We must bear in mind also that speech tones are generated under a
different mechanism than pitch contours in singing. For one thing, the
latter has a more planned mechanism of design - the composition of the
music. In speech, as the qTA model has demonstrated [12], speakers may
have a pitch target (defined by a linear equation) in mind during articu-
lation, but the actual F0 realization is subject to a set of much complex
physiological and contextual linguistic factors, which may be modeled
by a third-order critically damped system [12]. This complication does
not exist in music: in singing, a singer can realize the exact F0 target
as planned. Therefore, we propose that approaches that directly com-

Second, we define the hypotheses and specific goals in

this work. We observe that in the review of tone systems

in Beijing opera [19] , one key assumption is that one of

the two underlying dialectal systems must dominate. How-

ever, we also find evidence in the literature [22] that one

may expect to find an even mixture of contours from both

dialects. 3 In this work, we consider both hypotheses and

find our data to be more consistent with the second hypoth-

esis.

3. DATA COLLECTION

3.1 Beijing Opera Audio Data Collection

The music in Beijing opera is mainly structured according

to two basic principles, shengqiang and banshi, which in

a broad sense define respectively its melodic and rhythmic

components [17]. On top of these two structural principles,

the system of role-types impose particular constrains to the

execution of shengqiang and banshi. The interaction of

these three components, hence, offers a substantial account

of Beijing opera music. Our current collection includes

48 albums, which contain 510 recordings (tracks) featuring

381 arias and over 46 hours of audio [14].

The current study focuses on a small selection of 20

arias from the corpus to serve as a manageable starting

point of the melody-tone relationship analysis. This set

is selected according to a number of criteria: (1) we se-

lected only yuanban, a rhythmic type in which the duration

of a syllable sized unit bears the most similarity to that of

speech; (2) we selected both types of shengqiang, namely

xipi and erhuang; (3) we selected five role types: D(dan),

J(jing), LD(laodan), LS(laosheng), and XS(xiaosheng).

For each combination of shengqiang and role types, we

selected two arias, yielding a total of 20 arias for analysis.

3.2 Data Preprocessing

The vocal frames of the audio recordings of the 20 arias are

partially-automatically segmented into syllable sized unit

with boundary alignment correction by hand. 4 The seg-

mentation is implemented as timestamps of a TextGrid file

in the speech processing software Praat [2]. The textgrid is

later integrated with the metadata labels from the annota-

tion process.

Following segmentation, we annotate the audio with

lyrics extracted from the online Beijing opera libretto

database jingju.net. The Chinese-character lyrics

files are converted into romanized pinyin form with tone

marks in the end (1,2,3, or 4) using an implementation of

Java library pinyin4j. A Praat Script is implemented

pute similarity between melodic and linguistic tone F0 contours should
be ruled out.

3 Some cite three dialects [22], HuGuang, Beijing, and ZhongZhou
YinYun.

4 Automatic segmentation using forced-alignment with machine-
readable form of the score is currently being developed. For the current
study, we used the result of a trained spectral-based classifier [3] that is
able to separate the pure instrumental frames of the audio signal from
those frames that contain both vocal and instrumental parts. The result
of this segmentation is in many cases the voiced segment (vowel) of a
syllable, which is precisely the unit of our analysis.
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to automatically parse the romanized lyrics files and to an-

notate the segmented audio files. The metadata attributes

(shengqiang, role type, artist, duration, tone category, and

word) are also automatically annotated for each segmented

unit.

3.3 Pitch Contour Extraction

We then proceed to the extraction of F0 values for each

annotated pitch contours of interest. The F0 is computed

using the MELODIA salience function [13] within the Es-

sentia audio signal processing library in Python [1], in or-

der to minimize the interference of background instrumen-

tal ensemble to the computation of F0 of the primary vocal

signal. For the sake of analysis, we produce down-sampled

30-point F0 vectors by using equidistant sampling across

each pitch contour 5 . All F0 values are normalized so that

each contour has a mean F0 of 0 and sd of 1. A 5-point

weighted averaging sliding window is applied to smooth

the signal.

4. PROPOSED APPROACH

In this section we overview the methodology employed

in the analysis of the extracted pitch contour dataset. As

discussed above in 2.2, all methodology are boiled down

to addressing the research question (1), which attempts to

analyze and describe the variances and clusters found in

melodic contours of each tone category and across cate-

gories. Research question (2) and (3), both of which in-

volve comparing music with speech melody, can only be

addressed indirectly by the average curves computed by

the SSANOVA model for each tone category.

4.1 Time Series Representation

In a standard melodic similarity task, such as query-by-

humming (QBH), the goal of the task is usually to match

the melody as precisely as possible. However, in the cur-

rent task, our goal is in a way to model the human percep-

tion of tone. An important capacity of human cognition

is its capacity to abstract away the commonalities from

groups of pitch contours with much different fine detail

variations 6 . In this study, we experiment with the Sym-

bolic Aggregate approXimation (SAX) [8] representation

of pitch contour vectors. 7

SAX offers a lower dimension coarse representation,

whose distance lower-bounds true distance of time series.

It transforms the pitch contour into a symbolic representa-

tion with length (nseg=desired length of the feature vector)

5 The unvoiced part in the beginning of the syllable is skipped in the
down-sampling. In addition, the downsampling strategy is also fine tuned
in order to filter out the spurious pitch values computed by MELODIA in
the beginning portion of the voiced segments.

6 Also known as categorical perception in cognitive sciences.
7 SAX is the first symbolic representation for time series that allows for

dimensionality reduction and indexing with a lower-bounding distance
measure. In classic data mining tasks such as clustering, classification,
index, etc., SAX is as good as well-known representations such as DWT
and DFT, while requiring less storage space. [8].Even though SAX repre-
sentation is mostly used outside of MIR, it has been applied to the QBH
task [16].

and alphabet size (m) parameters, the latter being used to

divide the pitch space of the contour into m equiprobable

segments assuming a Gaussian distribution of F0 values 8 .

In this work, we rely on the SAX representation (1) as

a effective and economic way to represent the shapes of

time series in statistical analysis; and (2)as a coarse sym-

bolic representation for clustering. To ensure the validity

of SAX to reflect the true shape of the original 30-point

vector, we experiment with different parameters and use

four different ways to evaluate the effectiveness of the SAX

representation (dicussed below).

4.2 Methodology

As discussed in 2.2, we consider two different analytical

approaches in this work based on the two hypotheses re-

garding the distribution of tone systems in Beijing opera.

In the first hypothesis (H1), we assume that there is

one predominant tone system (BJ or HG) in Beijing opera.

We define a time-series clustering task with the goal of

clustering all tone contours into four big clusters, corre-

sponding to four tone categories. Using dynamic time

warping (DTW) as the distance measure, we perform K-

means Clustering and Agglomerative Clustering (hierar-

chical) on the 30-point pitch vectors. Using the lower

bounding mindist distance measure defined for SAX-based

symbolic representation, we also perform K-means Clus-

tering on the SAX string vectors of length 5 (alphabet size

is 3).

In the second hypothesis (H2), we expect an even mix-

ture of tone systems and tone shapes in all tone categories.

In this scenario, our goal is to perform exploratory cluster

analysis on the distribution of contours shapes within each

tone categories. More specifically, we perform statistical

and clustering analysis on the SAX-based shapes within

and across tone categories. In addition, we investigate dis-

tribution of attributes associated with each sub-cluster of

shape.

We infer from literature [22] that regardless of the distri-

bution of tone systems, the first tone is expected to have the

most consistent flat shape if a reaonably strong correlation

is assumed between linguistic tone and melodic contour

(Notice that tone 1 has the same flat shape across dialects

in Figure 1). More specifically, a musicological analysis

by hand reveals that the most predominant shape in tone

1 is flat or flat with a final fall (henthforce referred to as

Hypothesis 3, or H3, also inferred from rules described

in [22]).

Lastly, we build a Smoothing Spline ANOVA model

with the goal of (1) computing average pitch contours for

each tone category, and (2) quantifying the variances ac-

counted for by each predictor variable in different tone

categories. Smoothing splines are essentially a piece-

wise polynomial function that connects discrete data points

called knots. It includes a smoothing parameter to find the

8 Strictly speaking, the Gaussian assumption is not met in the pitch
space musical notes. However, due to the nature of the task that does
not require precise mapping, we use the original SAX implementation
without revising the Gaussian assumption.
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best fit when the data tend to be noisy, estimated by mini-

mizing the following function:

G(x) =
1

n

∑
all i

(yi − f(xi))
2 + λ

∫ b

a

(f ′′(u))2 du (1)

where n is the number of data points, λ is the smoothing

parameter, and a and b are the x coordinates of the endpoint

of the spline.

The Smoothing Spline ANOVA (SSANOVA) is of the

following form, each component of f is estimated with a

smoothing spline:

f = μ+ βx+main group effect+ smooth(x)

+smooth(x; group)
(2)

where the main group effects correspond to the smooth-

ing splines for each dataset, smooth(x) is the single

smoothing spline that would be the best fit for all of the

data put together, and the interaction term smooth(x;group)

is the smoothing spline representing the difference be-

tween a main effect spline and the smooth(x) spline [4]
9 .

5. RESULTS AND DISCUSSION

Evaluation of SAX representation. Experimentation

with different values of nseg and alphabet size shows that,

in order to capture the abstract nature of tone perception

and to minimize the effect of large amount of noise in pitch

movements, a limit of nseg <=3 must be placed. This is

a reasonable limit considering that linguists use only two

or three segments to represent tone contours in any tone

language 10 . In this work, we use nseg=2 and alphabet

size of 3. This choice of parameterization is evaluated as a

sufficient representation for the perception of pitch contour

shapes in four different ways.

First, a perceptual evaluation is carried out by having a

human listener judge the shape of the contours as flat, ris-

ing, or falling (n=50). The result shows that the SAX rep-

resentation achieves a 88% accuracy. Second, hierarchical

clustering is performed on all contours in a given tone cat-

egory. The result is then compared with the SAX labels.

Figure 2 shows that in addition to meaningful groupings

of SAX-labeled shapes, the clustering results also indicate

that there are subgroups of shapes within the SAX-shape

groups (especially SAX-flat group) that is more similar to

falling or rising shapes. Third, we used SAX representa-

tion to select a subset of contours from all four tones 11 ,

and performed a hierarchical clustering task that showed

success in separating the four tones. Finally, we performed

a classfication task, in which the 30-point pitch vectors

9 The SSANOVA does not return an F value. Instead, the smoothing
parameters of the components smooth (x)and smooth (x); group are com-
pared to determine their relative contributions to the equation [4]. In this
paper, we use the implementation of gss package in statistical computing
language R.

10 In linguistics convention, high tone=H, low tone= L, rising=LH,
falling=HL, falling rising=HLH, etc.

11 Tone1-”bb”, tone2-”ac”, tone3-”bac”, tone4-”ca”, a<b<c in pitch
space.

from a tone category are classified into SAX class labels

with a mean accuracy of 85.2%.

Figure 2. Hierarchical clustering on tone 4 with SAX la-

bels (zoomed in), F=Falling, R=Rising, Z=Flat

Clustering of 4 tones (H1). Unsupervised K-means

Clustering with 30-point vectors cannot learn any mean-

ingful grouping of tone categories regardless of the number

of desired clusters (performed in data mining tool Weka [7]

with Euclidean distance, and in R with DTW distance, nu-

mOfClust varied within [4,10], otherwise default setting).

Likewise, hierarchical clustering with DTW distance can-

not find any meaningful groupings of tone labels at any

level. This shows that we cannot find a distinct, predomi-

nant shape for a given tone category, and failure to cluster

melodic contours into meaningful groups that correpond to

four tones.

Figure 3. Distribution of shapes across five

tones,F=Falling, R=Rising, Z=Flat

Exploratory within-category shape analysis (H2 and
H3). First, we use the validated SAX representations

to compute the distribution of three shapes rising(R),

falling(F), flat(Z) within each tone category. Figure 3

shows that consistent with H2, each tone category con-

sists of a even mixture of all shapes, with the absence of a

dominant shape 12 . To get a more fine-grained analysis of

the distributions of shapes, a two-sample test on hypothe-

sis of population proportion is performed across tones and

shapes. Results show that the proportion of rising is sig-

nificantly different across four tones from the proportion

12 Tone 5 is a neutral tone whose contour shape depends on the tone the
precedes it. It exists in our dataset but is not under consideration in the
current analysis
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of flat (χ2 = 17.4065, df = 4, p = 0.002) or falling (χ2

= 18.238, df = 4, p = 0.001). The proportion of flat and

falling are not significantly different (p = 0.96). Further-

more, a one-sample test show that, only the proportion of

rising shape is significantly different across four tones (χ2

= 21.9853, df = 4, p = 0.0002), whereas the proportion of

flats and fallings are not significanlty different across tones

(p = 0.23 and p = 0.19). Finally, a two-sample pairwise test

of hypothesis of population proportion shows that the pro-

portion of rising is significantly different between tone 1

and tone 3 (χ2 = 7.3403, df = 1, p = 0.007), tone 1 and tone

4 (χ2 = 12.1243, df = 1, p = 0.0005), but not between tone

2, tone 3, tone 4 (except with the difference between tone

2 and tone 4 that reached significance at p = 0.04). There-

fore, with the exception of tone 1 and tone 2 (p=0.22, tone

2 seem to behave more similarly to tone 1), the proportion

of rising is highly significantly different between in tone 1

and other tones, whereas no strong significant differences

are found among other tones. This result supports the H3

discussed above in asserting that tone 1 is mostly consisted

of a mixture of flat and falling shapes (to be more specific,

flat and flat-falling in H3).

Figure 4. Kernel density estimates of number of shapes by

word across four tones

Analysis of shapes by attributes. We report the

analysis of attributes (artist, word, duration, position,

shengqiang, banshi in the current context) and its corre-

lation with a sub-cluster of shapes within a tone category.

First, we performed a classification task using the shape

as class label and the listed attributes. Results show that

the mean accuracy is around 42%. Second, we analyze the

consistency in which a word is sung as a contour shape

(a word is defined as a syllable bearing a particular tone)

to probe the contour similarity at the word level. Results

show that among the words that appear more than once (a

mean of 58% of words in our dataset), it is most likely

to take on 2 different shapes at different instances, with

a lower probability of taking on the same shape or even

more different shapes. Figure 4 shows a kernel density es-

timates of the number of shapes by word in different tones.

This result indicates a strong likelihood of inconsistency

in singing the same word with the same tone at different

contexts.

SSANOVA. Results of the SSANOVA models compar-

ison and R-suqared values (Table 1) indicate that word

model

parame-

ter

levels

(nomi-

nal)

R-

squared

(T1)

R-

squared

(T2)

R-

squared

(T3)

R-

squared

(T4)

word 468 0.178 0.0772 0.0566 0.0667

artist 15 0.0885 0.0606 0.0465 0.042

shengqiang
2 0.027 0.0235 0.0154 0.0123

position 4 0.028 0.0211 0.0189 0.0103

role type 5 0.029 0.0273 0.0242 0.018

all na 0.032 0.028 0.0249 0.201

Table 1. SSANOVA Model comparison

and artist are the best predictors of all the predictor vari-

ables (as well as all combinations of predictor variables

not shown here). However, it is noticeable that the even

the best model only explains less than 20% of the variance

among all pitch curves in a given tone category 13 . This

indicates a large amount of variation in the shape of the

contours. On the other hand, the consistently larger value

of R-squared for tone 1 indicates positive evidence for a

more consistent shape in tone 1, as stated in the H3 dis-

cussed above.

Figure 5. Average curves computed by the time+word

SSANOVA model.

Average curves of four tones are computed based on

this model (Figure 5), with confidence intervals shown in

dashed lines. The interpretation of these average curves

should be done with caution, because of the low R squared

value and large standard error in the model. In particular,

tone 1 and tone 2 has average contours that differ from both

HG and BJ system; tone 3 and tone 4 show resemblance to

BJ and HG system, respectively.

6. CONCLUSION AND FUTURE WORK

This work constitutes a preliminary step in the computa-

tional approaches to the linguistic tone-melodic contour

similarity in Beijing opera singing. In this work, we fo-

cused on the single-syllable sized contours by adopting

different methodologies based on competing hypothesis

of tone systems. We have demonstrated the effective-

13 And also notice that the R-squared value is highly correlated with the
number of levels in the nominal attributes.
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ness of SAX-based representations in tasks of shape anal-

ysis and time-series mining. The results indicate a even

mixture of shapes within each tone category, with the ab-

sence of a dominant tone system in Beijing opera. In ad-

dition, we found evidence supporting the hypothesis that

tone 1 is sung with more consistent shape than other tones.

Overall, our results point to low degree of similarity in

single-syllable pitch contours. Given the discussion and

methodology proposed here, we expect future research on

pair-wise syllable contour similarity analysis to yield more

promising results.
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ABSTRACT

Sound designers organize their sound libraries either with

dedicated applications (often featuring spreadsheet views),

or with default file browsers. Content-based research ap-

plications have been favoring cloud-like similarity layouts.

We propose a solution combining the advantages of these:

after feature extraction and dimension reduction (Student-

t Stochastic Neighbor Embedding), we apply a proximity

grid, optimized to preserve nearest neighborhoods between

the adjacent cells. By counting direct vertical / horizontal /

diagonal neighbors, we compare this solution over a stan-

dard layout: a grid ordered by filename. Our evaluation is

performed on subsets of the One Laptop Per Child sound

library, either selected by thematic folders, or filtered by

tag. We also compare 3 layouts (grid by filename without

visual icons, with visual icons, and proximity grid) by a

user evaluation through known-item search tasks. This op-

timization method can serve as a human-readable metric

for the comparison of dimension reduction techniques.

1. INTRODUCTION

Sound designers source sounds in massive collections, heav-

ily tagged by themselves and sound librarians. If a set of

sounds to compose the desired sound effect is not avail-

able, a Foley artist records the missing sound and tags these

recordings as accurately as possible, identifying many phys-

ical (object, source, action, material, location) and digital

(effects, processing) properties. When it comes to looking

for sounds in such collections, successive keywords can

help the user to filter down the results. But at the end of

this process, hundreds of sounds can still remain for fur-

ther review. This creates an opportunity for content-based

information retrieval approaches and other means for pre-

senting the available content. From these observations, we

elicited the following research question: can content-based

organization complement or outperform context-based or-

ganization once a limit is reached when filtering by tag?

c© Christian Frisson, Stéphane Dupont, Willy Yvart, Nico-

las Riche, Xavier Siebert, Thierry Dutoit.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Christian Frisson, Stéphane Dupont,

Willy Yvart, Nicolas Riche, Xavier Siebert, Thierry Dutoit. “A proxim-

ity grid optimization method to improve audio search for sound design”,

15th International Society for Music Information Retrieval Conference,

2014.

This work partly addresses this question and presents

a solution to interactively browse collections of textural

sounds after these have been filtered by tags.

We organize sounds in a two-dimensional map using

content-based features extracted from their signal. These

features are mapped to two visual variables. First, the po-

sition of the sample on the screen is obtained after apply-

ing dimension reduction over the features followed by a

proximity grid that structures items on a grid which facil-

itates navigation and visualization, in particular by reduc-

ing the cluttering. The organization of the samples on the

grid is optimized using a novel approach that preserves the

proximity on the grid of a maximum of nearest neighbors

in the original high-dimensional feature space. Second,

the shape of the sample is designed to cue one important

content-based feature, the perceptual sharpness (a measure

the “brightness” of the sound).

This approach is evaluated through a known-item search

task. Our experiments provide one of the first positive re-

sult quantitatively showing the interest of MIR-based vi-

sualization approaches for sound search, when then proper

acoustic feature extraction, dimension reduction, and visu-

alization approaches are being used.

The paper is organized as follows. First, in section 2,

we examine the landscape of existing systems dedicated to

browsing files in sound design. We then describe how we

designed our system in Section 3. In section 4, we describe

our evaluation approach, experiments and obtained results.

We finish by summarizing our contributions and provide

an glimpse of future research directions.

2. BACKGROUND

This section provides a review of the literature and em-

pirical findings on systems for sound design, and outlines

some results and gaps that motivated this work.

Systems for mining sounds, particularly for sound de-

sign, are actually rather scarce. These may however share

some similarities with systems targeted to the management

of music collections, in particular in the content-based pro-

cessing workflow that allows to organize the audio files.

A comprehensive survey on these aspects has been pro-

posed by Casey et al. [4]. We nevertheless believe that

the design of the user interface of each system class might

benefit from different cues from information visualization

and human-computer interaction, and that major progress

is still possible in all these areas.
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2.1 Research-grade systems

The work presented in [18] underlines that few published

research provide accurate usability evaluations on such sys-

tems, beyond informal and heuristic ones. The author jus-

tifies that this may have occurred because complementary

research communities have actually been evolving essen-

tially in separate silos. These include the music infor-

mation retrieval and the human-computer interaction com-

munities. In that work, 20 systems with auditory display

are nevertheless reviewed and compared, including 2 au-

dio browsers that are presented hereafter.

Sonic Browser focused on information visualization [7],

and later approached content-based organization through

the Marsyas framework [3]. A 2D starfield display al-

lows to map the metadata of audio files to visual variables.

Its HyperTree view consists in a spring-layout hierarchical

graph visualization for browsing the file tree of sound col-

lections. They qualitatively evaluated these views with 15

students through timed tasks and a questionnaire [2]; and

their system against the Microsoft Windows 2000 explorer

through a think-aloud protocol with 6 students [7].

SoundTorch, the most recent content-based audio brow-

ser, has been designed by people aware of audio engineer-

ing practices [11]. It relies on Mel-Frequency Cepstral

Coefficients (MFCCs) as features, clustered with a Self-

Organizing Map (SOM) but initialized with smooth gradi-

ents rather than randomly, so that the horizontal axis corre-

sponds to a tonal-to-noisy continuum and the vertical axis

to pitch increase / dull-to-bright. In addition to cueing in

the variety of content through the position of the nodes cor-

responding to sounds, SoundTorch makes use of the node

shape to convey additional information: the temporal evo-

lution of the power of the signal is mapped to a circle.

It is the only related work to provide a quantitative user

evaluation. They positively evaluated known- and descri-

bed-item search tasks comparatively to a list-based appli-

cation. A dozen of users were involved. However, it is

not clear from this comparison whether the approach out-

performs the list-based application because of its content-

based capabilities, or else because of its interactive abil-

ities (particularly its instant playback of closely-located

nodes in the map), or both. Moreover, it has been chosen

to randomize the sound list. Sound designers either buy

commercial sound libraries that are tagged properly and

named accordingly, or else record their own. They also

usually spend a significant amount of time to tag these li-

braries. Therefore, to our opinion, a more realistic baseline

for comparison should be a basic ordering by filename.

CataRT is an application developed in the Max/MSP

modular dataflow framework, that “mosaices” sounds into

small fragments for concatenative synthesis. A 2D scat-

ter plot allows to browse the sound fragments, assigning

features to the axes. The authors recently applied a distri-

bution algorithm that optimizes the spreading of the plotted

sounds by means of iterative Delaunay triangulation and a

mass-spring model, so as to solve the non-uniform density

inherent to a scatter plot, and open new perspectives for

non-rectangular interfaces such as the circular reacTable

and complex geometries of physical spaces to sonify. To

our knowledge, no user study has yet been published for

this tool. It is however claimed as future work [12].

In summary, it appears that no evaluation have been pro-

posed previously on the specific contribution of content-

based analysis to the efficiency of sound search. This is a

gap we started to address in this work.

2.2 Commercial systems

It is worth mentioning here that some commercial sys-

tems, some making use of content-based approaches, have

also been proposed, although no quantitative evaluation of

those can be found in the literature. A pioneering applica-

tion is SoundFisher by company Muscle Fish [21], start-up

of scientists that graduated in the field of audio retrieval.

Their application allowed to categorize sounds along sev-

eral acoustic features (pitch, loudness, brightness, band-

width, harmonicity) whose variations over time are esti-

mated by average, variance and autocorrelation. Sounds

are compared from the Euclidean distance over these fea-

tures. The browser offers several views: a detail of sound

attributes (filename, samplerate, file size...) in a spread-

sheet, a tree of categories resulting from classification by

example (the user providing a set of sounds), and a scatter

plot to sort sounds along one feature per axis.

A second product, AudioFinder by Iced Audio 1 mimics

personal music managers such as Apple iTunes: on top a

textual search input widget allows to perform a query, a top

pane proposes a hierarchical view similar to the “column”

view of the Finder to browse the file tree of the collection,

a central view features a spreadsheet to order the results

along audio and basic file metadata, a left pane lists saved

results like playlists. A bottom row offers waveform visu-

alizations and the possibility to apply audio effect process-

ing to quickly proof the potential variability of the sounds

before dropping these into other creative applications.

A major product, Soundminer HD 2 , provides a similar

interface, plus an alternative layout named 3D LaunchPad
that allows, similarly to the Apple Finder CoverFlow view,

to browse sounds (songs) by collection (album) cover, with

the difference that the former is a 2D grid and the latter a

1D rapid serial visualization technique.

Other companies facilitating creativity such as Adobe

with Bridge 3 provide more general digital asset manage-

ment solutions that are accessible through their entire ap-

plication suite. These focus on production-required capa-

bilities and seem to avoid content-based functionalities.

From our contextual inquiry we noticed that sound de-

signers also make use of simple browsers, such as the de-

fault provided by the operating system, optionally associ-

ated to a spreadsheet to centralize tags.

1 http://www.icedaudio.com
2 http://www.soundminer.com
3 http://www.adobe.com/products/bridge.html
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3. OUR SOLUTION

Our system blends knowledge gained from the fields of

multimedia information retrieval (content-based organiza-

tion), human-computer interaction (usability evaluation)

and information visualization (visual variables).

3.1 A multimedia information retrieval pipeline

One first step is feature extraction. For sound and music,

a large variety of temporal and/or spectral features have

been proposed in the literature [4, 15]. We based our fea-

tures set from [6] since their evaluation considered textural

sounds. In short, we used a combination of derivatives of

and statistics (standard deviation, skewness and/or kurto-

sis) over MFCCs and Spectral Flatness (SF). We did not

perform segmentation as our test collections contain textu-

ral sounds of short length and steady homogeneity.

Another important step is dimension reduction. From

our perspective, one of the most promising approach is

Stochastic Neighborhood Embedding (SNE) using Student-

t distributions (t-SNE) [13]. It has been previously quali-

tatively evaluated on sound collection visualization [6, 9].

The method has an interesting information retrieval per-

spective, as it actually aims at probabilistically preserving

high-dimensional neighbors in a lower-dimensional pro-

jection (2D in our work), and actually maximizes conti-

nuity (a measure that can intuitively be related to recall in

information retrieval) in the projected space. One emergent

result is that recordings from the same sound source with

only slight variations are almost always neighbors in the

2D representation, as the recall is high. Another popular

but older approach for dimensionality reduction are SOMs.

In [14], it has been compared with most recent techniques,

and in particular the Neighbor Retrieval Visualizer (NeRV,

a generalization of SNE). SOMs produced the most trust-

worthy (a measure that can intuitively be related to pre-

cision in information retrieval) projection but the NeRV

was superior in terms of continuity and smoothed recall.

As SNE is a special case of NeRV where a tradeoff is set

so that only recall is maximized, we infer from those re-

sults that SNE is a better approach for our purposes than

SOM. Qualitative evaluations of different approaches ap-

plied to music retrieval have been undertaken [19]: Mul-

tidimensional Scaling (MDS), NeRV and Growing SOMs

(GSOM). Users described MDS to result in less positional

changes, NeRV to better preserve cluster structures and

GSOM to have less overlappings. NeRV and presumably

t-SNE seem beneficial in handling cluster structures.

Besides, we propose in this paper an approach to reduce

the possible overlappings in t-SNE. An undesirable arti-

fact of the original t-SNE approach however comes from

the optimization procedure, which relies on gradient de-

scent with a randomly initialized low-dimensional repre-

sentation. It creates a stability issue, where several runs of

the algorithm may end up in different representations af-

ter convergence. This works against the human memory.

We thus initialized the low-dimensional representation us-

ing the two first axes of a Principal Component Analysis

(PCA) of the whole feature set.

3.2 Mapping audio features to visual variables

Displaying such a representation results in a scatter plot or

starfield display. We address two shortcomings: 1) clusters

of similar sounds might not be salient, and 2) this visual-

ization technique may cause overlap in some areas. Son-
icBrowser [7], that we analyzed in the previous section,

and the work of Thomas Grill [9], dedicated to textural

sounds, approached the first issue by mapping audio fea-

tures to visual variables. Ware’s book [20] offer great ex-

planations and recommendations to use visual variables to

support information visualization tailored for human per-

ception. Thomas Grill’s approach was to map many per-

ceptual audio features to many visual variables (position,

color, texture, shape), in one-to-one mappings.

3.2.1 Content-based glyphs as sound icons

Grill et al. designed a feature-fledged visualization tech-

nique mapping perceptual qualities in textural sounds to

visual variables [9]. They chose to fully exploit the visual

space by tiling textures: items are not represented by a dis-

tinct glyph, rather by a textured region. In a first attempt to

discriminate the contribution of information visualization

versus media information retrieval in sound browsing, we

opted here for a simpler mapping. We mapped the mean

over time of perceptual sharpness to the value in the Hue

Saturation Value (HSV) space of the node color for each

sound, normalized against the Values for all sounds in each

collection. A sense of brightness is thus conveyed in both

the audio and visual channels through perceptual sharp-

ness and value. We also used the temporal evolution of

perceptual sharpness to define a clockwise contour of the

nodes, so that sounds of similar average brightness but dif-

ferent temporal evolution could be better discriminated. To

compute positions, perceptual sharpness was also added to

the feature selection, intuiting it would gather items that

are similar visually. The choice of perceptual sharpness

was motivated by another work of Grill et al. [10]: they

aimed at defining features correlated to perceived charac-

teristics of sounds that can be named or verbalized through

personal constructs. High-low, or brightness of the sound,

was the construct the most correlated to an existing feature:

perceptual sharpness.

3.2.2 A proximity grid optimizing nearest neighbors

For the removal of clutter in 2D plots, two major approaches

exist: reducing the number of items to display, or read-

justing the position of items. In our context, we want to

display all the items resulting of search queries by tag fil-

tering. For this purpose, we borrow a method initially de-

signed to solve the problem of overlap for content-based

image browsing [16]: a proximity grid [1]. Their work

is heavily cited respectively for the evaluation of multi-

dimensional scaling techniques [1] and as a pioneering ap-

plication of usability evaluation for multimedia informa-

tion retrieval [16], but almost never regarding the proxim-

ity grid. To our knowledge, no audio or music browser

approached this solution.
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Figure 1. Different layouts with glyphs for the same sound collection filtered by keyword “water”, from left to right:

“album”, “cloud”, “metro”, and most dense proximity grid.

A proximity grid consists in adapting the coordinates

of each item of a 2D plot to magnetize these items on an

evenly-distributed grid. Basalaj proposed several variants

to compute a proximity grid: greedy methods with spiral

search to find empty cells and empty/swap/bump strate-

gies to assign items to cells; an improved greedy method

replacing spiral search by shortest distance estimation; a

“squeaky wheel” optimization using simulated annealing,

and a genetic algorithm [1]. We implemented the simplest

greedy method with all strategies. To determine the order

of the items to assign to cells, we used the fast minimum

spanning tree algorithm implementation from the machine

learning library mlpack of Boruvka’s dual-tree based on

k-dimensional trees [5]. Applied in high dimension of the

audio features, the empty strategy starts with shortest edges

while it is the opposite for swap and bump strategies, ac-

cording to Basalaj. We opted for a simplification: a spiral

search always turning clockwise and starting above the de-

sired cell, while it is recommended to choose the rotation

and first next cell from exact distance computation between

the actual coordinates of the node and the desired cell.

The minimal side of a square grid is the ceil of the

square root of the collection size, providing the most space

efficient density. To approximate a least distorted grid, the

collection size can be taken as grid side. To come up with

a tradeoff between density and neighborhood preservation,

we estimate the number of high-dimensional nearest neigh-

bors (k=1) preserved in 2D at a given grid resolution sim-

ply by counting the number of pairs in adjacent cells. We

distinguish the amounts of horizontal and vertical and di-

agonal neighbors since different search patterns may be

opted by users: mostly horizontal or vertical for people ac-

customed respectively to western and non-western reading

order, diagonal may be relevant for grids of light density.

For our experiments described in the next section, we

prepared the collections by qualitative selection of the op-

timal grid resolution based on the amounts of horizontal,

vertical and diagonal adjacent neighbors computed for each

resolution between the minimal side and the least distorted

approximate, comparing such amounts between a proxim-

ity grid applied after dimension reduction and a grid or-

dered by filename. Not all collections presented a prox-

imity grid resolution that outperformed a simple grid by

filename in terms of neighbor preservation.

4. EXPERIMENTS

4.1 Open dataset

The One Laptop Per Child (OLPC) sound library 4 was

chosen so as to make the following tests easily reproducible,

for validation and comparison perspectives, and because it

is not a dataset artificially generated to fit with expected

results when testing machine learning algorithms. It is

licensed under a Creative Commons BY license (requir-

ing attribution). It contains 8458 sound samples, 90 sub-

libraries combine diverse types of content or specialize into

one type, among which: musical instruments riffs or sin-

gle notes, field recordings, Foley recording, synthesized

sounds, vocals, animal sounds. It is to be noted, especially

for subset libraries curated by Berklee containing Foley

sound design material, that within a given subset most sam-

ples seem to have been recorded, if not named, by a same

author per subset. It is thus frequent to find similar sounds

named incrementally, for instance Metal on the ground [n]
with n varying from 1 to 4. These are likely to be different

takes of a recording session on a same setting of sound-

ing object and related action performed on it. Ordering

search results by tag filtering in a list by path and filename,

similarly to a standard file browser, will thus imprint local

neighborhoods to the list.

4.2 Evaluation method

We chose to perform a qualitative and quantitative evalua-

tion: qualitative through a feedback questionnaire, quan-

titative through known-item search tasks as popularized

recently for video browsers by the Video Browser Show-

down [17]. In the context of audio browsers, for each task

the target sound is heard, the user has to find it back as fast

as possible using a given layout. Font’s thesis compared

layouts for sound browsing: automatic (PCA), direct map-
ping (scatter plot) and random map [8]. Time and speeds

were deliberately not investigated, claiming that people em-

ploy different search behaviors.

4 http://wiki.laptop.org/go/Free_sound_samples
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Figure 2. Sequence of tasks in the last experiment. In

rows subsets of the One Laptop Per Child (OLPC) sound

library filtered by keyword, respectively “water”, “spring”,

“metal”. In columns: permutations of layouts.

4.3 Design

We undertook four experiments: the first comparing grid
and glyph-less cloud layouts motivated us to add glyph

representations (cloud was outperformed), the second and

third confirmed that a proximity grid was to be investigated

(cloud still outperformed), the last validated these choices.

We recorded several metrics (success times, pointer dis-

tances and speeds, audio hovers) and ratings from feedback

questionnaires. Here we only report the last experiment

and only analyze times taken to successfully find targets.

The fourth experiment was designed as a within-subject

summative evaluation. Figure 2 shows the exact sequence

of tasks presented to the users. An additional collection

was used for training tasks with each layout.

Each layout was given a nickname: grid for the sim-

ple grid ordered by filename, album for its upgrade with

glyphs, metro for the proximity grid of optimal resolu-

tion for neighbors preservation. These short nicknames

brought two advantages: facilitating their instant recog-

nition when announced by the test observer at the begin-

ning of each task, and suggesting search patterns: horizon-

tal land mowing for grid and album, adjacent cell brows-

ing for metro. The metro layout was described to users

using the metaphor of metro maps: items (stations) can

form (connect) local neighborhoods and remote “friends”

(through metro lines usually identified by color).

4.4 Participants and apparatus

16 participants (5 female) of mean age 28 (+/- 6.3) each

performed 9 tasks on 3 different collections. Besides 2

subjects, all the participants have studied or taught audiovi-

sual communication practices (sound design, film edition).

They were asked which human sense they favored in their

work (if not, daily) on a 5-point Likert scale, 1 for audition

to 5 for vision: on average 3.56 (+/- 0.60). All self-rated

themselves with normal audition, 10 with corrected vision.

We used an Apple Macbook Pro Late 2013 laptop with

15-inch Retina display, with a RME FireFace UCX sound

card, and a pair of Genelec active loudspeakers. A 3Dcon-

nexion Space Navigator 3D mouse was repurposed into a

buzzer to submit targets hovered by the touchpad, with au-

dio feedback of the closest node to the pointer.

4.5 Results

A one-way ANOVA shows that there is a quite signifi-

cant difference between views within subjects on success

times (p=.02), more on self-reported ratings of efficiency

(p<.001) and pleasurability (p<.001). Mean and standard

deviations are compared in table 1. A Tukey multiple com-

parisons of success times means at a 95% family-wise con-

fidence level on layouts shows that metro outperformed

grid (p=.01), but album was not significantly better than

grid (p=.34) or worse than metro (p=.26).

grid album metro
success times (s) 53.0(46.6) 43.1(38.0) 31.3(22.9)

efficiency [1-5] 1.87(1.01) 3.75(1.00) 4.12(0.96)

pleasurability [1-5] 2.25(1.18) 3.62(0.81) 4.25(0.86)

Table 1. Mean (standard deviations) of evaluation metrics

4.6 Discussion

Feature extraction is a one-shot offline process at index-

ing time. Dimension reduction for layout computation is a

process that should be close to real-time so as not to slow

down search tasks and that is likely to be performed at least

once per query. Decent results can be achieved by combin-

ing only content-based icons and simple ordering by file-

name. A content-based layout comes at a greater compu-

tational cost but brings significant improvements.

5. CONCLUSION, FUTURE WORKS

We proposed a method to assist sound designers in review-

ing results of queries by browsing a sound map optimized

for nearest neighbors preservation in adjacent cells of a

proximity grid, with content-based features cued through

glyph-based representations. Through a usability evalua-

tion of known-item search tasks, we showed that this so-

lution was more efficient and pleasurable than a grid of

sounds ordered by filenames.

An improvement to this method would require to inves-

tigate all blocks from the multimedia information retrieval

data flow. First, other features tailored for sound effects

should be tried. Second, we have noticed that some of

the first high-dimensional nearest neighbors are positioned

quite far away in 2D, already past dimension reduction.

Reducing pairwise distance preservation errors may be an

investigation track.
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ABSTRACT 

The paper presents a new dataset of mood-dependent and 
color responses to music. The methodology of gath-ering 
user responses is described along with two new inter-faces 
for capturing emotional states: the MoodGraph and Mood-
Stripe. An evaluation study showed both inter-faces have 
significant advantage over more traditional methods in 
terms of intuitiveness, usability and time complexity. The 
preliminary analysis of current data (over 6.000 responses) 
gives an interesting insight into participants’ emotional
states and color associations, as well as relationships be-
tween musically perceived and induced emotions. We be-
lieve the size of the dataset, in-terfaces and multi-modal 
approach (connecting emo-tional, visual and auditory as-
pects of human perception) give a valuable contribution to 
current research.   

1. INTRODUCTION 

There is no denial that strong relationship exists between 
music and emotions. On one hand, music can express and 
induce a variety of emotional responses in listeners and can 
change our mood (e.g. make us happy – we consider mood 
to be a longer lasting state). On the other hand, our current 
mood strongly influences our choice of music - we listen 
to different music when we’re sad than when we’re happy.

It is therefore not surprising that this relationship has 
been studied within a variety of fields, such as philosophy, 
psychology, musicology, anthropology or sociology [1].
Within Music Information Retrieval, the focus has been on 
mood estimation from audio (a MIREX task since 2007),
lyrics or tags and its use for music recommendation and 
playlist generation, e.g. [2-5].  

To estimate and analyze the relationship between mood 
and music, several datasets were made available in the past 

years. The soundtracks dataset for music and emotion con-
tains single mean ratings of perceived emotions (labels and 
values in a three-dimensional model are given) for over 
400 film music excerpts [6]. The MoodSwings Turk Da-
taset contains on average 17 valence-arousal ratings for 
240 clips of popular music [7]. The Cal500 contains a set 
of mood labels for 500 popular songs [8], at around three 
annotations per song, and the MTV Music Data Set [9] a
set of 5 bipolar valence-arousal ratings for 192 popular 
songs. 

In this paper, we introduce a new dataset that captures 
users’ mood states, their perceived and induced emotions 
to music and their association of colors with music. Our 
goals when gathering the dataset were to capture data 
about the user (emotional state, genre preferences, their 
perception of emotions) together with ratings of perceived 
and induced emotions on a set of unknown music excerpts 
representing a variety of genres. We aimed for a large 
number of annotations per song, to capture the variability, 
inherent in user ratings.  

In addition, we wished to capture the relation between 
color and emotions, as well as color and music, as we be-
lieve that color is an important factor in music visualiza-
tions. A notable effort has been put into visualizing the mu-
sic data on multiple levels: audio signal, symbolic repre-
sentations and meta-data [10]. Color tone mappings can be 
applied onto the frequency, pitch or other spectral compo-
nents [11], in order to describe the audio features of the 
music [12], or may represent music segments. The color 
set used for most visualizations is picked instinctively by 
the creator. To be able to provide a more informed color 
set based on emotional qualities of music, our goal thus 
was to find out whether certain uniformity exist in the per-
ception of relations between colors, emotions and music.  

The paper is structured as follows: section 2 describes 
the survey and it design, section 3 provides preliminary 
analyses of the gathered data and survey evaluation and 
section 4 concludes the paper and describes our future 
work. 

© Matevž Pesek, Primož Godec, Mojca Poredoš, Gregor 
Strle, Jože Guna, Emilija Stojmenova, Matevž Pogačnik, Matija Marolt
Licensed under a Creative Commons Attribution 4.0 International 
License (CC BY 4.0). Attribution: Matevž Pesek, Primož Godec, 
Mojca Poredoš, Gregor Strle, Jože Guna, Emilija Stojmenova, Matevž 
Pogačnik, Matija Marolt. “Introducing a dataset of emotional and color 
responses to music”, 15th International Society for Music Information 
Retrieval Conference, 2014.
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2. ONLINE SURVEY

We gathered the dataset with an online survey, with the 
intention to reach a wide audience and gather a large num-
ber of responses. We started our survey design with a pre-
liminary questionnaire, which provided some basic guide-
lines for the overall design. We formed several research 
questions to drive the design and finally implemented the 
survey which captures the user’s current emotional state, 
their perception of colors and corresponding emotions, as 
well as emotions perceived and induced from music, along 
with the corresponding color. After the first round of re-
sponse gathering was completed, we performed a new sur-
vey designed to evaluate different aspects of user experi-
ence with our original survey. 

2.1 Preliminary study  

Although there exists some consent that a common set of 
basic emotions can be defined [13], in general there is no 
standard set of emotion labels that would be used in music 
and mood researches. Some authors choose labeled sets in-
tuitively, with no further explanation [14].  In contrast, we 
performed an initial study in order to establish the relevant 
set of labels. For the purpose of eliminating the cultural 
and lingual bias on the labelling, we performed our survey 
in Slovenian language for Slovene-speaking participants.  

The preliminary questionnaire asked the user to de-
scribe their current emotional state through a set of 48 
emotion labels selected from literature [15-17] , each with 
an intensity-scale from 1 (inactive) to 7 (active). The ques-
tionnaire was solved by 63 participants. Principal compo-
nent analysis of the data revealed that first three compo-
nents explain 64% of the variance in the dataset. These 
three components strongly correlate to 17 emotion labels
chosen as emotional descriptors for our survey. 

We also evaluated the effectiveness of the continuous 
color wheel to capture relationships between colors and 
emotions. Responses indicated the continuous color scale 
to be too complex and misleading for some users. Thus, a 
modified discrete-scale version with 49 colors displayed 
on larger tiles was chosen for the survey instead. The 49 
colors have been chosen to provide a good balance be-
tween the complexity of the full continuous color wheel 
and the limitations of choosing a smaller subset of colors.  

2.2 The survey 

The survey is structured into three parts, and contains 
questions that were formulated according to our hypothe-
ses and research goals: 
• user’s mood impacts their emotional and color percep-

tion of music; 
• relations between colors and emotions are uniform in 

groups of users with similar mood and personal char-
acteristics; 

• correlation between sets of perceived and induced 
emotions depends both on the personal musical prefer-
ences, as well as on the user’s current mood;

• identify a subset of emotionally ambiguous music ex-
cerpts and study their characteristics; 

• mappings between colors and music depend on the mu-
sic genre; 

• perceived emotions in a music excerpt are expected to 
be similar across listeners, while induced emotions are 
expected to be correlated across groups of songs and 
users with similar characteristics. 

We outline all parts of the survey in the following sub-
sections, a more detailed overview can be found in [18]. 

2.2.1 Part one – personal characteristics 

The first part of the survey contains nine questions that 
capture personal characteristics of users. Basic de-
mographics were captured: age, gender, area of living, na-
tive language. We also included questions regarding their 
music education, music listening and genre preferences. 
We decided not to introduce a larger set of personal ques-
tions, as the focus of our research lies in investigating the 
interplay of colors, music and emotions and we did not 
want to irritate the users with a lengthy first part. Our goal 
was to keep the amount of time spent for filling in the sur-
vey to under 10 minutes.  

2.2.2 Part two - mood, emotions and colors 

The second part of our survey was designed to capture in-
formation about the user’s current mood, their perception 
of relation between colors and emotions and their percep-
tion of emotions in terms of pleasantness and activeness.  

The user’s emotional state was captured in several 
ways. First, users had to place a point in the valence-
arousal space. This is a standard mood estimation ap-
proach, also frequently used for estimation of perceived 
emotions in music. Users also indicated the preferred color 
of their current emotional state, as well as marked the pres-
ence of a set of emotion labels by using the MoodStripe
interface (see Figure 1).

Figure 1: The MoodStripe allows users to express their 
emotional state by dragging emotions onto a canvas, 
thereby denoting their activity  
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To match colors with emotions, users had to pick a color 
in the color wheel that best matches a given emotion label 
(10 labels were presented to each user). Finally, users had 
to assess how they perceive the pleasantness and active-
ness of emotions by placing a set of emotion labels into the 
valence-arousal space using the MoodGraph (see Figure 
2). This enables us to evaluate the variability of placement 
of emotion labels in terms of their activeness and pleasant-
ness and compare it to data gathered in part three, where 
users described musical excerpts in a similar manner.  

2.2.3 Part three - music in relation to colors and emotions 

In the third part of our survey users were asked to complete 
two tasks on a set of ten 15-second long music excerpts. 
These were randomly selected from a database of 200 mu-
sic excerpts. When compiling the database, we strived for 
a diverse, yet unknown set of music pieces, to avoid judg-
ments based on familiarity with the content. The database 
contains 80 songs from the royalty free online music ser-
vice Jamendo, representing a diverse variety of “standard” 
genres, with songs unknown to the wider audience. 80 
songs were included from a dataset of film music excerpts 
[6], 20 from a database of folk music and 20 from a con-
temporary electro-acoustic music collection.  

After listening to an excerpt, users were first asked to 
choose the color best representing the music from the color 
wheel. Next, users were asked to describe the music by 
dragging emotion labels onto the valence-arousal space us-
ing the MoodGraph interface (Figure 2). Two different sets 
of labels were used for describing induced and perceived 
emotions, as different emotions correspond with respec-
tive category[19], and at least one label from each category 
had to be placed onto the space. shown and  

  

Figure 2: The MoodGraph: users drag emotion labels onto 
the valence-arousal space. Induced emotions are marked 
with a person icon, perceived emotions with a note icon.  

2.3 Evaluation survey 

After responses were gathered, we performed an additional 
evaluation survey, where we asked participants to evaluate 

the original survey. Although the survey was anonymous, 
users had the opportunity to leave their email at the end, 
which we used to invite them to fill in the evaluation ques-
tionnaire. Participants were presented a set of twelve ques-
tions about different aspects of the survey: user experience, 
complexity of the questionnaire, and aspects of our new 
MoodGraph and MoodStripe interfaces. Some of the ques-
tions were drawn from the existing evaluation standard 
NASA load task index [20], while others were intended to 
evaluate different aspects of our interfaces.  

3. RESULTS 

The survey was taken by 952 users, providing 6609 
mood/color-perception responses for the 200 music ex-
cerpts used.  We thus obtained a large number of responses 
per music excerpt (each has 33 responses on average), in-
cluding sets of induced and perceived emotion labels, their 
placement in the valence-arousal space, as well as the color 
describing the excerpt. To our knowledge, no currently 
available mood-music dataset has such a high ratio of user 
annotations per music excerpt. The data, as well as music 
excerpts will be made public as soon as the second round 
of response gathering, currently underway, will be fin-
ished. 

In the following subsections, we provide some prelimi-
nary analyses of our data. 

3.1 Demographic analysis 

The basic demographic characteristics of the 952 partici-
pants are as follows. The average age of participants was 
26.5 years, the youngest had 15, the oldest 64 years. 65% 
of participants are women, 66% are from urban areas. 50% 
have no music education, 47% do not play instruments or 
sing. The amount of music listening per day is evenly 
spread from less than 1 hour to over 4 hours. 3% claimed 
they were under the influence of drugs when taking the 
survey. 

3.2 Colors and emotions 

In the second part of the survey, participants indicated their 
emotional state within the valence-arousal space, as well 
as by choosing a color. Relations between the color hue 
and location in the valence-arousal space are not very con-
sistent, but overall less active emotional states correspond 
more with darker blue-violet hues, while the more active 
ones to red-yellow-green hues. There is also a statistically 
significant positive correlation between color saturation 
and value (in a HSV color model) and activeness, as well 
as pleasantness of emotions: the more positive and active 
the user’s emotional state is, the more vivid the colors are. 

Colors attributed to individual emotion labels, as well 
as the placement of labels in the valence-arousal space are 
visible in Figure 3. Associations between colors and emo-
tions are quite consistent and in line with previous research 
[21-24]. Fear (A) and anger (F) are basic negative emo-
tions and have dark blue/violet or black hues. Sadness (I) 
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and relaxation (J), interestingly are also very similar, alt-
hough different in valence. Energetic (C) as a very active 
mood is mostly red, joy (B) and liveliness (G) somewhat 
less (more yellowy, even green). Another interesting out-
come is that similar red-yellow-green hues are also preva-
lent for disappointment (E) and discontent (H). Happiness 
(D) is very distinct, in pastels of green and blue (similar to 
[21-24]). As these hues are often related to inner balance 
(peace), their choice for happiness, by some definitions a 
state where ones needs are satisfied, reflects the partici-
pants’ notion that happiness and inner balance are re-
lated[21, 24]. 

Figure 3: position of emotions in the valence-arousal 
space, and their colors. A: fear, B: joy, C: energy, D: hap-
piness, E: disappointment, F: anger, G: liveliness, H: dis-
content, I: relaxation, J: sadness

3.3 Relationships between induced and perceived emo-
tions 

In part three of the survey participants were asked to mark 
induced and perceived emotions for individual music ex-
cerpt by dragging emotion labels from the respective cate-
gories onto the valence-arousal space (see Figure 2). Here, 
we focus on the relationship between induced and per-
ceived emotions. 
Figure 4 shows the centroids (averages) for induced-per-
ceived emotion pairs of participants’ ratings for each mu-
sic excerpt: 'anger', 'relaxed', ‘happiness’, ‘joy’, 'sadness', 
'calmness', 'anticipation' and ‘fear’. Positions of induced-
perceived emotion pairs (Figure 4) loosely correspond to 
the positions of participant’s emotional states in the va-
lence-arousal space from Figure 3, with some obvious dif-
ferences. For example (with respect to B, D and I on Figure 
3), positive induced-perceived emotion pairs, such as re-
laxed, happiness and joy (B, C and D in Figure 4) occupy 
a more central space in the ‘pleasant/active’ quadrant of 
valence-arousal space. Similarly, negative emotion pairs 
(A, E and H in Figure 4) are also more central on the ‘un-
pleasant’ quadrants than corresponding emotions on Fig-
ure 3, but have significantly larger variance and spread on 
valence-arousal space compared to positive emotions 
(apart from relaxed (B)), especially along arousal dimen-
sion. 

Let us compare the relationships in Figure 4. There is a 
noticeable variance between induced and perceived emo-
tions for negative emotions, such as fear (H), anger (A) and 
sadness (E), as they spread over both arousal and valence 

axes. The central position of sadness (E) along the arousal 
dimension is especially interesting, as it is typically asso-
ciated with low arousal (compare to J in Figure 3). Further-
more, all three negative emotions (A, E and H) are in cer-
tain musical contexts experienced or perceived as pleasant. 
On the other hand, positive induced-perceived emotion 
pairs, such as joy (D) and happiness (C), tend to be more 
similar on both valence (positive) and arousal (relatively 
high) dimension and consequently have less variance. 
More neutral emotions, such as calmness (F) and anticipa-
tion (G), occupy the center, with relaxed (B) untypically 
potent on the arousal dimension. 

Figure 4: Representation of relationships between in-
duced-perceived emotion pairs of all music excerpts (in-
duced centroid: green star, perceived centroid: red circle). 
A: anger, B. relaxation, C. happiness, D: joy, E: sadness, 
F: calmness, G: anticipation, H: fear

Discriminating between induced and perceived emo-
tions in music is a complex task and to date there is no 
universally agreed upon theory, or emotional model, that 
would best capture emotional experiences of listeners (see 
e.g. [19, 25-29]). Many argue (e.g. [6, 19, 28, 30, 31]) that 
simple valence-arousal dimensional model (one that 
MoodGraph is based on) might be too reductionist, as it 
ignores the variance of emotions and results in inherently 
different emotions occupying similar regions of valence-
arousal space (e.g., compare regions of fear (H), anger (A) 
and sadness (E) in Figure 4). Our preliminary results nev-
ertheless show some interesting aspects of induction and 
perception of musical emotions. For example, the repre-
sentations of relationships among and within induced-per-
ceived emotion pairs shown in Figure 4 support Gabriels-
son’s theory of four basic types of relationship between in-
duced and perceived emotions in relation to music: posi-
tive/in agreement, negative/opposite, non-systematic/neu-
tral and absent/no relationship [25]. Positive relationship 
is the most common (e.g., when music perceived to ex-
press sad emotions also evokes such emotions in the lis-
tener), resulting in the overlap (in some cases above 60%; 
see e.g. [19, 26, 29]) of induced-perceived emotion pairs. 
In one study [32], researchers found extremely strong pos-
itive correlation for induced and perceived emotions on 
both valence and arousal dimensions, and concluded that 
results show “listeners will typically feel the emotions ex-
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pressed by the song” [p. 93]. However, our preliminary re-
sults do not support this claim. There is a significant vari-
ance among induced-perceived emotion pairs, particularly 
among negative emotions. Furthermore, while effects of 
positive correlation between induced and perceived emo-
tions are evident (especially in positive emotions), other 
types of relationships are equally significant: from nega-
tive/opposite, non-matching, to complex and neutral. The 
preliminary results clearly show differential variance 
across induced and perceived emotions (in line with recent 
findings [33]).

When analyzing the induced-perceived emotion pairs in 
MoodGraph, we’ve found that: a) they do not necessarily 
positively correlate, b) they occupy different regions and 
c) even when they fall into the same region of valence-
arousal space, both rotation and standard deviation within 
each induced-perceived emotion pair are significantly 
larger than reported in some of the previous studies (e.g., 
[32]). This shows that participants understood both con-
cepts (i.e. induced vs. perceived emotion) and were able to 
differentiate emotions from both categories on the va-
lence-arousal space.  

One reason for large amount of variance in representa-
tions of induced/perceived pairs is probably due to the 
model itself, as participants can rate both induced and per-
ceived emotions together and directly onto MoodGraph af-
ter listening to the music excerpt. Another advantage, we 
argue, is the construction of the MoodGraph itself. While 
bearing similarity with traditional approach to dimensional 
modeling (a classic example being Russell’s circumplex 
model of affect [15]), the MoodGraph has no pre-defined 
and categorically segmented/discrete regions of valence-
arousal space, hence avoiding initial bias, while still offer-
ing an intuitive interface � the participant is free to drag 
emotion labels onto MoodGraph according to her prefer-
ences and interpretation of the valence-arousal space. 

3.4 Evaluation survey 

The online evaluation questionnaire was filled-in by 125 
users, who all took part in our survey. Results were posi-
tive and indicate that the survey was properly balanced and 
the new interfaces were appropriate. Detailed results can 
be found in [34]. To summarize, responses show appropri-
ate mental difficulty of the questionnaire, while the physi-
cal difficulty seems to be more uniformly distributed 
across participants. Thus, it can be speculated that the lis-
tening part of the questionnaire represents a physical chal-
lenge to a significant number of participants. The pre-
sented MoodGraph interface was quite intuitive; however,
it was also time demanding. Considering the task load of 
the interface (combining three distinctive tasks), this was 
expected. The number of emotions in MoodGraph catego-
ries was slightly unbalanced and should be extended in our 
future work. The MoodStripe interface represents a signif-
icant improvement over a group of radio buttons, both in 

intuitiveness and time complexity. Participants also indi-
cated that the set of 49 colors available for labeling emo-
tions may not be large enough, so we will consider enlarg-
ing the set of color tones in our future work.  

4. CONCLUSIONS 

We intend to make the gathered dataset available to the 
public, including the musical excerpts, data on users’ per-
sonal characteristics and emotional state, their placement 
of emotions within the valence/arousal space, their per-
ceived and induced emotional responses to music and their 
perception of color in relation to emotions and music. This 
will open new possibilities for evaluating and re-evaluat-
ing mood estimation and music recommendation ap-
proaches on a well annotated dataset, where the ground 
truth lies in the statistically significant amount of re-
sponses per song, rather than relying on annotations of a 
small number of users.  

Shortly, we will start with the second round of response 
gathering with an English version of the survey. We also 
intend to enlarge the number of music excerpts in the mu-
sic dataset and provide it to the users who have already 
participated in this study. Thus, we hope to further extend 
and diversify the dataset. 

Preliminary analyses already show new and interesting 
contributions, and next to answering the questions already 
posed in section 2.2, the dataset will provide grounds for 
our future work (and work of others), including:  
• previously introduced mood estimation algorithms will 

be evaluated by weighting the correctness of their pre-
dictions of perceived emotion responses for music ex-
cerpts. New mood estimation algorithms will be devel-
oped, building upon the newly obtained data; 

• we will explore modelling of relations between music 
and colors chosen by users in the survey. Results may 
be useful for music visualization, provided that corre-
lations between audio and visual perception will be 
consistent enough; 

• music recommendation interfaces will be explored,
presenting recommendations in a visual manner with 
the intent to raise user satisfaction by reducing the tex-
tual burden placed on the user. The interface will in-
clude personal characteristics and their variability in 
the decision model; 

• the dataset can also be used in other domains, as re-
sponses that relate colors to emotions based on the 
user’s emotional state can be used independently.
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ABSTRACT

The paper describes a computational system for exhaus-

tive but compact description of repeated motivic patterns in

symbolic representations of music. The approach follows

a method based on closed heterogeneous pattern mining

in multiparametrical space with control of pattern cyclic-

ity. This paper presents a much simpler description and

justification of this general strategy, as well as significant

simplifications of the model, in particular concerning the

management of pattern cyclicity. A new method for auto-

mated bundling of patterns belonging to same motivic or

thematic classes is also presented.

The good performance of the method is shown through

the analysis of a piece from the JKUPDD database. Ground-

truth motives are detected, while additional relevant infor-

mation completes the ground-truth musicological analysis.

The system, implemented in Matlab, is made publicly

available as part of MiningSuite, a new open-source frame-

work for audio and music analysis.

1. INTRODUCTION

The detection of repetitions of sequential representations in

symbolic music is a problem of high importance in music

analysis. It enables the detection of repeated motifs and

themes 1 , and of structural repetition of musical passages.

1.1 Limitation of previous approaches

Finding these patterns without knowing in advance their

actual description is a difficult problem. Previous approa-

ches have shown the difficulty of the problem related to the

combinatorial explosion of possible candidate patterns [2].

Some approaches tackle this issue by generating a large set

of candidate patterns and applying simple global heuris-

tics, such as finding longest or most frequent patterns [3,8].

Similarly, other approaches base the search for patterns on

1 Here motif and theme are considered as different musicological in-
terpretations of a same pattern configuration: motifs are usually shorter
than themes.
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Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Olivier Lartillot. “IN-DEPTH MO-

TIVIC ANALYSIS BASED ON MULTIPARAMETRIC CLOSED PAT-

TERN AND CYCLIC SEQUENCE MINING”, 15th International Soci-

ety for Music Information Retrieval Conference, 2014.

general statistical characteristics [5]. The problem is that

there is no guarantee that this global filtering leads to a se-

lection of patterns corresponding to those selected by mu-

sicologists and perceived by listeners.

1.2 Exhaustive mining of closed and cyclic patterns

In our research, we endeavour to reveal the factors under-

lying this structural explosion of possible patterns and to

formalise heuristics describing how listeners are able to

consensually perceive clear pattern structures out of this

apparent maze. We found that pattern redundancy is based

on two core issues [6]:

• closed pattern mining: When a pattern is repeated,

all underlying pattern representations it encompasses

are repeated as well. In simple string representation,

studied in section 2 2 , these more general patterns

correspond to prefixes, suffixes and prefixes of suf-

fixes. The proliferation of general patterns, as shown

in Figure 1, leads to combinatorial explosion. Re-

stricting the search to the most specific (or “maxi-

mal”) patterns is excessively selective as it filters out

potentially interesting patterns (such as CDE in Fig-

ure 1), and would solely focus on large sequence rep-

etitions. By restricting the search to closed patterns

– i.e., patterns that have more occurrences than their

more specific patterns –, all pattern redundancy is fil-

tered out without loss of information. [6] introduces

a method for exhaustive closed pattern mining.

• pattern cyclicity: When repetitions of a pattern are

immediately successive, another combinatorial set

of possible sequential repetitions can be logically in-

ferred [2], as shown in Figure 2. This redundancy

can be avoided by explicitly modelling the cyclic

loop in the pattern representation, and by general-

ising the notion of closed pattern accordingly.

By carefully controlling these factors of combinatorial

redundancy without damaging the non-redundant pattern

information, the proposed approach in [6] enables to out-

put an exhaustive description of pattern repetitions. Pre-

vious approaches did not consider those issues and per-

formed instead global filtering techniques that broadly miss

the rich pattern structure.

2 The more complex multiparametric general/specific transformations
are studied in section 3.
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ABCDECDEABCDECDE

Figure 1. Patterns found in a sequence of symbols. Below

the sequence, each row represents a different pattern class

with the occurrences aligned to the sequence. Thick black

lines correspond to closed patterns (the upper one is the

maximal pattern), grey lines to prefixes of closed patterns,

and thin lines to non-closed patterns.

A B C A B C A B C A …

…

Figure 2. Closed patterns found in a cyclic sequence of

symbols. The occurrences of the pattern shown in thick

lines do not overlap, whereas those shown in thin lines do.

1.3 New approach

In this paper, we propose a simplified description and mod-

elling of this exhaustive pattern mining approach. In sec-

tion 2, we present the problem of closed pattern mining on

the simple case of monoparametric string analysis, intro-

duce a simplified algorithmic implementation, and present

a new way to simply justify the interest of the approach. In

section 3, the approach is generalised to the multidimen-

sionality of the musical parametric space. Section 4 dis-

cusses pattern cyclicity and presents a new simple model

that solves this issue. In section 5, the interest of the method

is shown through the analysis of a piece of music from the

JKUPDD database.

2. CORE PRINCIPLES OF THE MODEL

2.1 Advantages of incremental one-pass approach

As explained in the previous section, testing the closed-

ness of a pattern requires comparing its number of occur-

rences with those of all the more specific patterns. Previous

computer science researches in closed pattern mining (one

recent being [9]) incrementally construct the closed pat-

terns dictionary while considering the whole document to

be analysed (in our case, the piece of music). This requires

the design of complex algorithms to estimate the number

of occurrences of each possible pattern candidate.

We introduced in [6] a simpler approach based on an in-

cremental single pass throughout the document (i.e., from

the beginning to the end of the piece of music), during

which the closed pattern dictionary is incrementally con-

structed: for each successive note n in the sequence, all

patterns in the subsequence ending to that note n are ex-

haustively searched for. The main advantage of the incre-

mental approach is based on the following property.

Lemma 2.1 (Closed pattern characterisation). When fol-
lowing the incremental approach, for any closed pattern
P , there exists a particular moment in the piece of music
where an occurrence O of P can be inferred while no oc-
currence of any more specific pattern can be inferred.

Proof. There are three alternative conditions concerning

the patterns more specific than P :

• There is no pattern more specific than P . In this

case, the observation is evident.

• There is only one pattern S more specific than P .

For instance, in Figure 3, S = ABCD is more spe-

cific than P = CD. Since P is closed, it has more

occurrences than S, so there exists an occurrence of

P that is not occurrence of S.

• There are several patterns S1, . . . , Sn more specific

than P . For instance, in Figure 1, S1 = ABCDE

and S2 = ABCDECDE are both more specific than

P = CDE. As soon as two different more specific

patterns S1 (one or several time) and S2 (first time)

have appeared in the sequence, pattern P can be de-

tected, since it is repeated in S1 and S2, but S2 is not

detected yet, since it has not been repeated yet.

As soon as we detect a new pattern repetition, such that

for that particular occurrence where the repetition is de-

tected, there is no more specific pattern repetition, we can

be sure that the discovered pattern is closed.

When considering a given pattern candidate at a given

point in the piece of music, we need to be already informed

about the eventual existence of more specific pattern occur-

rences at the same place. Hence, for a given note, patterns

need to be extended in decreasing order of specificity.

To details further the approach, let’s consider in a first

simple case the monoparametric contiguous string case,

where the main document is a sequence of symbols, and

where pattern occurrences are made of contiguous sub-

strings. In this case, ‘more general than’ simple means ‘is

a subsequence of’. In other words, a more general pattern

is a prefix or/of a suffix of a more specific pattern. Let’s

consider these two aspects separately:

• Since the approach is incremental, patterns are con-

structed by incrementally extending their prefixes (in

grey in Figure 1). Patterns are therefore represented

as chains of prefixes, and the pattern dictionary is

represented as a prefix tree. In this paradigm, if a

given pattern P is a prefix of a closed pattern S, and

if both have same number of occurrences, the prefix

P can still be considered as a closed pattern, in the

sense that it is an intermediary state to the constitu-

tion of the closed pattern S.
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CDABCDEABCDE

Figure 3. Closed patterns found in a sequence of sym-

bols. The occurrence during which a pattern is discovered

is shown in black. Dashed extensions indicate two possible

pattern extensions when integrating the last note.

• The closedness of a pattern depends hence solely on

the patterns to which it is a suffix. Thanks to the

incremental one-pass approach, these more specific

patterns are already inferred. The only constraint to

be added is that when a given note is considered,

the candidate patterns should be considered in de-

creasing order of specificity, i.e. from the longest to

the shortest (which are suffixes of the longer ones).

For instance, in Figure 3, when analysing the last

note, E, there are two candidate patterns for exten-

sion, ABCD and CD. Since we first extend the most

specific pattern ABCDE, when considering then the

more general pattern CD, extension CDE is found as

non-closed and thus not inferred.

2.2 Algorithmic details

Following these principles, the main routine of the algo-

rithm simply scans the musical sequence chronologically,

from the first to the last note. Integrating a new note con-

sists in checking:

• whether pattern occurrence(s) ending at the previous

note can be extended with the new note,

• whether the new note initiates the start of a new pat-

tern occurrence.

The extension of a pattern occurrence results from two al-

ternative mechanisms:

Recognition the new note is recognised as a known exten-

sion of the pattern.

Discovery the new note continues the occurrence in the

same way that a previous note continued an older

occurrence of the pattern: the pattern is extended

with this new common description, and the two oc-

currences are extended as well.

Concerning the discovery mechanism, the identification

of new notes continuing older contexts can be implemented

using a simple associative array, storing the note following

each occurrence according to its description. This will be

called a continuation memory. Before actually extending

the pattern, we should make sure that the extended pattern

is closed.

2.3 Specific Pattern Class

Searching for all closed patterns in a sequence, instead of

all possible patterns, enables an exhaustive pattern analysis

without combinatorial explosion: all non-closed patterns

can be deduced from the closed pattern analysis. Yet, the

set of closed patterns can remain quite large and the ex-

haustive collection of their occurrences can become cum-

bersome. [6] proposes to limit the analysis, without any

loss of information, to closed patterns’ specific classes,

which correspond to pattern occurrences that are not in-

cluded in occurrences of more specific patterns. For in-

stance, in Figure 3, the specific class of CD contains only

its first occurrence, because the two other ones are super-

posed to occurrences of the more specific pattern ABCDE.

We propose a simpler model for the determination of

specific class of closed patterns. Non-specific occurrences

are regenerated whenever necessary. Because occurrences

of a given pattern are not all represented, the notes follow-

ing these occurrences are not memorised, although they

could generate new pattern extensions. To circumvent this

issue, the extension memory related to any given pattern

contains the extensions not only of that pattern but also of

any more specific pattern.

3. MULTIPARAMETRIC PATTERN MINING

The model presented in the previous section searches for

sequential patterns on monoparametric sequences, com-

posed of a succession of symbols taken from a given al-

phabet. Music cannot be reduced to unidimensional para-

metric description.

3.1 Parametric space

The problem needs to be generalised by taking into account

three main aspects:

• Notes are defined by a hierarchically structured com-

bination of parameters (diatonic and chromatic pitch

and pitch class, metrical position, etc.).

• Notes are defined not only in terms of their absolute

position on fixed scales, but also relatively to a given

local context, and in particular with respect to the

previous notes (defining pitch interval, gross con-

tour, rhythmic values, etc.). These interval represen-

tations are also hierarchically structured. Gross con-

tour, for instance, is a simple description of the inter-

pitch interval between successive notes as “increas-

ing”, “decreasing” or ”unison”. Matching along gross

contour enables to track intervallic augmentation and

diminution. For instance, in the example in section

5, the first interval of the fugue subject is either a

decreasing third or a decreasing second. The actual

diatonic pitch interval representation differs, but the

gross contour remains constantly “decreasing”.

• A large part of melodic transformations can be un-

derstood as repetitions of sequential patterns that do

not follow strictly all the parametric descriptions, but

only a subset. For instance, a rhythmical variation

of a melodic motif consists in repeating the pitch se-

quence, while developing the rhythmical part more

freely.
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[6] proposes to integrate both absolute note position

and relative note interval into a single parametric space.

This enables to define a motive and any occurrence as a

simple succession of parametric descriptions. [6] also shows

the importance of heterogeneous patterns, which are made

of a succession of parameters that can each be defined on

different parametric dimensions. For instance, the subject

of the fugue analysed in section 5 is heterogeneous, as it

starts with a gross contour interval followed by more spe-

cific descriptions. In the multiparametric paradigm, a pat-

tern G is more general than a pattern S if it is a suffix of

S and/or the successive parametric descriptions of the pat-

terns are equal or more general than the related parametric

descriptions in pattern P .

3.2 Motivic/thematic class as “paradigmatic sheaf”

Extending the exhaustive method developed in the previ-

ous section to this heterogeneous pattern paradigm enables

to describe all possible sequential repetitions along all para-

metric dimensions. This leads to very detailed pattern char-

acterisation, describing in details the common sequential

descriptions between any pair of similar motif. However, a

more synthetic analysis requires structuring the set of dis-

covered patterns into motivic or thematic classes. Manual

motivic taxonomy of these discovered patterns has been

shown in [7].

We have conceived a method for the collection of all

patterns belonging to a same motivic or thematic class.

Starting from one pattern seed, the method collects all other

patterns that can be partially aligned to the seed, as well as

those that can be aligned to any pattern thus collected. Pat-

terns are searched along the following transformations:

• More general patterns of same length

• More specific patterns: only the suffix that have same

length that the pattern seed is selected.

• Prefixes of pattern seed can be used as pattern seeds

too: they might contain additional sets of more gen-

eral and more specific patterns of interest.

• Pattern extensions, leading to a forking of the mo-

tivic or thematic class into several possible continu-

ations

All the patterns contained in the bundle remain informative

in the way they show particular commonalities between

subset of the motivic/thematic class, as shown in the anal-

ysis in section 5.

3.3 Heterogeneous pattern mining

A parametric description of a given note in the musical

sequence instantiates values to all fields in the paramet-

ric space. Values in the more general fields are automat-

ically computed from their more specific fields. A para-

metric description of a note in a pattern instantiates values

to some fields in the space, the other indeterminate fields

corresponding to undefined parameters. Values can be as-

signed to more general fields, even if no value is assigned

to their corresponding more specific fields. Methods have

been implemented that enable to compare two parametric

descriptions, in order to see if they are equal, or if one is

subsumed into the other, and if not, to compute the inter-

section of the two descriptions.

The multiparametric description is integrated in the two

core mechanisms of the incremental pattern mining model

as follows:

Recognition As before, the observed parametric descrip-

tion of the new note is compared to the descriptions

of the patterns’ extensions. If the pattern extension’s

description fits only partially, a new more general

pattern extension is created (if not existing yet) re-

lated to the common description.

Discovery The continuation memory is structured in the

same way as the parametric space: for each possi-

ble parametric field, an associative memory stores

pattern continuations according to their values along

that particular parametric field. As soon as a stored

pattern continuation is identified with the current note

along a particular parametric field, the complete para-

metric description common to these two contexts is

computed, and the pattern extension is attempted along

that common parametric description. As before, a

pattern is extended only if the extended pattern is

closed.

4. PATTERN CYCLICITY

A solution to the problem of cyclicity introduced in sec-

tion 1.2 was proposed in [6] through the formalisation of

cyclic patterns, where the last state of the chain represent-

ing the pattern is connected back to its first state, formal-

ising this compelling expectation of the return of the pe-

riodic pattern. One limitation of the approach is that it

required the explicit construction of cyclic pattern, which

demanded contrived algorithmic formalisations. The prob-

lem gets even more difficult when dealing with multipara-

metric space, in particular when the pattern is only partially

extended, i.e., when the expected parametric description is

replaced by a less specific parametric matching, such as

in the musical example shown in Figure 4. In this case, a

more general pattern cyclic needs to be constructed, lead-

ing to the inference of a complex network of pattern cycles

particularly difficult to conceptualise and implement.

We propose a simpler approach: instead of formalising

cyclic patterns, pattern cyclicity is represented on the pat-

tern occurrences directly. Once a successive repetition of a

pattern has been detected, such as the 3-note pattern start-

ing the musical example in Figure 4, the two occurrences

are fused into one single chain of notes, and all the subse-

quent notes in the cyclic sequence are progressively added

to that chain. This cyclic chain is first used to track the de-

velopment of the new cycle (i.e., the third cycle, since there

were already two cycles). The tracking of each new cy-

cle is guided by a model describing the expected sequence

of musical parameters. Initially, for the third cycle, this
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cycle 1

Ab

cycle 2 cycle 4 cycle 5

Figure 4. Two successive repetitions of a pattern, at the be-

ginning of the musical sequence, characterised by a pitch

sequence (G, C, Eb, and back to G), a pitch interval se-

quence (ascending perfect fourth (+3), ascending minor

third (+2m) and descending minor sixth (-5m)), and a

rhythmical sequence made of a succession of 8th notes.

This successive repetition leads to the inference of a cyclic

chain, indicated at the bottom of the figure. When this cy-

cle is initially inferred, at note 7, the model of the cycle,

represented above “cycle 3”, corresponds to the initial pat-

tern description. At note 10, some descriptions expected

by the model (indicated in bold italics) are not fulfilled, but

a more general description is inferred (descending gross

contour (-)). Consequently, the next cycle (4)’s model is

generalised accordingly. At note 13, a new regularity is

detected, due to the repetition of pitch Ab and of descend-

ing perfect fifth (-4). Consequently, the next cycle (5)’s

model is specialised accordingly.

model corresponds to the pattern that was repeated twice

in the two first cycles.

• If the new cycle scrupulously follows the model, this

same model will be used to guide the development

of the subsequent cycle.

• If the new cycle partially follows the model (such as

the modification, at the beginning of bar 2 in Fig-

ure 4, of the decreasing sixth interval, replaced by a

more general decreasing contour), the model is up-

dated accordingly by replacing the parameters that

have not been matched with more general parame-

ters.

• If the new cycle shows any new pattern identifica-

tion with the previous cycle (such as the repetition

of pitch Ab at the beginning of cycles 4 and 5 in Fig-

ure 4), the corresponding descriptions are added to

the model.

• If at some point, the new note does not match at

all the corresponding description in the model, the

cyclic sequence is terminated.

This simple method enables to track the cyclic develop-

ment of repeated patterns, while avoiding the combinato-

rial explosion inherent to this structural configuration.

5. TESTS

The model described in this paper is applied to the anal-

ysis of the Johannes Kepler University Patterns Develop-

ment Database (JKUPDD-Aug2013), which is the train-

ing set part of the MIREX task on Discovery of Repeated

Themes & Sections initiated in 2013, and made publicly

available, both symbolic representation of the scores and

ground-truth musicological analyses [4].

This section details the analysis of one particular piece

of music included in the JKUPDD, the 20th Fugue in the

Second Book of Johann Sebastian Bach’s Well-Tempered
Clavier. The ground truth consists of the two first bars

of the third entry in the exposition part along the three

voices that constitute this fugue [1]. The third entry is

chosen because it is the first entry where the subject and

the two countersubjects are exposed altogether. To each

of these three ground-truth patterns (the subject and the

two countersubjects in this two-bar entry), the ground-truth

data specifies a list of occurrences in the score.

Figure 5 shows the thematic class related to ground-

truth pattern #1, i.e., the fugue’s subject. This is detected

by the model as one single motivic/thematic class, i.e., one

complete paradigmatic sheaf, resulting from the bundling

method presented in section 3.2. All occurrences indicated

in the ground truth are retrieved. The patterns forming

this thematic class are longer than the two-bar motif indi-

cated in the ground truth. The limitation of all subjects and

counter-subjects in the musicological analysis to two bars

stems from a theoretical understanding of fugue structure

that cannot be automatically inferred from a direct analysis

of the score.

The analysis offered by the computational model of-

fers much richer information than simply listing the occur-

rences of the subjects and countersubjects. It shows what

musical descriptions characterise them, and details partic-

ular commonalities shared by occurrences of these subjects

and countersubjects. For instance entries M1 and U1 be-

long to a same more specific pattern that describes their

particular development. L1, U1 and U3 start all with a de-

creasing third interval, and so on.

The model presented in this paper does not yet inte-

grate mechanisms for the reduction of ornamentation, as

discussed in the next section. The only melodic ornamen-

tation appearing in pattern #1 is the addition of a passing

note after the first note of occurrences L2 and L3. This

leads to a small error in the model’s results, where the first

actual note is not detected.

The thematic class related to ground-truth pattern #2,

which is the first countersubject, is extracted in the same

way, forming a paradigmatic sheaf. The pattern class given

by the model corresponds mostly to the ground truth. Here

again, some occurrences present similar extensions that are

inventoried by the model, although they are ignored in the

ground truth. The last occurrence, which is a suffix of the

pattern, is also detected accordingly. On the other hand,

the second last occurrence is not properly detected, once

again due to the addition of passing notes.

Pattern #3, which is the second countersubject, is more

problematic, because it is only 7 notes long. Several other

longer patterns are found by the model, and the specificity

of pattern #3 is not grounded on characteristics purely re-
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Figure 5. Entries of the subject in Bach’s Fugue, as found

by the model. The fugue has three voices: upper (U), mid-

dle (M) and lower (L). In each entry is slurred the part

actually indicated in the ground-truth description of the

subject. The model proposes a longer description of the

subject, that is particularly developed in M1 and U1.

lated to pattern repetition. As aforementioned, the ground-

truth selection of these three patterns are based on prin-

ciples related to fugue rules, namely the synchronised it-

eration of the three patterns along the separate voices. It

seems questionable to expect a general pattern mining al-

gorithm non-specialised to a particular type of music to be

able to infer this type of configuration.

6. CONCLUSION

The approach is incremental, progressively analysing the

musical sequence through one single pass. This enables

to control the structural complexity in a way similar to the

way listeners perceive music.

Gross contour needs to be constrained by factors re-

lated to local saliency and short-term memory. The integra-

tion of more complex melodic transformation such as or-

namentation and reduction is currently under investigation.

Motivic repetition with local ornamentation is detected by

reconstructing, on top of “surface-level” monodic voices,

longer-term relations between non-adjacent notes related

to deeper structures, and by tracking motives on the result-

ing syntagmatic network. More generally, the analysis of

polyphony is under study, as well as the application of the

pattern mining approach to metrical analysis. The system,

implemented in Matlab, is made publicly available as part

of MiningSuite 3 , a new open-source framework for audio

and music analysis.
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ABSTRACT

Central to the field of MIR research is the evaluation of

algorithms used to extract information from music data. We

present mir_eval, an open source software library which

provides a transparent and easy-to-use implementation of

the most common metrics used to measure the performance

of MIR algorithms. In this paper, we enumerate the metrics

implemented by mir_eval and quantitatively compare

each to existing implementations. When the scores reported

by mir_eval differ substantially from the reference, we

detail the differences in implementation. We also provide

a brief overview of mir_eval’s architecture, design, and

intended use.

1. EVALUATING MIR ALGORITHMS

Much of the research in Music Information Retrieval (MIR)

involves the development of systems that process raw music

data to produce semantic information. The goal of these

systems is frequently defined as attempting to duplicate the

performance of a human listener given the same task [5].

A natural way to determine a system’s effectiveness might

be for a human to study the output produced by the sys-

tem and judge its correctness. However, this would yield

only subjective ratings, and would also be extremely time-

consuming when evaluating a system’s output over a large

corpus of music.

Instead, objective metrics are developed to provide a

well-defined way of computing a score which indicates

each system’s output’s correctness. These metrics typically

involve a heuristically-motivated comparison of the sys-

tem’s output to a reference which is known to be correct.

Over time, certain metrics have become standard for each
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task, so that the performance of systems created by different

researchers can be compared when they are evaluated over

the same dataset [5]. Unfortunately, this comparison can

be confounded by small details of the implementations or

procedures that can have disproportionate impacts on the

resulting scores.

For the past 10 years, the yearly Music Information Re-

trieval Evaluation eXchange (MIREX) has been a forum

for comparing MIR algorithms over common datasets [6].

By providing a standardized shared-task setting, MIREX

has become critically useful for tracking progress in MIR

research. MIREX is built upon the Networked Environment

for Music Analysis (NEMA) [22], a large-scale system

which includes exhaustive functionality for evaluating, sum-

marizing, and displaying evaluation results. The NEMA

codebase includes multiple programming languages and

dependencies (some of which, e.g. Matlab, are proprietary)

so compiling and running it at individual sites is nontrivial.

In consequence, the NEMA system is rarely used for evalu-

ating MIR algorithms outside of the setting of MIREX [6].

Instead, researchers often create their own implementations

of common metrics for evaluating their algorithms. These

implementations are thus not standardized, and may contain

differences in details, or even bugs, that confound compar-

isons.

These factors motivate the development of a standard-

ized software package which implements the most common

metrics used to evaluate MIR systems. Such a package

should be straightforward to use and well-documented so

that it can be easily adopted by MIR researchers. In addi-

tion, it should be community-developed and transparently

implemented so that all design decisions are easily under-

stood and open to discussion and improvement.

Following these criteria, we present mir_eval, a soft-

ware package which intends to provide an easy and stan-

dardized way to evaluate MIR systems. This paper first dis-

cusses the architecture and design of mir_eval in Section

2, then, in Section 3, describes all of the tasks covered by

mir_eval and the metrics included. In order to validate

our implementation decisions, we compare mir_eval to

existing software in Section 4. Finally, we discuss and

summarize our contributions in Section 5.
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2. mir_eval’S ARCHITECTURE

mir_eval is a Python library which currently includes

metrics for the following tasks: Beat detection, chord esti-

mation, pattern discovery, structural segmentation, melody

extraction, and onset detection. Each task is given its own

submodule, and each metric is defined as a separate func-

tion in each submodule. Each task submodule also includes

common data pre-processing steps for the task. Every met-

ric function includes detailed documentation, example us-

age, input validation, and references to the original pa-

per which defined the metric. mir_eval also includes

a submodule io which provides convenience functions

for loading in task-specific data from common file for-

mats (e.g. comma/tab separated values, .lab files [7],

etc.). For readability, all code follows the PEP8 style

guide [21]. mir_eval’s only dependencies outside of

the Python standard library are the free and open-source

SciPy/Numpy [9] and scikit-learn [15] libraries.

In order to simplify the usage of mir_eval, it is pack-

aged with a set of “evaluator” scripts, one for each task.

These scripts include all code necessary to load in data,

pre-process it, and compute all metrics for a given task.

The evaluators allow for mir_eval to be called directly

from the command line so that no knowledge of Python

is necessary. They are also distributed as executables for

Windows and Mac OS X, so that mir_eval may be used

with no dependencies installed.

3. TASKS INCLUDED IN mir_eval

In this section, we enumerate the tasks and metrics im-

plemented in mir_eval. Due to space constraints, we

only give high-level descriptions for each metric; for exact

definitions see the references provided.

3.1 Beat Detection

The aim of a beat detection algorithm is to report the times

at which a typical human listener might tap their foot to a

piece of music. As a result, most metrics for evaluating the

performance of beat tracking systems involve computing the

error between the estimated beat times and some reference

list of beat locations. Many metrics additionally compare

the beat sequences at different metric levels in order to deal

with the ambiguity of tempo [4].

mir_eval includes the following metrics for beat track-

ing, which are defined in detail in [4]: The F-measure of

the beat sequence, where an estimated beat is considered

correct if it is sufficiently close to a reference beat; Cemgil’s
score, which computes the sum of Gaussian errors for each

beat; Goto’s score, a binary score which is 1 when at least

25% of the estimated beat sequence closely matches the

reference beat sequence; McKinney’s P-score, which com-

putes the cross-correlation of the estimated and reference

beat sequences represented as impulse trains; continuity-
based scores which compute the proportion of the beat

sequence which is continuously correct; and finally the In-
formation Gain of a normalized beat error histogram over

a uniform distribution.

3.2 Chord Estimation

Despite being one of the oldest MIREX tasks, evaluation

methodology and metrics for automatic chord estimation is

an ongoing topic of discussion, due to issues with vocab-

ularies, comparison semantics, and other lexicographical

challenges unique to the task [14]. One source of difficulty

stems from an inherent subjectivity in “spelling” a chord

name and the level of detail a human observer can provide

in a reference annotation [12]. As a result, a consensus

has yet to be reached regarding the single best approach to

comparing two sequences of chord labels, and instead are

often compared over a set of rules, i.e Root, Major-Minor,

and Sevenths, with or without inversions.

To efficiently compare chords, we first separate a given

chord label into a its constituent parts, based on the syn-

tax of [7]. For example, the chord label G:maj(6)/5 is

mapped to three pieces of information: the root (“G”), the

root-invariant active semitones as determined by the quality

shorthand (“maj”) and scale degrees (“6”), and the bass

interval (“5”).

Based on this representation, we can compare an esti-

mated chord label with a reference by the following rules as

used in MIREX 2013 [2]: Root requires only that the roots

are equivalent; Major-Minor includes Root, and further

requires that the active semitones are equivalent subject to

the reference chord quality being Maj or min; Sevenths
follows Major-minor, but is instead subject to the reference

chord quality being one of Maj, min, Maj7, min7, 7, or

minmaj7; and finally, Major-Minor-Inv and Sevenths-Inv
include Major-Minor and Sevenths respectively, but fur-

ther require that the bass intervals are equivalent subject to

the reference bass interval being an active semitone. The

“subject to. . . ” conditions above indicate that a compari-

son is ignored during evaluation if the given criteria is not

satisfied.

Track-wise scores are computed by weighting each com-

parison by the duration of its interval, over all intervals in

an audio file. This is achieved by forming the union of

the boundaries in each sequence, sampling the labels, and

summing the time intervals of the “correct” ranges. The cu-

mulative score, referred to as weighted chord symbol recall,
is tallied over a set audio files by discrete summation, where

the importance of each score is weighted by the duration of

each annotation [2].

3.3 Pattern Discovery

Pattern discovery involves the identification of musical pat-

terns (i.e. short fragments or melodic ideas that repeat at

least twice) both from audio and symbolic representations.

The metrics used to evaluation pattern discovery systems

attempt to quantify the ability of the algorithm to not only

determine the present patterns in a piece, but also to find all

of their occurrences.

Collins compiled all previously existent metrics and

proposed novel ones [3] which resulted in 19 different

scores, each one implemented in mir_eval: Standard
F-measure, Precision, and Recall, where an estimated

prototype pattern is considered correct only if it matches
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(up to translation) a reference prototype pattern; Establish-
ment F-measure, Precision, and Recall, which compute

the number of reference patterns that were successfully

found, no matter how many occurrences were found; Oc-
currence F-measure, Precision, and Recall, which mea-

sure whether an algorithm is able to retrieve all occurrences

of a pattern; Three-layer F-measure, Precision, and Re-
call, which capture both the establishment of the patterns

and the occurrence retrieval in a single set of scores; and

the First N patterns metrics, which compute the target

proportion establishment recall and three-layer precision

for the first N patterns only in order to measure the ability

of the algorithm to sort the identified patterns based on their

relevance.

3.4 Structural Segmentation

Evaluation criteria for structural segmentation fall into two

categories: boundary annotation and structural annotation.

Boundary annotation is the task of predicting the times

at which structural changes occur, such as when a verse

transitions to a refrain. Structural annotation is the task of

assigning labels to detected segments. The estimated labels

may be arbitrary strings — such as A, B, C, etc. — and

they need not describe functional concepts. In both tasks,

we assume that annotations express a partitioning of the

track into intervals.

mir_eval implements the following boundary detec-

tion metrics: Boundary Detection Precision, Recall, and
F-measure Scores where an estimated boundary is con-

sidered correct if it falls within a window around a ref-

erence boundary [20]; and Boundary Deviation which

computes median absolute time difference from a refer-

ence boundary to its nearest estimated boundary, and vice

versa [20]. The following structure annotation metrics are

also included: Pairwise Classification Precision, Recall,
and F-measure Scores for classifying pairs of sampled

time instants as belonging to the same structural compo-

nent [10]; Rand Index 1 which clusters reference and es-

timated annotations and compares them by the Rand In-

dex [17]; and the Normalized Conditional Entropy where

sampled reference and estimated labels are interpreted as

samples of random variables YR, YE from which the condi-

tional entropy of YR given YE (Under-Segmentation) and

YE given YR (Over-Segmentation) are estimated [11].

3.5 Melody Extraction

Melody extraction algorithms aim to produce a sequence

of frequency values corresponding to the pitch of the domi-

nant melody from a musical recording [19]. An estimated

pitch series is evaluated against a reference by computing

the following five measures defined in [19], first used in

MIREX 2005 [16]: Voicing Recall Rate which computes

the proportion of frames labeled as melody frames in the ref-

erence that are estimated as melody frames by the algorithm;

Voicing False Alarm Rate which computes the proportion

of frames labeled as non-melody in the reference that are

1 The MIREX results page refers to Rand Index as “random clustering
index”.

mistakenly estimated as melody frames by the algorithm;

Raw Pitch Accuracy which computes the proportion of

melody frames in the reference for which the frequency

is considered correct (i.e. within half a semitone of the

reference frequency); Raw Chroma Accuracy where the

estimated and reference f0 sequences are mapped onto a

single octave before computing the raw pitch accuracy; and

the Overall Accuracy, which computes the proportion of

all frames correctly estimated by the algorithm, including

whether non-melody frames where labeled by the algorithm

as non-melody. Prior to computing these metrics, both the

estimate and reference sequences must be sampled onto the

same time base.

3.6 Onset Detection

The goal of an onset detection algorithm is to automatically

determine when notes are played in a piece of music. As is

also done in beat tracking and segment boundary detection,

the primary method used to evaluate onset detectors is to

first determine which estimated onsets are “correct”, where

correctness is defined as being within a small window of

a reference onset [1]. From this, Precision, Recall, and

F-measure scores are computed.

4. COMPARISON TO EXISTING
IMPLEMENTATIONS

In order to validate the design choices made in mir_eval,

it is useful to compare the scores it reports to those reported

by an existing evaluation system. Beyond pinpointing inten-

tional differences in implementation, this process can also

help find and fix bugs in either mir_eval or the system it

is being compared to.

For each task covered by mir_eval, we obtained a

collection of reference and estimated annotations and com-

puted or obtained a score for each metric using mir_eval
and the evaluation system being compared to. In order to

facilitate comparison, we ensured that all parameters and

pre-processing used by mir_eval were equivalent to the

reference system unless otherwise explicitly noted. Then,

for each reported score, we computed the relative change

between the scores as their absolute difference divided by

their mean, or
|sm − sc|

(sm + sc)/2

where sm is the score reported by mir_eval and sc is the

score being compared to. Finally, we computed the average

relative change across all examples in the obtained dataset

for each score.

For the beat detection, chord estimation, structural seg-

mentation, and onset detection tasks, MIREX releases the

the output of submitted algorithms, the ground truth anno-

tations, and the reported score for each example in each

data set. We therefore can directly compare mir_eval
to MIREX for these tasks by collecting all reference and

estimated annotations, computing each metric for each ex-

ample using identical pre-processing and parameters as ap-

propriate, and comparing the result to the score reported by
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MIREX. We chose to compare against the results reported

in MIREX 2013 for all tasks.

In contrast to the tasks listed above, MIREX does not

release ground truth annotations or algorithm output for

the melody extraction and pattern discovery tasks. As a

result, we compared mir_eval’s output on smaller de-

velopment datasets for these tasks. For melody extraction,

the ADC2004 dataset used by MIREX is publicly available.

We performed melody extraction using the “SG2” algo-

rithm evaluated in 2011 [18] and compared mir_eval’s

reported scores to those of MIREX. For pattern discovery,

we used the development dataset released by Collins [3] and

used the algorithms submitted by Nieto and Farbood [13]

for MIREX 2013 to produce estimated patterns. We eval-

uated the estimated patterns using the MATLAB code re-

leased by Collins [3]. The number of algorithms, examples,

and total number of scores for all tasks are summarized in

Table 1.

Task Algorithms Examples Scores

Beat Detection 20 679 13580

Segmentation 8 1397 11176

Onset Detection 11 85 935

Chord Estimation 12 217 2604

Melody 1 20 20

Pattern Discovery 4 5 20

Table 1. Number of scores collected for each task for

comparison against mir_eval.

The resulting average relative change for each metric is

presented in Table 2. The average relative change for all of

the pattern discovery metrics was 0, so they are not included

in this table. For many of the other metrics, the average rel-

ative change was less than a few tenths of a percent, indicat-

ing that mir_eval is equivalent up to rounding/precision

errors. In the following sections, we enumerate the known

implementation differences which account for the larger

average relative changes.

4.1 Non-greedy matching of events

In the computation of the F-measure, Precision and Recall

metrics for the beat tracking, boundary detection, and onset

detection tasks, an estimated event is considered correct (a

“hit”) if it falls within a small window of a reference event.

No estimated event is counted as a hit for more than one ref-

erence event, and vice versa. In MIREX, this assignment is

done in a greedy fashion, however in mir_eval we use an

optimal matching strategy. This is accomplished by comput-

ing a maximum bipartite matching between the estimated

events and the reference events (subject to the window

constraint) using the Hopcroft-Karp algorithm [8]. This ex-

plains the observed discrepancy between mir_eval and

MIREX for each of these metrics. In all cases where the

metric differs, mir_eval reports a higher score, indicat-

ing that the greedy matching strategy was suboptimal.

4.2 McKinney’s P-score

When computing McKinney’s P-score [4], the beat se-

quences are first converted to impulse trains sampled at

a 10 millisecond resolution. Because this sampling involves

quantizing the beat times, shifting both beat sequences by

a constant offset can result in substantial changes in the

P-score. As a result, in mir_eval, we normalize the beat

sequences by subtracting from each reference and estimated

beat location the minimum beat location in either series. In

this way, the smallest beat in the estimated and reference

beat sequences is always 0 and the metric remains the same

even when both beat sequences have a constant offset ap-

plied. This is not done in MIREX (which uses the Beat

Evaluation Toolbox [4]), and as a result, we observe a con-

siderable average relative change for the P-score metric.

4.3 Information Gain

The Information Gain metric [4] involves the computation

of a histogram of the per-beat errors. The Beat Evaluation

Toolbox (and therefore MIREX) uses a non-uniform his-

togram binning where the first, second and last bins are

smaller than the rest of the bins while mir_eval uses

a standard uniformly-binned histogram. As a result, the

Information Gain score reported by mir_eval differs sub-

stantially from that reported by MIREX.

4.4 Segment Boundary Deviation

When computing the median of the absolute time differ-

ences for the boundary deviation metrics, there are often an

even number of reference or estimated segment boundaries,

resulting in an even number of differences to compute the

median over. In this case, there is no “middle” element

to choose as the median. mir_eval follows the typical

convention of computing the mean of the two middle ele-

ments in lieu of the median for even-length sequences, while

MIREX chooses the larger of the two middle elements. This

accounts for the discrepancy in the reference-to-estimated

and estimated-to-reference boundary deviation metrics.

4.5 Interval Sampling for Structure Metrics

When computing the structure annotation metrics (Pairwise

Precision, Recall, and F-measure, Rand Index, and Normal-

ized Conditional Entropy Over- and Under-Segmentation

Scores), the reference and estimated labels must be sampled

to a common time base. In MIREX, a fixed sampling grid

is used for the Rand Index and pairwise classification met-

rics, but a different sampling rate is used for each, while a

fixed number of samples is used for the conditional entropy

scores. In mir_eval, the same fixed sampling rate of 100

milliseconds is used for all structure annotation metrics, as

specified in [23].

Furthermore, in MIREX the start and end time over

which the intervals are sampled depends on both the ref-

erence and estimated intervals while mir_eval always

samples with respect to the reference to ensure fair compar-

ison across multiple estimates. This additionally requires
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Beat Detection

F-measure Cemgil Goto P-score CMLc CMLt AMLc AMLt In. Gain

0.703% 0.035% 0.054% 0.877% 0.161% 0.143% 0.137% 0.139% 9.174%

Structural Segmentation

NCE-Over NCE-under Pairwise F Pairwise P Pairwise R Rand F@.5 P@.5 R@.5

3.182% 11.082% 0.937% 0.942% 0.785% 0.291% 0.429% 0.088% 1.021%

Structural Segmentation (continued) Onset Detection

F@3 P@3 R@3 Ref-est dev. Est-ref dev. F-measure Precision Recall

0.393% 0.094% 0.954% 0.935% 0.000% 0.165% 0.165% 0.165%

Chord Estimation Melody Extraction

Root Maj/min Maj/min + Inv 7ths 7ths + Inv Overall Raw pitch Chroma Voicing R Voicing FA

0.007% 0.163% 1.005% 0.483% 0.899% 0.070% 0.087% 0.114% 0.000% 10.095%

Table 2. Average relative change for every metric in mir_eval when compared to a pre-existing implementation. The

average relative change for all pattern discovery metrics was 0, so they are not shown here.

that estimated intervals are adjusted to span the exact du-

ration specified by the reference intervals. This is done by

adding synthetic intervals when the estimated intervals do

not span the reference intervals or otherwise trimming esti-

mated intervals. These differences account for the average

relative changes for the structure annotation metrics.

4.6 Segment Normalized Conditional Entropy

When adding intervals to the estimated annotation as de-

scribed above, mir_eval ensures that the labels do not

conflict with existing labels. This has the effect of changing

the normalization constant in the Normalized Conditional

Entropy scores. Furthermore, when there’s only one label,

the Normalized Conditional Entropy scores are not well de-

fined. MIREX assigns a score of 1 in this case; mir_eval
assigns a score of 0. This results in a larger average change

for these two metrics.

4.7 Melody Voicing False Alarm Rate

When a reference melody annotation contains no unvoiced

frames, the Voicing False Alarm Rate is not well defined.

MIREX assigns a score of 1 in this case, while mir_eval
assigns a score of 0 because, intuitively, no reference un-

voiced frames could be estimated, so no false alarms should

be reported. In the data set over which the average relative

change for the melody metrics was computed, one reference

annotation contained no unvoiced frames. This discrepancy

caused a large inflation of the average relative change re-

ported for the Voicing False Alarm Rate due to the small

number of examples in our dataset.

4.8 Weighted Chord Symbol Recall

The non-negligible average relative changes seen in the

chord metrics are caused by two main sources of ambiguity.

First, we find some chord labels in the MIREX reference

annotations lack well-defined, i.e. singular, mappings into a

comparison space. One such example is D:maj(*1)/#1.

While the quality shorthand indicates “major”, the asterisk

implies the root is omitted and thus it is unclear whether

D:maj(*1)/#1 is equivalent to D:maj1. Second, and

more importantly, such chords are likely ignored during

evaluation, and we are unable to replicate the exact exclu-

sion logic used by MIREX. This has proven to be particu-

larly difficult in the two inversion rules, and manifests in

Table 2. For example, Bb:maj(9)/9 was not excluded

from the MIREX evaluation, contradicting the description

provided by the task specification [2]. This chord alone

causes an observable difference between mir_eval and

MIREX’s results.

5. TOWARDS TRANSPARENCY AND
COMMUNITY INVOLVEMENT

The results in Section 4 clearly demonstrate that differences

in implementation can lead to substantial differences in

reported scores. This corroborates the need for transparency

and community involvement in comparative evaluation. The

primary motivation behind developing mir_eval is to

establish an open-source, publicly refined implementation

of the most common MIR metrics. By encouraging MIR

researchers to use the same easily understandable evaluation

codebase, we can ensure that different systems are being

compared fairly.

While we have given thorough consideration to the de-

sign choices made in mir_eval, we recognize that stan-

dards change over time, new metrics are proposed each

year, and that only a subset of MIR tasks are currently im-

plemented in mir_eval. Towards this end, mir_eval
is hosted on Github, 2 which provides a straightforward

way of proposing changes and additions to the codebase

using the Pull Request feature. With active community

participation, we believe that mir_eval can ensure that

MIR research converges on a standard methodology for

evaluation.

2 http://github.com/craffel/mir_eval
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ABSTRACT

Most researchers in the automatic music emotion recogni-

tion field focus on the two-dimensional valence and arousal

model. This model though does not account for the whole

diversity of emotions expressible through music. More-

over, in many cases it might be important to model in-

duced (felt) emotion, rather than perceived emotion. In

this paper we explore a multidimensional emotional space,

the Geneva Emotional Music Scales (GEMS), which ad-

dresses these two issues. We collected the data for our

study using a game with a purpose. We exploit a compre-

hensive set of features from several state-of-the-art tool-

boxes and propose a new set of harmonically motivated

features. The performance of these feature sets is com-

pared. Additionally, we use expert human annotations to

explore the dependency between musicologically mean-

ingful characteristics of music and emotional categories of

GEMS, demonstrating the need for algorithms that can bet-

ter approximate human perception.

1. INTRODUCTION

Most of the effort in automatic music emotion recognition

(MER) is invested into modeling two dimensions of mu-

sical emotion: valence (positive vs. negative) and arousal

(quiet vs. energetic) (V-A) [16]. Regardless of the popular-

ity of V-A, the question of which model of musical emo-

tion is best has not yet been solved. The difficulty is, on

one hand, in creating a model that reflects the complex-

ity and subtlety of the emotions that music can demon-

strate, while on the other hand providing a linguistically

unambiguous framework that is convenient to use to re-

fer to such a complex non-verbal concept as musical emo-

tion. Categorical models, possessing few (usually 4–6, but

sometimes as many as 18) [16] classes are oversimplifying

the problem, while V-A has been criticized for a lack of

discerning capability, for instance in the case of fear and

anger. Other pitfalls of V-A model are that it was not cre-

ated specifically for music, and is especially unsuited to

describe induced (felt) emotion, which might be important

for some MER tasks, e.g. composing a playlist using emo-
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tional query and in any other cases when the music should

create a certain emotion in listener. The relationship be-

tween induced and perceived emotion is not yet fully un-

derstood, but they are surely not equivalent — one may lis-

ten to angry music without feeling angry, but instead feel

energetic and happy. It was demonstrated that some types

of emotions (especially negative ones) are less likely to be

induced by music, though music can express them [17].

In this paper we address the problem of modeling in-

duced emotion by using GEMS. GEMS is a domain-spe-

cific categorical emotional model, developed by Zentner

et al. [17] specifically for music. The model was derived

via a three-stage collection and filtering of terms which are

relevant to musical emotion, after which the model was

verified in a music listening-context. Being based on emo-

tional ontology which comes from listeners, it must be a

more convenient tool to retrieve music than, for instance,

points on a V-A plane. The full GEMS scale consists of 45

terms, with shorter versions of 25 and 9 terms. We used

the 9-term version of GEMS (see Table 1) to collect data

using a game with a purpose.

Emotion induced by music depends on many factors,

some of which are external to music itself, such as cul-

tural and personal associations, social listening context, the

mood of the listener. Naturally, induced emotion is also

highly subjective and varies a lot across listeners, depend-

ing on their musical taste and personality. In this paper we

do not consider all these factors and will only deal with

the question to which extent induced emotion can be mod-

eled using acoustic features only. Such a scenario, when no

input from the end-user (except for, maybe, genre prefer-

ences) is available, is plausible for a real-world application

of a MER task. We employ four different feature sets: low-

level features related to timbre and energy, extracted using

OpenSmile, 1 and a more musically motivated feature set,

containing high-level features, related to mode, rhythm,

and harmony, from the MIRToolbox, 2 PsySound 3 and

SonicAnnotator. 4 We also enhance the performance of the

latter by designing new features that describe the harmonic

content of music. As induced emotion is a highly subjec-

tive phenomenon, the performance of the model will be

confounded by the amount of agreement between listen-

ers which provide the ground-truth. As far as audio-based

features are not perfect yet, we try to estimate this upper

bound for our data by employing human experts, who an-

1 opensmile.sourceforge.net
2 jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
3 psysound.wikidot.com
4 isophonics.net/SonicAnnotator
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notate a subset of the data with ten musicological features.

Contribution. This paper explores computational ap-

proaches to modeling induced musical emotion and esti-

mates the upper boundary for such a task, in case when no

personal or contextual factors can be taken into account. It

is also suggested that more than two dimensions are nec-

essary to represent musical emotion adequately. New fea-

tures for harmonic description of music are proposed.

2. RELATED WORK

Music emotion recognition is a young, but fast-developing

field. Reviewing it in its entirety is out of scope of this pa-

per. For such a review we are referring to [16]. In this sec-

tion we will briefly summarize the commonly used meth-

ods and approaches that are relevant to this paper.

Automatic MER can be formulated both as a regression

and classification problem, depending on the underlying

emotional model. As such, the whole entirety of machine

learning algorithms can be used for MER. In this paper

we are employing Support Vector Regression (SVR), as it

demonstrated good performance [7,15] and can learn com-

plex non-linear dependencies from the feature space. Be-

low we describe several MER systems.

In [15], V-A is modeled with acoustic features (spec-

tral contrast, DWCH and other low-level features from

Marsyas and PsySound) using SVR, achieving perfor-

mance of 0.76 for arousal and 0.53 for valence (in terms of

Pearson’s r here and further). In [7], five dimensions (basic

emotions) were modeled with a set of timbral, rhythmic

and tonal features, using SVR. The performance varied

from 0.59 to 0.69. In [5], pleasure, arousal and dominance

were modeled with AdaBoost.RM using features extracted

from audio, MIDI and lyrics. An approach based on audio

features only performed worse than multimodal features

approach (0.4 for valence, 0.72 for arousal and 0.62 for

dominance).

Various chord-based statistical measures have already

been employed for different MIR tasks, such as music

similarity or genre detection. In [3], chordal features

(longest common chord sequence and histogram statistics

on chords) were used to find similar songs and to estimate

their emotion (in terms of valence) based on chord simi-

larity. In [9], chordal statistics is used for MER, but the

duration of chords is not taken into account, which we ac-

count for in this paper. Interval-based features, described

here, to our knowledge have not been used before.

A computational approach to modeling musical emo-

tion using GEMS has not been adopted before. In [11],

GEMS was used to collect data dynamically on 36 mu-

sical excerpts. Listener agreement was very good (Cron-

bach’s alpha ranging from 0.84 to 0.98). In [12], GEMS is

compared to a three-dimensional (valence-arousal-tension)

and categorical (anger, fear, happiness, sadness, tender-

ness) models. The consistency of responses is compared,

and it is found that GEMS categories have both some of

the highest (joyful activation, tension) and some of the

lowest (wonder, transcendence) agreement. It was also

found that GEMS categories are redundant, and valence

and arousal dimensions account for 89% of variance. That

experiment, though, was performed on 16 musical excerpts

only, and the excerpts were selected using criteria based on

V-A model, which might have resulted in bias.

3. DATA DESCRIPTION

The dataset that we analyze consists of 400 musical ex-

cerpts (44100 Hz, 128 kbps). Each excerpt is 1 minute

long (except for 4 classical pieces which were shorter than

1 minute). It is evenly split (100 pieces per genre) by four

genres (classical, rock, pop and electronic music). In many

studies, musical excerpts are specially selected for their

strong emotional content that best fits the chosen emotional

model, and only the excerpts that all the annotators agree

upon, are left. In our dataset we maintain a good ecolog-

ical validity by selecting music randomly from a Creative

Commons recording label Magnatune, only making sure

that the recordings are of good quality.

Based on conclusions from [11, 12], we renamed two

GEMS categories by replacing them with one of their sub-

categories (wonder was replaced with amazement, and

transcendence with solemnity). Participants were asked

to select no more than three emotional terms from a list of

nine. They were instructed to describe how music made

them feel, and not what it expressed, and were encour-

aged to do so in a game context [1]. All the songs were

annotated by at least 10 players (mean = 20.8, SD = 14).

The game with a purpose was launched and advertised

through social networks. The game, 5 as well as annota-

tions and audio, 6 are accessible online. More than 1700

players have contributed. The game was streaming music

for 138 hours in total. A detailed description and analysis

of the data can be found in [1] or in a technical report. [2]

We are not interested in modeling irritation from non-

preferred music, but rather differences in emotional per-

ception across listeners that come from other factors. We

introduce a question to report disliking the music and dis-

card such answers. We also clean the data by computing

Fleiss’s kappa on all the annotations for every musical ex-

cerpt, and discarding the songs with negative kappa (this

indicates that the answers are extremely inconsistent (33

songs)). Fleiss’s kappa is designed to estimate agreement,

when the answers are binary or categorical. We use this

very loose criteria, as it is expected to find a lot of disagree-

ment. We retain the remaining 367 songs for analysis.

The game participants were asked to choose several cat-

egories from a list, but for the purposes of modeling we

translate the annotations into a continuous space by using

the following equation:

score1
i j =

1

n

n∑
k=1

ak , (1)

where score1
i j is an estimated value of emotion i for song

j, ak is the answer of the k-th participant on a question

whether emotion i is present in song j or not (answer is

5 www.emotify.org
6 www.projects.science.uu.nl/memotion/emotifydata/
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C1 C2 C3

Amazement 0.01 −0.73 −0.07

Solemnity −0.07 0.12 0.89

Tenderness 0.75 0.19 −0.22

Nostalgia 0.57 0.46 −0.41

Calmness 0.80 0.22 0.28

Power −0.80 −0.17 −0.06

Joyful activation −0.37 −0.74 −0.32

Tension −0.72 0.20 0.30

Sadness 0.13 0.80 −0.05

Table 1. PCA on the GEMS categories.

Figure 1. Intervals and their inversions.

either 0 or 1), and n is the total number of participants,

who listened to song j.
The dimensions that we obtain are not orthogonal: most

of them are somewhat correlated. To determine the under-

lying structure, we perform Principal Components Anal-

ysis. According to a Scree test, three underlying dimen-

sions were found in the data, which together explain 69%

of variance. Table 1 shows the three-component solution

rotated with varimax. The first component, which accounts

for 32% of variance, is mostly correlated with calmness vs.

power, the second (accounts for 23% of variance) with joy-

ful activation vs. sadness, and the third (accounts for 14%

of variance) with solemnity vs. nostalgia. This suggests

that the underlying dimensional space of GEMS is three-

dimensional. We might suggest that it resembles valence-

arousal-triviality model [13].

4. HARMONIC FEATURES

It has been repeatedly shown that valence is more diffi-

cult to model than arousal. In this section we describe fea-

tures, that we added to our dataset to improve prediction of

modality in music.

Musical chords, as well as intervals are known to be

important for affective perception of music [10], as well as

other MIR tasks. Chord and melody based features have

been successfully applied to genre recognition of symbol-

ically represented music [8]. We compute statistics on the

intervals and chords occurring in the piece.

4.1 Interval Features

We segment audio, using local peaks in the harmonic

change detection function (HCDF) [6]. HCDF describes

tonal centroid fluctuations. The segments that we obtain

are mostly smaller than 1 second and reflect single notes,

chords or intervals. Based on the wrapped chromagrams

Figure 2. Distribution of chords (Chordino and HPA).

computed from the spectrum of this segments, we select

two highest (energy-wise) peaks and compute the interval

between them. For each interval, we compute its combined

duration, weighted by its loudness (expressed by energy of

the bins). Then, we sum up this statistics for intervals

and their inversions. Figure 1 illustrates the concept (each

bar corresponds to the musical representation of a feature

that we obtain). As there are 6 distinct intervals with in-

versions, we obtain 6 features. We expect that augmented

fourths and fifths (tritone) could reflect tension, contrary to

perfect fourths and fifths. The proportion of minor thirds

and major sixths, as opposed to proportion of major thirds

and minor sixths, could reflect the modality. The interval-

inversion pairs containing seconds are rather unrestful.

4.2 Chord Features

To extract chord statistics, we used 2 chord extraction

tools, HPA 7 (Harmonic Progression Analyzer) and Chor-

dino 8 plugins for Sonic Annotator. The first plugin pro-

vides 8 types of chords: major, minor, seventh, major and

minor seventh, diminished, sixth and augmented. The sec-

ond plugin, in addition to these eight types, also provides

minor sixth and slash chords (chords for which bass note

is different from the tonic, and might as well not belong

to the chord). The chords are annotated with their onsets

and offsets. After experimentation, only the chords from

Chordino were left, because those demonstrated more cor-

relation with the data. We computed the proportion of each

type of chord in the dataset, obtaining nine new features.

The slash chords were discarded by merging them with

their base chord (e.g., Am/F chord is counted as a minor

chord). The distribution of chords was uneven, with major

chords being in majority (for details see Figure 2). Exam-

ining the accuracy of these chord extraction tools was not

our goal, but the amount of disagreement between the two

tools could give an idea about that (see Figure 2). From

our experiments we concluded that weighting the chords

by their duration is an important step, which improves the

performance of chord histograms.

7 patterns.enm.bris.ac.uk/hpa-software-package
8 isophonics.net/nnls-chroma
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Tempo
Articu-
lation

Rhythmic

complexity Mode Intensity Tonalness Pitch Melody

Rhythmic

clarity

Amazement 0.50 −0.37 *0.27 **0.24 *0.27

Solemnity −0.44 0.39 −0.45 −0.34

Tenderness −0.48 0.56 0.30 −0.48 *0.29 0.44 0.54

Nostalgia −0.47 −0.57 −0.30 *0.28 *0.27 0.50

Calmness −0.64 0.48 −0.50 0.36

Power 0.39 −0.35 *−0.27 0.51 −0.47 −0.43

Joyful

activation
0.76 −0.70 *0.27 **0.24 0.41 0.31

Tension −0.36 −0.36 −0.47 −0.44 −0.66

Sadness −0.45 0.51 −0.38 **−0.23 **−0.24 *0.27

Table 2. Correlations between manually assessed factors and emotional categories.

5. MANUALLY ASSESSED FEATURES

In this section we describe an additional feature set that

we composed using human experts, and explain the prop-

erties of GEMS categories through perceptual musically

motivated factors. Because of huge time load that manual

annotation creates we only could annotate part of the data

(60 pieces out of 367).

5.1 Procedure

Three musicians (26–61 years, over 10 years of formal

musical training) annotated 60 pieces (15 pieces from each

genre) from the dataset with 10 factors, on a scale from 1

to 10. The meaning of points on the scale was different for

each factor (for instance, for tempo 1 would mean ‘very
slow’ and 10 would mean ‘very fast’). The list of factors

was taken from the study of Wedin [13]: tempo (slow—

fast), articulation (staccato—legato), mode (minor—ma-

jor), intensity (pp—ff), tonalness (atonal—tonal), pitch

(bass—treble), melody (unmelodious—melodious), rhyth-

mic clarity (vague—firm). We added rhythmic complexity

(simple—complex) to this list, and eliminated style (date

of composition) and type (serious—popular) from it.

5.2 Analysis

After examining correlations with the data, one of the fac-

tors was discarded as non-informative (simple or complex

harmony). This factor lacked consistency between annota-

tors as well. Table 2 shows the correlations (Spearman’s

ρ) between manually assessed factors and emotional cat-

egories. We used a non-parametric test, because distribu-

tion of emotional categories is not normal, skewed towards

smaller values (emotion was more often not present than

present). All the correlations are significant with p-value <
0.01, except for the ones marked with asterisk, which are

significant with p-value < 0.05. The values that are absent

or marked with double asterisks failed to reach statistical

significance, but some of them are still listed, because they

illustrate important trends which are very probable to reach

significance should we have more data.

Many GEMS categories were quite correlated (tender-
ness and nostalgia: r = 0.5, tenderness and calmness:

r = 0.52, power and joyful activation: r = 0.4). All of

these have, however, musical characteristics that allow lis-

teners to differentiate them, as we will see below.

Both nostalgia and tenderness correlate with slow tempo

and legato articulation, but tenderness is also correlated

with higher pitch, major mode, and legato articulation (as

opposed to staccato for nostalgia). Calmness is charac-

terized by slow tempo, legato articulation and smaller in-

tensity, similarly to tenderness. But tenderness features a

correlation with melodiousness and major mode as well.

Both power and joyful activation are correlated with fast

tempo, and intensity, but power is correlated with minor

mode and joyful activation with major mode.

As we would expect, tension is strongly correlated with

non-melodiousness and atonality, lower pitch and minor

mode. Sadness, strangely, is much less correlated with

mode, but it more characterized by legato articulation, slow

tempo and smaller rhythmic complexity.

6. EVALUATION

6.1 Features

We use four toolboxes for MIR to extract features from au-

dio: MIRToolbox, OpenSmile, PsySound and two VAMP

plugins for SonicAnnotator. We also extract harmonic fea-

tures, described in Section 4. These particular tools are

chosen because the features they provide were specially

designed for MER. MIRToolbox was conceived as a tool

for investigating a relationship between emotion and fea-

tures in music. OpenSmile combines features from Speech

Processing and MIR and demonstrated good performance

on cross-domain emotion recognition [14]. We evaluate

three following computational and one human-assessed

feature sets:

1. MIRToolbox + PsySound: 40 features from MIR-

Toolbox (spectral features, HCDF, mode, inharmonicity

etc.) and 4 features related to loudness from PsySound

(using the loudness model of Chalupper and Fastl).

2. OpenSmile: 6552 low-level supra-segmental features

(chroma features, MFCCs or energy, and statistical
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Feature set MIRToolbox + PsySound OpenSmile MP + Harm Musicological

r RMSE r RMSE r RMSE r RMSE

Amazement .07 ± .18 .99 ± .16 .19 ± .15 .95 ± .13 .16 ± .15 1.05 ± .11 .35 ± .30 .85 ± .24

Solemnity .35 ± .14 .80 ± .09 .42 ± .16 .95 ± .13 .43 ± .08 .89 ± .15 .60 ± .24 .84 ± .22

Tenderness .50 ± .10 .84 ± .10 .52 ± .12 .95 ± .07 .57 ± .12 .85 ± .18 .87 ± .09 .50 ± .19

Nostalgia .53 ± .16 .82 ± .12 .53 ± .18 .89 ± .07 .45 ± .12 .88 ± .10 .69 ± .24 .69 ± .16

Calmness .55 ± .14 .83 ± .09 .55 ± .16 .89 ± .07 .60 ± .11 .78 ± .09 .71 ± .17 .70 ± .16

Power .48 ± .18 .82 ± .13 .56 ± .09 .84 ± .09 .56 ± .11 .80 ± .16 .65 ± .13 .78 ± .26

Joyful

activation
.63 ± .08 .77 ± .11 .68 ± .08 .80 ± .08 .66 ± .12 .75 ± .11 .74 ± .28 .58 ± .15

Tension .38 ± .14 .87 ± .20 .41 ± .19 .94 ± .19 .46 ± .11 .85 ± .13 .58 ± .35 .71 ± .36

Sadness .41 ± .13 .87 ± .11 .40 ± .18 .96 ± .18 .42 ± .13 .88 ± .12 .39 ± .28 .93 ± .20

Table 3. Evaluation of 4 feature sets on the data. Pearson’s r and RMSE with their standard deviations (across cross-

validation rounds) are shown.

functionals applied to them (such as mean, standard

deviation, inter-quartile range, skewness, kurtosis etc.).

3. MP+Harm: to evaluate performance of harmonic fea-

tures, we add them to the first feature set. It doesn’t

make sense to evaluate them alone, because they only

cover one aspect of music.

4. Musicological feature set: these are 9 factors of music

described in section 5.

6.2 Learning Algorithm

After trying SVR, Gaussian Processes Regression and lin-

ear regression, we chose SVR (the LIBSVM implementa-

tion 9 ) as a learning algorithm. The best performance was

achieved using the RBF kernel, which is defined as fol-

lows:

k(xi, x j) = exp
(
−γ ‖xi − x j‖2

)
, (2)

where γ is a parameter given to SVR. All the parame-

ters, C (error cost), epsilon (slack of the loss function) and

γ, are optimized with grid-search for each feature set (but

not for each emotion). To select an optimal set of features,

we use recursive feature elimination (RFE). RFE assigns

weights to features based on output from a model, and re-

moves attributes until performance is no longer improved.

6.3 Evaluation

We evaluate the performances of the four systems us-

ing 10-fold cross-validation, splitting the dataset by artist

(there are 140 distinct artists per 400 songs). If a song

from artist A appears in the training set, there will be no

songs from this artist in the test set. Table 3 shows evalua-

tion results. The accuracy of the models differs greatly per

category, while all the feature sets demonstrate the same

pattern of success and failure (for instance, perform badly

on amazement and well on joyful activation). This reflects

the fact that these two categories are very different in their

subjectiveness. Figure 3 illustrates the performance of the

9 www.csie.ntu.edu.tw/ cjlin/libsvm/

systems (r) for each of the categories and Cronbach’s al-

pha (which measures agreement) computed on listener’s

answers (see [1] for more details), and shows that they are

highly correlated. The low agreement between listeners re-

sults in conflicting cues, which limit model performance.

In general, the accuracy is comparable to accuracy

achieved for perceived emotion by others [5,7,15], though

it is somewhat lower. This might be explained by the fact

that all the categories contain both arousal and valence

components, and induced emotion annotations are less

consistent. In [7], tenderness was predicted with R = 0.67,

as compared to R = 0.57 for MP+Harm system in our

case. For power and joyful activation, the predictions from

the best systems (MP+Harm and OpenSmile) demon-

strated 0.56 and 0.68 correlation with the ground truth,

while in [5, 15] it was 0.72 and 0.76 for arousal.

The performance of all the three computational mod-

els is comparable, though MP+Harm model performs

slightly better in general. Adding harmonic features im-

proves average performance from 0.43 to 0.47, and perfor-

mance of the best system (MP+Harm) decreases to 0.35

when answers from people who disliked the music are not

discarded. As we were interested in evaluating the new

features, we checked which features were considered im-

portant by RFE. For power, the tritone proportion was im-

portant (positively correlated with power), for sadness, the

proportion of minor chords, for tenderness, the proportion

of seventh chords (negatively correlates), for tension, the

proportion of tritones, for joyful activation, the proportion

of seconds and inversions (positive correlation).

The musicological feature set demonstrates the best

performance as compared to all the features derived from

signal-processing, demonstrating that our ability to model

human perception is not yet perfect.

7. CONCLUSION

We analyze the performance of audio features on predic-

tion of induced musical emotion. The performance of the

best system is somewhat lower than can be achieved for

perceived emotion recognition. We conduct PCA and find
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Figure 3. Comparison of systems’ performance with

Cronbach’s alpha per category.

three dimensions in the GEMS model, which are best ex-

plained by axes spanning calmness—power, joyful activa-
tion—sadness and solemnity—nostalgia). This finding is

supported by other studies in the field [4, 13].

We conclude that it is possible to predict induced musi-

cal emotion for some emotional categories, such as tender-
ness and joyful activation, but for many others it might not

be possible without contextual information. We also show

that despite this limitation, there is still room for improve-

ment by developing features that can better approximate

human perception of music, which can be pursued in fu-

ture work on emotion recognition. 10
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ABSTRACT

Inspired by representations used in music cognition studies

and computational musicology, we propose three simple

and interpretable descriptors for use in mid- to high-level

computational analysis of musical audio and applications

in content-based retrieval. We also argue that the task of

scalable cover song retrieval is very suitable for the de-

velopment of descriptors that effectively capture musical

structures at the song level. The performance of the pro-

posed descriptions in a cover song problem is presented.

We further demonstrate that, due to the musically-informed

nature of the proposed descriptors, an independently estab-

lished model of stability and variation in covers songs can

be integrated to improve performance.

1. INTRODUCTION

This paper demonstrates the use of three new cognition-

inspired music descriptors for content-based retrieval.

1.1 Audio Descriptors

There is a growing consensus that some of the most widely

used features in Music Information Research, while very

effective for engineering applications, do not serve the dia-

log with other branches of music research [1]. As a classic

example, MFCC features can be shown to predict human

ratings of various perceptual qualities of a sound. Yet, from

the perspective of neuropsychology, claims that they math-

ematically approximate parts of auditory perception have

become difficult to justify as more parts of the auditory

pathway are understood.

Meanwhile, a recent analysis of evaluation practices by

Sturm [18] suggests that MIR systems designed to clas-

sify songs into high-level attributes like genre, mood or

instrumentation may rely on confounded factors unrelated

to any high-level property of the music, even if their per-

formance numbers approach 100%. Researchers have fo-

cused too much on the same evaluation measures and the

c© Jan Van Balen, Dimitrios Bountouridis, Frans Wiering,

Remco Veltkamp.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Jan Van Balen, Dimitrios Boun-

touridis, Frans Wiering, Remco Veltkamp. “Cognition-inspired descrip-

tors for

Scalable Cover Song Retrieval”, 15th International Society for Music In-

formation Retrieval Conference, 2014.

same datasets and as a result, today, top performing genre

and mood recognition systems rely on the same low-level

features that are used to classify bird sounds. 1

We also observe that, despite the increasing availabil-

ity of truly big audio data and the promising achievements

of MIR over the last decade, studies that turn big audio

data into findings about music itself seem hard to find. No-

table exceptions include studies on scales and intonation,

and [16]. In the latter, pitch, timbre and loudness data were

analyzed for the Million Song Dataset, focusing on the dis-

tribution and transitions of discretized code words. Yet, we

have also observed that this analysis sparks debate among

music researchers outside the MIR field, in part because of

the descriptors used. The study uses the Echo Nest audio

features provided with the dataset, which are computed us-

ing undisclosed, proprietary methods and therefore objec-

tively difficult in interpretation.

1.2 Towards Cognitive Audio Descriptors

On the long term we would like to model cognition-level

qualities of music such as its complexity, expectedness and

repetitiveness from raw audio data. Therefore we aim to

design and evaluate features that describe harmony, melody

and rhythm on a level that has not gained the attention it de-

serves in MIR’s audio community, perhaps due to the ‘suc-

cess’ of low-level features discussed above. In the long

run, we believe, this will provide insights into the building

blocks of music: riffs, motives, choruses, and so on.

1.3 Cover Song Detection

In this section, we argue that the task of scalable cover

song retrieval is very suitable for developing descriptors

that effectively capture mid- to high-level musical struc-

tures, such as chords, riffs and hooks.

Cover detection systems take query song and a database

and aim to find other versions of the query song. Since

many real-world cover versions drastically modulate mul-

tiple aspects of the original: systems must allow for devi-

ations in key, tempo, structure, lyrics, harmonisation and

phrasing, to name just a few. Most successful cover detec-

tion algorithms are built around a two-stage architecture.

In the first stage, the system computes a time series repre-

sentation of the harmony or pitch for each of the songs in a

database. In the second stage, the time series representing

1 largely MFCC and spectral moments, see [6, 18] for examples
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the query is compared to each of these representations, typ-

ically by means of some kind of alignment, i.e. computing

the locations of maximum local correspondence between

the two documents being compared. See [15] for more on

this task and an overview of cover detection strategies.

2. SCALABLE COVER SONG RETRIEVAL

Generally, alignment methods are computationally expen-

sive but effective. Results achieved this way have reached

mean average precision (MAP) figures of around 0.75 at

the MIREX evaluation exchange. 2

When it comes to large-scale cover detection (hundreds

of queries and thousands of songs), however, alignment-

based methods can become impractical. Imagine a musi-

cologist whose aim is not to retrieve matches to a single

query, but to study all the relations in a large, representa-

tive corpus. Alignment-based techniques are no longer an

option: a full pair-wise comparison of 10, 000 documents

would take weeks, if not months. 3 .

This is why some researchers have been developing scal-

able techniques for cover song detection. Scalable strate-

gies are often inspired by audio fingerprinting and involve

the computation of an indexable digest of (a set of) po-

tentially stable landmarks in the time series, which can be

stored and matched through a single inexpensive look-up.

Examples include the ‘jumpcodes’ approach by [2], the

first system to be tested using the Million Song Dataset.

This study reports a recall of 9.6% on the top 1 percent

of retrieved candidates. Another relevant example is the

interval-gram approach by Walters [19], which computes

fingerprinting-inspired histograms of local pitch intervals,

designed for hashing using wavelet decomposition.

Reality shows that stable landmarks are relatively easy

to find when looking for exact matches (as in fingerprint-

ing), but hard to find in real-world cover songs. A more

promising approach was presented by Bertin-Mahieux in

[3]], where the 2D Fourier transform of beat-synchronized

chroma features is used as the primary representation. The

accuracy reported is several times better than for the sys-

tem based on jumpcodes. Unfortunately, exactly what the

Fourier transformed features capture is difficult to explain.

The challenges laid out in the above paragraph make

cover song detection an ideal test case to evaluate a special

class of descriptors: harmony, melody and rhythm descrip-

tors, global or local, which have a fixed dimensionality

and some tolerance to deviations in key, tempo and global

structure. If a collection of descriptors can be designed that

accurately describes a song’s melody, harmony and rhythm

in a way that is robust to the song’s precise structure, tempo

and key, we should have a way to determine similarity be-

tween the ‘musical material’ of two songs and assess if the

underlying composition is likely to be the same.

2 http://www.music-ir.org/mirex/wiki/2009:
Audio_Cover_Song_Identification_Results

3 MIRex 2008 (the last to report runtimes) saw times of around 1.4−
3.7× 105 s for a task that involves 115, 000 comparisons. The fastest of
these algorithms would take 1.8 years to compute the 1

2
108 comparisons

required in the above scenario. The best performing algorithm would take
6 years.

3. PITCH AND HARMONY DESCRIPTORS

There is an increasing amount of evidence that the pri-

mary mechanism governing musical expectations is statis-

tical learning [7, 12]. On a general level, this implies that

the conditional probabilities of musical events play a large

role in their cognitive processing. Regarding features and

descripors, it justifies opportunities of analyzing songs and

corpora in terms of probabily distributions. Expectations

resulting from the exposure to statistical patterns have in

turn been shown to affect the perception of melodic com-

plexity and familiarity. See [7] for more on the role of

expectation in preference, familiarity and recall.

We propose three new descriptors: the pitch bihistogram,

the chroma correlation coefficients and the harmonization

feature. The pitch bihistogram describes melody and ap-

proximates a histogram of pitch bigrams. The chroma cor-

relation coefficients relate to harmony. They approximate

the co-occurrence of chord notes in a song. The third rep-

resentation, the harmonization feature, combines harmony

and melody information. These three descriptors will now

be presented in more detail.

3.1 The Pitch Bihistogram

Pitch bigrams are ordered pairs of pitches, similar to word

or letter bigrams used in computational linguistics. Several

authors have proposed music descriptions based on pitch

bigrams, most of them from the domain of cognitive sci-

ence [10, 11, 13]. Distributions of bigrams effectively en-

code first-degree expectations. More precisely: if the dis-

tribution of bigrams in a piece is conditioned on the first

pitch in the bigram, we obtain the conditional frequency of

a pitch given the one preceding it.

The first new feature we introduce will follow the bi-

gram paradigm. Essentially, it captures how often two

pitches p1 and p2 occur less than a distance d apart.

Assume that a melody time series P (t), quantized to

semitones and folded to one octave, can be obtained. If a

pitch histogram is defined as:

h(p) =
∑

P (t)=p

1

n
, (1)

with n the length of the time series and p ∈ {1, 2, . . . 12},
the proposed feature is then defined:

B(p1, p2) =
∑

P (t1)=p1

P (t2)=p2

w(t2 − t1) (2)

where

w(x) =

{
1
d , if 0 < x < d.

0, otherwise.
(3)

This will be reffered to as the pitch bihistogram, a bi-

gram representation that can be computed from continu-

ous melodic pitch. Note that the use of pitch classes rather

than pitch creates an inherent robustness to octave errors

in the melody estimation step, making the feature insensi-

tive to one of the most common errors encountered in pitch

extraction.
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Alternatively, scale degrees can be used instead of ab-

solute pitch class. In this scenario, the pitch contour P (t)
must first be aligned to an estimate of the piece’s overall

tonal center. As a tonal center, the tonic can be used. How-

ever, for extra robustness to misestimating the tonic, we

suggest to use the tonic for major keys and the minor third

for minor keys.

3.2 Chroma Correlation Coefficients

The second feature representation we propose focuses on

vertical rather than horizontal pitch relation. It encodes

which pitches appear simultaneously in a signal.

C(p1, p2) = corr(c(t, p1), c(t, p2)), (4)

where c(t, p) is a 12-dimensional chroma time series (also

known as pitch class profile) computed from the song au-

dio. From this chroma representation of the song c(t, p) we

compute the correlation coefficients between each pair of

chroma dimensions to obtain a 12× 12 matrix of chroma
correlation coefficients C(p1, p2). Like the pitch bihis-

togram, the chroma features can be transposed to the same

tonal center (tonic or third) based on an estimate of the

overall or local key.

3.3 Harmonisation Feature

Finally, the harmonisation feature is a set of histograms

of the harmonic pitches ph ∈ {1, . . . , 12} as they accom-

pany each melodic pitch pm ∈ {1, . . . , 12}. It is com-

puted from the pitch contour P (t) and a chroma time se-

ries c(t, ph), which should be adjusted to have the same

sampling rate and aligned to a common tonal center.

H(pm, ph) =
∑

P (t)=pm

c(t, ph). (5)

From a memory and statistical learning perspective, the

chroma correlation coeffiencients and harmonisation fea-

ture may be used to approximate expectations that include:

the expected consonant pitches given a chord note, the ex-

pected harmony given a melodic pitch, and the expected

melodic pitch given a chord note. Apart from [8], where

a feature resembling the chroma correlation coefficients is

proposed, information of this kind has yet to be exploited

in a functioning (audio) MIR system. Like the pitch bi-

histogram and the chroma correlation coefficients, the har-

monisation feature has a dimensionality of 12× 12.

4. EXPERIMENTS

To evaluate the performance of the above features for cover

song retrieval, we set up a number of experiments around

the covers80 dataset by Ellis [5]. This dataset is a collec-

tion of 80 cover song pairs, divided into a fixed list of 80

queries and 80 candidates. Though covers80 is not actu-

ally ‘large-scale’, it is often used for benchmarking 4 and

its associated audio data are freely available. In contrast,

the much larger Second Hand Songs dataset is distributed

4 results for this dataset have been reported by at least four authors [15]

only in the form of standard Echo Nest features. These fea-

tures do not include any melody description, which is the

basis for the descriptors proposed in this study.

Regarding scalability, we chose to follow the approach

taken in [19], in which the scalability of the algorithm fol-

lows from the simplicity of the matching step. The pro-

posed procedure is computationally scalable in the sense

that, with the appropriate hashing strategy, matching can

be performed in constant time with respect to the size of

the database. Nevertheless, we acknowledge that the dis-

tinguishing power of the algorithm must be assessed in the

context of much more data. A large scale evaluation of our

algorithm, adapted to an appopriate dataset and extended

to include hashing solutions and indexing, is planned as

future work.

4.1 Experiment 1: Global Fingerprints

In the first experiment, the three descriptors from section

3 were extracted for all 160 complete songs. Pitch con-

tours were computed using Melodia and chroma features

using HPCP, using default settings [14]. 5 For efficiency

in computing the pitch bihistogram, the pitch contour was

median-filtered and downsampled to 1
4 of the default frame

rate. The bihistogram was also slightly compressed by tak-

ing its square root.

The resulting reprentations (B, C and H) were then

scaled to the same range by whitening them for each song

individually (subtracting the mean of their n dimensions,

and dividing by the standard deviation; n = 144). To avoid

relying on key estimation, features in this experiment were

not aligned to any tonal center, but transposed to all 12

possible keys. In a last step of the extraction stage, the

features were scaled with a set of dedicated weights w =
(w1, w2, w3) and concatenated to 12 432-dimensional vec-

tors, one for each key. We refer to these vectors as the

global fingerprints.

In the matching stage of the experiment, the distances

between all queries and candidates were computed using a

cosine distance. For each query, all candidates were ranked

by distance. Two evaluation metrics were computed: recall
at 1 (the proportion of covers retrieved among the top 1

result for each query; R1) and recall at 5 (proportion of

cover retrieved ‘top 5’; R5).

4.2 Experiment 2: Thumbnail Fingerprints

In a second experiment, the songs in the database were

first segmented into structural sections using structure fea-

tures as described by Serra [17]. This algorithm performed

best at the 2012 MIREX evaluation exchange in the task of

‘music structure segmentation’, both for boundary recov-

ery and for frame pair clustering. (A slight simplification

was made in the stage where sections are compared: no

dynamic time warping was applied in our model.) From

this segmentation, two non-overlapping thumbnails are se-

lected as follows:

5 mtg.upf.edu/technologies
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1. Simplify the sequence of section labels (e.g. abab-

CabCC): merge groups of section labels that consis-

tently appear together (e.g. AACACC for the exam-

ple above).

2. Compute the total number of seconds covered by

each of the labels A, B, C... and find the two sec-

tion labels covering most of the song.

3. Return the boundaries of the first appearance of the

selected labels.

The fingerprint as described above was computed for

the full song as well as for the resulting thumbnails, yield-

ing three different fingerprints: one global and two thumb-
nail fingerprints, stored separately. As in experiment 1, we

transposed these thumbnails to all keys, resulting in a total

of 36 fingerprints extracted per song: 12 for the full song,

12 for the first thumbnail and 12 for the second thumbnail.

4.3 Experiment 3: Stability Model

In the last experiment, we introduced a model of stability

in cover song melodies. This model was derived indepen-

dently, through analysis of a dataset of annotated melodies

of cover songs variations. Given the melody contour for

a song section, the model estimates the stability at each

point in the melody. Here, stability is defined as the prob-

ability of the same pitch appearing in the same place in a

performed variation of that melody.

The stability estimates produced by the model are based

on three components that are found to correlate with sta-

bility: the duration of notes, the position of a note inside a

section, and the pitch interval. The details of the model and

its implementation are described in the following section.

5. STABILITY MODEL

The model we apply is a quantitative model of melody sta-

bility in cover songs. As it has been established for applica-

tions broader than the current study, it is based on a unique,

manually assembled collection of annotated cover songs

melodies. The dataset contains four transcribed melodic

variations for 45 so-called ‘cliques’ of cover songs, a sub-

set of the Second Hand Songs dataset. 6 . Some songs have

one section transcribed, some have more, resulting in a to-

tal of 240 transcriptions.

For the case study presented here, transcriptions were

analysed using multiple sequence alignment (MSA) and a

probabilistic definition of stability.

5.1 Multiple Sequence Alignment

Multiple sequence alignment is a bioinformatics method

that extends pairwise alignment of symbolic arrays to a

higher number of sequences [4]. Many approaches to MSA

exist, some employing hidden markov models or genetic

algorithms. The most popular is progressive alignment.

6 http://labrosa.ee.columbia.edu/millionsong/
secondhand

L AAAL AA AL AAAJ HHHHHHF ECAL AL A AAL AL AA AL AAAJ J J HHHHH HF HHJ

L AAL AL A AL AL AA AAJ HHHH HCEECAL AL AAAL A AAAL AAJ J J HHHH HHHEHEJ

L AAL AL A AAL AAA HHJ HHJ J J HL AAL A L AAAL EA AL EAEAJ J HJ HHE J

5 10 15 20 25 30 35 40 45 50

1

2

3

L AAL AL AAL AL AAAAJ HHHHHCEECAL AL AAAL A_ AAAL AAJ J J HHHHHHHEHEJ

L AA_ AL AA_ AL AAA_ J HHHHHHF ECAL AL AAAL AL AAAL AAAJ J J HHHHHHF HHJ

L AAL AL AA_ AL AAAHHJ HHJ J J HL AAL AL AAAL _ EAAL EAEAJ J _ _ _ HJ HHE_ _ J

5 10 15 20 25 30 35 40 45 50 55

1

2

3

Figure 1. A clique of melodies before (top) and after (bot-

tom) multiple sequence alignment.

This technique creates an MSA by combining several pair-

wise alignments (PWA) starting from the most similar se-

quences, constructing a tree usually denoted as the ‘guide

tree’. Unlike MSA, pairwise alignment has been researched

extensively in the (symbolic) MIR community, see [9] for

an overview.

Whenever two sequences are aligned, a consensus can

be computed, which can be used for the alignment connect-

ing the two sequences to the rest of the three. The consen-

sus is a new compromise sequence formed using heuristics

to resolve the ambiguity at non-matching elements. These

heuristics govern how gaps propagate through the tree, or

whether ‘leaf’ or ‘branch’ elements are favored. The cur-

rent model favors gaps and branch elements.

When the root consensus of the tree is reached, a last

iteration of PWA’s aligns each sequence to the root con-

sensus to obtain the final MSA. Figure 1 shows two sets

of melodic sequences (mapped to a one-octave alphabet

{A . . . L}) before and after MSA. Note that the MSA is

based on a PWA strategy which maximizes an optimality

criterion based on not just pitch but also duration and onset

times.

5.2 Stability

The stability of a note in a melody is now defined as the

probability of the same note being found in the same posi-

tion in an optimally aligned variation of that melody.

Empirically, given a set of N aligned sequences

{sk(i)} i = 1 . . . n, k = 1 . . . N (6)

we compute the stability of event sk(i) as:

stab(sk(i)) =
1

N − 1

j=N∑
j �=k
j=1

sj(i) == sk(i) (7)

As an example, in a position i with events s1(i) = A,

s2(i) = A, s3(i) = A and s4(i) = B, the stability of A is

0.66. The stability of B is 0.

5.3 Findings

As described in the previous section, we drew a random

sample of notes from the dataset in order to observe how

stability behaves as a function of the event’s pitch, duration

and position inside the song section.

The first relationship has ‘position’ as the independent

variable and describes the stability as it evolves throughout
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Figure 2. Stability of an event vs. position in the melody.

Figure 3. Stability of an event vs. duration.

the section. Figure 2 shows how stability changes with

position. The mean and 95% CI for the mean are shown

for two different binnings of the position variable. The 4-

bin curve illustrates how stability generally decreases with

position. The more detailed 64-bin curve shows how the

first two thirds of a melody are more stable than the last,

though an increased stability can be seen at the end of the

section.

Figure 3 shows the stability of notes as a function of

their duration. The distribution of note durations is cen-

tered around 1% of the segment length. Below and above

this value, the stability goes slightly up. This suggests that

notes with less common durations are more stable. How-

ever, the trend is weak compared with the effect of posi-

tion. Note duration information will therefore not be used

in the experiments in this study.

Figure 4 shows the stability (mean and 95% CI for the

mean) of a note given the pitch interval that follows. Note

how the relative stability of one-semitone jumps stands

out compared to repetitions and two-semitone jumps, even

though two-semitone jumps are far more frequent. This

suggests again that less-frequent events are more stable.

More analysis as to this hypothesis will be performed in a

later study.

6. DISCUSSION

Table 1 summarizes the results of the experiments.

In the experiments where each descriptor was tested

individually, the harmony descriptors (chroma correlation

coefficients) performed best: we obtained an accuracy of

over 30%. When looking at the top 5, there was a re-

call of 53.8%. The recall at 5 evaluation measure is in-

cluded to give an impression of the performance that could

Figure 4. Stability of an event vs. the interval that follows.

be gained if the current system were complemented with

an alignment-based approach to sort the top-ranking can-

didates, as proposed by [19].

The next results show that, for the three features to-

gether, the global fingerprints outperform the thumbnail

fingerprints (42.5% vs. 37.5%), and combining both types

does not increase performance further. In other configura-

tions, thumbnail fingerprints were observed to outperform

the global fingerprints. This is possibly the result of seg-

mentation choices: short segments produce sparse finger-

prints, which are in turn farther apart in the feature space

than ‘dense’ fingerprints.

In experiment 3, two components of the stability model

were integrated in the cover detection system. The 4-bin

stability vs. position curve (scaled to the [0, 1] range) was

used as a weighting to emphasize parts of the melody be-

fore computing the thumbnails’ pitch bihistogram. The

stability per interval (compressed by taking its square root)

was used to weigh the pitch bihistogram directly.

With the stability information added to the model, the

top 1 precision reaches 45.0%. The top 5 recall is 56.3%.

This result is situated between the accuracy of the first

alignment-based strategies (42.5%), and the accuracy of a

recent scalable system (53.8%; [19]). We conclude that the

descriptors capture enough information to discriminate be-

tween individual compositions, which we set out to show.

7. CONCLUSIONS

In this study, three new audio descriptors are presented.

Their interpretation is discussed, and results are presented

for an application in cover song retrieval. To illustrate the

benefit of feature interpretability, an independent model of

cover song stability is integrated into the system.

We conclude that current performance figures, though

not state-of-the-art, are a strong indication that scalable

cover detection can indeed be achieved using interpretable,

cognition-inspired features. Second, we observe that the

pitch bihistogram feature, the chroma correlation coeffi-

cients and the harmonisation feature capture enough infor-

mation to discriminate between individual compositions,

proving that they are at the same time meaningful and in-

formative, a scarse resource in the MIR feature toolkit. Fi-

nally, we have demonstrated that cognition-level audio de-

scription and scalable cover detection can be succesfully

addressed together.
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Descriptor R1 R5

Global fingerprints B 0.288 0.438

C 0.313 0.538

H 0.200 0.375

w = (2, 3, 1) 0.425 0.575

Thumbnail fingerprints w = (2, 3, 1) 0.388 0.513

Global + thumbnail fingerprints w = (2, 3, 1) 0.425 0.538

Both fingerprints + stability model w = (2, 3, 1) 0.450 0.563

Table 1. Summary of experiment results. w are the feature weights. Performance measures are recall at 1 (proportion of

covers retrieved ‘top 1’; R1) and recall at 5 (proportion of cover retrieved among ‘top 5’; R5).

As future work, tests will be carried out to assess the

discriminatory power of the features when applied to a

larger cover song problem.
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of a significant amount of non-Western music, annotated 
by listeners from two distinct cultures, and labeled based 
on three music mood models. In MIREX, there have been 
two mood-related (sub)-tasks: Audio Mood Classification 
(AMC) starting from 2007 and the mood tag subtask in 
Audio Tag Classification (ATC) starting from 2009 1 . 
Both tasks consist of Western songs labeled by listeners 
from unspecified cultural backgrounds [3]. This new da-
taset will enable evaluation tasks that explore the cross-
cultural generalizability of automated music mood recog-
nition systems [17].  

3. STUDY DESIGN 

3.1 The K-Pop Music Dataset 
The dataset consists of 1,892 K-pop songs across seven 
dominant music genres in K-pop, namely Ballad, 
Dance/Electronic, Folk, Hip-hop/Rap, Rock, R&B/Soul, 
and Trot [7]. 30 second music clips were extracted from 
each song and presented to the listeners for mood annota-
tion. This was to mitigate the cognitive load of annotators 
and to minimize the effect of possible mood changes dur-
ing the entire duration of some songs (which can happen 
for some songs but is beyond the scope of this study). 

3.2 Music Mood Models 
In representing music mood, there are primarily two 
kinds of models: categorical and dimensional [5]. In cate-
gorical models, music mood is represented as a set of dis-
crete mood categories (e.g., happy, sad, calm, angry, etc.) 
and each song is assigned to one or more categories. This 
study adopted two categorical models used in MIREX: 1) 
the five mood clusters (Table 1) used in the Audio Mood 
Classification task [3] where each song is labeled with 
one mood cluster exclusively; and 2) the 18 mood groups 
(Figure 2) used in the mood tag subtask in Audio Tag 
Classification where each song is labeled with up to six 
groups. Besides being used in MIREX, these two models 
were chosen due to the fact that they were developed 
from empirical data of user judgments and in a way that 
is completely independent from any dimensional models, 
and thus they can provide a contrast to the latter.   

Unlike categorical models, dimensional models repre-
sent a “mood space” using a number of dimensions with 
continuous values. The most influential dimensional 
model in MIR is Russell’s 2-dimensional model [11], 
where the mood of each song is represented as a pair of 
numerical values indicating its degree in the Valence (i.e., 
level of pleasure) and Arousal (i.e., level of energy) di-
mensions. Both categorical and dimensional models have 
their advantages and disadvantages. The former uses nat-
ural language terms and thus is considered more intuitive 
for human users, whereas the latter can represent the de-
gree of mood(s) a song may have (e.g., a little sad). 
Therefore, we used both kinds of models when annotating 
the mood of our K-pop song set. In addition to the 5 
mood clusters and 18 mood groups, the K-pop songs 
were also annotated with the Valence-Arousal 2-
dimensional model. 
                                                           
1 http://www.music-ir.org/mirex/wiki/MIREX_HOME 

Table 1. Five mood clusters in the MIREX AMC task. 

3.3 Annotation Process 
For a cross-cultural comparison, a number of American 
and Korean listeners were recruited to annotate the mood 
of the songs. The American listeners were recruited via a 
well-known crowdsourcing platform, Amazon Mechani-
cal Turk (MTurk), where workers complete tasks requir-
ing human intelligence for a small fee. MTurk has been 
recognized as a quick and cost-effective way of collecting 
human opinions and has been used successfully in previ-
ous MIR studies (e.g., [6], [8]). In total, 134 listeners who 
identified themselves as American participated in the an-
notations based on the three mood models.  

For the five-mood cluster model, each “HIT” (Human 
Intelligence Task, the name for a task in MTurk) con-
tained 22 clips with two duplicates for a consistency 
check. Answers were only accepted if the annotations on 
the duplicate clips were the same. Participants were paid 
$2.00 for successfully completing each HIT. For the 18-
group model, we paid $1.00 for each HIT, which con-
tained 11 clips with one duplicate song for consistency 
check. There were fewer clips in each HIT of this model 
as the cognitive load was heavier: it asked for multiple 
(up to six) mood labels out of 18. For the Valence-
Arousal (V-A) dimensional model we designed an inter-
face with two slide scales in the range of [-10.0, 10.0] 
(Figure 1). We paid $1.00 for each HIT, which contained 
11 clips with one duplicate song for a consistency check. 
Consistency was defined such that the difference between 
the two annotations of the duplicate clips in either dimen-
sion should be smaller than 2.0. The threshold was based 
on the findings in [16] where a number of listeners gave 
V-A values to the same songs in two different occasions 
and the differences never exceeded 10% of the entire 
range. For each of the three mood representation models, 
three annotations were collected for each music clip. The 
total cost was approximately $1800.  

As there was no known crowdsourcing platform for 
Korean people, the nine Korean listeners who participat-
ed in the annotation were recruited through professional 
and personal networks of the authors. The annotation was 
done with our in-house annotation systems, which are 
similar to those in MTurk. All instructions and mood la-
bels/dimensions were translated into Korean to minimize 
possible misunderstanding of the terminology. Similarly, 
each song received three annotations in each mood mod-
el. The payments to annotators were also comparable to 
those in MTurk. Although the total number of annotators 
in the two cultural groups differs, each song had exactly 

Cluster1 
(C_1) 

passionate, rousing, confident, boisterous,  
rowdy 

Cluster2 
(C_2) 

rollicking, cheerful, fun, sweet,  
amiable/good natured 

Cluster3 
(C_3) 

literate, poignant, wistful, bittersweet,  
autumnal, brooding 

Cluster4 
(C_4) 

humorous, silly, campy, quirky, whimsi-
cal, witty, wry 

Cluster5 
(C_5) 

aggressive, fiery, tense/anxious, intense,  
volatile, visceral 
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six independent annotations on which the following anal-
ysis and comparisons are based. 

 
Figure 1. Annotation interface of the VA model (hori-
zontal dimension is Valence, vertical is Arousal). 

4. RESULTS 

The annotations by American and Korean listeners are 
compared in terms of judgment distribution, agreement 
levels, and confusion between the two cultural groups. 
The Chi-square independence test is applied to estimate 
whether certain distributions were independent with lis-
teners’ cultural background.  

4.1 Distribution of Mood Judgment 
Table 2 shows the distribution of mood judgment of lis-
teners from both cultural groups across five mood clus-
ters. A Chi-square independence test indicates that the 
distribution does depend on cultural group (p < 0.001, df 
= 4, �2=396.90). American listeners chose C_1 (passion-
ate) and C_5 (aggressive) more often while Korean lis-
teners chose C_2 (cheerful), C_3 (bittersweet) and C_4 
(silly/quirky) more often. It is noteworthy that both 
groups chose C_3 (bittersweet) most often among all five 
clusters. This is different from [9] where both American 
and Korean listeners chose C_2 (cheerful) most often for 
American Pop songs. This difference may indicate that 
K-pop songs are generally more likely to express C_3 
moods than American Pop songs.  

 C_1 C_2 C_3 C_4 C_5 Total 
American 1768 897 2225 311 475 5676 
Korean 959 1321 2598 453 345 5676 

Table 2. Judgment distributions across 5 mood clusters. 

With the 18-mood group model, a listener may label a 
song with up to six mood groups. The American listeners 
chose 13,521 groups in total, resulting in an average of 
2.38 groups per song. The Korean listeners chose 7,465 
groups in total, which resulted in 1.32 groups per song. 
The fact that American listeners assigned almost twice as 
many groups to each song as Korean listeners did may be 
related to the individualism/collectivism dichotomy 
found in psychology and cultural studies [13]; Americans 
tend to be individualistic and are more flexible in accept-
ing a range of ideas (mood groups in this case) than peo-
ple from collectivistic cultures (often represented by East 
Asian cultures). Future studies employing more qualita-
tive approaches are warranted to verify this speculation. 

Figure 2 shows the distribution of judgments across the 
18 mood groups. A chi-square test verified that the distri-
bution is statistically significantly dependent on cultural 
backgrounds (p < 0.001, df = 17, �2=1664.49). Americans 
used “gleeful”, “romantic”, “brooding”, “earnest”, “hope-
ful”, and “dreamy” more often than Koreans, while Kore-
ans applied “sad” more frequently than Americans. Both 
groups used “angry” and “anxious” very rarely, probably 
due to the nature of K-pop songs. Similar observations 
were made in [17], where mood labels applied to Chinese 
and Western Pop songs were compared and radical 
moods such as “aggressive” and “anxious” were applied 
much more infrequently to Chinese songs than to West-
ern songs. This may indicate a cultural difference in mu-
sic: Chinese and Korean cultures tend to restrain and/or 
censor the expression of radical or destructive feelings 
whereas in Western cultures people are willing and free 
to expression of all kinds of feelings [10].  

 
Figure 2. Judgment distributions across 18 mood groups 
(each group is represented by one representative term). 

 
Figure 3. Boxplot of Valence and Arousal values. 

Figure 3 shows the boxplot of the annotations based on 
the VA dimensional space given by the two groups of lis-
teners. The V-A scores given by Americans are more 
scattered than those by Koreans, suggesting that Ameri-
cans were more willing to choose extreme values. In ad-
dition, the means and medians indicate that Americans 
rated the songs with lower arousal values but higher va-
lence values than Koreans (p < 0.001 in non-paired t-test 
for both cases). In other words, Americans tended to con-
sider the songs to be less intense and more positive than 
did Koreans. This may also reflect the cultural difference 
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that individuals from Western cultures tend to experience 
and/or express more positive emotions than those from 
Eastern cultures [12], and Asians present themselves as 
less aroused compared to Americans and Europeans [1].   

4.2 Agreements Within and Across Cultural Groups 
In order to find out whether listeners from the same cul-
tural background agree more with each other than with 
those from another cultural group, we examined the 
agreement among annotations provided by listeners in 
each cultural group as well as across cultural groups. The 
agreement measures used are the Sokal-Michener coeffi-
cient and intra-class correlation (ICC). The former is ap-
propriate for categorical data while the latter is used for 
numerical data in the V-A space.  

4.2.1 Sokal-Michener coefficient 
The Sokal-Michener (S-M) coefficient is the ratio of the 
number of pairs with the same values and the total num-
ber of variables [2][9], and therefore a higher value indi-
cates a higher agreement. For instance, if two listeners i 
and j had the same mood judgments on 189 of the 1892 
songs, the S-M coefficient between them is approximate-
ly 0.1. Table 3 shows the average S-M coefficient aggre-
gated across all pairs of annotators within and across cul-
tural groups on the five-cluster annotations. It is not sur-
prising that Koreans reached a higher agreement than 
Americans since they are annotating songs originating 
from their own culture. This is consistent with the find-
ings in [2] and [9], where American listeners reached a 
higher agreement on the mood of American Pop songs 
than did Korean and Chinese listeners. The agreement 
level was the lowest when annotations from American 
and Korean listeners (cross-cultural) were paired up. The 
distribution of agreed vs. disagreed judgments is signifi-
cantly dependent on whether the listeners are from the 
same cultural group or not, evidenced by the Chi-square 
test results (Table 3). Listeners from the same cultural 
group tend to agree more with each other than with those 
from a different culture.      

 American Korean �2 df P 
American 0.47 0.43 25.35 1 <0.001 
Korean 0.43 0.56 249.71 1 <0.001 

 Table 3. S-M coefficients of the five-cluster annotation 
within and across cultural groups 

The analysis is more complex for the 18 group annota-
tion, as each judgment can associate multiple labels with 
a song. To measure the agreement, we paired up labels 
applied to a song by any two annotators, and then calcu-
lated the S-M coefficient as the proportion of matched 
pairs among all pairs. For example, if annotator_1 la-
belled a song S with g1, g2, g3 and annotator_2 labelled 
it with g1, g4, then there were six annotation pairs and 
only one of them matched (i.e., g1 matched g1). The S-M 
coefficient in this case is 1/6 = 0.17. Although the de-
nominator increases when more labels are chosen, the 
chances they get matched also increase. All annotations 
from all listeners within each cultural group and across 
cultural groups were paired up in this way, and the result-

ant S-M coefficients are shown in Table 4. Again, the 
agreement level within Koreans was higher than that 
within Americans and also across cultural groups. How-
ever, the agreement within Americans was at the same 
level as the cross-cultural agreement, which is further ev-
idenced by the statistically insignificant result of the Chi-
square test.      

 American Korean �2 df p 
American 0.11 0.11 3.72 1 0.054 
Korean 0.11 0.15   156.88 1 <0.001 

Table 4. S-M coefficient of the 18-group annotation with-
in and across cultural groups 

4.2.2 Intra-Class Correlation 
The intra-class correlation (ICC) is a measure of agree-
ment when ratings are given based on a continuous scale 
[15]. In the case of V-A annotation in this study, there is 
a different set of raters (listeners) for each item (song), 
and thus the one-way random model is used to calculate 
ICC within each group (3 raters) and across both groups 
(6 raters), for the valence and arousal dimensions. As 
shown in Table 5, cross-cultural agreement on valence is 
lower than within-cultural ones. Unlike five mood cluster 
annotation, both groups showed similar level of agree-
ment on both dimensions. It is also noteworthy that the 
agreement on arousal annotation is much higher than va-
lence annotation within- and cross-culturally. This is con-
sistent with earlier MIR literature where valence has been 
recognized as more subjective than arousal [5]. 

 American Korean Cross-Cultural 
Valence 0.27 0.28 0.23 
Arousal 0.55 0.54 0.54 

Table 5. ICC of Valence Arousal annotations within and 
across cultural groups 

4.3 Confusion Between Cultural Groups 
To further our understanding on the difference and simi-
larity of mood perceptions between the two cultural 
groups, we also examined the disagreement between lis-
teners in the two groups in each of the three types of an-
notations. For the 5-cluster annotation, Table 6 shows the 
confusion matrix of the 1,438 songs with agreed labels by 
at least two listeners in each cultural group. Each cell 
shows the number of songs labeled as one mood cluster 
by Koreans (column) and another by Americans (row). 
The cells on the (highlighted) diagonal are numbers of 
songs agreed by the two groups, while other cells repre-
sent the disagreement between the two groups. The ma-
trix shows that both groups agreed more on C_3 (bitter-
sweet) within themselves (661 and 842 songs respectively 
as shown by the “Total” cells). The bold numbers indi-
cate major disagreements between the two groups. There 
are 268 songs Korean listeners judged as C_3 (bitter-
sweet) that Americans judged as C_1 (passionate). The 
two groups only agreed on C_5 (aggressive) on 18 songs, 
whereas 49 songs judged as C_5 (aggressive) by Ameri-
cans were judged by the Koreans as C_1 (passionate).  
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Table 7 shows the confusion matrix of the seven mood 
groups (due to space limit) with the most agreed songs by 
majority vote among the Korean listeners. The biggest 
confusion/discrepancy is between “exciting” and “glee-
ful”: 135 songs perceived as “gleeful” by Americans 
were perceived as “exciting” by Koreans. Other major 
confusions are between “exciting” and “cheerful”, and 
“sad” and “mournful.” These moods have similar seman-
tics in terms of valence (both “sad” and “mournful” have 
low valence values) and arousal (both “exciting” and 
“gleeful” have high arousal values), which may explain 
the confusion between these terms. Similarly, there are 
few songs with disagreement between mood labels with 
very distinct semantics, such as “exciting” vs. 
“sad/calm/mournful”; “calm” vs. “cheerful/gleeful”; and 
“gleeful” vs. “mournful”.  

           KO 
AM 

C_1 C_2 C_3 C_4 C_5 Total 

C_1 70 79 268 18 22 457
C_2 41 126 10 11 2 190
C_3 19 53 558 22 9 661
C_4 10 6 5 22 1 44
C_5 49 10 1 8 18 86
Total 189 274 842 81 52 1438

Table 6. Cross-tabulation between 5-cluster annotations 
across cultural groups 

It is interesting to see that a number of songs perceived 
as “romantic” by Americans were seen as “sad” (31 songs) 
and “calm” (30 songs) by Koreans. On the other hand, 18 
songs perceived as “romantic” by Koreans were viewed 
as “calm” by Americans. “Romantic” was seldom con-
fused with other high arousal moods such as “exciting” or 
“cheerful” by either Koreans or Americans, suggesting 
that both cultures tend to associate “romantic” with low 
arousal music. 

        KO 
AM 

exci-
ting sad chee-

rful calm mour-
nful

glee-
ful

roma-
tic Total 

exciting 71 2 35 2 2 28 3 143 

sad 0 32 0 13 13 0 4 62 

cheerful 35 3 32 1 3 7 2 83 

calm 0 10 0 25 4 0 18 57 

mournful 0 48 0 23 27 0 6 104 

gleeful 135 4 98 2 2 55 4 300 

romantic 4 31 3 30 18 3 27 116 

total 245 130 168 96 69 93 64 865 

Table 7. Cross-tabulation between 18-group annotations 
across cultural groups 

For the 2-D annotation, we show the disagreement be-
tween the two groups in the four quadrants of the 2-D 
space (Table 8). Both groups agreed more with listeners 
from their own cultural group on the first quadrant 
(+A+V) and the third quadrant (-A-V) (as shown by the 
“Total” cells). The largest discrepancy was observed be-
tween –A+V and –A-V: 116 songs were perceived as 

having negative arousal and positive valence (-A+V) by 
Americans but negative valence (-A-V) by Koreans. Sim-
ilarly, for the songs perceived as having positive arousal 
by both groups, 118 of them were again perceived as hav-
ing positive valence (+A+V) by Americans but negative 
valence (+A-V) by Koreans. This is consistent with our 
finding that Korean listeners are more likely to label neg-
ative moods than Americans (Section 4.1). 

      KO 
AM +A+V +A-V -A+V -A-V Total 

+A+V 495 118 25 34 672 
+A-V 8 30 1 17 56 
-A+V 51 24 84 116 275 
-A-V 10 19 80 178 287 
Total 565 191 190 346 1290 

Table 8. Cross-tabulation among the four quadrants in 2-
D annotations across cultural groups 

5. DISCUSSIONS 

5.1 Differences and Similarities Between Groups 
The results show that mood judgments and the level of 
agreement are dependent on the cultural background of 
the listeners. A number of differences were found be-
tween the annotations of the two groups. First, Americans 
assigned a larger number of labels to each song, and ap-
plied more extreme valence and arousal values than Ko-
reans (Figure 3). We speculate that perhaps this is related 
to the fact that the Western culture tends to encourage in-
dividualism and divergent thinking more than the Eastern 
culture [13]. The difference in the number of annotators 
is another possible explanation. Both of these factors will 
be further explored in future work. Second, compared to 
Americans, Koreans were more likely to label songs with 
negative moods such as “bittersweet”, “sad,” and 
“mournful” (Table 2, Figure 2), give lower valence val-
ues (Figure 3), and agree with each other more often on 
songs with negative valence (Table 9). These observa-
tions were consistent with and supported by findings in 
previous cultural studies that people from Western cul-
tures tend to experience and/or express more positive 
emotions than those from Eastern cultures [12]. The fact 
that Americans in this study could not understand the lyr-
ics of the songs may also have contributed to these results. 
Sometimes song lyrics and melody may express different 
moods to invoke complex emotions (e.g., dark humor). In 
particular, a recent trend among K-pop artists to use fast-
er tempo in Ballad songs may make the melody sound 
positive or neutral, although the lyrics are sad or melan-
choly as is the convention for Ballad songs.    

It is also found that agreements of within-cultural 
groups are higher than that of cross-cultural groups based 
on the comparison of S-M coefficient, and ICC values 
(on valence only). For within-cultural group agreement, 
Koreans reached a higher agreement than Americans on 
5-cluster annotation, which may be explained by the fact 
that Koreans were more familiar with the K-pop songs 
used in this study than Americans. Prior familiarity with 
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songs was also identified as a factor affecting the agree-
ment level of mood perception in previous studies [2].  

Some similarities were also found between the annota-
tions of the two groups: 1) both groups applied and 
agreed on C_3 (bittersweet) more often than other mood 
clusters (Tables 2 and 8); 2) both groups seldom applied 
radical mood labels such as “aggressive”, “angry”, “anx-
ious” (Table 2 and Figure 2); and 3) both groups agreed 
more on songs with +A+V and –A-V values (Table 9). 
These similarities can potentially be attributed to the na-
ture of the K-pop songs. A previous study comparing 
mood labels on Western and Chinese Pop songs also 
found that there were significantly fewer radical mood 
labels assigned to Chinese Pop songs than to Western 
songs [17]. This may reflect Eastern Asian preferences 
for non-aggressive music, perhaps due to their tradition of 
being more conservative and limiting the expression of 
feelings [10]. Another likely explanation would be the 
censorship and regulation1 that still heavily affects the 
popular music culture in countries like South Korea and 
China.  

5.2 Proposed MIR Evaluation Tasks 
One of the main contributions of this study is to build a 
large cross-cultural dataset for MIR research. The unique 
characteristics of the dataset built for this study make it 
suitable for various evaluation tasks involving cross-
cultural components. Specifically, for each of the three 
annotation sets (i.e., 5-clusters, 18-groups, and 2-
dimenions), both within- and cross-cultural evaluations 
can be performed. For the former, both training and test 
data can be extracted from the datasets with annotations 
by listeners from the same cultural group (by cross-
validation, for example); for the latter, models can be 
trained by the dataset annotated by listeners in one culture 
and applied to the dataset annotated by listeners in anoth-
er culture. These tasks will be able to evaluate whether 
mood recognition models often used in Western music 
can be equally applied to 1) non-Western music, specifi-
cally K-Pop songs; 2) K-Pop songs annotated by Ameri-
can and/or Korean listeners; and 3) cross-cultural music 
mood recognition, for both categorical mood classifica-
tion [17] and dimensional mood regression [5].         

6. CONCLUSIONS AND FUTURE WORK 

This study analyzed music mood annotations on a large 
set of K-Pop songs provided by listeners from two dis-
tinct cultural groups, Americans and Koreans, using three 
mood annotation models. By comparing annotations from 
the two cultural groups, differences and similarities were 
identified and discussed. The unique characteristics of the 
dataset built in this study will allow it to be used in future 
MIR evaluation tasks with an emphasis on cross-cultural 
applicability of mood recognition algorithms and sys-
tems. Future work will include detailed and qualitative 
investigation on the reasons behind the differences be-
tween mood judgments of these two user groups as well 
as listeners from other cultural groups.    

                                                           
1 http://freemuse.org/archives/7294 
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ABSTRACT

Many Western songs are hierarchically structured in stan-

zas and phrases. The melody of the song is repeated for

each stanza, while the lyrics vary. Each stanza is subdi-

vided into phrases. It is to be expected that melodic and

textual formulas at the end of the phrases offer intrinsic

clues of closure to a listener or singer. In the current paper

we aim at a method to detect such cadences in symbolically

encoded folk songs. We take a trigram approach in which

we classify trigrams of notes and pitches as cadential or

as non-cadential. We use pitch, contour, rhythmic, textual,

and contextual features, and a group of features based on

the conditions of closure as stated by Narmour [11]. We

employ a random forest classification algorithm. The pre-

cision of the classifier is considerably improved by taking

the class labels of adjacent trigrams into account. An abla-

tion study shows that none of the kinds of features is suffi-

cient to account for good classification, while some of the

groups perform moderately well on their own.

1. INTRODUCTION

This paper presents both a method to detect cadences in

Western folk-songs, particularly in folk songs from Dutch

oral tradition, and a study to the importance of various mu-

sical parameters for cadence detection.

There are various reasons to focus specifically on ca-

dence patterns. The concept of cadence has played a major

role in the study of Western folk songs. In several of the

most important folks song classification systems, cadence

tones are among the primary features that are used to put

the melodies into a linear ordering. In one of the earli-

est classification systems, devised by Ilmari Krohn [10],

melodies are firstly ordered according to the number of

phrases, and secondly according to the sequence of ca-

dence tones. This method was adapted for Hungarian mel-

odies by Bártok and Kodály [16], and later on for German

folk songs by Suppan and Stief [17] in their monumental

Melodietypen des Deutschen Volksgesanges. Bronson [3]

introduced a number of features for the study of Anglo-

American folk song melodies, of which final cadence and

c© Peter van Kranenburg, Folgert Karsdorp.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Peter van Kranenburg, Folgert Kars-

dorp. “Cadence Detection in Western Traditional Stanzaic Songs using

Melodic and Textual Features”, 15th International Society for Music In-

formation Retrieval Conference, 2014.

mid-cadence are the most prominent ones. One of the

underlying assumptions is that the sequence of cadence

tones is relatively stable in the process of oral transmis-

sion. Thus, variants of the same melody are expected to

end up near to each other in the resulting ordering.

From a cognitive point of view, the perception of clo-

sure is of fundamental importance for a listener or singer

to understand a melody. In terms of expectation [8, 11],

a final cadence implies no continuation at all. It is to be

expected that specific features of the songs that are related

to closure show different values for cadential patterns as

compared to non-cadential patterns. We include a subset

of features that are based on the conditions of closure as

stated by Narmour [11, p.11].

Cadence detection is related to the problem of segmen-

tation, which is relevant for Music Information Retrieval

[21]. Most segmentation methods for symbolically repre-

sented melodies are either based on pre-defined rules [4,

18] or on statistical learning [1,9,12]. In the current paper,

we focus on the musical properties of cadence formulas

rather than on the task of segmentation as such.

Taking Dutch folk songs as case study, we investigate

whether it is possible to derive a general model of the mel-

odic patterns or formulas that specifically indicate melodic

cadences using both melodic and textual features. To ad-

dress this question, we take a computational approach by

employing a random forest classifier (Sections 5 and 6).

To investigate which musical parameters are of impor-

tance for cadence detection, we perform an ablation study

in which we subsequently remove certain types of features

in order to evaluate the importance of the various kinds of

features (Section 7).

2. DATA

We perform all our experiments on the folk song collec-

tion from the Meertens Tune Collections (MTC-FS, ver-

sion 1.0), which is a set of 4,120 symbolically encoded

Dutch folk songs. 1 Roughly half of it consists of tran-

scriptions from field recordings that were made in the Nether-

lands during the 20th century. The other half is taken from

song books that contain repertoire that is directly related

to the recordings. Thus, we have a coherent collection of

songs that reflects Dutch everyday song culture in the early

20th century. Virtually all of these songs have a stanzaic

structure. Each stanza repeats the melody, and each stanza

1 Available from: http://www.liederenbank.nl/mtc.
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consists of a number of phrases. Both in the transcrip-

tions and in the song books, phrase endings are indicated.

Figure 1 shows a typical song from the collection. The

language of the songs is standard Dutch with occasionally

some dialect words or nonsense syllables. All songs were

digitally encoded by hand at the Meertens Institute (Ams-

terdam) and are available in Humdrum **kern format. The

phrase endings were encoded as well and are available for

computational analysis and modeling.

3. OUR APPROACH

Our general approach is to isolate trigrams from the melo-

dies and to label those as either cadential or non-cadential.

A cadential trigram is the last trigram in a phrase. We com-

pare two kinds of trigrams: trigrams of successive notes

(note-trigrams), and trigrams of successive pitches (pitch-
trigrams), considering repeated pitches as one event. In the

case of pitch-trigrams, a cadence pattern always consists of

the three last unique pitches of the phrase. There are two

reasons for including pitch-trigrams. First, pitch repetition

is often caused by the need to place the right number of

syllables to the melody. It occurs that a quarter note in one

stanza corresponds to two eighth notes in another stanza

because there is an extra syllable at that spot in the song

text. Second, in models of closure in melody [11, 15] suc-

cessions of pitches are of primary importance.

Figure 1 depicts all pitch-trigrams in the presented mel-

ody. The trigram that ends on the final note of a phrase

is a cadential trigram. These are indicated in bold. Some

cadential trigrams cross a phrase boundary when the next

phrase starts with the same pitch.

From each trigram we extract a number of feature val-

ues that reflect both melodic and textual properties. We

then perform a classification experiment using a Random

Forest Classifier [2]. This approach can be regarded a ‘bag-

of-trigrams’ approach, where each prediction is done inde-

pendently of the others, i.e. all sequential information is

lost. Therefore, as a next step we take the labels of the

direct neighboring trigrams into account as well. The fi-

nal classification is then based on a majority vote of the

predicted labels of adjacent trigrams. These steps will be

explained in detail in the next sections.
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Figure 1. Examples of pitch-trigrams. The cadential tri-

grams are indicated in bold.

4. FEATURES

We represent each trigram as a vector of feature values. We

measure several basic properties of the individual pitches

and of the pattern as a whole. The code to automatically

extract the feature values was written in Python, using the

music21 toolbox [5]. The features are divided into groups

that are related to distinct properties of the songs. Some

features occur in more than one group. The following

overview shows all features and in parentheses the value

for the first trigram in Figure 1. Detailed explanations are

provided in sections 4.1 and 4.2.

Pitch Features
Scale degree Scale degrees of the first, second, and third item (5, 1, 3).
Range Difference between highest and lowest pitch (4).
Has contrast third Whether there are both even and odd scale degrees in

the trigram (False).

Contour Features
Contains leap Whether there is a leap in the trigram (True).
Is ascending Whether the first and second intervals, and both are ascend-

ing (False, True, False).
Is descending Whether the first and second intervals, and both are de-

scending (True, False, False).
Large-small Whether the first interval is large and the second is small

(True).
Registral change Whether there is a change in direction between the first

and the second interval (True).

Rhythmic Features
Beat strength The metric weights of the first, second and third item (0.25,

1.0, 0.25).
Min beat strength The smallest metric weight (0.25).
Next is rest Whether a rest follows the first, second and third item (False,

False, False).
Short-long Whether the second item is longer than the first, and the third

is longer than the second (False, False).
Meter The meter at the beginning of the trigram (“6/8”).

Textual Features
Rhymes Whether a rhyme word ends at the first, second and third item

(False, False, False).
Word stress Whether a stressed syllable is at the first, second and third

item (True, True, True).
Distance to last rhyme Number of notes between the last the first, second

and third item and the last rhyme word or beginning of the melody
(0, 1, 2).

Narmour Closure Features
Beat strength The metric weights of the first, second and third item (0.25,

1.0, 0.25).
Next is rest Whether a rest follows the first, second and third item (False,

False, False).
Short-long Whether the second item is longer than the first, and the third

is longer than the second (False, False).
Large-small Whether the first interval is large (≥ fifth) and the second is

small (≤ third) (True).
Registral change Whether there is a change in direction between the first

and the second interval (True).

Contextual Features
Next is rest third Whether a rest or end of melody follows the third item

(False).
Distance to last rhyme Number of notes between the last the first, second

and third item and the last rhyme word or beginning of the melody
(0, 1, 2).

4.1 Melodic Features

Several of the features need some explanation. In this sec-

tion we describe the melodic features, while in the next

section, we explain how we extracted the textual features.

HasContrastThird is based on the theory of Jos Smits-

Van Waesberghe [15], the core idea of which is that a mel-

ody gets its tension and interest by alternating between

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

392



pitches with even and uneven scale degrees, which are two

contrasting series of thirds.

The metric weight in the Rhythmic features is the beat-

strength as implemented in music21’s meter model.

The Narmour features are based on the six (preliminary)

conditions of closure that Narmour states at the beginning

of his first book on the Implication-Realisation theory [11,

p.11]: “[...] melodic closure on some level occurs when

1. a rest, an onset of another structure, or a repetition in-

terrupts an implied pattern; 2. metric emphasis is strong;

3. consonance resolves dissonance; 4. duration moves cu-

mulatively (short note to long note); 5. intervallic motion

moves from large interval to small interval; 6. registral di-

rection changes (up to down, down to up, lateral to up, lat-

eral to down, up to lateral, or down to lateral). Of course,

these six may appear in any combination.” Because the

melodies are monophonic, condition 3 has no counterpart

in our feature set.

The contextual features are not features of the trigram in

isolation, but are related to the position in the melody. In an

initial experiment we found that the distance between the

first note of the trigram and the last cadence is an important

predictor for the next cadence. Since this is based on the

ground-truth label, we cannot include it directly into our

feature set. Since we expect rhyme in the text to have a

strong relation with cadence in the melody, we include the

distance to the last rhyme word in number of notes.
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Figure 2. Rhyme as detected by our method. The first line

shows the original text after removing non-content words.

The second line shows the phonological representations

of the words (in SAMPA notation). The third line shows

whether rhyme is detected (‘True’ if a rhyme word ends at

the corresponding note).

4.2 Textual Features

In many poetical texts, phrase boundaries are determined

by sequences of rhyme. These establish a structure in a

text, both for aesthetics pleasure and memory aid [14]. In

folk music, phrasal boundaries established by sequences of

rhyme are likely to relate to phrases in the melody.

We developed a rhyme detection system which allows

us to extract these sequences of rhyming lyrics. Because

of orthographical ambiguities (e.g. cruise, where /u:/ is

represented by ui whereas in muse it is represented by u),

it is not as straightforward to perform rhyme detection on

orthographical representations of words. Therefore, we

transform each word into its phonological representation

(e.g. cruise becomes /kru:z/ and bike /baIk/).
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Figure 3. Example sliding window for phoneme classifi-

cation.

We approach the problem of phonemicization as a su-

pervised classification task, where we try to predict for

each character in a given word its corresponding phoneme.

We take a sliding window-based approach where for each

focus character (i.e. the character for which we want to pre-

dict its phonemic representation) we extract as features n
characters to the left of the focus character, n characters to

the right, and the focus character itself. Figure 3 provides

a graphical representation of the feature vectors extracted

for the word cruise. The fourth column represents the fo-

cus character with a context of three characters before and

three after the focus character. The last column represents

the target phonemes which we would like to predict. Note

that the first target phoneme in Figure 3 is preceded by an

apostrophe (’k), which represents the stress position on the

first (and only) syllable in cruise. This symbolic notation

of stress in combination with phonology allows us to si-

multaneously extract a phonological representation of the

input words as well as their stress patterns. For all words

in the lyrics in the dataset we apply our sliding window

approach with n = 5, which serves as input for the su-

pervised classifier. In this paper we make use of a k = 1
Nearest Neighbor Classifier as implemented by [6] using

default settings, which was trained on the data of the e-

Lex database 2 . In the running text of our lyrics, 89.5% of

the words has a direct hit in the instance base, and for the

remaining words in many cases suitable nearest neighbors

were found. Therefore, we consider the phonemicization

sufficiently reliable.

We assume that only content words (nouns, adjectives,

verbs and adverbials) are possible candidate rhyme words.

This assumption follows linguistic knowledge as phrases

typically do not end with function words such as determin-

ers, prepositions, etcetera. Function words are part of a

closed category in Dutch. We extract all function words

from the lexical database e-Lex and mark for each word in

each lyric whether it is a function word.

We implemented rhyme detection according to the rules

for Dutch rhyme as stated in [19]. The algorithm is straight-

forward. We compare the phoneme-representations of two

words backwards, starting at the last phoneme, until we

reach the first vowel, excluding schwas. If all phonemes

2 http://tst-centrale.org/en/producten/lexica/
e-lex/7-25
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Class pr rec F1 σF1
support

note-trigrams
cadence 0.84 0.72 0.78 0.01 23,925

nocadence 0.96 0.98 0.97 0.01 183,780

pitch-trigrams
cadence 0.85 0.69 0.76 0.01 23,838

nocadence 0.95 0.98 0.96 0.00 130,992

Table 1. Results for single labels.

and the vowel are exactly the same, the two words rhyme.

As an example we take kinderen (‘children’) and hin-
deren (‘to hinder’). The phoneme representations as pro-

duced by our method are /kInd@r@/ and /hInd@r@/. The

first vowel starting from the back of the word, exclud-

ing the schwas (/@/), is /I/. Starting from this vowel,

the phoneme representations of both words are identical

(/Ind@r@/). Therefore these words rhyme.

We also consider literal repetition of a word as ‘rhyme’,

but not if a sequence of words is repeated literally, such

as in the example in Figure 1. Such repetition of entire

phrases occurs in many songs. Labeling all words as rhyme

words would weaken the relation with cadence or ‘end-of-

sentence’. We only label the last word of repeated phrases

as a rhyme word. Figure 2 shows an example.

5. CLASSIFICATION WITH SINGLE LABELS

As a first approach we consider the trigrams independently.

A melody is represented as ‘bag-of-trigrams’. Each tri-

gram has a ground-truth label that is either ‘cadence’ or

‘no cadence’, as depicted in Figure 1 for pitch-trigrams’

We employ a Random Forest classifier [2] as imple-

mented in the Python library scikit-learn [13]. This classi-

fier combines n decision trees (predictors) that are trained

on random samples extracted from the data (with replace-

ment). The final classification is a majority vote of the pre-

dictions of the individual trees. This procedure has proven

to perform more robustly than a single decision tree and

is less prone to over-fitting the data. Given the relatively

large size of our data set, we set the number of predictors

to 50 instead of the default 10. For the other parameters,

we keep the default values.

The evaluation is performed by 10-fold cross-validation.

One non-trivial aspect of our procedure is that we construct

the folds at the level of the songs, rather than at that of indi-

vidual trigrams. Since it is quite common for folk songs to

have phrases that are literally repeated, folding at the level

of trigrams could result in identical trigrams in the train

and test subsets, which could lead to an overfitted classi-

fier. By ensuring that all trigrams from a song are either in

the test or in the train subset, we expect better generaliza-

tion. This procedure is applied throughout this paper.

The results are shown in Table 1. For both classes aver-

ages of the values for the precision, the recall and the F1-

measure over the folds are included, as well as the standard

deviation of the F1 measure, which indicates the variation

over the folds. The number of items in both classes (sup-

Class pr rec F1 σF1
support

note-trigrams
cadence 0.89 0.72 0.80 0.01 23,925

nocadence 0.96 0.99 0.98 0.00 183,780

pitch-trigrams
cadence 0.89 0.71 0.79 0.01 23,838

nocadence 0.95 0.98 0.97 0.01 130,992

Table 2. Results for classification with label trigrams.

port) shows that cadences are clearly a minority class.

We observe that the note-trigrams lead to slightly better

cadence-detection as compared to pitch-trigrams. Appar-

ently, the repetition of pitches does not harm the discrim-

inability. Furthermore, there is an unbalance between the

precision and the recall of the cadence-trigrams. The pre-

cision is rather high, while the recall is moderate.

6. CLASSIFICATION WITH LABEL TRIGRAMS

When our cadence detection system predicts the class of a

new trigram, it is oblivious of the decisions made for earlier

predictions. One particularly negative effect of this near-

sightedness is that the classifier frequently predicts two (or

even more) cadences in a row, which, given our our train-

ing material, is extremely unlikely. We attempt to circum-

vent this ‘defect’ using a method, developed by [20] that

predicts trigrams of class labels instead of single, binary

labels. Figure 4 depicts the standard single class classi-

fication setting, where each trigram is predicted indepen-

dent of all other predictions. In the label trigram setting

(see Figure 5), the original class labels are replaced with

the class label of the previous trigram, the class label of

the current trigram and the label of the next trigram. The

learning problem is transformed into a sequential learn-

ing problem with two stages. In the first stage we predict

for each trigram a label trigram y(t) = (y1, y2, y3) where

y ∈ {0, 1}. To arrive at the final single class predictions

(i.e. is it a cadence or not), in the second stage we take

the majority vote over the predictions of the focus trigram

and those of its immediate left and right neighboring tri-

grams. Take t4 in Figure 5 as an example. It predicts that

the current trigram is a cadence. The next trigram and the

previous trigram also predict it to be a cadence and based

on this majority vote, the final prediction is that t4 is a

cadence. Should t3 and t5 both have predicted the zero

class (e.g. y(t3) = (0, 0, 0) and y(t5) = (0, 1, 0)), the ma-

jority vote would be 0. The advantage of this method is

that given the negligible number of neighboring cadences

in our training data, we can virtually rule out the possibility

to erroneously predict two or more cadences in a row.

Table 2 shows the performance of the label-trigram clas-

sifier for both classes and both for pitch and note trigrams.

The values show an important improvement for the preci-

sion of cadence-detection and a slight improvement of the

recall. The lower number of false positives is what we ex-

pected by observing the classification of adjacent trigrams

as ‘cadence’ in the case of the single-label classifier.
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0 0 0 1 0

t1 t2 t3 t4 t5

Figure 4. Short example sequence of trigrams. Each tri-

gram ti has a binary label indicating whether the trigram is

cadential (1) or non-cadential (0).

t1 t2 t3 t4 t5

00 0 00 0 00 1 10 0 01 0

Figure 5. Label-trigrams for the same sequence as in Fig-

ure 1, where t4 has label 1 and the other trigrams have label

0. Each trigram ti gets a compound label consisting of its

own label and the labels of the direct neighboring trigrams.

7. ABLATION STUDY

To study the importance of the various kinds of features,

we perform an ablation study. We successively remove

each of the groups of features as defined in section 4 from

the full set and do a classification experiment with the re-

maining features. Subsequently, we perform a similar se-

ries of classification experiments, but now with each single

group of features. The first series shows the importance

of the individual groups of features, and the second series

shows the predictive power for each of the groups. Because

the groups are assembled according to distinct properties

of music and text, this will give insight in the importance

of various musical and textual parameters for cadence de-

tection. We use the label-trigram classifier with the note-

trigrams, which performed best on the full set.

We expect occurrence of rests to be a very strong predic-

tor, because according to our definition a ‘rest’ always fol-

lows after the final cadence, and we know that in our cor-

pus rests almost exclusively occur between phrases. There-

fore, we also take the three features that indicate whether a

rest occurs in the trigram or directly after it, as a separate

group. The performance when leaving these three features

out will show whether they are crucial for cadence detec-

tion.

Table 3 shows the evaluation measures for each of the

feature subsets. Precision, recall and F1 for class ‘cadence’

are reported. Again, the values are averaged over 10 folds.

We see that none of the single groups of features is cru-

cial for the performance that was achieved with the com-

plete set of features. The basic melodic features (Fpitch,

Fcontour, and Frhyhmic) all perform very bad on their own,

showing low to extremely low recall values. The contour

features even do not contribute at all. Only the rhythmic

features yield some performance. The features on rest are

Subset pr rec F1 σF1

Fall 0.89 0.72 0.80 0.01

Fall \ Fpitch 0.88 0.72 0.79 0.01

Fpitch 0.84 0.04 0.08 0.01

Fall \ Fcontour 0.88 0.73 0.80 0.01

Fcontour 0.00 0.00 0.00 0.00

Fall \ Frhythmic 0.79 0.49 0.60 0.01

Frhythmic 0.90 0.35 0.50 0.01

Fall \ Ftextual 0.85 0.58 0.69 0.02

Ftextual 0.70 0.40 0.51 0.01

Fall \ Fnarmour 0.83 0.55 0.66 0.01

Fnarmour 0.95 0.30 0.45 0.01

Fall \ Fcontextual 0.87 0.67 0.76 0.01

Fcontextual 0.71 0.45 0.56 0.01

Fall \ Frest 0.87 0.67 0.76 0.01

Frest 0.97 0.27 0.43 0.02

Table 3. Results for various feature subsets for class ‘ca-

dence’.

included in the set of rhythmic features. The classifica-

tion with just the features on rest, Frest shows very high

precision and low recall. Still, the recall with all rhythmic

features is higher than only using the rest-features. Since

rests are so tightly related to cadences in our corpus, the

high precision for Frest is what we expected. If we exclude

the rest-features, the precision stays at the same level as for

the entire feature set and the recall drops with 0.06, which

shows that only a minority of the cadences exclusively re-

lies on rest-features to be detected.

The set of features that is based on the conditions of clo-

sure as formulated by Narmour shows high precision and

low recall. Especially the high precision is interesting, be-

cause this confirms Narmour’s conditions of closure. Ap-

parently, most patterns that are classified as cadence based

on this subset of features, are cadences indeed. Still, the

low recall indicates that there are many cadences that are

left undetected. One cause could be that the set of condi-

tions as stated by Narmour is not complete, another cause

could be the discrepancy between our features and Nar-

mour’s conditions. Further investigation would be neces-

sary to shed light on this. Removing the Narmour-based

features from the full feature set does not have a big im-

pact. The other features have enough predictive power.

The textual features on their own show moderate pre-

cision and very moderate recall. They are able to discern

certain kinds of cadences to a certain extent, while miss-

ing most of the other cadences. The drop of 0.14 in recall

for Fall \ Ftextual as compared to the full set shows that

text features are crucial for a considerable number of ca-

dences to be detected. The same applies to a somewhat

lesser extent to contextual features. Removing the contex-

tual features from the full set causes a drop of 0.05 in the

recall, which is considerable but not extreme. It appears

that the group of cadence trigrams for which the contex-

tual features are crucial is not very big.
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8. CONCLUSION AND FUTURE WORK

In this paper we developed a system to detect cadences in

Western folk songs. The system makes use of a Random

Forest Classifier that on the basis of a number of hand-

crafted features (both musical and textual) is able to accu-

rately locate cadences in running melodies. In a follow-

up experiment we employ a method, originally developed

for textual sequences, that predicts label-trigrams instead

of the binary labels ‘cadence’ or ‘non-cadence’. We show

that incorporating the predictions of neighboring instances

into the final prediction, has a strong positive effect on pre-

cision without a loss in recall.

In the ablation study we found that all groups of fea-

tures, except for the contour features, contribute to the over-

all classification, while none of the groups is crucial for

the majority of the cadences to be detected. This indicates

that cadence detection is a multi-dimensional problem for

which various properties of melody and text are necessary.

The current results give rise to various follow-up stud-

ies. A deeper study to the kinds of errors of our system

will lead to improved features and increased knowledge

about cadences. Those that were detected exclusively by

textual features form a particular interesting case, possibly

giving rise to new melodic features. Next, n-grams other

than trigrams as well as skip-grams [7] could be used, we

will compare the performance of our method with existing

symbolic segmentation algorithms, and we want to make

use of other features of the text such as correspondence

between syntactic units in the text and melodic units in the

melody.
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ABSTRACT

Typical motifs of a rāga can be found in the various songs

that are composed in the same rāga by different composers.

The compositions in Carnatic music have a definite struc-

ture, the one commonly seen being pallavi, anupallavi and

charanam. The tala is also fixed for every song.

Taking lines corresponding to one or more cycles of the

pallavi, anupallavi and charanam as one-liners, one-liners

across different songs are compared using a dynamic pro-

gramming based algorithm. The density of match between

the one-liners and normalized cost along-with a new mea-

sure, which uses the stationary points in the pitch contour

to reduce the false alarms, are used to determine and lo-

cate the matched pattern. The typical motifs of a rāga are

then filtered using compositions of various rāgas. Motifs

are considered typical if they are present in the composi-

tions of the given rāga and are not found in compositions

of other rāgas.

1. INTRODUCTION

Melody in Carnatic music is based on a concept called

rāga. A rāga in Carnatic music is characterised by typ-

ical phrases or motifs. The phrases are not necessarily

scale-based. They are primarily pitch trajectories in the

time-frequency plane. Although for annotation purposes,

rāgas in Carnatic are based on 12 srutis (or semitones), the

gamakās associated with the same semitone can vary sig-

nificantly across rāgas. Nevertheless, although the phrases

do not occupy fixed positions in the time-frequency (t-f)

plane, a listener can determine the identity of a rāga within

few seconds of an ālāpana. An example, is a concert dur-

ing the “music season” in Chennai, where more than 90%

of the audience can figure out the rāga. This despite the

fact that more than 80% of the audience are nonprofession-

als. The objective of the presented work is to determine

typical motifs of a rāga automatically. This is obtained

by analyzing various compositions that are composed in a

particular rāga. Unlike Hindustani music, there is a huge

c© Shrey Dutta, Hema A. Murthy.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Shrey Dutta, Hema A. Murthy. “Dis-

covering typical motifs of a Rāga from one-liners of songs in Carnatic

Music”, 15th International Society for Music Information Retrieval Con-

ference, 2014.

repository of compositions that have been composed by a

number of composers in different rāgas. It is often stated

by musicians that the famous composers have composed

such that a single line of a composition is replete with the

motifs of the rāga. In this paper, we therefore take one-

liners of different compositions and determine the typical

motifs of the rāga.

Earlier work, [9, 10], on identifying typical motifs de-

pended on a professional musician who sung the typical

motifs for that rāga. These typical motifs were then spot-

ted in ālāpanas which are improvisational segments. It was

observed that the number of false alarms were high. High

ranking false alarms were primarily due to partial matches

with the given query. Many of these were considered as

an instance of the queried motif by some musicians. As

alapana is an improvisational segment, the rendition of the

same motif could be different across alapanas especially

among different schools. On the other hand, compositions

in Carnatic music are rendered more or less in a similar

manner. Although the music evolved through the oral tra-

dition and fairly significant changes have crept into the mu-

sic, compositions renditions do not vary very significantly

across different schools. The number of variants for each

line of the song can vary quite a lot though. Nevertheless,

the meter of motifs and the typical motifs will generally be

preserved.

It is discussed in [15] that not all repeating patterns are

interesting and relevant. In fact, the vast majority of ex-

act repetitions within a music piece are not musically in-

teresting. The algorithm proposed in [15] mostly gener-

ates interesting repeating patterns along with some non-

interesting ones which are later filtered during post pro-

cessing. The work presented in this paper is an attempt

from a similar perspective. The only difference is that typ-

ical motifs of rāgas need not be interesting to a listener.

The primary objective for discovering typical motifs, is

that these typical motifs can be used to index the audio

of a rendition. Typical motifs could also be used for rāga
classification. The proposed approach in this work gen-

erates similar patterns across one-liners of a rāga. From

these similar patterns, the typical motifs are filtered by us-

ing compositions of various rāgas. Motifs are considered

typical of a rāga if they are present in the compositions

of a particular rāga and are NOT found in other rāgas.

This filtering approach is similar to anti-corpus approach

of Conklin [6, 7] for the discovery of distinctive patterns.
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Figure 1. RLCS matching two sequences partially

Most of the previous work, regarding discovery of re-

peated patterns of interest in music, is on western music.

In [11], B. Jansen et al discusses the current approaches on

repeated pattern discovery. It discusses string based meth-

ods and geometric methods for pattern discovery. In [14],

Lie Lu et al used constant Q transforms and proposed a

similarity measure between musical features for doing re-

peated pattern discovery. In [15], Meredith et. al. pre-

sented Structure Induction Algorithms (SIA) using a geo-

matric approach for discovering repeated patterns that are

musically interesting to the listener. In [4, 5], Collins et.
al. introduced improvements in Meredith’s Structure In-

duction Algorithms. There has also been some significant

work on detecting melodic motifs in Hindustani music by

Joe Cheri Ross et. al. [16]. In this approach, the melody

is converted to a sequence of symbols and a variant of dy-

namic programming is used to discover the motif.

In a Carnatic music concert, many listeners from the au-

dience are able to identify the rāga at the very beginning of

the composition, usually during the first line itself — a line

corresponds to one or more tala cycles. Thus, first lines of

the compositions could contain typical motifs of a rāga. A

pattern which is repeated within a first line could still be

not specific to a rāga. Whereas, a pattern which is present

in most of the first lines could be a typical motif of that

rāga. Instead of just using first lines, we have also used

other one-liners from compositions, namely, lines from the

pallavi, anupallavi and charanam. In this work, an attempt

is made to find repeating patterns across one-liners and

not within a one-liner. Typical motifs are filtered from the

generated repeating patterns during post processing. These

typical motifs are available online 1

The length of the typical motif to be discovered is not

known a priori. Therefore there is a need for a technique

which can itself determine the length of the motif at the

time of discovering it. Dynamic Time Warping (DTW)

based algorithms can only find a pattern of a specific length

since it performs end-to-end matching of the query and

test sequence. There is another version of DTW known as

1 http://www.iitm.ac.in/donlab/typicalmotifs.
html

Unconstrained End Point-DTW (UE-DTW) that can match

the whole query with a partial test but still the query is not

partially matched. Longest Common Subsequence (LCS)

algorithm on the other hand can match the partial query

with partial test sequence since it looks for a longest com-

mon subsequence which need not be end-to-end. LCS by

itself is not appropriate as it requires discrete symbols and

does not account for local similarity. A modified version

of LCS known as Rough Longest Common Subsequence

takes continuous symbols and takes into account the local

similarity of the longest common subsequence. The algo-

rithm proposed in [13] to find rough longest common se-

quence between two sequences fits the bill for our task of

motif discovery. An example of RLCS algorithm match-

ing two partial phrases is shown in Figure 1. The two

music segments are represented by their tonic normalized

smoothed pitch contours [9, 10]. The stationary points,

where the first derivative is zero, of the tonic normalized

pitch contour are first determined. The points are then in-

terpolated using cubic Hermite interpolation to smooth the

contour.

In previous uses of RLCS for motif spotting task [9,10],

a number of false alarms were observed. One of the most

prevalent false alarms is the test phrase with a sustained

note which comes in between the notes of the query. The

slope of the linear trend in stationary points along with its

standard deviation is used to address this issue.

The rest of the paper is organized as follows. In Sec-

tion 2 the use of one-liners of compositions to find motifs

is discussed. Section 3 discusses the optimization criteria

to find the rough longest common subsequence. Section

4 describes the proposed approach for discovering typical

motifs of rāgas. Section 5 describe the dataset used in this

work. Experiments and results are presented in Section 6.

2. ONE-LINERS OF SONGS

As previously mentioned, first line of the composition con-

tains the characteristic traits of a rāga. The importance of

the first lines and the rāga information it holds is illustrated

in great detail in the T. M. Krishna’s book on Carnatic mu-

sic [12]. T. M. Krishna states that opening section called

“pallavi” directs the melodic flow of the rāga. Through its

rendition, the texture of the rāga can be felt. Motivated by

this observation, an attempt is made to verify the conjec-

ture that typical motifs of a rāga can be obtained from the

first lines of compositions.

Along with the lines from pallavi, we have also selected

few lines from other sections, namely, ‘anupallavi’ and

‘charanam’. Anupallavi comes after pallavi and the melodic

movements in this section tend to explore the rāga in the

higher octave [12]. These lines are referred to as one-liners

for a rāga.

3. OPTIMIZATION CRITERIA TO FIND ROUGH
LONGEST COMMON SUBSEQUENCE

The rough longest common subsequence (rlcs) between

two sequences, X = 〈x1, x2, · · · , xn〉 and Y = 〈y1, y2, · · ·
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Figure 2. (a) Pitch contour of the five phrases which are considered similar. Stationary points are marked in green and red

for the true positives and false alarms respectively. (b) Pitch values only at the stationary points. Slope of the linear trend

in stationary points along-with its standard deviation helps in reducing the false alarms.

, ym〉, of length n and m is defined as the longest com-

mon subsequence (lcs) ZXY = 〈(xi1 , yj1), (xi2 , yj2), · · · ,
(xip , yjp)〉, 1 ≤ i1 < i2 < · · · < ip ≤ n, 1 ≤ j1 < j2 <
· · · < jp ≤ m; such that the similarity between xik and yjk
is greater than a threshold, τsim, for k = 1, · · · , p. There

are no constraints on the length and on the local similarity

of the rlcs. Some applications demand the rlcs to be lo-

cally similar or its length to be in a specific range. For the

task of motif discovery along with these constraints, one

more constraint is used to reduce false alarms. Before dis-

cussing the optimization measures used to find the rlcs in

this work, a few quantities need to be defined.

lwSXY
=

s∑
k=1

sim(xik , yjk) (1)

gX = is − i1 + 1− s (2)

gY = js − j1 + 1− s (3)

Let SXY = 〈(xi1 , yj1), (xi2 , yj2), · · · , (xis , yjs)〉, 1 ≤
i1 < i2 < · · · < is ≤ n, 1 ≤ j1 < j2 < · · · < js ≤
m; be a rough common subsequence (rcs) of length s and

sim(xik , yik) ∈ [0, 1] be the similarity between xik and

yik for k = 1, · · · , s. Equation (1) defines the weighted

length of SXY as sum of similarities, sim(xik , yik), k =
1, · · · , s. Thus, weighted length is less than or equal to s.

The number of points in the shortest substring of sequence

X , containing the rcs SXY , that are not the part of the rcs

SXY are termed as gaps in SXY with respect to sequence

X as defined by Equation (2). Similarly, Equation (3) de-

fines the gaps in SXY with respect to sequence Y . Small

gaps indicate that the distribution of rcs is dense in that

sequence.

The optimization measures to find the rlcs are described

as follows.

3.1 Density of the match

Equation (4) represents the distribution of the rcs SXY in

the sequences X and Y . This is called density of match,

δSXY
. This quantity needs to be maximized to make sure

the subsequence, SXY , is locally similar. β ∈ [0, 1] weighs

the individual densities in sequences X and Y .

δSXY
= β

lwSXY

lwSXY
+ gX

+ (1− β)
lwSXY

lwSXY
+ gY

(4)

3.2 Normalized weighted length

The weighted length of rcs is normalized as shown in Equa-

tion (5) to restrict its range to [0, 1]. n and m are the lengths

of sequences X and Y , respectively.

l̂wSXY
=

lwSXY

min(m,n)
(5)

3.3 Linear trend in stationary points

As observed in [9, 10], the rlcs obtained using only the

above two optimization measures suffered from a large num-

ber of false alarms for the motif spotting task. The false

alarms generally constituted of long and sustained notes.
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This resulted in good normalised weighted lengths and den-

sity. To address this issue, the slope and standard deviation

of the slope of the linear trend in stationary points of a

phrase are estimated. Figure 2 shows a set of phrases. This

set has five phrases which are termed as similar phrases

based on their density of match and normalized weighted

length. The first two phrases, shown in green, are true pos-

itives while the remaining, shown in red, are false alarms.

Figure 2 also shows the linear trend in stationary points for

the corresponding phrases. It is observed that the trends are

similar for true positives when compared to that of the false

alarms. The slope of the linear trend for the fifth phrase

(false alarm) is similar to the true positives but its standard

deviation is less. Therefore, a combination of the slope and

the standard deviation of the linear trend is used to reduce

the false alarms.

Let the stationary points in the shortest substring of se-

quences X and Y containing the rcs SXY be 〈xq1 , xq2 , · · · ,
xqtx 〉 and 〈yr1 , yr2 , · · · , yrty 〉 respectively, where tx and

ty are the number of stationary points in the respective sub-

strings. Equation (6) estimates the slope of the linear trend,

of stationary points in the substring of sequence X , as the

mean of the first difference of stationary points, which is

same as
xqtx

−xq1

tx−1 [8]. Its standard deviation is estimated

using Equation (7). Similarly, μY
SXY

and σY
SXY

are also

estimated for substring of sequence Y .

μX
SXY

=
1

tx − 1

tx−1∑
k=1

(xqk+1
− xqk) (6)

σX
SXY

2
=

1

tx − 1

tx−1∑
k=1

((xqk+1
− xqk)− μX

SXY
)2 (7)

Let z1 = μX
SXY

σY
SXY

and z2 = μY
SXY

σX
SXY

. For a true

positive, the similarity in the linear trend should be high.

Equation (8) calculates this similarity which needs to be

maximized. This similarity has negative value when the

two slopes are of different sign and thus, the penalization

is more.

ρSXY
=

⎧⎪⎨⎪⎩
max(z1,z2)
min(z1,z2)

if z1 < 0; z2 < 0

min(z1,z2)
max(z1,z2)

otherwise

(8)

Finally, Equation (9) combines these three optimization

measures to get a score value which is maximized. Then

the rlcs, RXY , between the sequences X and Y is defined,

as an rcs with a maximum score, in Equation (10). The rlcs

RXY can be obtained using dynamic programming based

approach discussed in [9, 13].

ScoreSXY
= αδSXY

l̂wSXY
+ (1− α)ρSXY

(9)

RXY = argmax
SXY

(ScoreSXY
) (10)

Rāga Number Average
Name of duration

one-liners (secs)
Bhairavi 17 16.87

Kamboji 12 13

Kalyani 9 12.76

Shankarabharanam 12 12.55

Varali 9 9.40

Overall 59 12.91

Table 1. Database of one-liners

4. DISCOVERING TYPICAL MOTIFS OF RĀGAS

Typical motifs of a rāga are discovered using one-liners

of songs in that rāga. For each voiced part in a oneliner

of a rāga, rlcs is found with the overlapping windows in

voiced parts of other one-liners of that rāga. Only those

rlcs are selected whose score values and lengths (in sec-

onds) are greater than thresholds τscr and τlen respectively

The voiced parts which generated no rlcs are interpreted to

have no motifs. The rlcs generated for a voiced part are

grouped and this group is interpreted as a motif found in

that voiced part. This results in a number of groups (mo-

tifs) for a rāga. Further, filtering is performed to isolate

typical motifs of that rāga.

4.1 Filtering to get typical motifs of a rāga

The generated motifs are filtered to get typical motifs of a

rāga using compositions of various rāgas. The most rep-

resentative candidate of a motif, a candidate with highest

score value, is selected to represent that motif or group.

The instances of a motif are spotted in the compositions of

various rāgas as explained in [9,10]. Each motif is consid-

ered as a query to be searched for in a composition. The

rlcs is found between the query and overlapped windows in

a composition. From the many generated rlcs from many

compositions of a rāga, top τn rlcs with highest score val-

ues are selected. The average of these score values defines

the presence of this motif in that rāga. A motif of a rāga
is isolated as its typical motif if the presence of this motif

is more in the given rāga than in other rāgas. The value of

τn is selected empirically.

5. DATASET

The one-liners are selected from five rāgas as shown in Ta-

ble 1. The lines are sung by a musician in isolation. This

is done to ensure that the pitch estimation does not get af-

fected due to the accompanying instruments. The average

duration of the one-liners is 12.91 seconds. As mentioned

earlier, these one-liners come from the various sections of

the composition, primarily from the pallavi.

The compositions used for filtering also comes from the

same five rāgas as shown in Table 2. These compositions

are taken from the Charsur collection [1]. These are seg-

ments from live concerts with clean recording.
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Rāga Number Average
Name of duration

compositions (secs)
Bhairavi 20 1133

Kamboji 10 1310.3

Kalyani 16 1204.3

Shankarabharanam 10 1300.6

Varali 18 1022

Overall 74 1194

Table 2. Database of compositions

6. EXPERIMENTS AND RESULTS

The pitch of the music segment is used as a basic feature in

this work. This pitch is estimated from Justin Solomon’s

algorithm [17] which is efficiently implemented in the es-

sentia open-source C++ library [2]. This pitch is further

normalized using tonic and then smoothed by interpolat-

ing the stationary points of the pitch contour using cubic

spline interpolation.

The similarity, sim(xik , yjk), between two symbols xik

and yjk is defined in the Equation (11), where st is the

number of cent values that represent one semitone. For

this work, the value of st is 10. The penalty is low when

the two symbols are within one semitone while the penalty

is significant for larger deviations. This is performed to

ensure that although significant variations are possible in

Carnatic music, variations larger than a semitone might re-

sult in a different rāga.

sim(xik , yjk) =

{
1− |xik

−yjk
|3

(3st)3
if | xik − yjk |< 3st

0 otherwise
(11)

The similarity threshold, τsim, is empirically set to 0.45

which accepts similarities when two symbols are less than

2.5 semitones (approx.) apart, although penalty is high af-

ter a semitone. The threshold on the score of rlcs, τscr, is

empirically set to 0.6 to accept rlcs with higher score val-

ues. The threshold on the length of the rlcs, τlen, is set to

2 seconds to get longer motifs. The value of β is set to 0.5

to give equal importance to the individual densities in both

the sequences and α value is set to 0.6 which gives more

importance to density of match and normalized weighted

length as compared to linear trend in stationary points. τn
is empirically set to 3.

The similar patterns found across one-liners of a rāga
are summarized in Table 3. Some of these similar pat-

terns are not typical of the rāga. These are therefore fil-

tered out by checking for their presence in various com-

positions. The summary of the resulting typical motifs is

given in Table 4. The average length of all the typical mo-

tifs is sufficiently longer than what were used in [10]. The

shorter motifs used in [10] also resulted in great deal of

false alarms. The importance of longer motifs was dis-

cussed in [9] where the longer motifs were inspired from

the rāga test conducted by Rama Verma [3]. Rama Verma

Rāga Number of Average
Name discovered duration

patterns (secs)
Bhairavi 10 3.52

Kamboji 5 3.40

Kalyani 6 4.48

Shankarabharanam 6 3.42

Varali 3 3.84

Overall 30 3.73

Table 3. Summary of discovered similar patterns across

one-liners

Rāga Number of Average
Name typical duration

motifs (secs)
Bhairavi 5 4.52

Kamboji 0 NA

Kalyani 0 NA

Shankarabharanam 5 3.64

Varali 2 4.79

Overall 12 4.32

Table 4. Summary of typical motifs isolated after filtering

used motifs of approximately 3 seconds duration. The typ-

ical motifs discovered in our work are also of similar dura-

tion. All the patterns of Kamboji and Kalyani are filtered

out resulting in no typical motifs for these rāgas. We have

earlier discussed that the compositions in Carnatic music

are composed in a way that the rāga information is present

at the very beginning. Therefore, without a doubt we are

sure that the typical motifs are present in the one-liners we

have used for Kalyani and Kamboji. But, it is possible that

these typical motifs are not repeating sufficient number of

times across one-liners (two times in our approach) or their

lengths are shorter than the threshold we have used. These

could be the reasons we are not able to pick them up. All

the typical patterns are verified by a musician. According

to his judgment, all the filtered patterns were indeed typi-

cal motifs of the corresponding rāgas. Although, he noted

that one typical motif in Varali is a smaller portion of the

other discovered typical motif of Varali. This repetition of

smaller portion is observed in Shankarabharanam as well.

7. CONCLUSION AND FUTURE WORK

This paper presents an approach to discover typical motifs

of a rāga from the one-liners of the compositions in that

rāga. The importance of one-liners is discussed in detail.

A new measure is introduced, to reduce the false alarms,

in the optimization criteria for finding rough longest com-

mon subsequence between two given sequences. Using

the RLCS algorithm, similar patterns across one-liners of

a rāga are found. Further, the typical motifs are isolated

by a filtering technique, introduced in this paper, which

uses compositions of various rāgas. These typical motifs
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are validated by a musician. All the generated typical mo-

tifs are found to be significantly typical of their respective

rāgas.

In this work, only one musician’s viewpoint is consid-

ered on validating the characteristic nature of the discov-

ered typical motifs. In future, we would like to conduct a

MOS test, asking other experts and active listeners to de-

termine the rāga from the typical motifs. We would also

like to perform rāga classification of the compositions and

alapanas using the typical motifs. In future, we would also

like to do a thorough comparison of our approach with

other methods. In this paper, we have only addressed one

prevalent type of false alarms. Other types of false alarms

also need to be identified and addressed. It should be con-

sidered that approaches taken to reduce the false alarms do

not affect the true positives significantly. Further, these ex-

periments need to be repeated for a much larger number of

one-liners from many rāgas such that the typical motifs re-

peat significantly across one-liners and thus get captured.

It will also be interesting to automatically detect and ex-

tract the one-liners from the available compositions. This

will enable the presented approach to scale to a large num-

ber of rāgas.
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ABSTRACT

Many approaches to analyzing the structure of a musical

recording involve detecting sequential patterns within a self-

similarity matrix derived from time-series features. Such

patterns ideally capture repeated sequences, which then

form the building blocks of large-scale structure.

In this work, techniques from spectral graph theory are

applied to analyze repeated patterns in musical recordings.

The proposed method produces a low-dimensional encod-

ing of repetition structure, and exposes the hierarchical re-

lationships among structural components at differing lev-

els of granularity. Finally, we demonstrate how to apply

the proposed method to the task of music segmentation.

1. INTRODUCTION

Detecting repeated forms in audio is fundamental to the

analysis of structure in many forms of music. While small-

scale repetitions — such as instances of an individual chord

— are simple to detect, accurately combining multiple small-

scale repetitions into larger structures is a challenging al-

gorithmic task. Much of the current research on this topic

begins by calculating local, frame-wise similarities over

acoustic features (usually harmonic), and then searching

for patterns in the all-pairs self-similarity matrix [3].

In the majority of existing work on structural segmenta-

tion, the analysis is flat, in the sense that the representation

does not explicitly encode nesting or hierarchical structure

in the repeated forms. Instead, novelty curves are com-

monly used to detect transitions between sections.

1.1 Our contributions

In this paper, we formulate the structure analysis problem

in the context of spectral graph theory. By combining local

consistency cues with long-term repetition encodings and

analyzing the eigenvectors of the resulting graph Lapla-

cian, we produce a compact representation that effectively

encodes repetition structure at multiple levels of granular-

ity. To effectively link repeating sequences, we formulate

an optimally weighted combination of local timbre consis-

tency and long-term repetition descriptors.

c© Brian McFee, Daniel P.W. Ellis.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Brian McFee, Daniel P.W. Ellis. “Ana-

lyzing song structure with spectral clustering”, 15th International Society

for Music Information Retrieval Conference, 2014.

To motivate the analysis technique, we demonstrate its

use for the standard task of flat structural annotation. How-

ever, we emphasize that the approach itself can be applied

more generally to analyze structure at multiple resolutions.

1.2 Related work

The structural repetition features used in this work are in-

spired by those of Serrà et al. [11], wherein structure is de-

tected by applying filtering operators to a lag-skewed self-

similarity matrix. The primary deviation in this work is

the graphical interpretation and subsequent analysis of the

filtered self-similarity matrix.

Recently, Kaiser et al. demonstrated a method to com-

bine tonal and timbral features for structural boundary de-

tection [6]. Whereas their method forms a novelty curve

from the combination of multiple features, our feature com-

bination differs by using local timbre consistency to build

internal connections among sequences of long-range tonal

repetitions.

Our general approach is similar in spirit to that of Gro-

hganz et al. [4], in which diagonal bands of a self-similarity

matrix are expanded into block structures by spectral anal-

ysis. Their method analyzed the spectral decomposition

of the self-similarity matrix directly, whereas the method

proposed here operates on the graph Laplacian. Similarly,

Kaiser and Sikora applied non-negative matrix factoriza-

tion directly to a self-similarity matrix in order to detect

blocks of repeating elements [7]. As we will demonstrate,

the Laplacian provides a more direct means to expose block

structure at multiple levels of detail.

2. GRAPHICAL REPETITION ENCODING

Our general structural analysis strategy is to construct and

partition a graph over time points (samples) in the song.

Let X = [x1, x2, . . . , xn] ∈ R
d×n denote a d-dimensional

time series feature matrix, e.g., a chromagram or sequence

of Mel-frequency cepstral coefficients. As a first step to-

ward detecting and representing repetition structure, we

form a binary recurrence matrix R ∈ {0, 1}n×n
, where

Rij(X) ··=
{
1 xi, xj are mutual k-nearest neighbors

0 otherwise,

(1)

and k > 0 parameterizes the degree of connectivity.

Ideally, repeated structures should appear as diagonal

stripes in R. In practice, it is beneficial to apply a smooth-
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ing filter to suppress erroneous links and fill in gaps. We

apply a windowed majority vote to each diagonal of R, re-

sulting in the filtered matrix R′:

R′
ij
··= maj {Ri+t,j+t| t ∈ −w,−w + 1, . . . , w} , (2)

where w is a discrete parameter that defines the minimum

length of a valid repetition sequence.

2.1 Internal connectivity

The filtered recurrence matrix R′ can be interpreted as an

unweighted, undirected graph, whose vertices correspond

to samples (columns of X), and edges correspond to equiv-

alent position within a repeated sequence. Note, however,

that successive positions (i, i + 1) will not generally be

connected in R′, so the constituent samples of a particular

sequence may not be connected.

To facilitate discovery of repeated sections, edges be-

tween adjacent samples (i, i + 1) and (i, i − 1) are intro-

duced, resulting in the sequence-augmented graph R+:

Δij ··=
{
1 |i− j| = 1

0 otherwise
, (3)

R+
ij
··= max(Δij , R

′
ij). (4)

With appropriate normalization, R+ characterizes a Markov

process over samples, where at each step i, the process ei-

ther moves to an adjacent sample i±1, or a random repeti-

tion of i; a process exemplified by the Infinite Jukebox [8].

Equation (4) combines local temporal connectivity with

long-term recurrence information. Ideally, edges would

exist only between pairs {i, j} belonging to the same struc-

tural component, but of course, this information is hidden.

The added edges along the first diagonals create a fully

connected graph, but due to recurrence links, repeated sec-

tions will exhibit additional internal connectivity. Let i and

j denote two repetitions of the same sample at different

times; then R+ should contain sequential edges {i, i+ 1},
{j, j + 1} and repetition edges {i, j}, {i + 1, j + 1}. On

the other hand, unrelated sections with no repetition edges

can only connect via sequence edges.

2.2 Balancing local and global linkage

The construction of eq. (4) describes the intuition behind

combining local sequential connections with global repe-

tition structure, but it does not balance the two competing

goals. Long tracks with many repetitions can produce re-

currence links which vastly outnumber local connectivity

connections. In this regime, partitioning into contiguous

sections becomes difficult, and subsequent analysis of the

graph may fail to detect sequential structure.

If we allow (non-negative) weights on the edges, then

the combination can be parameterized by a weighting pa-

rameter μ ∈ [0, 1]:

Rμ
ij
··= μR′

ij + (1− μ)Δij . (5)

This raises the question: how should μ be set? Return-

ing to the motivating example of the random walk, we opt

for a process that on average, tends to move either in se-

quence or across (all) repetitions with equal probability. In

terms of μ, this indicates that the combination should as-

sign equal weight to the local and repetition edges. This

suggests a balancing objective for all frames i:

μ
∑
j

R′
ij ≈ (1− μ)

∑
j

Δij .

Minimizing the average squared error between the two terms

above leads to the following quadratic optimization:

min
μ∈[0,1]

1

2

∑
i

(μdi(R
′)− (1− μ)di(Δ))

2
, (6)

where di(G) ··=
∑

j Gij denotes the degree (sum of inci-

dent edge-weights) of i in G. Treating d(·) ··= [di(·)]ni=1

as a vector in R
n
+ yields the optimal solution to eq. (6):

μ∗ =
〈d(Δ), d(R′) + d(Δ)〉
‖d(R′) + d(Δ)‖2 . (7)

Note that because Δ is non-empty (contains at least one

edge), it follows that ‖d(Δ)‖2 > 0, which implies μ∗ > 0.

Similarly, if R′ is non-empty, then μ∗ < 1, and the result-

ing combination retains the full connectivity structure of

the unweighted R+ (eq. (4)).

2.3 Edge weighting and feature fusion

The construction above relies upon a single feature rep-

resentation to determine the self-similarity structure, and

uses constant edge weights for the repetition and local edges.

This can be generalized to support feature-weighted edges

by replacing R′ with a masked similarity matrix:

R′
ij !→ R′

ijSij , (8)

where Sij denotes a non-negative affinity between frames

i and j, e.g., a Gaussian kernel over feature vectors xi, xj :

Srep
ij
··= exp

(
− 1

2σ2
‖xi − xj‖2

)
Similarly, Δ can be replaced with a weighted sequence

graph. However, in doing so, care must be taken when se-

lecting the affinity function. The same features used to

detect repetition (typically harmonic in nature) may not

capture local consistency, since successive frames do not

generally retain harmonic similarity.

Recent work has demonstrated that local timbre differ-

ences can provide an effective cue for structural boundary

detection [6]. This motivates the use of two contrasting

feature descriptors: harmonic features for detecting long-

range repeating forms, and timbral features for detecting

local consistency. We assume that these features are re-

spectively supplied in the form of affinity matrices Srep and

Sloc. Combining these affinities with the detected repeti-

tion structure and optimal weighting yields the sequence-
augmented affinity matrix A:

Aij ··= μR′
ijS

rep
ij + (1− μ)ΔijS

loc
ij , (9)

where R′ is understood to be constructed solely from the

repetition affinities Srep, and μ is optimized by solving (7)

with the weighted affinity matrices.
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3. GRAPH PARTITIONING AND
STRUCTURAL ANALYSIS

The Laplacian is a fundamental tool in the field of spec-

tral graph theory, as it can be interpreted as a discrete ana-

log of a diffusion operator over the vertices of the graph,

and its spectrum can be used to characterize vertex con-

nectivity [2]. This section describes in detail how spectral

clustering can be used to analyze and partition the repeti-

tion graph constructed in the previous section, and reveal

musical structure.

3.1 Background: spectral clustering

Let D denote the diagonal degree matrix of A:

D ··= diag(d(A)).

The symmetric normalized Laplacian L is defined as:

L ··= I −D−1/2AD−1/2. (10)

The Laplacian forms the basis of spectral clustering, in

which vertices are represented in terms of the eigenvectors

of L [15]. More specifically, to partition a graph into m
components, each point i is represented as the vector of

the ith coordinates of the first m eigenvectors of L, corre-

sponding to the m smallest eigenvalues. 1 The motivation

for this method stems from the observation that the multi-

plicity of the bottom eigenvalue λ0 = 0 corresponds to the

number of connected components in a graph, and the cor-

responding eigenvectors encode component memberships

amongst vertices.

In the non-ideal case, the graph is fully connected, so

λ0 has multiplicity 1, and the bottom eigenvector trivially

encodes membership in the graph. However, in the case

of A, we expect there to be many components with high

intra-connectivity and relatively small inter-connectivity at

the transition points between sections. Spectral clustering

can be viewed as an approximation method for finding nor-

malized graph cuts [15], and it is well-suited to detecting

and pruning these weak links.

Figure 1 illustrates an example of the encoding pro-

duced by spectral decomposition of L. Although the first

eigenvector (column) is uninformative, the remaining bases

clearly encode membership in the diagonal regions depicted

in the affinity matrix. The resulting pair-wise frame sim-

ilarities for this example are shown in Figure 2, which

clearly demonstrates the ability of this representation to it-

eratively reveal nested repeating structure.

To apply spectral clustering, we will use k-means clus-

tering with the (normalized) eigenvectors Y ∈ R
n×M as

features, where M > 0 is a specified maximum number

of structural component types. Varying M — equivalently,

the dimension of the representation — directly controls the

granularity of the resulting segmentation.

1 An additional length-normalization is applied to each vector, to cor-
rect for scaling introduced by the symmetric normalized Laplacian [15].

Algorithm 1 Boundary detection

Input: Laplacian eigenvectors Y ∈ R
n×m,

Output: Boundaries b, segment labels c ∈ [m]
n

1: function BOUNDARY-DETECT(Y )

2: ŷi ← Yi,·/‖Yi,·‖ � Normalize each row Yi,·
3: Run k-means on {ŷi}ni=1 with k = m
4: Let ci denote the cluster containing ŷi
5: b← {i| ci �= ci+1}
6: return (b, c)

3.2 Boundary detection

For a fixed number of segment types m, segment bound-

aries can estimated by clustering the rows of Y after trun-

cating to the first m dimensions. After clustering, segment

boundaries are detected by searching for change-points in

the cluster assignments. This method is formalized in Al-

gorithm 1. Note that the number of segment types is dis-

tinct from the number of segments because a single type

(e.g., verse) may repeat multiple times throughout the track.

3.3 Laplacian structural decomposition

To decompose an input song into its structural components,

we propose a method, listed as Algorithm 2, to find bound-

aries and structural annotations at multiple levels of struc-

tural complexity. Algorithm 2 first computes the Laplacian

as described above, and then iteratively increases the set

of eigenvectors for use in Algorithm 1. For m = 2, the

first two eigenvectors — corresponding to the two smallest

eigenvalues of L — are taken. In general, for m types of

repeating component, the bottom m eigenvectors are used

to label frames and detect boundaries. The result is a se-

quence of boundaries Bm and frame labels Cm, for values

m ∈ 2, 3, . . . ,M .

Note that unlike most structural analysis algorithms, Al-

gorithm 2 does not produce a single decomposition of the

song, but rather a sequence of decompositions ordered by

increasing complexity. This property can be beneficial in

visualization applications, where a user may be interested

in the relationship between structural components at mul-

tiple levels. Similarly, in interactive display applications, a

user may request more or less detailed analyses for a track.

Since complexity is controlled by a single, discrete param-

eter M , this application is readily supported with a mini-

mal set of interface controls (e.g., a slider).

However, for standardized evaluation, the method must

produce a single, flat segmentation. Adaptively estimating

the appropriate level of analysis in this context is somewhat

ill-posed, as different use-cases require differing levels of

detail. We apply a simple selection criterion based on the

level of detail commonly observed in standard datasets [5,

12]. First, the set of candidates is reduced to those in which

the mean segment duration is at least 10 seconds. Subject

to this constraint, the segmentation level m̃ is selected to

maximize frame-level annotation entropy. This strategy

tends to produce solutions with approximately balanced

distributions over the set of segment types.
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Figure 1. Left: the recurrence matrix R for The Beatles — Come Together. Center: the sequence-augmented affinity

matrix A; the enlarged region demonstrates the cumulative effects of recurrence filtering, sequence-augmentation, and

edge weighting. Right: the first 10 basis features (columns), ordered left-to-right. The leading columns encode the primary

structural components, while subsequent components encode refinements.
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Figure 2. Pair-wise frame similarities
(
Y Y T

)
using the first 10 components for The Beatles — Come Together. The first

(trivial) component (m = 1) captures the entire song, and the second (m = 2) separates the outro (final vamp) from the

rest of the song. Subsequent refinements separate the solo, refrain, verse, and outro, and then individual measures.

4. EXPERIMENTS

To evaluate the proposed method quantitatively, we com-

pare boundary detection and structural annotation perfor-

mance on two standard datasets. We evaluate the perfor-

mance of the method using the automatic complexity esti-

mation described above, as well as performance achieved

for each fixed value of m across the dataset.

Finally, to evaluate the impact of the complexity esti-

mation method, we compare to an oracle model. For each

track, a different m∗ is selected to maximize the evalua-

tion metric of interest. This can be viewed as a simula-

tion of interactive visualization, in which the user has the

freedom to dynamically adapt the level of detail until she

is satisfied. Results in this setting may be interpreted as

measuring the best possible decomposition within the set

produced by Algorithm 2.

4.1 Data and evaluation

Our evaluation data is comprised of two sources:

Beatles-TUT: 174 structurally annotated tracks from the

Beatles corpus [10]. A single annotation is provided

for each track, and annotations generally correspond

to functional components (e.g., verse, refrain, or solo).

SALAMI: 735 tracks from the SALAMI corpus [12]. This

corpus spans a wide range of genres and instrumen-

tation, and provides multiple annotation levels for

each track. We report results on functional and small-
scale annotations.

In each evaluation, we report the F -measure of bound-

ary detection at 0.5-second and 3-second windows. To

evaluate structural annotation accuracy, we report pairwise

frame classification F -measure [9]. For comparison pur-

poses, we report scores achieved by the method of Serrà et
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Algorithm 2 Laplacian structural decomposition

Input: Affinities: Srep, Sloc ∈ R
n×n
+ , maximum number

of segment types 0 < M ≤ n
Output: Boundaries Bm and frame labels Cm for

m ∈ 2 . . .M
1: function LSD(Srep, Sloc,M )

2: R← eq. (1) on Srep � Recurrence detection

3: R′ ← eq. (2) on R � Recurrence filtering

4: A← eq. (9) � Sequence augmentation

5: L← I −D−1/2AD−1/2

6: for m ∈ 2, 3, . . . ,M do
7: Y ← bottom m eigenvectors of L
8: (Bm, Cm)← BOUNDARY-DETECT(Y )

9: return {(Bm, Cm)}Mm=2

al., denoted here as SMGA [11].

4.2 Implementation details

All input signals are sampled at 22050Hz (mono), and an-

alyzed with a 2048-sample FFT window and 512-sample

hop. Repetition similarity matrices Srep were computed by

first extracting log-power constant-Q spectrograms over 72

bins, ranging from C2 (32.7 Hz) to C8 (2093.0 Hz).

Constant-Q frames were mean-aggregated between de-

tected beat events, and stacked using time-delay embed-

ding with one step of history as in [11]. Similarity matri-

ces were then computed by applying a Gaussian kernel to

each pair of beat-synchronous frames i and j. The band-

width parameter σ2 was estimated by computing the aver-

age squared distance between each xi and its kth nearest

neighbor, with k set to 1+ �2 log2 n	 (where n denotes the

number of detected beats). The same k was used to con-

nect nearest neighbors when building the recurrence matrix

R, with the additional constraint that frames cannot link

to neighbors within 3 beats of each-other, which prevents

self-similar connections within the same measure. The ma-

jority vote window was set to w = 17.

Local timbre similarity Sloc was computed by extracting

the first 13 Mel frequency cepstral coefficients (MFCC),

mean-aggregating between detected beats, and then apply-

ing a Gaussian kernel as done for Srep.

All methods were implemented in Python with NumPy

and librosa [1, 14].

4.3 Results

The results of the evaluation are listed in Tables 1 to 3. For

each fixed m, the scores are indicated as Lm. L indicates

the automatic maximum-entropy selector, and L∗ indicates

the best possible m for each metric independently.

As a common trend across all data sets, the automatic

m-selector often achieves results comparable to the best

fixed m. However, it is consistently outperformed by the

oracle model L∗, indicating that the output of Algorithm 2

often contains accurate solutions, the automatic selector

does not always choose them.

Table 1. Beatles (TUT)

Method F0.5 F3 Fpair

L2 0.307 ± 0.14 0.429 ± 0.18 0.576 ± 0.14
L3 0.303 ± 0.15 0.544 ± 0.17 0.611 ± 0.13
L4 0.307 ± 0.15 0.568 ± 0.17 0.616 ± 0.13
L5 0.276 ± 0.14 0.553 ± 0.15 0.587 ± 0.12
L6 0.259 ± 0.14 0.530 ± 0.15 0.556 ± 0.12
L7 0.246 ± 0.13 0.507 ± 0.14 0.523 ± 0.12
L8 0.229 ± 0.13 0.477 ± 0.15 0.495 ± 0.12
L9 0.222 ± 0.12 0.446 ± 0.14 0.468 ± 0.12
L10 0.214 ± 0.11 0.425 ± 0.13 0.443 ± 0.12

L 0.312 ± 0.15 0.579 ± 0.16 0.628 ± 0.13
L∗ 0.414 ± 0.14 0.684 ± 0.13 0.694 ± 0.12

SMGA 0.293 ± 0.13 0.699 ± 0.16 0.715 ± 0.15

Table 2. SALAMI (Functions)

Method F0.5 F3 Fpair

L2 0.324 ± 0.13 0.383 ± 0.15 0.539 ± 0.16
L3 0.314 ± 0.13 0.417 ± 0.16 0.549 ± 0.13
L4 0.303 ± 0.12 0.439 ± 0.16 0.547 ± 0.13
L5 0.293 ± 0.12 0.444 ± 0.16 0.535 ± 0.12
L6 0.286 ± 0.12 0.452 ± 0.16 0.521 ± 0.13
L7 0.273 ± 0.11 0.442 ± 0.16 0.502 ± 0.13
L8 0.267 ± 0.12 0.437 ± 0.16 0.483 ± 0.13
L9 0.260 ± 0.11 0.443 ± 0.16 0.464 ± 0.14
L10 0.250 ± 0.11 0.422 ± 0.16 0.445 ± 0.14

L 0.304 ± 0.13 0.455 ± 0.16 0.546 ± 0.14
L∗ 0.406 ± 0.13 0.579 ± 0.15 0.652 ± 0.13

SMGA 0.224 ± 0.11 0.550 ± 0.18 0.553 ± 0.15

In the case of SALAMI (small), the automatic selec-

tor performs dramatically worse than many of the fixed-m
methods, which may be explained by the relatively differ-

ent statistics of segment durations and numbers of unique

segment types in the small-scale annotations as compared

to Beatles and SALAMI (functional).

To investigate whether a single m could simultaneously

optimize multiple evaluation metrics for a given track, we

plot the confusion matrices for the oracle selections on

SALAMI (functional) in Figure 3. We observe that the

m which optimizes F3 is frequently larger than those for

F0.5 — as indicated by the mass in the lower triangle of

the left plot — or Fpair — as indicated by the upper tri-

angle of the right plot. Although this observation depends

upon our particular boundary-detection strategy, it is cor-

roborated by previous observations that the 0.5-second and

3.0-second metrics evaluate qualitatively different objec-

tives [13]. Consequently, it may be beneficial in practice

to provide segmentations at multiple resolutions when the

specific choice of evaluation criterion is unknown.

5. CONCLUSIONS

The experimental results demonstrate that the proposed struc-

tural decomposition technique often generates solutions which

achieve high scores on segmentation evaluation metrics.

However, automatically selecting a single “best” segmen-

tation without a priori knowledge of the evaluation criteria
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Figure 3. Confusion matrices illustrating the oracle selection of the number of segment types m ∈ [2, 10] for different pairs

of metrics on SALAMI (functional). While m = 2 is most frequently selected for all metrics, the large mass off-diagonal

indicates that for a given track, a single fixed m does not generally optimize all evaluation metrics.

Table 3. SALAMI (Small)

Method F0.5 F3 Fpair

L2 0.151 ± 0.11 0.195 ± 0.13 0.451 ± 0.19
L3 0.171 ± 0.12 0.259 ± 0.16 0.459 ± 0.17
L4 0.186 ± 0.12 0.315 ± 0.17 0.461 ± 0.15
L5 0.195 ± 0.12 0.354 ± 0.17 0.455 ± 0.14
L6 0.207 ± 0.12 0.391 ± 0.18 0.452 ± 0.13
L7 0.214 ± 0.12 0.420 ± 0.18 0.445 ± 0.13
L8 0.224 ± 0.12 0.448 ± 0.18 0.435 ± 0.13
L9 0.229 ± 0.12 0.467 ± 0.18 0.425 ± 0.13
L10 0.234 ± 0.12 0.486 ± 0.18 0.414 ± 0.13

L 0.192 ± 0.11 0.344 ± 0.15 0.448 ± 0.16
L∗ 0.292 ± 0.15 0.525 ± 0.19 0.561 ± 0.16

SMGA 0.173 ± 0.08 0.518 ± 0.12 0.493 ± 0.16

remains a challenging practical issue.

6. ACKNOWLEDGMENTS

The authors acknowledge support from The Andrew W.

Mellon Foundation, and NSF grant IIS-1117015.

7. REFERENCES

[1] Librosa, 2014. https://github.com/bmcfee/librosa.

[2] Fan RK Chung. Spectral graph theory, volume 92.

American Mathematical Soc., 1997.

[3] Jonathan Foote. Automatic audio segmentation using

a measure of audio novelty. In Multimedia and Expo,
2000. ICME 2000. 2000 IEEE International Confer-
ence on, volume 1, pages 452–455. IEEE, 2000.

[4] Harald Grohganz, Michael Clausen, Nanzhu Jiang,

and Meinard Müller. Converting path structures into

block structures using eigenvalue decomposition of

self-similarity matrices. In ISMIR, 2013.

[5] Christopher Harte. Towards automatic extraction of
harmony information from music signals. PhD thesis,

University of London, 2010.

[6] Florian Kaiser and Geoffroy Peeters. A simple fusion

method of state and sequence segmentation for music

structure discovery. In ISMIR, 2013.

[7] Florian Kaiser and Thomas Sikora. Music structure

discovery in popular music using non-negative matrix

factorization. In ISMIR, pages 429–434, 2010.

[8] P. Lamere. The infinite jukebox, November 2012.

http://infinitejuke.com/.

[9] Mark Levy and Mark Sandler. Structural segmenta-

tion of musical audio by constrained clustering. Audio,
Speech, and Language Processing, IEEE Transactions
on, 16(2):318–326, 2008.

[10] Jouni Paulus and Anssi Klapuri. Music structure analy-

sis by finding repeated parts. In Proceedings of the 1st
ACM workshop on Audio and music computing multi-
media, pages 59–68. ACM, 2006.
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ABSTRACT

This paper presents a method for discovering patterns of

note collections that repeatedly occur in a piece of music.

We assume occurrences of these patterns must appear at

least twice across a musical work and that they may con-

tain slight differences in harmony, timbre, or rhythm. We

describe an algorithm that makes use of techniques from

the music information retrieval task of music segmenta-

tion, which exploits repetitive features in order to auto-

matically identify polyphonic musical patterns from audio

recordings. The novel algorithm is assessed using the re-

cently published JKU Patterns Development Dataset, and

we show how it obtains state-of-the-art results employing

the standard evaluation metrics.

1. INTRODUCTION

The task of discovering repetitive musical patterns (of which

motives, themes, and repeated sections are all examples)

consists of retrieving the most relevant musical ideas that

repeat at least once within a specific piece [1, 8]. Besides

the relevant role this task plays in musicological studies,

especially with regard to intra-opus analysis, it can also

yield a better understanding of how composers write and

how listeners interpret the underlying structure of music.

Computational approaches to this task can dramatically sim-

plify not only the analysis of a specific piece, but of an

entire corpus, potentially offering interesting explorations

and relations of patterns across works. Other potential

applications include the improved navigation across both

large music collections and stand-alone pieces, or the de-

velopment of computer-aided composition tools.

Typically the task of automatically discovering musical

patterns uses symbolic representations of music [3]. Meth-

ods that assume a monophonic representation have been

proposed, and operate on various musical dimensions such

as chromatic/diatonic pitch, rhythm, or contour [4, 9, 10].

Other methods focusing on polyphonic music as input have

c© Oriol Nieto, Morwaread M. Farbood.
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cense (CC BY 4.0). Attribution: Oriol Nieto, Morwaread M. Farbood.
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also been presented, mostly using geometric representa-

tions in Euclidean space, with a different axis assigned to

each musical dimension [6, 11]. Similar techniques have

also been explored [7, 11, 12] that attempt to arrive at a

compressed representation of an input, multidimensional

point set. Other methods using cognitively inspired rules

with symbolic representations of music have also been pro-

posed [6, 16]. Working with the score of a musical piece

instead of its audio representation can indeed reduce the

complexity of the problem, however this also significantly

narrows the applicability of the algorithm, since it is not

necessarily common to have access to symbolic represen-

tations of music, particularly when working with genres

such as jazz, rock, or Western popular music.

Methods using audio recordings as input have also been

explored. A good recent example is [3], where the authors

first estimate the fundamental frequency (F0) from the au-

dio in order to obtain the patterns using a symbolic-based

approach. Another one uses a probabilistic approach to

matrix factorization in order to learn the different parts of

a western popular track in an unsupervised manner [20].

Yet another method uses a compression criterion where the

most informative (i.e., repeated) parts of a piece are iden-

tified in order to automatically produce a musical “sum-

mary” [17].

In this paper, we propose a method using audio record-

ings as input in an attempt to broaden the applicability of

pattern discovery algorithms. We make use of tools that

are commonly employed in the music information retrieval

task of music segmentation combined with a novel score-

based greedy algorithm in order to identify the most re-

peated parts of a given audio signal. Finally, we evaluate

the results using the JKU Patterns Development Dataset

and the metrics proposed in the Music Information Re-

trieval Evaluation eXchange (MIREX) [1].

The outline of this paper is as follows: In Section 2 we

review a set of music segmentation techniques that will be

used in our algorithm; in Section 3 we detail our method to

extract musical patterns, including the score-based greedy

algorithm; in Section 4 we present the evaluation and the

results; and in Section 5 we draw various conclusions and

identify areas for future work.
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2. MUSIC SEGMENTATION TECHNIQUES

The task of music segmentation is well-established in the

music informatics literature (see [18] for a review). Its goal

is to automatically identify all the non-overlapping musi-

cal segments (or sections) of a given track, such that the

concatenation of all of them reconstructs the entire piece.

Once these segments are identified, they are labeled based

on their similarity (e.g., verse, chorus, coda). Therefore,

this task can be divided into two different subproblems: the

discovery of the boundaries that define all the segments,

and the grouping of the segments into different labels. In

this work we will use tools that focus mainly on the former

subproblem.

There is general agreement among researchers that any

given boundary is defined by at least one of these three

characteristics: repetition, homogeneity, and/or novelty

[18]. In our case, we center the discussion on the repetition

boundaries, since, as we will see in Section 3, repetition is

the defining feature of the musical patterns.

2.1 Extracting Repetitive Boundaries

In this subsection we review a standard technique to ex-

tract boundaries characterized by repetition (also known as

a sequence approach), from an input audio signal x. For a

more detailed explanation, we refer the reader to [13]. The

process can be summarized in three different steps:

i The signal x is transformed into a series of feature vec-

tors C = (c1, ..., cN ) that divide x into N frames and

capture specific frame-level characteristics of the given

signal. In our case, we will only focus on harmonic

features, more specifically on chromagrams (or pitch

class profiles).

ii C is used in order to obtain a self-similarity matrix

(SSM) S, a symmetric matrix such that S(n,m) =
d(cn, cm), ∀n,m ∈ [1 : N ], where d is a distance func-

tion (e.g. Euclidean, cosine, Manhattan).

iii The resulting matrix S will contain diagonal paths (or

semi-diagonal in case of slight tempo variations) or

stripes that will indicate the repetition of a specific part

of the audio signal x. These paths can be extracted us-

ing greedy algorithms (e.g., as described in [13]). The

final boundaries are given by the endpoints of these

paths.

An example of an SSM using the Euclidean distance

with the identified boundaries is shown in Figure 1. As

can be seen, the annotated boundaries are visually asso-

ciated with the paths of the matrix. The identification of

patterns, as opposed to the task of segmentation, allows

overlapping patterns and occurrences, so we base our al-

gorithm on greedy methods to extract paths from an SSM.

2.2 Transposition-Invariant Self-Similarity Matrix

It is common to analyze pieces that contain key-transposed

repetitions. It is therefore important for an algorithm to

be invariant to these these transpositions when identifying

Figure 1. Self-similarity matrix for Chopin’s Op. 24 No. 4,
with annotated boundaries as vertical and horizontal lines.

repetitions. One effective method for solving this prob-

lem [14] involves a technique that can be described in two

steps: (1) compute 12 different SSMs from harmonic rep-

resentations (e.g. chromagrams), each corresponding to a

transposition of the 12 pitches of the Western chromatic

scale, and 2) obtain the transposition-invariant SSM by

keeping the minimum distance across the 12 matrices for

all the N ×N distances in the output matrix. Formally:

S(n,m) = mink∈[0:11]{Sk(n,m)}, ∀n,m ∈ [1 : N ] (1)

where S is the transposition-invariant SSM, and Sk is the

k-th transposition of the matrix S.

3. IDENTIFYING MUSICAL PATTERNS

The discovery of patterns and their various occurrences in-

volves retrieving actual note collections (which may nest

and/or overlap), and so this task can be seen as more com-

plex than structural segmentation, which involves labeling

a single, temporal partition of an audio signal. We define

a repeating musical pattern to be a short idea that is re-

peated at least once across the entire piece, even though

this repetition may be transposed or contain various time

shifts. Therefore, each pattern is associated with a set of

occurrences that will not necessarily be exact. The pat-

terns and their occurrences may overlap with each other,

and this is perfectly acceptable in the context of pattern

discovery. An optimal algorithm for this task would (1)

find all the patterns contained in a piece and (2) identify all

the occurrences across the piece for each pattern found. In

this section we describe our algorithm, which uses audio

recordings as input and finds polyphonic patterns as well

as a list of all the discovered occurrences for each of the

patterns. A block-diagram of the entire process is depicted

in Figure 2.
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Figure 2. Block diagram of the proposed algorithm.

3.1 Rhythmic-Synchronous Harmonic Feature
Extraction

Given a one-channel audio signal x sampled at 11025 Hz

representing a piece of music, we compute the spectrogram

using a Blackman window of Nw = 290 milliseconds,

with a hop size of Nw/2. We then compute a constant-

Q transform from the spectrogram starting at 55 Hz (cor-

responding to the note A1 in standard tuning) comprising

four octaves. Finally, we collapse each of the 12 pitches

of the western scale into a single octave to obtain a chro-

magram, a matrix of 12 × N , which is commonly used to

represent harmonic features [18]. We normalize the chro-

magram such that the maximum energy for a given time

frame is 1. In this harmonic representation we can no

longer differentiate between octaves, but its compactness

and the energy of each pitch class will become convenient

when identifying harmonic repetitions within a piece.

We then use a beat tracker [5] in order to average the

time frames into rhythmic frames. Instead of using the

traditional beat-synchronous approach, which is typically

employed in a segmentation task, we divide each beat dura-

tion by 4 and aggregate accordingly, thus having N = 4B
time frames, where B is the number of beats detected in

the piece. The motivation behind this is that patterns may

not start at the beat level, as opposed to the case for long

sections. Furthermore, adding a finer level of granularity

(i.e., analyzing the piece at a sixteenth-note level instead

of every fourth note or at the beat level) should yield better

results.

3.2 Finding Repeated Segments

We make use of the transposition-invariant SSM S de-

scribed in Section 2.2, computed from the chromagram of

a given audio signal using the Euclidean distance, in or-

der to identify repeated segments. As opposed to the task

of segmentation, the goal here is to find all possible re-

peated segments in S , independent of how short they are

or the amount of overlap present. The other major dif-

ference is that we do not aim to find all of the segments

of the piece, but rather identify all of the repeated ones.

Repeated segments appear in S as diagonal “stripes”, also

known as paths. If the beat-tracker results in no errors (or

if the piece contains no tempo variations), these stripes will

be perfectly diagonal.

3.2.1 Quantifying Paths with a Score

We propose a score-based greedy algorithm to efficiently

identify the most prominent paths in S . Starting from

S ∈ R
N×N , we set half of its diagonals to zero, including

the main one, due to its symmetrical properties, resulting

in Ŝ , s.t. Ŝ(n,m) = 0 if n ≤ m and Ŝ(n,m) = S(n,m)
if n > m, ∀n,m ∈ [1 : N ] . We then compute a score

function σ for each possible path in all the non-zero di-

agonals of Ŝ , resulting in a search space of N(N − 1)/2
possible positions in which paths can start.

Before introducing the score function σ, we define a

trace function given a square matrix X ∈ R
Nx×Nx with an

offset parameter ω:

tr(X,ω) =

Nx−ω∑
i=1

X(i, i+ ω), ω ∈ Z (2)

As can be seen from this equation, when ω = 0 we have

the standard trace function definition.

The score function σ uses various traces of the matrix

that comprises a possible path in order to quantify the de-

gree of repetition of the path. If a possible path starts

at indices n,m and has a duration of M time frames,

then the matrix that the path defines is P ∈ R
M×M , s.t.

P (i, j) = Ŝ(n + i − 1,m + j − 1), ∀i, j ∈ [1 : M ]. We

now can define the score σ as the sum of the closest traces

to the diagonal of P (i.e., those with a small ω) and sub-

tract the traces that are farther apart from the diagonal (i.e.,

where ω is greater). We then normalize in order to obtain

a score independent from the duration M of the possible

path:

σ(ρ) =

(∑ρ−1
ω=−(ρ−1) tr(P, ω)

)
− tr(P,±ρ)

M +
∑ρ−1

i=1 2(M − i)
(3)

where ρ ∈ N is the maximum offset to be taken into ac-

count when computing the traces of P . The greater the ρ,

the greater the σ for segments that contain substantial en-

ergy around their main diagonal (e.g., paths that contain

significant rhythmic variations), even though the precision

decreases as ρ increases.

Examples for various σ(ρ) can be seen in Figure 3. For

a perfectly clean path (left), we see that ρ = 1 gives the

maximum score of 1. However, the score decreases as ρ
increases, since there is zero energy in the diagonals right

next to the main diagonal. On the other hand, for matrices

extracted from audio signals (middle and right), we can see

that the scores σ(1) are low, indicating that the diagonals

next to the main diagonal contain amounts of energy simi-

lar to the main diagonal. However, when ρ > 1, the score

is substantially different from a matrix with a path (middle)

and a matrix without one (right).
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Figure 3. Three examples showing the behavior of the path
score σ(ρ). The one on the left shows a synthetic example of a
perfect path. The one in the middle contains a real example of
a path in which there is some noise around the diagonal of the
matrix. In the example on the right, a matrix with no path is
shown.

3.2.2 Applying the Score

For all N(N − 1)/2 positions in which paths can poten-

tially start in Ŝ , we want to extract the most prominent ones

(i.e., the ones that have a high σ). At the same time, we

want to extract the paths from beginning to end in the most

accurate way possible. The algorithm that we propose as-

signs a certain σ to an initial possible path ẑ of a minimum

length of ν time frames, which reduces the search space to

(N −ν+1)(N −ν)/2. If the score σ is greater than a cer-

tain threshold θ, we increase the possible path by one time

frame, and recompute σ until σ ≤ θ. By then, we can store

the path ẑ as a segment in the set of segments Z . In order

to avoid incorrectly identifying possible paths that are too

close to the found path, we zero out the found path from

Ŝ , including all the ρ closest diagonals, and keep looking,

starting from the end of the recently found path.

The pseudocode for this process can be seen in Algo-

rithm 1, where |x| returns the length of the path x, {x}
returns the path in which all elements equal x, the func-

tion ComputeScore computes the σ(ρ) as described in Sec-

tion 3.2.1, OutOfBounds(x, X) checks whether the path x
is out of bounds with respect to X , IncreasePath(x) in-

creases the path x by one (analogously as DecreasePath),

and ZeroOutPath(X, x, ρ) assigns zeros to the path x found

in X , including all the closest ρ diagonals.

Algorithm 1 Find Repeated Segments

Require: Ŝ, ρ, θ, ν
Ensure: Z = {z1, . . . , zk}

for ẑ ∈ Ŝ ∧ |ẑ| = ν ∧ ẑ �= {0} do
b← False

σ ← ComputeScore(ẑ, ρ)
while σ > θ ∧ ¬OutOfBounds(ẑ, Ŝ) do

b← True

ẑ ← IncreasePath(ẑ)
σ ← ComputeScore(ẑ, ρ)

end while
if b then
Z.add(DecreasePath(ẑ))
ZeroOutPath(Ŝ, ẑ, ρ)

end if
end for
return Z

An example of the paths found by the algorithm is

shown in Figure 4. Parts of some segments are repeated

as standalone segments (i.e., segments within segments),

therefore allowing overlap across patterns as expected in

this task. Observe how some of the segments repeat al-

most exactly across the piece—there is a set of patterns at

the top of the matrix that appears to repeat at least three

times. The next step of the algorithm is to cluster these

segments together so that they represent a single pattern

with various occurrences.

Figure 4. Paths found (marked in white) using the proposed
algorithm for Chopin’s Op. 24 No. 4., with θ = 0.33, ρ = 2.

3.3 Clustering the Segments

Each segment z ∈ Z , defined by the two indices in which

it starts (si, sj) and ends (ei, ej) in Ŝ , contains two occur-

rences of a pattern: the one that starts in si and ends in ei
and the one that occurs between the time indices sj and

ej . In order to cluster the repeated occurrences of a single

pattern, we find an occurrence for each segment z ∈ Z if

one of the other segments in Z starts and ends in similar

locations with respect to the second dimension of Ŝ . Note

that we set to zero the bottom left triangle of the matrix as

explained in Section 3.2.1, so we cannot use the first di-

mension to cluster the occurrences. Formally, a segment ẑ
is an occurrence of z if

(szj −Θ ≤ sẑj ≤ szj +Θ)∧ (ezj −Θ ≤ eẑj ≤ ezj +Θ) (4)

where szj represents the starting point of the segment z in

the second dimension of Ŝ and analogously ezj is the end-

ing point, and Θ is a tolerance parameter.

3.4 Final Output

At this point, we have a set of patterns with their respective

occurrences represented by their starting and ending time-

frame indices. Even though the algorithm is not able to dis-

tinguish the different musical lines within the patterns, we

can use the annotated score to output the exact notes that

occur during the identified time indices, as suggested in

the MIREX task [1]. If no score is provided, only the time
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points will be presented. In order to overcome this limita-

tion in future work, the audio should be source-separated to

identify the different lines and perform an F0 estimation to

correctly identify the exact melody that defines the pattern

(and not just the time points at which it occurs). Progress

toward this goal has been presented in [2].

3.5 Time Complexity Analysis

Once the rhythm-synchronous chromagram is computed,

the process of calculating the transposition-invariant SSM

is O(13N2) = O(N2), where N is the number of time

frames of the chromagram. The procedure to compute the

score given a path has a time complexity of O(2ρM) =
O(ρM), where ρ is the required parameter for the compu-

tation of the score, and M is the length of the path from

which to compute the score. The total process of iden-

tifying segments is O
(

(N−ν+1)(N−ν)
2 ρM

)
= O((N −

ν)2ρM), where ν is the minimum number of time frames

that a pattern can have. Asymptotically, we can neglect the

clustering of the segments, since the length of Z will be

much less than N . Therefore, the total time complexity of

the proposed algorithm is O(N2 + (N − ν)2ρM).

4. EVALUATION

We use the JKU Patterns Development Dataset 1 to evalu-

ate our algorithm. This dataset is comprised of five clas-

sical pieces annotated by various musicologists and re-

searchers [1]. This dataset is the public subset of the

one employed to evaluate the Pattern Discovery task at

MIREX, using the metrics described below.

4.1 Metrics

Two main aspects of this task are evaluated: the patterns

discovered and the occurrences of the identified patterns

across the piece. Collins and Meredith proposed metrics to

quantify these two aspects, which are detailed in [1]; all of

these metrics use the standard F1 accuracy score, defined

as F1 = 2PR/(P + R), where P is precision (such that

P = 1 if all the estimated elements are correct), and R = 1
is recall (such that R = 1 if all the annotated elements are

estimated).

Establishment F1 Score (Fest): Determines how the

annotated patterns are established by the estimated output.

This measure returns a score of 1 if at least one occurrence

of each pattern is discovered by the algorithm to be evalu-

ated.

Occurrence F1 Score (Fo): For all the patterns found,

we want to estimate the ability of the algorithm to capture

all of the occurrences of these patterns within the piece in-

dependently of how many different patterns the algorithm

has identified. Therefore, this score would be 1 if the al-

gorithm has only found one pattern with all the correct oc-

currences. A parameter c controls when a pattern is con-

sidered to have been discovered, and therefore whether it

counts toward the occurrence scores. The higher the c, the

1 https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip

smaller the tolerance. In this evaluation, as in MIREX, we

use c = .75 and c = .5.

Three-Layer F1 Score (F3): This measure combines

both the patterns established and the quality of their occur-

rences into a single score. It is computed using a three-step

process that yields a score of 1 if a correct pattern has been

found and all its occurrences have been correctly identi-

fied.

4.2 Results

The results of the proposed algorithm, computed using

the open source evaluation package mir_eval [19], are

shown in Table 1, averaged for the entire JKU Dataset,

along with an earlier version of our algorithm submitted

to MIREX [15], another recent algorithm called SIARCT-

CFP [2] that is assessed using both audio and symbolic rep-

resentations as input in [3], and “COSIATEC Segment”, a

method that only uses symbolic inputs [12]. We use this

latter method for comparison because it is the only sym-

bolic method in which we have access to all of the result-

ing metrics, and SIARCT-CFP since it is the most recent

method that uses audio as input. The parameter values

used to compute these results, ν = 8, θ = 0.33, ρ = 2,

and Θ = 4, were found empirically. We can see how our

algorithm is better than [15] in all the metrics except run-

ning time; it also finds more correct patterns than [3] (the

current state-of-the-art when using audio as input).

Our algorithm obtains state-of-the-art results when ex-

tracting patterns from audio, obtaining an Fest of 49.80%.

This is better than the symbolic version of [2] and almost

as good as the algorithm described in [12]. The fact that

our results are superior or comparable to the two other al-

gorithms using symbolic representations indicates the po-

tential of our method.

When evaluating the occurrences of the patterns, we

see that our algorithm is still better than [15], but worse

than [2] (at least for c = .5, which is the only reported re-

sult). Nevertheless, the numbers are much lower than [12].

In this case, working with symbolic representations (or es-

timating the F0 in order to apply a symbolic algorithm as

in [2]) yields significantly better results. It is interesting to

note that when the tolerance increases (i.e. c = .5), our

results improve as opposed to the other algorithms. This

might be due to the fact that some of the occurrences found

in the SSM were actually very similar (therefore they were

found in the matrix) but were slightly different in the anno-

tated dataset. A good example of this would be an occur-

rence that contains only one melodic voice. Our algorithm

only finds points in time in which an occurrence might be

included, it does not perform any type of source separation

in order to identify the different voices. If the tolerance

decreases sufficiently, a polyphonic occurrence would be

accepted as similar to a monophonic one corresponding to

the same points in time.

Our three layer score (F3) is the best result when using

audio recordings, with an F-measure of 31.74% (unfortu-

nately this metric was not reported in [2]). This metric

aims to evaluate the quality of the algorithm with a single
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Alg Pest Rest Fest Po(.75) Ro(.75) Fo(.75) P3 R3 F3 Po(.5) Ro(.5) Fo(.5) Time (s)

Proposed 54.96 51.73 49.80 37.58 27.61 31.79 35.12 35.28 32.01 45.17 34.98 38.73 454

[3] 14.9 60.9 23.94 – – – – – – 62.9 51.9 56.87 –

[15] 40.83 46.43 41.43 32.08 21.24 24.87 30.43 31.92 28.23 26.60 20.94 23.18 196
[3] 21.5 78.0 33.7 – – – – – – 78.3 74.7 76.5 –

[12] 43.60 63.80 50.20 65.40 76.40 68.40 40.40 54.40 44.20 57.00 71.60 63.20 7297

Table 1. Results of various algorithms using the JKU Patterns Development Dataset, averaged across pieces. The top rows of the table
contain algorithms that use deadpan audio as input. The bottom rows correspond to algorithms that use symbolic representations as input.

score, including both pattern establishment and occurrence

retrieval. Our results are still far from perfect (32.01%), but

when compared to an algorithm that uses symbolic repre-

sentations [12] (44.21%), it appears our results are not far

from the state-of-the-art for symbolic representations.

Finally, our algorithm takes more than twice as long as

[15]. However, our method is over 16 times faster than

[12], indicating it is efficient in terms of computation time.

This algorithm is implemented in Python and available for

public download. 2

5. CONCLUSIONS

We presented a method to discover repeating polyphonic

patterns using audio recordings as input. The method

makes use of various standard techniques typically used for

music segmentation. We evaluated our method using the

JKU Pattern Development Dataset and showed how it ob-

tains competent results when retrieving all the occurrences

of the patterns and state-of-the-art results when finding pat-

terns. When the algorithm is compared to others that use

symbolic representations, we see that it is comparable or

superior in terms of the correct patterns found. In future

work, source separation might be needed to successfully

identify patterns that only comprise a subset of the differ-

ent musical lines.
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ABSTRACT

The recognition of boundaries, e.g., between chorus and

verse, is an important task in music structure analysis. The

goal is to automatically detect such boundaries in audio

signals so that the results are close to human annotation.

In this work, we apply Convolutional Neural Networks to

the task, trained directly on mel-scaled magnitude spectro-

grams. On a representative subset of the SALAMI struc-

tural annotation dataset, our method outperforms current

techniques in terms of boundary retrieval F -measure at dif-

ferent temporal tolerances: We advance the state-of-the-art

from 0.33 to 0.46 for tolerances of±0.5 seconds, and from

0.52 to 0.62 for tolerances of ±3 seconds. As the algo-

rithm is trained on annotated audio data without the need

of expert knowledge, we expect it to be easily adaptable

to changed annotation guidelines and also to related tasks

such as the detection of song transitions.

1. INTRODUCTION

The determination of the overall structure of a piece of au-

dio, often referred to as musical form, is one of the key

tasks in music analysis. Knowledge of the musical struc-

ture enables a variety of real-world applications, be they

commercially applicable, such as for browsing music, or

educational. A large number of different techniques for au-

tomatic structure discovery have been developed, see [16]

for an overview. Our contribution describes a novel ap-

proach to retrieve the boundaries between the main struc-

tural parts of a piece of music. Depending on the music

under examination, the task of finding such musical bound-

aries can be relatively simple or difficult, in the latter case

leaving ample space for ambiguity. In fact, two human an-

notators hardly ever annotate boundaries at the exact same

positions. Instead of trying to design an algorithm that

works well in all circumstances, we let a Convolutional

Neural Network (CNN) learn to detect boundaries from a

large corpus of human-annotated examples.

The structure of the paper is as follows: After giving an

overview over related work in Section 2, we describe our

c© Karen Ullrich, Jan Schlüter, and Thomas Grill.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Karen Ullrich, Jan Schlüter, and

Thomas Grill. “Boundary Detection in Music Structure Analysis using

Convolutional Neural Networks”, 15th International Society for Music

Information Retrieval Conference, 2014.

proposed method in Section 3. In Section 4, we introduce

the data set used for training and testing. After presenting

our main results in Section 5, we wrap up in Section 6 with

a discussion and outlook.

2. RELATED WORK

In the overview paper to audio structure analysis by Paulus

et al. [16], three fundamental approaches to segmentation

are distinguished: Novelty-based, detecting transitions be-

tween contrasting parts, homogeneity-based, identifying

sections that are consistent with respect to their musical

properties, and repetition-based, building on the determi-

nation of recurring patterns. Many segmentation algorithms

follow mixed strategies. Novelty is typically computed us-

ing Self-Similarity Matrices (SSMs) or Self-Distance Ma-

trices (SDMs) with a sliding checkerboard kernel [4], build-

ing on audio descriptors like timbre (MFCC features), pitch,

chroma vectors and rhythmic features [14]. Alternative

approaches calculate difference features on more complex

audio feature sets [21]. In order to achieve a higher tempo-

ral accuracy in rhythmic music, audio features can be ac-

cumulated beat-synchronously. Techniques capitalizing on

homogeneity use clustering [5] or state-modelling (HMM)

approaches [1], or both [9, 11]. Repeating pattern discov-

ery is performed on SSMs or SDMs [12], and often com-

bined with other approaches [13, 15]. Some algorithms

combine all three basic approaches [18].

Almost all existing algorithms are hand-designed from

end to end. To the best of our knowledge, only two meth-

ods are partly learning from human annotations: Turn-

bull et al. [21] compute temporal differences at three time

scales over a set of standard audio features including chro-

magrams, MFCCs, and fluctuation patterns. Training Boost-

ed Decision Stumps to classify the resulting vectors into

boundaries and non-boundaries, they achieved significant

gains over a hand-crafted boundary detector using the same

features, evaluated on a set of 100 pop songs. McFee et al.

[13] employ Ordinal Linear Discriminant Analysis to learn

a linear transform of beat-aligned audio features (including

MFCCs and chroma) that minimizes the variance within a

human-annotated segment while maximizing the distance

across segments. Combined with a repetition feature, their

method defines the current state of the art in boundary re-

trieval, but still involves significant manual engineering.

For other tasks in the field of Music Information Re-

trieval, supervised learning with CNNs has already proven
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to outperform hand-designed algorithms, sometimes by a

large margin [3, 6, 8, 10, 17]. In this work, we investigate

whether CNNs are effective for structural boundary detec-

tion as well.

3. METHOD

We propose to train a neural network on human annota-

tions to predict likely musical boundary locations in audio

data. Our method is derived from Schlüter and Böck [17],

who use CNNs for onset detection: We also train a CNN

as a binary classifier on spectrogram excerpts, but we adapt

their method to include a larger input context and respect

the higher inaccuracy and scarcity of segment boundary

annotations compared to onset annotations. In the follow-

ing, we will describe the features, neural network, super-

vised training procedure and the post-processing of the net-

work output to obtain boundary predictions.

3.1 Feature Extraction

For each audio file, we compute a magnitude spectrogram

with a window size of 46 ms (2048 samples at 44.1 kHz)

and 50% overlap, apply a mel filterbank of 80 triangular

filters from 80 Hz to 16 kHz and scale magnitudes loga-

rithmically. To be able to train and predict on spectrogram

excerpts near the beginning and end of a file, we pad the

spectrogram with pink noise at -70 dB as needed (padding

with silence is impossible with logarithmic magnitudes,

and white noise is too different from the existing back-

ground noise in natural recordings). To bring the input val-

ues to a range suitable for neural networks, we follow [17]

in normalizing each frequency band to zero mean and unit

variance. Finally, to allow the CNN to process larger tem-

poral contexts while keeping the input size reasonable, we

subsample the spectrogram by taking the maximum over 3,

6 or 12 adjacent time frames (without overlap), resulting in

a frame rate of 14.35 fps, 7.18 fps or 3.59 fps, respectively.

We will refer to these frame rates as high, std and low.

We also tried training on MFCCs and chroma vectors

(descriptors with less continuity in the ‘vertical’ feature

dimension to be exploited by convolution), as well as fluc-

tuation patterns and self-similarity matrices derived from

those. Overall, mel spectrograms proved the most suitable

for the algorithm and performed best.

3.2 Convolutional Neural Networks

CNNs are feed-forward neural networks usually consist-

ing of three types of layers: Convolutional layers, pooling

layers and fully-connected layers. A convolutional layer

computes a convolution of its two-dimensional input with

a fixed-size kernel, followed by an element-wise nonlin-

earity. The input may consist of multiple same-sized chan-

nels, in which case it convolves each with a separate ker-

nel and adds up the results. Likewise, the output may

consist of multiple channels computed with distinct sets

of kernels. Typically the kernels are small compared to

the input, allowing CNNs to process large inputs with few

Figure 1. The arrow at the top signifies an annotated seg-

ment boundary present within a window of feature frames.

As seen in the upper panel, the target labels are set to one

in the environment of this boundary, and to zero elsewhere.

The lower panel shows how positive targets far from the

annotation are given a lower weight in training.

learnable parameters. A pooling layer subsamples its two-

dimensional input, possibly by different factors in the two

dimensions, handling each input channel separately. Here,

we only consider max-pooling, which introduces some trans-

lation invariance across the subsampled dimension. Fi-

nally, a fully-connected layer discards any spatial layout of

its input by reshaping it into a vector, computes a dot prod-

uct with a weight matrix and applies an element-wise non-

linearity to the result. Thus, unlike the other layer types,

it is not restricted to local operations and can serve as the

final stage integrating all information to form a decision.

In this work, we fix the network architecture to a con-

volutional layer of 16 8×6 kernels (8 time frames, 6 mel

bands, 16 output channels), a max-pooling layer of 3×6,

another convolution of 32 6×3 kernels, a fully-connected

layer of 128 units and a fully-connected output layer of 1
unit. This architecture was determined in preliminary ex-

periments and not further optimized for time constraints.

3.3 Training

The input to the CNN is a spectrogram excerpt of N frames,

and its output is a single value giving the probability of

a boundary in the center of the input. The network is

trained in a supervised way on pairs of spectrogram ex-

cerpts and binary labels. To account for the inaccuracy of

the ground truth boundary annotations (as observable from

the disagreement between two humans annotating the same

piece), we employ what we will refer to as target smearing:

All excerpts centered on a frame within ±E frames from

an annotated boundary will be presented to the network as

positive examples, weighted in learning by a Gaussian ker-

nel centered on the boundary. Figure 1 illustrates this for

E = 10. We will vary both the spectrogram length N and

smearing environment E in our experiments. To compen-

sate for the scarceness of positive examples, we increase

their chances of being randomly selected for a training step

by a factor of 3.

Training is performed using gradient descent on cross-
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entropy error with mini-batches of 64 examples, momen-

tum of 0.95, and an initial learning rate of 0.6 multiplied by

0.85 after every mini-epoch of 2000 weight updates. We

apply 50% dropout to the inputs of both fully-connected

layers [7]. Training is always stopped after 20 mini-epochs,

as the validation error turned out not to be robust enough

for early stopping. Implemented in Theano [2], training a

single CNN on an Nvidia GTX 780 Ti graphics card took

50–90 minutes.

3.4 Peak-picking

At test time, we apply the trained network to each position

in the spectrogram of the music piece to be segmented, ob-

taining a boundary probability for each frame. We then

employ a simple means of peak-picking on this boundary

activation curve: Every output value that is not surpassed

within ±6 seconds is a boundary candidate. From each

candidate value we subtract the average of the activation

curve in the past 12 and future 6 seconds, to compensate

for long-term trends. We end up with a list of boundary

candidates along with strength values that can be thresh-

olded at will. We found that more elaborate peak picking

methods did not improve results.

4. DATASET

We evaluate our algorithm on a subset of the Structural

Analysis of Large Amounts of Music Information (SALAMI)

database [20]. In total, this dataset contains over 2400

structural annotations of nearly 1400 musical recordings

of different genres and origins. About half of the annota-

tions (779 recordings, 498 of which are doubly-annotated)

are publicly available. 1 A part of the dataset was also

used in the “Audio Structural Segmentation” task of the

annual MIREX evaluation campaign in 2012 and 2013. 2

Along with quantitative evaluation results, the organizers

published the ground truth and predictions of 17 different

algorithms for each recording. By matching the ground

truth to the public SALAMI annotations, we were able to

identify 487 recordings. These serve as a test set to evalu-

ate our algorithm against the 17 MIREX submissions. We

had another 733 recordings at our disposal, annotated fol-

lowing the SALAMI guidelines, which we split into 633

items for training and 100 for validation.

5. EXPERIMENTAL RESULTS

5.1 Evaluation

For boundary retrieval, the MIREX campaign uses two

evaluation measures: Median deviation and Hit rate. The

former measures the median distance between each anno-

tated boundary and its closest predicted boundary or vice

versa. The latter checks which predicted boundaries fall

close enough to an unmatched annotated boundary (true

1 http://ddmal.music.mcgill.ca/datasets/salami/
SALAMI_data_v1.2.zip, accessed 2014-05-02

2 Music Information Retrieval Evaluation eXchange, http://www.
music-ir.org/mirex, accessed 2014-04-29

Figure 2. Optimization of the threshold shown for model

8s_std_3s at tolerance ±0.5 seconds. Boundary re-

trieval precision, recall and F-measure are averaged over

the 100 validation set files.

positives), records remaining unmatched predictions and

annotations as false positives and negatives, respectively,

then computes the precision, recall and F-measure. Since

not only the temporal distance of predictions, but also the

figures of precision and recall are of interest, we opted for

the Hit rate at as our central measure of evaluation, com-

puted at a temporal tolerance of ±0.5 seconds (as in [21])

and ±3 seconds (as in [9]). For accumulation over mul-

tiple recordings, we follow the MIREX evaluation by cal-

culating F-measure, precision and recall per item and av-

eraging the three measures over the items for the final re-

sult. Note that the averaged F-measure is not necessarily

the harmonic mean of the averaged precision and recall.

Our evaluation code is publicly available for download. 3

5.2 Baseline and upper bound

Our focus for evaluation lies primarily on the F-measure.

Theoretically, the F-measure is bounded by F ∈ [0, 1], but

for the given task, we can derive more useful lower and up-

per bounds to compare our results to. As a baseline, we use

regularly spaced boundary predictions starting at time 0.

Choosing an optimal spacing, we obtain an F-measure of

Finf,3 ≈ 0.33 for±3 seconds tolerance, and Finf,0.5 ≈ 0.13
for a tolerance of ±0.5 seconds. Note that it is crucial to

place the first boundary at 0 seconds, where a large frac-

tion of the music pieces has annotated segment bound-

aries. Many pieces have only few boundaries at all, thus

the impact can be considerable. An upper bound Fsup can

be derived from the insight that no annotation will be per-

fect given the fuzzy nature of the segmentation task. Even

though closely following annotation guidelines, 4 two an-

notators might easily disagree on the existence or exact po-

3 http://ofai.at/research/impml/projects/
audiostreams/ismir2014/

4 cf. the SALAMI Annotator’s Guide: http://www.music.
mcgill.ca/~jordan/salami/SALAMI-Annotator-Guide.
pdf, accessed 2014-04-30
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Figure 3. Comparison of different model parameters (con-

text length, resolution and target smearing) with respect

to mean F-measure on our validation set at ±0.5 seconds

tolerance. Mean and minimum-maximum range of five in-

dividually trained models for each parameter combination

are shown, as well as results for bagging the five models.

sitions of segment boundaries. By analyzing the items in

the public SALAMI dataset that have been annotated twice

(498 pieces in total), we calculated Fsup,3 ≈ 0.76 for ±3
seconds tolerance, and Fsup,0.5 ≈ 0.67 for ±0.5 seconds

tolerance. Within our evaluation data subset (439 double-

annotations), the results are only marginally different with

Fsup,0.5 ≈ 0.68.

5.3 Threshold optimization

Peak-picking, described in Section 3.4, delivers the posi-

tions of potential boundaries along with their probabilities,

as calculated by the CNN. The application of a threshold

to those probabilities rejects part of the boundaries, affect-

ing the precision and recall rates and consequently the F-

measure we use for evaluation. Figure 2 shows precision

and recall rates as well as the F-measure as a function of

the threshold for the example of the 8s_std_3smodel (8

seconds of context, standard resolution, target smearing 3

seconds) at±0.5 seconds tolerance, applied to the 100 files

of the validation data set. By locating the maximum of the

F-measure we retrieve an estimate for the optimum thresh-

old which is specific for each individual learned model.

Since the curve for the F-measure is typically flat-topped

for a relatively wide range of threshold values, the choice

of the actual value is not very delicate.

5.4 Temporal context investigation

It is intuitive to assume that the CNN needs a certain amount

of temporal context to reliably judge the presence of a bound-

ary. Furthermore, the temporal resolution of the input spec-

tra (Section 3.1) and the applied target smearing (Section 3.3)

is expected to have an impact on the temporal accuracy of

the predictions. See Figure 3 and Figure 4 for comparisons

of these model parameters, for tolerances ±0.5 seconds

Figure 4. Comparison of different model parameters (con-

text length, resolution and target smearing) with respect to

mean F-measure on our validation set at ±3 seconds tol-

erance. Mean and minimum-maximum range of five in-

dividually trained models for each parameter combination

are shown, as well as results for bagging the five models.

and ±3 seconds, respectively. Each bar in the plots rep-

resents the mean and minimum-maximum range of five in-

dividual experiments with different random initializations.

For the case of only ±0.5 seconds of acceptable error, we

conclude that target smearing must also be small: A smear-

ing width of 1 to 1.5 seconds performs best. Low temporal

spectral resolution tends to diminish results, and the con-

text length should not be shorter than 8 seconds. For ±3
seconds tolerance, context length and target smearing are

the most influential parameters, with the F-measure peak-

ing at 32 seconds context and 4 to 6 seconds smearing.

Low temporal resolution is sufficient, keeping the CNN

smaller and easier to train.

5.5 Model bagging

As described in Section 5.4, for each set of parameters

we trained five individual models. This allows us to im-

prove the performance on the given data using a statisti-

cal approach: Bagging, in our case averaging the outputs

of multiple identical networks trained from different ini-

tializations before the peak-picking stage, should help to

reduce model uncertainty. After again applying the above

described threshold optimization process on the resulting

boundaries, we arrived at improvements of the F-measure

of up to 0.03, indicated by arrow tips in Figures 3 and

4. Tables 1 and 2 show our final best results after model

bagging for tolerances ±0.5 seconds and ±3 seconds, re-

spectively. The results are set in comparison with the al-

gorithms submitted to the MIREX campaign in 2012 and

2013, and the lower and upper bounds calculated from the

annotation ground-truth (see Section 5.2).
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Algorithm F-measure Precision Recall

Upper bound (est.) 0.68

16s_std_1.5s 0.4646 0.5553 0.4583

MP2 (2013) 0.3280 0.3001 0.4108

MP1 (2013) 0.3149 0.3043 0.3605

OYZS1 (2012) 0.2899 0.4561 0.2583

32s_low_6s 0.2884 0.3592 0.2680

KSP2 (2012) 0.2866 0.2262 0.4622

SP1 (2012) 0.2788 0.2202 0.4497

KSP3 (2012) 0.2788 0.2202 0.4497

KSP1 (2012) 0.2788 0.2201 0.4495

RBH3 (2013) 0.2683 0.2493 0.3360

RBH1 (2013) 0.2567 0.2043 0.3936

RBH2 (2013) 0.2567 0.2043 0.3936

RBH4 (2013) 0.2567 0.2043 0.3936

CF5 (2013) 0.2128 0.1677 0.3376

CF6 (2013) 0.2101 0.2396 0.2239

SMGA1 (2012) 0.1968 0.1573 0.2943

MHRAF1 (2012) 0.1910 0.1941 0.2081

SMGA2 (2012) 0.1770 0.1425 0.2618

SBV1 (2012) 0.1546 0.1308 0.2129

Baseline (est.) 0.13

Table 1. Boundary recognition results on our test set at

±0.5 seconds tolerance. Our best result is emphasized and

compared with results from the MIREX campaign in 2012

and 2013.

Algorithm F-measure Precision Recall

Upper bound (est.) 0.76

32s_low_6s 0.6164 0.5944 0.7059

16s_std_1.5s 0.5726 0.5648 0.6675

MP2 (2013) 0.5213 0.4793 0.6443

MP1 (2013) 0.5188 0.5040 0.5849

CF5 (2013) 0.5052 0.3990 0.7862

SMGA1 (2012) 0.4985 0.4021 0.7258

RBH1 (2013) 0.4920 0.3922 0.7482

RBH2 (2013) 0.4920 0.3922 0.7482

RBH4 (2013) 0.4920 0.3922 0.7482

SP1 (2012) 0.4891 0.3854 0.7842

KSP3 (2012) 0.4891 0.3854 0.7842

KSP1 (2012) 0.4888 0.3850 0.7838

KSP2 (2012) 0.4885 0.3846 0.7843

SMGA2 (2012) 0.4815 0.3910 0.6965

RBH3 (2013) 0.4804 0.4407 0.6076

CF6 (2013) 0.4759 0.5305 0.5102

OYZS1 (2012) 0.4401 0.6354 0.4038

SBV1 (2012) 0.4352 0.3694 0.5929

MHRAF1 (2012) 0.4192 0.4342 0.4447

Baseline (est.) 0.33

Table 2. Boundary recognition results on our test set at

±3 seconds tolerance. Our best result is emphasized and

compared with results from the MIREX campaign in 2012

and 2013.

6. DISCUSSION AND OUTLOOK

Employing Convolutional Neural Networks trained directly

on mel-scaled spectrograms, we are able to achieve bound-

ary recognition F-measures strongly outperforming any al-

gorithm submitted to MIREX 2012 and 2013. The net-

works have been trained on human-annotated data, consid-

ering different context lengths, temporal target smearing

and spectrogram resolutions. As we did not need any do-

main knowledge for training, we expect our method to be

easily adaptable to different ‘foci of annotation’ such as,

e.g., determined by different musical genres or annotation

guidelines. In fact, our method is itself an adaption of a

method for onset detection [17] to a different time focus.

There are a couple of conceivable strategies to improve

the results further: With respect to the three fundamen-

tal approaches to segmentation described in Section 1, the

CNNs in this work can only account for novelty and ho-

mogeneity, which can be seen as two sides of the same

medal. To allow them to leverage repetition cues as well,

the vectorial repetition features of McFee et al. [13] might

serve as an additional input. Alternatively, the network

could be extended with recurrent connections to yield a

Recurrent CNN. Given suitable training data, the resulting

memory might be able to account for repeating patterns.

Secondly, segmentation of musical data by humans is not a

trivially sequential process but inherently hierarchical. The

SALAMI database actually provides annotations on two

levels: A coarse one, as used in the MIREX campaign, but

also a more fine-grained variant, encoding subtler details of

the temporal structure. It could be helpful to feed both lev-

els to the CNN training, weighted with respect to the sig-

nificance. Thirdly, we leave much of the data preprocess-

ing to the CNN, very likely using up a considerable part of

its capacity. For example, the audio files in the SALAMI

collection are of very different loudness, which could be

fixed in a simple preprocessing step, either on the whole

files, or using some dynamic gain control. Similarly, many

of the SALAMI audio files start or end with noise or back-

ground sounds. A human annotator easily recognizes this

as not belonging to the actual musical content, ignoring it

in the annotations. The abrupt change from song-specific

background noise to our pink noise padding may be mis-

taken for a boundary by the CNN, though. Therefore it

could be worthwhile to apply some intelligent padding of

appropriate noise or background to provide context at the

beginnings and endings of the audio. And finally, we have

only explored a fraction of the hyperparameter space re-

garding network architecture and learning, and expect fur-

ther improvements by a systematic optimization of these.

Another promising direction of research is to explore

the internal processing of the trained networks, e.g., by vi-

sualization of connection weights and receptive fields [19].

This may help to understand the segmentation process as

well as differences to existing approaches, and to refine the

network architecture.
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ABSTRACT

In this paper, we approach the tasks of beat tracking, down-

beat recognition and rhythmic style classification in non-

Western music. Our approach is based on a Bayesian

model, which infers tempo, downbeats and rhythmic style,

from an audio signal. The model can be automatically

adapted to rhythmic styles and time signatures. For evalua-

tion, we compiled and annotated a music corpus consisting

of eight rhythmic styles from three cultures, containing a

variety of meter types. We demonstrate that by adapting

the model to specific styles, we can track beats and down-

beats in odd meter types like 9/8 or 7/8 with an accuracy

significantly improved over the state of the art. Even if the

rhythmic style is not known in advance, a unified model is

able to recognize the meter and track the beat with com-

parable results, providing a novel method for inferring the

metrical structure in culturally diverse datasets.

1. INTRODUCTION

Musical rhythm subordinated to a meter is a common fea-

ture in many music cultures around the world. Meter pro-

vides a hierarchical time structure for the rendition and rep-

etition of rhythmic patterns. Though these metrical struc-

tures vary considerably across cultures, metrical hierar-

chies can often be stratified into levels of differing time

spans. Two of these levels are, in terminology of Euroge-

netic music, referred to as beats, and measures. The beats
are the pulsation at the perceptually most salient metrical

level, and are further grouped into measures. The first beat

of each measure is called the downbeat. Determining the

type of the underlying meter, and the alignment between

the pulsations at the levels of its hierarchy with music per-

formance recordings – a process we refer to as meter in-

ference – is fundamental to computational rhythm analysis

and supports many further tasks, such as music transcrip-

tion, structural analysis, or similarity estimation.

The automatic annotation of music with different as-

pects of rhythm is at the focus of numerous studies in Mu-

sic Information Retrieval (MIR). Müller et al [5] discussed
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the estimation of the beat (called beat tracking), and the

estimation of higher-level metrical structures such as the

measure length. Approaches such as the one presented by

Klapuri et al [3] aim at estimating structures at several met-

rical levels, while being able to differentiate between cer-

tain time signatures. In [7] beats and downbeats are esti-

mated simultaneously, given information about the tempo

and the meter of a piece. Most of these approaches assume

the presence of a regular metrical grid, and work reason-

ably well for Eurogenetic popular music. However, their

adaptation to different rhythmic styles and metrical struc-

tures is not straight-forward.

Recently, a Bayesian approach referred to as bar pointer
model has been presented [11]. It aims at the joint estima-

tion of rhythmic pattern, the tempo, and the exact position

in a metrical cycle, by expressing them as hidden variables

in a Hidden Markov Model (HMM) [8]. Krebs et al. [4]

applied the model to music signals and showed that ex-

plicitely modelling rhythmic patterns is useful for meter

inference for a dataset of Ballroom dance music.

In this paper, we adapt the observation model of the ap-

proach presented in [4] to a collection of music from dif-

ferent cultures: Makam music from Turkey, Cretan music

from Greece, and Carnatic music from the south of In-

dia. The adaption of observation models was shown to

be of advantage in [4, 6], however restricted to the con-

text of Ballroom dance music. Here, we extract rhythmic

patterns from culturally more diverse data, and investigate

if their inclusion into the model improves the performance

of meter inference. Furthermore, we investigate if a uni-

fied model can be derived that covers all rhythmic styles

and time signatures that are present in the training data.

2. MOTIVATION

The music cultures considered in this paper are based on

traditions that can be traced back for centuries until the

present, and were documented by research in ethnomusi-

cology for decades. Rhythm in two of these cultures, Car-

natic and Turkish Makam music, is organized based on po-

tentially long metrical cycles. All three make use of rhyth-

mic styles that deviate audibly from the stylistic paradigms

of Eurogenetic popular music. Previous studies on music

collections of these styles have shown that the current state

of the art performs poorly in beat tracking [2, 9] and the

recognition of rhythm class [9]. As suggested in [9], we

explore a unified approach for meter inference that can rec-
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ognize the rhythmic style of the piece and track the meter

at the same time.

The bar pointer model, as described in Section 4, can be

adapted to rhythmic styles by extracting possible patterns

using small representative downbeat annotated datasets.

This way, we can obtain an adapted system for a specific

style without recoding and parameter tweaking. We be-

lieve that this is an important characteristic for algorithms

applied in music discovery and distribution systems for a

large and global audience. Through this study, we aim to

answer crucial questions: Do we need to differentiate be-

tween rhythmic styles in order to track the meter, or is a

universal approach sufficient? For instance, can we track a

rhythmic style in Indian music using rhythmic patterns de-

rived from Turkish music? Do we need to learn patterns

at all? If a particular style description for each style is

needed, this has some serious consequences for the scala-

bility of rhythmic similarity and meter inference methods;

while we should ideally aim at music discovery systems

without an ethnocentric bias, the needed universal analysis

methods might come at a high cost given the high diversity

in the musics of the world.

3. MUSIC CORPORA

In this paper we use a collection of three music corpora

which are described in the following.

The corpus of Cretan music consists of 42 full length

pieces of Cretan leaping dances. While there are several

dances that differ in terms of their steps, the differences in

the sound are most noticeable in the melodic content, and

we consider all pieces to belong to one rhythmic style. All

these dances are usually notated using a 2/4 time signa-

ture, and the accompanying rhythmical patterns are usually

played on a Cretan lute. While a variety of rhythmic pat-

terns exist, they do not relate to a specific dance and can be

assumed to occur in all of the 42 songs in this corpus.

The Turkish corpus is an extended version of the anno-

tated data used in [9]. It includes 82 excerpts of one minute

length each, and each piece belongs to one of three rhythm

classes that are referred to as usul in Turkish Art music. 32

pieces are in the 9/8-usul Aksak, 20 pieces in the 10/8-usul

Curcuna, and 30 samples in the 8/8-usul Düyek.

The Carnatic music corpus is a subset of the annotated

dataset used in [10]. It includes 118 two minute long ex-

cerpts spanning four tālas (the rhythmic framework of Car-

natic music, consisting of time cycles). There are 30 ex-

amples in each of ādi tāla (8 beats/cycle), rūpaka tāla (3

beats/cycle) and mishra chāpu tāla (7 beats/cycle), and 28

examples in khanda chāpu tāla (5 beats/cycle).

All excerpts described above were manually annotated

with beats and downbeats. Note that for both Indian and

Turkish music the cultural definition of the rhythms con-

tain irregular beats. Since the irregular beat sequence is a

subset of the (annotated) equidistant pulses, it can be de-

rived easily from the result of a correct meter inference.

For further details on meter in Carnatic and Turkish makam

music, please refer to [9].

4. METER INFERENCE METHOD

4.1 Model description

To infer the metrical structure from an audio signal we use

the bar pointer model, originally proposed in [11] and re-

fined in [4]. In this model we assume that a bar pointer

traverses a bar and describe the state of this bar pointer

at each audio frame k by three (hidden) variables: tempo,

rhythmic pattern, and position inside a bar. These hidden

variables can be inferred from an (observed) audio signal

by using an HMM. An HMM is defined by three quan-

tities: A transition model which describes the transitions

between the hidden variables, an observation model which

describes the relation between the hidden states and the

observations (i.e., the audio signal), and an initial distribu-
tion which represents our prior knowledge about the hid-

den states.

4.1.1 Hidden states

The three hidden variables of the bar pointer model are:

• Rhythm pattern index rk ∈ {r1, r2, ..., rR}, where R is

the number of different rhythmic patterns that we con-

sider to be present in our data. Further, we denote the

time signature of each rhythmic pattern by θ(rk) (e.g.,

9/8 for Aksak patterns). In this paper, we assume that

each rhythmic pattern belongs to a rhythmic class, and

a rhythm class (e.g., Aksak, Duyek) can hold several

rhythmic patterns. We investigate the optimal number

of rhythmic patterns per rhythm class in Section 5.

• Position within a bar mk ∈ {1, 2, ...,M(rk)}:
We subdivide a whole note duration into 1600 discrete,

equidistant bar positions and compute the number of po-

sitions within a bar with rhythm rk by M(rk) = 1600 ·
θ(rk) (e.g., a bar with 9/8 meter has 1600 · 9/8 = 1800
bar positions).

• Tempo nk ∈ {nmin(rk), ..., nmax(rk)}: The tempo can

take on positive integer values, and quantifies the num-

ber of bar positions per audio frame. Since we use an au-

dio frame length of 0.02s, this translates to a tempo res-

olution of 7.5 (= 60s
1/4·1600·0.02s ) beats per minute (BPM)

at the quarter note level. We set the minimum tempo

nmin(rk) and the maximum tempo nmax(rk) according

to the rhythmic pattern rk.

4.1.2 Transition model

We use the transition model proposed in [4, 11] with the

difference that we allow transitions between rhythmic pat-

tern states within a song as shown in Equation 3. In the

following we list the transition probabilities for each of the

three variables:

• P (mk|mk−1, nk−1, rk−1) : At time frame k the bar

pointer moves from position mk−1 to mk as defined by

mk = [(mk−1 + nk−1 − 1)mod(M(rk−1))] + 1. (1)

Whenever the bar pointer crosses a bar border it is reset

to 1 (as modeled by the modulo operator).

• P (nk|nk−1, rk−1) : If the tempo nk−1 is inside the

allowed tempo range {nmin(rk−1), ..., nmax(rk−1)},
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there are three possible transitions: the bar pointer re-

mains at the same tempo, accelerates, or decelerates:

P (nk|nk−1) =

⎧⎨⎩
1− pn, nk = nk−1
pn

2 , nk = nk−1 + 1
pn

2 , nk = nk−1 − 1
(2)

Transitions to tempi outside the allowed range are as-

signed a zero probability. pn is the probability of a

change in tempo per audio frame, and was set to pn =
0.02, the tempo ranges (nmin(r), nmax(r)) for each

rhythmic pattern are learned from the data (Section 4.2).

• P (rk|rk−1) : Finally, the rhythmic pattern state is as-

sumed to change only at bar boundaries:

P (rk|rk−1,mk < mk−1) = pr(rk−1, rk) (3)

pr(rk−1, rk) denotes the probability of a transition from

pattern rk−1 to pattern rk and will be learned from the

training data as described in Section 4.2. In this paper

we allow transitions only between patterns of the same

rhythm class, which will force the system to assign a

piece of music to one of the learned rhythm classes.

4.1.3 Observation model

In this paper, we use the observation model proposed

in [4]. As summarized in Figure 1, a Spectral Flux-like

onset feature, y, is extracted from the audio signal (sam-

pled with 44100 Hz) using the same parameters as in [4]. It

summarizes the energy changes that are likely to be related

to instrument onsets in two dimensions related to two fre-

quency bands, above and below 250 Hz. In contrast to [4]

we removed the normalizing step at the end of the feature

computations, which we observed not to influence the re-

sults.

Audio signal

STFT

Filterbank (82 bands)

Logarithm

Difference

Sum over frequency

bands (0..250Hz)

Sum over frequency

bands (250..22500Hz)

Subtract mvavg

Onset feature y

Figure 1: Computing the onset feature y from the audio

signal

As described in [4], the observation probabilities

P (yk|mk, nk, rk) are modeled by a set of Mixture of

Gaussian distributions (GMM). As it is infeasible to spec-

ify a GMM for each state (this would result in N ×M ×R
GMMs), we make two assumptions: First, we assume

that the observation probabilities are independent of the

tempo and second, we assume that the observation prob-

abilities only change each 64th note (which corresponds to

1600/64=25 bar positions). Hence, for each rhythmic pat-

tern, we have to specify 64× θ(r) GMMs.

4.1.4 Initial distribution

For each rhythmic pattern, we assume a uniform state dis-

tribution within the tempo limits and over all bar positions.

4.2 Learning parameters

The parameters of the observation GMMs, the transition

probabilities of the rhythm pattern states, and the tempo

ranges for each rhythmic style are learned from the data

described in Section 3. In our experiments we perform a

two-fold cross-validation, excluding those files from the

evaluation that were used for parameter learning.

4.2.1 Observation model

The parameters of the observation model consist of

the mean values, covariance matrix and the component

weights of the GMM for each 64th note of a rhythmic pat-

tern. We determine these as follows:

1. The two-dimensional onset feature y (see Section 4.1.3)

is computed from the training data.

2. The features are grouped by bar and bar position within

the 64th note grid. If there are several feature values for

the same bar and 64th note grid point, we compute the

average, if there is no feature we interpolate between

neighbors. E.g., for a rhythm class which spans a whole

note (e.g., Düyek (8/8 meter)) this yields a matrix of size

B × 128, where B is the number of bars with Düyek
rhythm class in the dataset.

3. Each dimension of the features is normalized to zero

mean and unit variance.

4. For each of the eight rhythm classes in the corpus de-

scribed in Section 3, a k-means clustering algorithm as-

signs each bar of the dataset (represented by a point in

a 128-dimensional space) to one rhythmic pattern. The

influence of the number of clusters k on the accuracy

of the metrical inference will be evaluated in the exper-

iments.

5. For each rhythmic pattern, at all 64th grid points, we

compute the parameters of the GMM by maximum like-

lihood estimation.

4.2.2 Tempo ranges and transition probabilities

For each rhythmic pattern, we compute the minimum and

maximum tempo of all bars of the training fold that were

assigned to this pattern by the procedure described in Sec-

tion 4.2.1. In the same way, we determine the transition

probabilities pr between rhythmic patterns.

4.3 Inference

In order to obtain beat-, downbeat-, and rhythmic class es-

timations, we compute the optimal state sequence {m∗
1:K ,

n∗
1:K , r∗1:K} that maximizes the posterior probability of the

hidden states given the observations y1:K and hence fits

best to our model and the observations. This is done using

the well-known Viterbi algorithm [8].
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5. EXPERIMENTS

5.1 Evaluation metrics

A variety of measures for evaluating beat and downbeat

tracking performance are available (see [1] for a detailed

overview and descriptions of the metrics listed below) 1 .

We chose five metrics that are characterized by a set of di-

verse properties and are widely used in beat tracking eval-

uation.

Fmeas (F-measure): The F-measure is computed from

correctly detected beats within a window of ±70 ms by

F-measure =
2pr

p+ r
(4)

where p (precision) denotes the ratio between correctly de-

tected beats and all detected beats, and r (recall) denotes

the ratio between correctly detected beats and the total

number of annotated beats. The range of this measure is

from 0% to 100%.

AMLt (Allowed Metrical Levels with no continuity re-

quired): In this method an estimated beat is counted as

correct, if it lies within a small tolerance window around an

annotated pulse, and the previous estimated beat lies within

the tolerance window around the previous annotated beat.

The value of this measure is then the ratio between the

number of correctly estimated beats divided by the number

of annotated beats (as percentage between 0% and 100%).

Beat sequences are also considered as correct if the beats

occur on the off-beat, or are double or half of the annotated

tempo.

CMLt (Correct Metrical Level with no continuity re-

quired): The same as AMLt, without the tolerance for off-

beat, or doubling/halving errors.

infGain (Information Gain): Timing errors are calcu-

lated between an annotation and all beat estimations within

a one-beat length window around the annotation. Then, a

beat error histogram is formed from the resulting timing

error sequence. A numerical score is derived by measuring

the K-L divergence between the observed error histogram

and the uniform case. This method gives a measure of how

much information the beats provide about the annotations.

The range of values for the Information Gain is 0 bits to

approximately 5.3 bits in the applied default settings.

Db-Fmeas (Downbeat F-measure): For measuring the

downbeat tracking performance, we use the same F-

measure as defined for beat tracking (using a ±70 ms tol-

erance window).

5.2 Results

In Experiment 1, we learned the observation model de-

scribed in Section 4.2 for various numbers of clusters,

separately for each of the eight rhythm classes. Then,

we inferred the meter using the HMM described in Sec-

tion 4.1, again separately for each rhythm class. The re-

sults of this experiment indicate how many rhythmic pat-

terns are needed for each class in order to achieve an opti-

mal beat and downbeat tracking with the proposed model.

1 We used the MATLAB code available at http://code.
soundsoftware.ac.uk/projects/beat-evaluation/ with
standard settings.

Tables (1a) to (1h) show the performance with all the eval-

uation measures for each of the eight styles separately. For

Experiment 1 (Ex-1), all significant increases compared

to the previous row are emphasized using bold numbers

(according to paired-sample t-tests with 5% significance

level). In our experiments, increasing the number R of

considered patterns from one to two leads to a statistically

significant increase in most cases. Therefore, we can con-

clude that for tracking these individual styles, more than

one pattern is always needed. Further increase to three

patterns leads to significant improvement only in the ex-

ceptional case of Ādi tāla, where measure cycles with long

durations and rich rhythmic improvisation apparently de-

mand higher number of patterns and cause the system to

perform worse than for other classes. Higher numbers than

R = 3 patterns never increased any of the metrics signifi-

cantly. It is important to point out again that a test song was

never used to train the rhythmic patterns in the observation

model in Experiment 1.

The interesting question we address in Experiment 2 is

if the rhythm class of a test song is a necessary informa-

tion for an accurate meter inference. To this end, we per-

formed meter inference for a test song combining all the

determined rhythmic patterns for all classes in one large

HMM. This means that in this experiment the HMM can be

used to determine the rhythm class of a song, as well as for

the tracking of beats and downbeats. We use two patterns

from each rhythm class (except ādi tāla), the optimally per-

forming number of patterns in Experiment 1, to construct

the HMM. For ādi tāla, we use three patterns since using

3 patterns improved performance in Experiment 1, to give

a total of R = 17 different patterns for the large HMM.

The results of Experiment 2 are depicted in the rows la-

beled Ex-2 in Tables (1a) to (1h), significant change over

the optimal setting in Experiment 1 are emphasized using

bold numbers. The general conclusion is that the system is

capable of a combined task of classification into a rhythm

class and the inference of the metrical structure of the sig-

nal. The largest and, with the exception of ādi tāla, only

significant decrease between the Experiment 1 and Experi-

ment 2 can be observed for the downbeat recognition (Db-

Fmeas). The reason for this is that a confusion of a test

song into a wrong class may still lead to a proper track-

ing of the beat level, but the tracking of the higher metrical

level of the downbeat will suffer severely from assigning a

piece to a class with a different length of the meter than the

test piece.

As described in Section 4.1, we do not allow transi-

tions between different rhythm classes. Therefore, we can

classify a piece of music into a rhythm class by evaluat-

ing to which rhythmic pattern states rk the piece was as-

signed. The confusion matrix is depicted in Table 2, and

it shows that the highest confusion can be observed within

certain classes of Carnatic music, while the Cretan leaping

dances and the Turkish classes are generally recognized

with higher recall rate. The accent patterns in mishra chāpu

and khanda chāpu can be indefinite, non-characteristic and

non-indicative in some songs, and hence there is a possi-
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R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1

1 65.9 45.0 57.6 0.89 46.6

2 91.0 76.6 90.0 1.62 88.6
3 90.6 77.2 91.1 1.59 86.5

Ex-2 17 85.7 68.7 89.3 1.57 65.1
KL 69.38 41.24 64.60 1.46 -

(a) Turkish Music: Aksak (9/8)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1

1 71.4 47.8 50.3 0.68 38.9

2 89.1 75.6 75.6 1.04 48.6

3 87.7 73.0 73.0 0.99 54.4

Ex-2 17 89.3 74.8 77.5 1.16 41.1

KL 52.77 5.90 59.04 0.77 -

(b) Turkish Music: Curcuna (10/8)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1

1 57.2 33.5 42.2 0.68 37.3

2 85.2 70.1 82.7 1.51 75.4
3 83.4 63.3 81.9 1.45 73.7

Ex-2 17 86.6 75.8 87.2 1.64 72.6

KL 70.25 49.52 71.79 1.53 -

(c) Turkish Music: Düyek (8/8)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1

1 68.1 60.7 60.8 1.33 59.1

2 93.0 91.3 91.3 2.25 86.2
3 92.9 91.0 91.0 2.25 85.8

Ex-2 17 88.8 74.3 92.5 2.24 72.2
KL 35.87 34.42 72.07 1.57 -

(d) Cretan leaping dances (2/4)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1

1 49.6 38.9 47.0 0.93 16.5

2 56.7 44.0 59.5 1.21 32.5
3 61.6 49.5 65.9 1.40 32.8

Ex-2 17 62.4 40.6 76.7 1.73 21.4
KL 59.42 45.90 64.91 1.53 -

(e) Carnatic music: Ādi (8/8)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1

1 68.2 65.8 71.4 2.04 60.8

2 82.8 82.5 90.2 2.77 81.9
3 83.0 82.9 89.5 2.73 80.5

Ex-2 17 77.2 60.6 88.9 2.39 62.0
KL 53.42 29.17 60.37 1.30 -

(f) Carnatic music: Rūpaka (3/4)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1

1 84.1 79.0 79.0 1.54 71.0

2 93.7 92.2 92.2 2.00 86.4
3 93.4 91.6 91.6 1.99 89.9

Ex-2 17 90.0 81.6 86.3 1.83 55.0
KL 74.61 44.99 68.71 1.25 -

(g) Carnatic music: Mishra chāpu (7/8)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1

1 58.9 38.0 41.5 0.70 27.7

2 94.3 88.9 94.9 2.00 77.3
3 93.7 88.1 94.3 1.95 78.2

Ex-2 17 90.3 76.0 93.2 2.01 70.6

KL 76.16 57.76 66.34 1.18 -

(h) Carnatic music: Khanda chāpu (5/8)

Table 1: Evaluation results for each rhythm class, for Experiment 1 (separate evaluation per style, shown as Ex-1), and

Experiment 2 (combined evaluation using one large HMM, shown as Ex-2). The last row in each Table, with row header as

KL, shows the beat tracking performance using Klapuri beat tracker. For Ex-1, bold numbers indicate significant change

compared to the row above, for Ex-2, bold numbers indicate significant change over the best parameter setting in Ex-1

(bold R parameter), and for KL the only differences to Ex-2 that are not statistically significant are underlined.

bility of confusion between the two styles. Confusion be-

tween the three cultures, especially between Turkish and

Carnatic is extremely rare, which makes sense due to dif-

ferences in meter types, performance styles, instrumental

timbres, and other aspects which influence the observation

model. The recall rates of the rhythm class averaged for

each culture are 69.6% for Turkish music, 69.1% for the

Cretan music, and 61.02% for Carnatic music. While the

datasets are not exactly the same, these numbers represent

a clear improvement over the cycle length recognition re-

sults depicted in [9] for Carnatic and Turkish music.

Finally, we would like to put the beat tracking accura-

cies achieved with our model into relation with results ob-

tained with state of the art approaches that do not include

an adaption to the rhythm classes. In Table 1, results of the

algorithm proposed in [3], which performed generally best

among several other approaches, are depicted in the last

rows (KL) of each subtable. We underline those results that

do not differ significantly from those obtained in Experi-

ment 2. In all other cases the proposed bar pointer model

performs significantly better. The only rhythm class, for

which our approach does not achieve an improvement in

most metrics is the ādi tāla. As mentioned earlier, this can

be attributed to the large variety of patterns and the long

cycle durations in ādi tāla.

6. CONCLUSIONS

In this paper we adapted the observation model of a

Bayesian approach for the inference of meter in music of

cultures in Greece, India, and Turkey. It combines the task

of determining the type of meter with the alignment of the

downbeats and beats to the audio signal. The model is ca-

pable of performing the meter recognition with an accu-

racy that improves over the state of the art, and is at the

same time able to achieve for the first time high beat and

downbeat tracking accuracies in additive meters like the

Turkish Aksak and Carnatic mishra chāpu.

Our results show that increasing the diversity of a corpus

means increasing the number of the patterns, i.e. a larger
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Turkish Greek Carnatic

Aksak Düyek Curcuna Cretan Ādi Rūpaka M.chāpu K.chāpu Recall

Aksak 21 7 2 2 66

Düyek 23 2 5 77

Curcuna 1 3 13 2 1 65

Cretan 3 5 29 3 2 69

Ādi 14 8 1 7 47

Rūpaka 3 19 1 7 63

M.chāpu 2 1 16 11 53

K.chāpu 4 1 23 82

Precision 84 61 76 76 64 56 84 47

Table 2: Confusion matrix of the style classification of the large HMM (Ex-2). The rows refer to the true style and the

columns to the predicted style. The empty blocks are zeros (omitted for clarity of presentation).

amount of model parameters. In the context of the HMM

inference scheme applied in this paper this implies an in-

creasingly large hidden-parameter state-space. However,

we believe that this large parameter space can be handled

by using more efficient inference schemes such as Monte

Carlo methods.

Finally, we believe that the adaptability of a music pro-

cessing system to new, unseen material is an important de-

sign aspect. Our results imply that in order to extend meter

inference to new styles, at least some amount of human

annotation is needed. If there exist music styles where

adaptation can be achieved without human input remains

an important point for future discussions.
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�����`� ������^�� ���� ���^�����^`� `�� \��`� ���^����� `��
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������� ^�`��^���`� ����� `�� ¯`\`���� ������ �� ^��� �`�
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����� �� ^�� ����`��� ��ª����� ��� ^�� ����� �^��� `�� ^�� ^�`������^��� ��^� ^�� ������� ����� �� ����`���� ���� �� ^��� �`���
���^^���� ��� �`�^ �� ^�� �`^^��� �������� ��^���� � � �`� �� ����`^�� �`�� ^����� ��� ����� ����� �� ���� �����`^�\�� ��^�
��������`�^ \`��`^���� `�������

−1

0

1

A
m

pl
itu

de 1 1 1 1 1 11 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2

4 4 4 4 45 5 5 5 5 5

Time(s)

Fr
eq

.(
kH

z)

2 4 6 8 10 12 14
0

2

4

$`��^� �£ �� `���� ��`���� �� ^�� �`^^��� ������/�� ��� ^�� �`��� ����� ^�� �`\����� `�� ^�� ��^^�� �`��� �� ^��
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����`��� �����£ ���¥� ����§� ���³� ������ `�� ��	
�¦ ��� �� ��^ ������^ �� ^��� �`^^�����

�� ^�� ��`� ����`�����
�� ������� ^�� ��� �� ��`� ����`���� `� ` ��`�� �� ������

���^`^��� �� ^�� ��� ^`��� �� ���������� �`^^��� ^�`�������
^��� `�� ��`������`^��� �� ����`��� ���������� ���^���� ����
�������� ������� ����` ���������� �`^^���� `� ` �^��� �`���
��� ���� ������� ��`� ����`��� ���^�� `�� ^�� ����^�� ��^ ��
���������� �`^^���� �`�� �^ `� ���`� ������ ��� ` ����^ ������
�`^���� ����� ^���� ����`���� �`\� ` ���`� `�`���� ^� ������
`�� �`���`��� �� ������^ ` ������ �������^��� �`��� `��
���`�� ^� ^�`������� ` ���������� �`^^��� ��^� ` ��ª�����
�� ����`����� �� ^��� ��� ^��� ^�`������^��� ^� ��`����� ^��
��ª����� ��^� ��� �� ^�� ���������� ��^ �� �`^^���� ^�`^ ���
��� �� ������� ����`� �� ����^ ���\��� `� ��^�����^��� ^�
���������� �`^^���� �� ������� ����`�
��� ��^��~~`�q �\���^q~ `q *�`[`q� ���^\

������� ����` �¯µ���¶� �� `��� �`���� |����� ����`� ��
��� �� ^�� ���^ ��������^`^�\� ������ �� ������� ^�`��^���`�
���������� `�^�� ��^���`^��� ^��`^���`� `�^��� ��^� �������
`�� ���^�����^`� `�����`�����^� �^ �� `� `�^�\� `�^ ����
`�� ����^� �� ^�� ������^ ����`� `�� ���^��`� ���^��^�� ��^�
` �`��� `������� `�� ��������`�^ �����������`� ��^��`^����
��� �� ^�� �`�� ��`�`�^����^��� �� ������� ����` `��^��^���
�� ^�� ���`��`��� ���^�����^� ^�`^ ��\���� ^�� `�^��� �\���
`��� ���� ^�� �^������ ����^`^�\�� ^� ^�� ���������� ��\��
���^� �� �^`�� `�� ^�� ��ª����� �� ������� �\��� ������^
������^�� �� ��^���`^�� ��^� `� �\��`�� ���^���� ����� ���
�`�� ������^ ^�`^ ����� ^��� ���^�����^� �� ^�� ����������
��������� `�� ^�� �`�� ��`�� ^� ������� ^��� ^`�� �� ` ��^
�� ���������� `�� �`����� ���������� �`^^����� ����� ��^�
^�� �`�� ������� �� ������� ^�� �\��`�� ���^�����^� �� ^��
�������`���� ^���� �`^^���� �`\� ��������^ ����^����� ����
����`� �����^`�^ �^���^��`� ����^� �� ^�� ��`�� � �������
�`��� �^`�^� `�� ���� ��^� ���������� �`^^����� ^��� ����
��`��� ��^������ `�� �������� `��`�� `�� �`�� ^�`���^���
����^� ��^��� ^���� ���� `�����`�� ^�� `�^���· ��\��
���^� �� �^`�� `�� ��^ ^�� ���� �� ^�� ��`�� ^�� ������
^�� `��` �� ` ���^��� �� ^�� `��`� ���������� ^�� ��^��^���
`�� ��`�`�^����`^��� �� ���������� �`^^���� �� ` ����`����
^`� ^`�� ��� ^�� �������^��� �� ^�� ����� ��������� �� ����

���� ����`�
��� ���������� �`^^���� �� ������� ����` ����� �`� ��

������� `� ��ª������ �� �^����� ��`��� �� ��������^ ����
���`^���� �� ^�� ���������� ���^�����^�� `�� ^�� �����^���
\`���^� �� ^������ `�� ^�`����^^�� ����� ��`� ����`���� `�
���������� ��� ���������� �������� �� ������ �`����
�� ��\� ���^�����^� ��`��� �� ���� ������`��� ��� ���
��`����� `�� ^�� "��;��/ ���� `�� ��`��� �� ��� ������
���������� `�� `�� ^�������� ����� �� ` �������^ �`���
����/� ��� �^��� ^���� ���^�����^� `�� ^�� ?����/� ���`��
������ ^�� "��/� ���� ����� `�� ^�� ����� �����`���� ����/
�`� ` ���� ��^���� ��������� ����� ����� ^�� ���^ �� ^����
���^�����^� `�� ��^`��������� ��^� ���^���^ ^������ ¥ � ¸`��
�� ^�� ��������^ ������ ^�`^ ^���� ���^�����^� �`� �������
����\���`���� ��^��� ^������ ��������^ ��`���� ^�����ª��� ��
^������ ��������^ ���`����� `� ���� `� ^�� ������ ^�`^ `��
�������� �� ` ������`^��� �� ��������^ ���^�����^� �`\� `�
`�����`^�� ����`��� ^�`^ ��������^ ^��� ¬¹®� ��� ����`����
`�� ^���� `�����`^�� ���^�����^ ������`^���� `�� ����� ��
�`��� ¥� ����� �`�� ���������� �`^^��� �� ` ��ª����� �� ����
�`���� �� ^���� ������^`������� ������ `���� ��^� ^���� ����
����� ���^���� �^���^��� `�� ���`��� ��`^����� � �`�^����`�
��`^��� �� ^�� ��`� ����`��� ���^�� ��� ������� ����` �������
���� ^�`^ �`��� �^ ������`��� ��^����^��� �� ^�`^ ^�� ����`����
^�`^ ���� ` �`^^��� ����� ^� ^�� �������� `� ` ������ `��
��^ ^� �`�^����`� ���^�����^�� ¸`�� �`�^����`� �`^^��� ^���
�`� ` ������ ���ª�� ����`��� ��������^`^��� ��`��� �� `�� ^��
�����������

�� ��`�^���� ^���� �� ` ����`�� �� ����^�� ��^ �� �`��� �`^�
^���� ��`���� ��º�» �µ��� � ^�`^ `�� ��`��� �� ` ����
����`���� ��^� �`�� �� ^���� �`\��� ` �������� ���� �� ^��
`��`�� ����� �`��� �`^^���� �� ^�� ����`�� �`� �� ��������
^� `� ¢�`^^��� ��`����¤ ��� ^�� ������� �� ��`������`^���� `��
��`�������� `� ���^`��� �� ` �`^^��� ��������� �� ^�� `����
��������� �� `� `��` ��^� ��� �� ^���� �`^^��� ��`���� �� ^���
` ����`�� ^`��� ��^����� ` ������^� `����� ������ ��� ^��
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���� �� ¬¹®� ������^ ^�� ����^���� �� `����� ����^� �� ^����
������ ¥ ����� ^�� ����� ��� `� ��`���� �`^^��� ������/��

�^ `��� ����� ��� ` �������� ^�`������^��� �� �^`�� ��^`�
^��� �`�`�^�� ���� ¬¹®� �`� �� ���������� �� ` ������ ����
�� ^�� ��`� ����`��� ���^��� ������ ^�� ��� �� ^���� ��`�
����`��� ��ª������ �������� `�� ����� ^�� ��������^`^��� ��
^���� �`^^���� ��`��� �� `� ��������� �`���� ^��� ���
^��`� ��� ^�� ^�`������^��� `�� `�^��`^�� ��`������`^��� ��
^�� �`^^����� ���^���� ������ § ����� `� `���� ��`�����
`���� ��^� ^��� `������ �`����� ^� �����`^� ^�� ����`��� ���
��^�� ��� ����^����`� ����� ^�� ^����`� ��`�`�^����^��� ��
^�� ���������� ���^�����^� ?����/� ������`���� ��^��� `��
"��/� ������`���� ��^���� ���� \`��`^��� ^� ^�� ��^`^��
����� �`� `��� �� ����� ���� `� ��������\� ^����� `�� `����
^���`� �����^��� �� ����`�����

������ ^�� �`^^���� `�� ����^�� �� ������ `�� ������
������ ^���� `�� ��\��`� ��`������� ^� ^�� ������� �� ����
������� �`^^��� ^�`������^��� `�� ��`������`^���� ����� `�
��`� ^�`��^���� ^�� ����`���� ���� ��� ^�� ��������^`^��� ��
^�� �`^^���� �`��� ���� ������^���� `�� �����`� `�������^�
��� �����^ ����� ^�`^ ��� �`�^����`� ^����� ����^ �� ����
�����^�� �� ���� ^�`� ��� ����`���� ���^�������� ^�� ����
�`��� ��������^`^��� ���\��� ������`^��� ��� ^�� �������^
^����� �� ^�� ��������� �� ���� ^�� �`�� �^���^��`� ������
`�� ��������^��� �� `� `�^�`� �������`���� ` �`�^����`� ����
�`��� ����^ �� ��������� �� ��������^ ������`^���� �� ���
�^�����^� � ���� �� ������ ¥� ^�� ����^ ���������� �� ^�� ����
�`��� ^¼� �� ��`��� ���^ �� ^�� ?����/�� ��^ �� ^�� ���^ ��
^�� �`^^��� �� ��`��� �� ?����/� `�� ^�� ����/ ^���^����
�� �`�^� �����`��� ���`����� ^�� �^����� �� ^�� ����/ `��
������ ���\���� �� ^�� ����`��� ��ª����� �`� �`� �� ����
�� ^�� ^���� ��`���� �� ������ ¥ ��� ^�� ������ ���^���^��
��^� �� ^�� ����/�� �����^ ��� ^�� ��^�����^���� `�� �^���
�^���^��`� ����^� ��`��� �� ^�� ���� `����� �� �����`^�� ��
�`��� ¥� �½�� �� ���^�� ` ������`^��� �� `�� ^�� ^���� ��^�
`���������� ��^ �� ���� �`���� �½�� �`� �� ��`��� ��^� ���^
^�� "��/�� �� ���^ ^�� "��/�¾����� ������`^���� � ��^`����
�������^��� `�� ������ ��� \`����� �`^^���� �� `\`��`��� `^

����� ��� �� ^�� �`�� ����^���� �� ^�� �`^^���� �� ^�
`�����`�� ^�� ��\����^� �� `�^��� �� �^`��� ^�� �\��`��
����^� `�� ^�� ���`^�\� ���`^��� �� �`�� �^���� �`� \`�� ���
^`���� ����� �`��� �^ ��������^ ^� ��^ ` �^`��� ����� �� ` �����
��^� ��^��� ��� ^��� ����`^��� `�� ^�� ��`���� �`�� ���� ��
������ ¥� `� ������^�� �� ¬¹®� `�� ���� �����`^�\� `�� �`�� ^�
���\�� ^�� ���^���� ���������^� �� ^�� �`^^���� ���^��������
�`�� �`^^���� ����� `� ������/�� `�����`�� ������ ��\��
���^� �� ��������� ���`^���� �� ^���� �`���� ���^`�� ����`�
��� ������ª������ �� ^�� �`^^��� `�� ����`^�� ��������^����
���� ^�� `���� ��`���� �� ������ § �`� ^�� `���^���`� ����
�^�^���� �� ^�� ������ª����� �½���^¼��ª�¿�^¼� �� ^�� �`^^����
���� �`���� ^�� �`�� �`^^��� �� ��������^ �������`���� ^�
�`\� \`��`��� ����^��� `�� ^���� ����^�^���� ���� ^� �� ���
�����^�� �`������ ���`���� `�^����� ^�� �`^^���� `�� ���`���
��`��� �� ����`^���� �� �`�� �`��� ^�� �^���� ���^�����^� ��
�\�� ^�� \��`�� �`� �^`�^ ��`���� ������ ^�� �`^^���� ����
������^��� ��`������� �� ����^����`^��� `�� ��`������`^����
��� �^�|`��~ ��^�
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�\��� �£ ����`���� ���� �� ������� ����` ���������� `��
^���� �������� ���� �� ^��� �`���� ������ § ����� ^�� ���
�^�����^ ������`^��� ���� ^� ������� ^�� ����`���� ���^���
���^ ����� ��^���� <> �� ��^���`�� ������ ³ ����� ^��
������ �� ��� ��� ^�� ����`��� ����� �� ^��� �`����

����� \��`� ����������� ����� `� ��� �`��� `����`���
���� ���� ����`^�����` `� ^�� ��^���`� ��������^`^��� ���
���� �`^^����� ��^� ` ����� �� ��^���\��� ����� ����� ���
ª������ ���� ` ����`�� �� ���� �`^^���� ��^� ��`�� `�� �`��
������ ²`��� �^ `�� �������� ª���� �� ��`^������ ¬Æ®�
`����� ^� �`� ^�� ��`^������ ������ ��^� ^�� �����������
��� ���� ������� � ���^���^��� ^� �� ��^�� ���� �� ^�`^ ��
\��`� ���������� ���^��� ���� `� ��`^������� ^�� \��`��
��`^���� ���� ^�� ����� �^����� `�� ��^ ` ��`�� ��� ^�`������
���� `� �� ^�� �`�� �� ��`� ����`����� ���� �����^��� |`����
�^ `�� �������� ^�� ��� �� ������^�� ���� ��� ���� ^�`��
�����^��� �� ���������� ����� ¬¥§®� ���� `����`�� �� �������
��^ ���� ��`^ �� ������^ �� ^�� ����� ^�`^ �^ `���� ^� ^�`��
������ ����\���`� ����� ��`��� ��`��� ����`^� `�� ��^ �\��`��
^������ ��� ^� ������`^����� `�� �� ��������� ^� ����`���
���������� �`� �`��� ����\�� `�� ^���� `����`���� �`\�
�������^�� `�� �������^�� ���� ���� ���� �� ����`��� ������
���^`^���� ��� ���� �`^^�����

������` ¬§® �������� ^�� ��� �� ^`��` ���� �� ^�`�������
^��� �� ���� ^`��` ��ª������� �����^��� ^`��` ����`���� ����
���� ��� ` ������^�\� ����� ��� ^`��` �^���� ��ª������ ¬³®�
��`�^`�`��`�`��`� �^ `�� ¬¥® ���� ^�� ����`���� �� ^�� ����
�`��`� �� ` �^���� ^�`������^��� ^`��� ������ ^���� ������
�� `������ ` ����`��� ���^�� ^�`^ ���\��� ������`^��� ���
` ����� �������� ���^�`� �� ����\���`� ���^�����^��

«����^� ^�� ���� �����`� ����^`�� `�� ^�� ���� �� `����
����� ��^^�� ���� �`� ���� ���� ��� �����^`^���`� `�`�����
�� ������� ����` ���� `� ��� �������^�\�� �^ �`� ���� �^���
��� `� ` ^`���^ �� ` ���� ����� ��`������`^��� ����� ¬¥® `��
^�� `����^��`� ������^��� �� ������� ����` ������� �`� ����
�^����� ¬¥�®� ��`�^ ���� ` �����^ �^��� ¬¥¦® ^�`^ ��������
^�� ��� �� À������`^�\� �`^��� �`�^����`^��� ��� ����^ ���
^��^��� `�� ����^ ��`������`^��� ��^� ^�� ��������^ ����������
���^�����^ ��`����� �� ��������`�^ ���� �`� �^����� �������
����` ���������� ���� ` �����^`^���`� �������^�\��

�����`� ^� À`�`�� �^ `�� ¬¥ ®� �� ������� ` ������ ������
��^��� �`��� ��`������ �� ^��� �^���� ���� `����`�� �� ����
�����^ ^� ���� �� ^�� ����� ^�`^ ^���� ����`^������ ������
���^`^���� ���� ���`^�� �� ^�� `�^����� ����� �� `�� �����
��� �� `���`�� ����^��� ��`� ^�`��^����� ������ �������^���
�� ` ���� �������� ����`��� `��` ��^� �`�� �^`^� �� ^�� `�^
`�����^��� `�� ���^��� ¬¦®� ����� �� �`� `���� ��\��`�
`\`��`��� ^���� `�� ��������� ��� �����^`^���`� `�`�����
�� ����`��� ���������� �`^^����� �� ^�� ���^ �� ��� ������
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����� ^��� �� ^�� ����^ ���� ^� ������� ^�`������^��� `�� ��`��
�����`^��� �� ����`��� �`��� ���������� �`^^����� `� `������
^� ������� ����`�
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�� ������� ����`� ��\��`� ����`���� �`� �� �`���� ^� ` ����
��� ^������ ���� �`�������`��� ^� ����^����� �`����� ��
������ ^� ������ ^�� ����`��� ��`�� ��� �����^`^���`� `�`��
���� �� ���������� �`^^����� �� ����^ �`���� �`�� ����`���
^� ��� �� ��\��`� �� ^�� ���^�����^ �`^������� ���������� ���
`�`������ `� ����`���� �� ¬¥¦®� ��^���^ ����������� �������
����� �� ��`���� ^�����ª�� �� ���`����� �`��� �� ����^�
���� �����^ �����������^�� �� ^��� ������� ^�� ����`����
��^� �����`� ^������ ��^� ��\� ����`��� ������ � ��� ����
��� ���� `�� ��	
� `� ����� �� �`��� ¥� ¸\��� ����\���
�`� �^���� �� ^�� ����/� ��^� ���� `�� ��`������ �`\� ����
������� `� ��� �� ^�� ���^ �� ^�� ����`��� ������� ^�� ����/
�`� �� ��`��� �����^`������� �� ��^� ��� ������ �^����� ��
^�� ?����/� `�� ^�� ����� `�� �`���� ��� `�� �� �������
^�\���� `�� ^�� �������� �^���� �� ^���� ^�� ���^�����^� ^��
��^��� �� ^�� ����`��� ���� ���`���� `�� �^���� �� ^�� "��/�
�� `�� ������`^��� ^�`^ �������� "��/� �`� ���� ��^`^�� `�
��	
� ���� �`����� ^� ` ������� ��^ �� ����`��� ������ ��
���� ��� ^�� ������� �� �����^`^���`� `�`������ ��� ^�� ���
�`����� �� ^�� �`���� �� ����^ ������\�� ^� ^�� ������� ��^
�� ����`��� ������ `�� ��� ^��� ^� ��������^ ^�� �`^^�����
��� ���\�������� ���� �^ �� ���`� ���� ^�� ���^��^� �� �`��
^�� ����`��� ������ `� ���^ ����`����� `�� ����^� ^��� �� ^��
������ ������ �� ������ ³ �� �`��� ¥� ������ �� ^�� ����
���^ ^`��� ^���� `�� ��\� ����`��� ������� ���^���� �� �������
����`� ^�� �������^��� �� ^�� �`^^��� `� ` ����� �� ���� ���
���^`�^ ^�`^ `� `����`^� ����`��� ^�`������^��� �� ^�� �`^^����
«�� ^� ^�� ����^�� ��^ �� �`^^��� ��`���� `�� ����� ^� `�� ^��
\`��`^���� �������� �� ` �`^^���� �� `�� ����`���� ��^����^��
�� ��`�������� `� `���� �`^^��� ��^� ��� �� ^�� �������� �`^�
^��� ��`����� ����`��� ^�`������^��� �� ���� ���������� `� `�
��^������`^� �^�� ^��`��� �`^^��� ��`������`^����

�� ��� ������^ ` ������`^��� ��� ^�`������^��� `�� ������
��^��� �� ����`��� �`��� `���� ���������� �`^^����� ����� ��
` ��������`�^ `�`���� �� ^��� ^`�� ^� ������^�� ���� ������
�������^��� ����� ���� ������� ����`���� `�� `�`������ ^�
����� `�� ` ���������� �`^^��� ^� ` ���^���� � ` ��ª����� ��
������ ����� `�� �`���`�� ����� ^� ���� ` ���^���� ����� `
\��`���`��� ���^ `� �`�� ���������� �`^^��� �� ������ ��^� `
������� ��ª����� �� ����`���� ���� ` \��`���`��� ����\��
������ �� ^�� �`�� �� ������ �������^��� ����� ������^���
�`�� ���^����� `�� ��������� �� ��� �`�� �� �`\� ` ��`��
������ �� ���������� �`^^���� ^� �� �����������

�������� ` ��^ ��N �`^^��� ��`����P = {P1, P2, · · ·PN}�
�`�� �� ����� �� ` ��ª����� �� ����`���� ���� ^�� ��^ �� M
����`����S = {S1, S2, · · ·SM}� ���Pk = [s1, s2, · · · , sLk

]
����� si ∈ S `�� Lk �� ^�� ����^� �� Pk� ��\�� ` ^��^ `����
�`^^��� x[n]� ^�� ^�`������^��� ^`�� `��� ^� ��^`�� ` ����`�
��� ��ª����� P ∗ = [s1, s2, · · · , sL∗ ] `�� ^�� ��`������`^���
^`�� `��� ^� `����� P ∗ ��^� ��� �� ^�� �`^^���� �� ^�� ��^ P �
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^�� �`^^��� ��`���� ����^��� �� ^�� ������� �� ����� ��\�
�N = 5� ���^ ���ª���^�� ���� ����� ����� ��\� �`^^����
`�� `��� ^�� ���^ ������ ���� `�� ����� ���� ` ���� ������
�� ��������^`^�\������ ��� �`^^���� ���� ��^�`�^�� ���� ^��
`���� ��������� `�� `������� ^� ` �`^^��� ��`�� �� ` �����
�������^� ��� �`^`��^ �� ��������� �� �`��� § `�� ���������
`���^ §§ ����^�� �� `���� ��^� �\�� §§   ����`���� �� ^��
^`�� ��� `���� �`����� `�� �^���� ���������� �`����� `^
���¥���� ��� ����`��� ^�`������^��� �� �`�� `���� �`^^���
�� ��^`���� �����^�� ���� ^�� ����� �� ^�� �`^^��� ��`�� �^ ���
������ ^�� ����� ^�� ������ ^��^� ^�`������^���� `\`��`���
�� ^�� �`^`��^ `�� ��^ ^��� `������� ����� �^ �� ` ��������
�`�^ �����^ ^� ��^`�� ^��� `������ ^�`������^����� �� `�� ^�
��\���� `�����^��� ����� �� ��^ ��ª���� ^�� ��� �� ^����
`������ ^�`������^���� ��� ^�`������ ���� `��� ������� ^�`^
^�� `����`���� ��`�� ���� �� `�� ���� �`^^��� ��`���� ^�
^�� �`^`��^� �� �`�� �� �`^^���� ����� ` ������ª����� �� ^��
�`^^��� �`� �� ����`^�� ����� (�� �������/� `�� ������/���
^�� `���^���`� ����`���� ^�`^ ����� ��� ^� ����^�^���� ����
�`��`��� `���� �� ���^����� ^� ^�� �`^^���� ������ ���^
�� ^�� �`^`��^ ������^� �� ����`^�� ���������� �`^^����� ^����
`�� �`�� `���� ��`����� ^�`^ ���^`�� ` ������� �`��������
`�`�^ ���� ^�� ���������� �`^^���� ��� �`^`��^ �� `\`��`���
��� ����`��� �������� ^������ ` ���^�`� ������ ������^��� § �

�� �=" �������=

��� ����`���� `�� �����^`^���`�� ����`�� `�� ^� ����� ^����
^����`� ���`����� �� ����� `� ��� ��� �`�� ����`��� �`�`��
����� ^� ` ���������� ����� ^���� ����`��� ���� `�� `
�`���`�� ������ `� ����^ `���� �`^^��� �� ^�`�������� ��^�
` ��ª����� �� ����`���� ����� Ç�^���� ��������� `�� ^���
��`������� ^� ` �`^^��� ��`�� �� ^�� ����`�� ����� ` ��`����
�� ���^`����

� ����� ��`��`� �� ^�� `����`�� �� ����� �� ������ ³�
�� ����^ ����� ����`��� ��\�� ���� {λm}� 1 ≤ m ≤ M(=
5)� ��� �`�� ����`��� Sm ����� ��`^���� ��^�`�^�� ���� ^��
^�`����� `���� �`^^����� �� ��� ^�� ���� ��`^���� ^� �����
^�� ^����� �� ^�� ����`����� �� �`�^��� ^�� ^�����`� ���
�`���� �� ����`����� �� `�� ^�� \�����^� `�� ^�� `�������
`^��� ����������^� �� ^�� ����� ��� �^���� `���� �� ����
\��^�� ^� ����� ����� ^���� �� �� `���^���`� ������`^���
�� �^���� ��`������ ��� ¥³ ���������`� ���������� ^��  ^�

§ ���� ��^`��� `^
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$`��^� �£ ��� ����� ��`��`� �� ^�� `����`��

����������^� ���� ��`^���� `�� �����^�� ���� `���� �`^�
^���� ��^� ` ��`�� ���� �� §³�§ �� `�� ` ����^ �� ¦�Æ ���
�� `��� ������� ^�� ��� �� ������ �`� ��`����� �� ^��  ^�

���� ����������^� �� ��`������`^��� �������`���� �����
�� �`\� ^�� ��^� �� ��`^����� ����Ê Ê«Ê�� ^�� ³¹ ���
�������`� ��`^��� ��������� ^��  ^�� ���^` `�� ����������^`
����������^�� `�� ����Ê«Ê�� ^�� ³° ���������`� \��^��
��^���^ ^��  ^� ����������^�

�� ����� �`�� ����`��� ����� ` ¦��^`^� ���^�^������^ ���
��������� `� ��^�� `�� `� ���^ �������^^��� �^`^��� ���
�������� �����^��� ��� �`�� �^`^� �� ������� ��^� ` ����
��������^ �`����`� ���^��� ����� ����� ^� �`�^��� ^��
^����`� \`��`����^� �� ����`����� �� ���������^�� ��^� ����^
`�� ���^��� ��������^ ����� ��^ ��^� ��^^�� �������`���
�����\����^� ����� �� �� ��^ �`\� ^��� `������ ^�`��
�����^����� `� ����`^�� ��� ^�`����� ��� �`�� ����`��� ��
��^ ��������� ����� �� ��� `� �������� ����� �`���
����� �����^��`^��� ^� ^�`�� ^�� ���� ����� ���^ ^�� ����`�
��� ��ª����� ������������� ^� �`�� ��`^��� ��ª������ ���
���� `�� ���^�`����� ��^� ` ��`^ �^`�^ ����� `�� �� ^�� ^�`���
��� �`^`� ��� ^�� ���������^� ���� ���� ����� ^�� ���
������^ ���²� ¬¥°®�

��� ^��^���� ����� �� ���� ���� ` ����� ����`��� ^�`��
�����^��� ����������^ �� ^�� �`^^��� ��`��� �� ^��`^ ^�� ^��^
�`^^��� `� ` ����^ ����� ^�������������� ������^� �`���\
��`��� ����� �`� ������^ �� `�� ����^� ����^� ��ª����� ��
����`����� ��^� ������� �����`� `�� �����`� �^�`���^����
����`����^���� ���� p(s1 = Si) = 1/M `�� p(sk+1 =
Sj/sk = Si) = 1/M � 1 ≤ i, j ≤ M `�� ��^� k ����� ^��
��ª����� ������ ���� `��� ����� ^�� �`���`�� ����� ���
������� ^�� ���������� �`^^���� ����� ����`����� ��\�� ^��
��`^��� ��ª����� ��^�`�^�� ���� ^��^ `���� �`^^���� �� ���
^�� ���� {λm} ^� �� ` Ç�^���� �������� `�������^� �����
`��� ^� ���\��� ^�� ���^ ��ª����� �� ����`���� P ∗� ��\�� `
����`��� ��^���� ����^���^�� ���� ^�� �`���`�� ������

��\�� ^�� ������� ����`��� ��ª����� P ∗� �� �����^�
^�� �^���� ���^ ���^`��� ¬¥¥® ��^���� P ∗ `�� ������^� ��
^�� ��^ P � ��� ��� �� ���^ ���^`��� �� ��^�\`^�� �� ^�� �`��
^���� ����^� ��� ^� ������ �� Ç�^���� `�������^� P ∗ �`� �`\�
�����^���� ���� ����^���� �«�� ����^�^�^���� ���� `�� ^�`�����
��^��� ��� �� ����`���� ����`��� ^� ^�� ������ ^��^�� ����
������ ^� �`���� ^�� `������ \`��`^���� �� �`^^����� `� ���^
���^`��� �� ��������� �\�� `� ��`�^ �`^�� ^� ^�� ��ª������
�� P � �� ������� ^�� ��� �� ^�� ��������^ �^���� ���^ ����
^`��� ��`������ ��\����^��� ���^`��� �d1� ^�`^ ���������
�� «� � ������ `�� ^�� «`���`�Ë��\����^��� ���^`��� �d2�

��`^��� ����`��� |`^^���
� � d1 d2

����Ê«Ê� Æ�¥� §°�³§ ¹³�§³ Æ¹��
����Ê Ê«Ê� Æ��¹Æ ³¹�°³ ¹¥�³ Æ¹��

�\��� �£ ����`��� ^�`������^��� `�� |`^^��� ��`������`^���
�������`���� ��^� ������^���� ��� `�� �����`�� �����`�
����� ��� ����`��� ^�`������^���� |`^^��� ��`������`^��� ���
���^� `�� ����� ��� ��^� ���^`��� ��`����� d1 `�� d2� ���
\`���� `�� �� ������^`���

^�`^ ��������� �� «� �� � �������
�� ��������� �`������ ^���� �`� �� ����^�^���� �� ` ����

��ª����� �� ���� �`^^����� ������ ^�� ������ �� ����^��
^���� �� ��������^�� �� �����\�� �� ^�� �`^`��^ ^�`^ ^���� `��
`^ ���^ ^�� ����^�^���� �� ` �`����^� �� �`^^��� ���^`�����
����� ��� ^�� �`^^��� ��`���� ^�`^ `���� ����^�^��� �� ` ����
��ª������ �� �����^� ^�� ���^ ���^`��� ��� ^�� �`��� ��
����� ��� `�� ^�� ����^�^���� `�� ^��� ^`�� ^�� �������
���^`��� ��^`���� `���� ^�� ^���� �`���� ���� �`�� �� �`�
�`���� ����`^�� �`�^� �� ` �`^^���� ���`���� ^�� P ∗ �� `��
������ ^� ^�� �`^^��� ��`�� Po ∈ P ��� ����� ^�� ���^ ����
^`��� d ���^��� d1 �� d2� �� �������� `� �� ¸ª� ¥�

Po = `�����
1≤k≤N

d(P ∗, Pk) �¥�

�� �"�;'�� ��! !���;�����

�� ������^ ^�� ����`��� ^�`������^��� `�� �`^^��� ��`������
�`^��� �����^� �� ^�� �`^`��^ ��������� �� ���^��� ³� ���
�����^� ����� �� �`��� ³ `�� ^�� ��`� \`���� �� ` ��`\��
������^ ����� \`���`^���� �� �����^ ^�� ����`��� ^�`�������
^��� �������`��� ����� ^�� ��`����� �� ������^���� �C�
`�� �����`�� �A�� �� L �� ^�� ����^� �� ^�� ������ ^��^� ���
ª������ C=(L−D−B)/L `�� A=(L−D−B−I)/L� ���
������^���� ��`���� ���`����� ����^���� `�� ����^�^�^�����
����� �����`�� ��`���� `���^���`��� ���`����� �����^����
^��� ��� �`^^��� ��`������`^��� �������`��� �� ����� ���
��^� ���^ ���^`��� ��`����� d1 `�� d2 �� �`��� ³� ��� ^��
�����^� `�� �����^�� ��� ��^� ^�� ��`^����� ����Ê Ê«Ê�
`�� ����Ê«Ê�� ��� ���������� �� �������`��� ��^����
^�� ^�� ��`^���� �`� ����� ^� �� �^`^��^��`��� ��������`�^
��� ��^� ������^���� `�� �����`�� ��`����� �� ` �`���
���^��� � ^��^ `^ p = 0.05� `������� `� `����^�^�� ����
�`� ���^����^����

�� �����`�� �� ��� ` ���� �`^^��� ��`������`^��� �������
�`��� ����� ����`��� ^�`������^��� `����`�� �� ����� ��
��� ^�`^ ����Ê Ê«Ê� �`� ` ��^^�� �������`��� ��^� ����
�`��� ^�`������^���� ����� ��^� ����� �� ��`^���� ���\��� `
����`�`��� �������`��� ��� �`^^��� ��`������`^���� ������
����`��� ^�`������^��� �� ��^ ^�� ����`�� ^`�� �� ����� ��� `�
`�`����� �� �^� �������`��� ���\���� ��\��`� ������^�� ���
��^ �� ���������� ���^�����^� �� ������� ����` �� ������ ��^
^���� �`� �� �����^ \`��`^���� `����� ��������^ ���^�����^� ��
^�� �`�� ����� ��� ^�`����� ��`����� `�� \`���� `�� ����
�����^`^�\�� `�� ������ ����^ �`� �� �������� ^� �� ������
����������^� À�\��^������� ^���� �`� �� ����������^�� ����
�`��� ^������ �� ^��^ �`^` ��`���� ^� ` ������ ^�`������^���
�������`���� � ������ ^�`����� �`^`��^ �`� �����\� ^��
�������`��� �� ���� ` �`��� ��� ������ �����������^ ����
\���� ��������`�^ ������`^��� `���^ ^�� ���� �� ����`����
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�\��� �£ ��� ��������� �`^��� ��� �`^^��� ��`������`^����
����� ^�� ��`^��� ����Ê Ê«Ê� ��^� d1 ���^`��� ��`�����
��� ���� `�� ������ ��`���� ��������^ ^�� ���� ��`�� `��
�������� ��`��� ������^�\���� ��`�� �`���� ���������� ^�
^�� �« �� �`��� §� ��� �`�^ ������ ����� ^�� ^�^`� ��`�����
�� �`�� ��`��� ��� �^��� \`���� `�� �� ������^`�� `�� ^��
���^� ������ `�� ����� ����^^�� ��� ��`��^���

`�� ����� ��\�� ` ��^^�� ����`��� ^�`������^��� �������`����
�� ��� ^�`^ ^�� ������^���� �� ������ ^�`� �����`�� �����

��� ^�`^ ^�� ��`�^ ��ª����� �� ����`����� `� �����`^�� �� ^��
����� �`� ��\�� `����\�� �� ` �`����^� �� ^�� �`���� ��^�
��\��`� �����^��� ������� ���� �� ��� ^� ^�� �������� �����^
�� ������ �� �������� `�� `������ \`��`^���� �� �`^^�����
�� ���^ ���^`��� �`��� ���^`��� ��`���� ��� ��`������`^��� ��
ª��^� �����^ �� ^�� ������^ ��\� ��`�� ������� `�� ���\���� `
���� ��`������`^��� �������`���� �����^� ^�� ��� ^�`�������
^��� `����`��� ��^� ���^`��� ��`����� ���\��� ����`�`���
�������`���� �����`^��� ^�`^ ^�� ������ �� ^�`������^���
������ `�� ���� �� ��� �� ^���� `�� `�� ���^��`^�� ��`����
���`^��� ������� �� ����� ` ��������� �`^��� ��`��� �� ��^�
��� �� ^�� ���� ���������� ��������`^����£ ����Ê Ê«Ê�
��^� d1 ���^`���� �� ��� ^�`^ "/���/ �`� ` ��� ���`��� `��
��^� �������� ��^� ������/� ��«Ì¦� ��^��� � ����� ��`���
�`^��� �� ^�� ������ ������ ^�`^ ` �`�^ �� ^�� �`^^��� "/��
��/ �� ���^`���� ��^��� ������/�� ����� ����`��� ������ ��
���������� ���� ���������� �`� �� �`����� ��^� ��^^�� �`��
��`�� ������� ����� ���� ���^��� ������`^����

�� ����';����� ��! �;����%

�� ������^�� ` ������`^��� �`��� �� ������^������� ������
�������^��� ��� ^�`������^��� `�� ��`������`^��� �� ����`���
���������� �`^^����� �� ` ��������^`^�\� ������^��� �� ����
���� ����` ���������� �`^^����� ^�� ������^�� `����`�� ����
\���� ` ���� ��`������`^��� �������`���� �����^� ` ��������
^�� �`���`�� ����� `�� ��`��ª�`^� ����`��� ^�`������^���
`����`��� ������ ^�� `����`�� �� ���������� ^�� �\`��`�
^��� ����� ` ��`�� �`^`��^ �������^`^�� ` ���^��� `��������^
�� ^�� �����`���`^��� �`�`����^��� �� ^�� �������� `����`���
�� ��^��� ^� ������� ��^^�� �`���`�� ������ ^�`^ ��� ���
ª����� `�� ���^���� ������`^��� ���� �����^�\���� `�� ���
^��� ^�� ^`�� ^� ` ���� �`���� �`^`��^ ��`����� ���� �`^^���
��`����� �� ���� ����`^�� �`^^���� �� ^��� �^���� ��^ `� `�^��
�`^�� ������^`^��� �� �`^^���� ���� `���� �� ` ���� ������
^��� ��� ��^��� ����� �� `��� ��`� ^� ��^��� ^��� ������`�
^��� ��� �����^`^���`� �������^��� �� ���������� �`^^���� ��
�^��� ����� ���^���� ���� `� ������^`�� `�� �`��`^�� ���
���� ����� �`\� ���� ������� ����`��� ���������� ���^����

���q��������q�~

���� ���� �� �`�^�� ������^�� �� ^�� ¸�����`� ����`���
������� ����� ^�� ¸�����`� �����·� ��\��^� ��`������
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ABSTRACT

Probabilistic embedding methods provide a principled way

of deriving new spatial representations of discrete objects

from human interaction data. The resulting assignment

of objects to positions in a continuous, low-dimensional

space not only provides a compact and accurate predictive

model, but also a compact and flexible representation for

understanding the data. In this paper, we demonstrate how

probabilistic embedding methods reveal the “taste space”

in the recently released Million Musical Tweets Dataset

(MMTD), and how it transcends geographic space. In par-

ticular, by embedding cities around the world along with

preferred artists, we are able to distill information about

cultural and geographical differences in listening patterns

into spatial representations. These representations yield a

similarity metric among city pairs, artist pairs, and city-

artist pairs, which can then be used to draw conclusions

about the similarities and contrasts between taste space and

geographic location.

1. INTRODUCTION
Embedding methods are a type of machine learning algo-

rithm for distilling large amounts of data about discrete ob-

jects into a continuous and semantically meaningful rep-

resentation. These methods can be applied even when

only contextual information about the objects, such as co-

occurrence statistics or usage data, is available. For this

reason and due to the easy interpretability of the result-

ing models, embeddings have become popular for tasks

in many fields, including natural language processing, in-

formation retrieval, and music information retrieval. Re-

cently, embeddings have been shown to be a useful tool for

analyzing trends in music listening histories [6].

In this paper, we learn embeddings that give insight into

how music preferences relate to geographic and cultural

boundaries. Our input data is the Million Musical Tweets
Dataset (MMTD), which was recently collected and cu-

rated by Hauger et al. [3]. This dataset consists of over a

million tweets containing track plays and rich geograph-

ical information in the form of globe coordinates, which

c© Joshua L. Moore, Thorsten Joachims, Douglas Turnbull.
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Hauger et al. have matched to cities and other geographic

descriptors as well. Our goal in this work is to use em-

bedding methods to enable a more thorough analysis of

geographic and cultural patterns in this data by embedding

cities and the artists from track plays in those cities into

a joint space. The resulting taste space gives us a way to

directly measure city/city, city/artist, and artist/artist affini-

ties. After verifying the predictive fidelity of the learned

taste space, we explore the surprisingly clear segmenta-

tions in taste space across geographic, cultural, and lin-

guistic borders. In particular, we find that the taste space

of cities gives us a remarkably clear image of some cultural

and linguistic phenomena that transcend geography.

2. RELATED WORK
Embeddings methods have been applied to many different

modeling and information retrieval tasks. In the field of

music IR, these models have been used for tag prediction

and song similarity metrics, as in the work of Weston et

al. [7]. However, instead of a prediction task such as this,

we intend to focus on data analysis tasks. Therefore, we

rely on generative models like those proposed in our previ-

ous work [5, 6] and by Aizenberg et al [1]. Our prior work

uses models which rely on sequences of songs augmented

with social tags [5] or per-user song sequences with tempo-

ral dynamics [6]. The aim of this work differs from that of

our previous work in that we are interested in aggregate

global patterns and not in any particular playlist-related

task, so we do not adopt the notion of song sequences. We

also are concerned with geographic differences in listen-

ing patterns, and so we ignore individual users in favor of

embedding entire cities into the space.

Aizenberg et al. utilize generative models like those in

our work for purposes of building a recommendation en-

gine for music from Internet radio data on the web. How-

ever, their work focuses on building a powerful recommen-

dation system using freely available data, and does not fo-

cus on the use of the resulting models for data analysis, nor

do they concern themselves with geographic data.

The data set which we will use throughout this work

was published by Hauger et al. [3]. The authors of this

work crawled Twitter for 17 months, looking for tweets

which carried certain key words, phrases, or hashtags in

order to find posts which signal that a user is listening to a

track and for which the text of the tweet could be matched

to a particular artist and track. In addition, the data was se-

lected for only tweets with geographical tags (in the form
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of GPS coordinates), and temporal data was retained. The

final product is a large data set of geographically and tem-

porally tagged music plays. In their work, the authors em-

phasize the collection of this impressive data set and a thor-

ough description of the properties of the data set. The au-

thors do add some analyses of the data, but the geographic

analysis is limited to only a few examples of coarse pat-

terns found in the data. The primary contribution of our

work over the work presented in that paper is to greatly

extend the scope of the geographic analysis, presenting a

much clearer and more exhaustive view of the differences

in musical taste across regions, countries, and languages.

Finally, we describe how geographic information can

be useful for various music IR tasks. Knopke [4] also

discusses how geospatial data can be exploited for music

marketing and musicological research. We use embedding

as a tool to further explore these topics. Others, such as

Lamere’s Roadtrip Mixtape 1 app, have developed systems

that use a listeners location to generate a playlist of rele-

vant music by local artists.

3. PROBABILISTIC EMBEDDING MODEL

The embedding model used in this paper is similar to the

one used in our previous work [6]. However, the following

analysis focuses on geographical patterns instead of tem-

poral dynamics and trends. In particular, we focus on the

relationships among cities and artists, and so we elect to

condense the geographical information in a tweet down to

the city from which it came. Similarly, we discard the track

name from each tweet and use only the artist for the song.

This leads to a joint embedding of cities and artists.

At the core of the embedding model lies a probabilis-

tic link function that connects the observed data to the

underlying semantic space. Intuitively, the link function

we use states that the probability Pr(a|c) of a given city

c playing a given artist a is proportional to the distance

||X(c)− Y (a)||22 between that city and that artist in a Eu-

clidean embedding space of a chosen dimension d. X(c)
and Y (a) are the embedding locations of city c and artist

a respectively. Similar to previous works, we also incor-

porate a popularity bias term pa for each artist to model

global popularity. More formally, the probability for a city

c to play an artist a is:

Pr(a|c) = exp(−||X(c)− Y (a)||22 + pa)∑
a′∈A exp(−||X(c)− Y (a′)||22 + pa′)

.

The sum in the denominator is over the set A of artists.

This sum is known as the partition function, denoted Z(·),
and serves to normalize the distribution over artists.

Determining the embedding locations X(c) and Y (a)
for all cities and artists (and the popularity terms pa) is

the learning problem the embedding method must solve.

To fit a model to the data, we maximize the log-likelihood

formed by the sum of log-probabilities log(Pr(ai|ci):

1 http://labs.echonest.com/CityServer/roadtrip.html

(X,Y,p) = max
X,Y,p

∑
(ci,ai)∈D

log(Pr(ai|ci))

= max
X,Y,p

∑
(ci,ai)∈D

−||X(ci)−Y (ai)||22+pai−log(Z(ai)).

We solve this optimization problem using a Stochastic

Gradient Descent approach. First, each embedding vec-

tor X(·) and Y (·) is randomly initialized to a point in the

unit ball in R
d (for the chosen dimension d). Then, the

model parameters are updated in sequential stochastic gra-

dient steps until convergence. The partition function Z(·)
presents an optimization challenge, in that a naı̈ve opti-

mization strategy requires O(|A|2) time for each pass over

the data. For this work, we used our C++ implementa-

tion of the efficient training method employed in [6], an

approximate method that estimates the partition function

for efficient training. This implementation is available by

request, and will later be available on the project website,

http://lme.joachims.org.

3.1 Interpretation of Embedding Space
As defined above, the model gives us a joint space in which

both cities and artists are represented through their respec-

tive embedding vectors X(·) and Y (·). Related works have

found such embedding spaces to be rich with semantic sig-

nificance, compactly condensing the patterns present in the

training data. Distances in embedding space reveal rela-

tionships between objects, and visual or spatial inspection

of the resulting models quickly reveals a great deal of seg-

mentation in the space. In particular, joint embeddings

yield similarity metrics among the various types of em-

bedded objects, even though individual dimensions in the

embedding space have no explicit meaning (e.g. the em-

beddings are rotation invariant). In our case, this specifi-

cally entails the following three measures of similarity:

City to Artist: this is the only similarity metric explic-

itly formulated in the model, and it reflects the distribution

Pr(a|c) that we directly observe data for. In particular, we

directly optimize the positions of cities and artists so that

cities have a high probability of listening to artists which

they were observed playing in the dataset. This requires

placing the city and artist nearby in the embedding space,

so proximity in the embedding space can be interpreted as

an affinity between a city and an artist.

Artist to Artist: due to the learned conditional proba-

bility distributions’ being constrained by the metric space,

two artists which are placed near each other in the space

will have a similar probability mass in each city’s distribu-

tion. This implies a kind of exchangeability or similarity,

since any city which is likely to listen to one artist is likely

to listen to the other in the model distribution.

City to City: finally, the form of similarity on which we

will most rely in this work is that among cities. Again due

to the metric space, two nearby cities will assign similar

masses to each artist, and so will have very similar distri-

butions over artists in the model. This implies a similarity

in musical taste or preferred artists between two cities.

The third type of similarity will form the basis for most

of the analyses in this paper. In particular, we are interested
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Figure 1: Precision at k of our model, a cosine similar-

ity baseline, a tweet count ranking baseline, and a random

baseline on a city/artist tweet prediction task.

in the connection between the metric space of cities in the

embedding space and another metric space: the one formed

by the geographic distribution of cities on the Earth’s sur-

face. As we will see, these two spaces differ greatly, and

the taste space of cities gives us a clear image of some cul-

tural and linguistic phenomena that transcend geography.

4. EXPERIMENTS

We use the MMTD data set presented by Hauger et al. [3].

This data set contains nearly 1.1 million tweets with ge-

ographical data. We pre-process the data by condensing

each tweet to a city/artist pair, which results in a city/artist

affinity matrix used to train the model. Next, we discard all

cities and artists which have not appeared at least 100 times

in the data, as well as all cities for which fewer than 30 dis-

tinct users tweeted from that city. The post-processed data

contains 1,017 distinct cities and 1,499 distinct artists.

For choosing model parameters, we randomly selected

80% of the tweets for the training set, and the remaining

20% for the validation set. This resulted in a training set of

390,077 tweets and a validation set of 97,592 tweets. We

used the validation set both to determine stopping criteria

for the optimization as well as to choose the initial stochas-

tic gradient step size η0 from the set {0.25, 0.1, 0.05, 0.01}
and to evaluate the quality of models of dimension {2, 50,

100}. The optimal step size varied from model to model,

but the 100-dimensional model consistently out-performed

the others (although the difference between it and the 50-

dimensional model was small).

We will analyze the data through the trained embedding

models, both through spatial analyses (i.e. nearest neigh-

bor queries and clusterings) and through visual inspection.

In general, the high-dimensional model better captures the

data, and so we will use it when direct visual inspection is

not required. But first, we evaluate the quality of the model

through quantitative means.

4.1 Quantitative Evaluation of the Model

Before we inspect our model in order to make qualitative

claims about the patterns in the data, we first wish to eval-

uate it on a quantitative basis. This is essential in order

to confirm that the model accurately captures the relations

among cities and artists, which will offer validation for the

conclusions we draw later in the work.

4.1.1 Evaluating Model Fidelity

First, we considered the performance of the model in

terms of perplexity, which is a reformulation of the log-

likelihood objective outside of a log scale. This is a com-

monly used measure of performance in other areas of re-

search where models similar to ours are used, such as

natural language processing [2]. The perplexity p is re-

lated to the average log-likelihood L by the transformation

p = exp(−L).
Our baseline is the unigram distribution, which as-

sumes that Pr(a|c) is directly proportional to the number

of tweets artist a received in the entire data set indepen-

dent of the city. Estimating the unigram distribution from

the training set and using it to calculate the perplexity on

the validation set yielded a perplexity of 589 (very similar

to the perplexity attained when estimating this distribution

from the train set and calculating the perplexity on the train

set itself). Our model offered a great improvement over

this – the 100-dimensional model yielded a perplexity on

the validation set of 290, while the 2-dimensional model

reached a perplexity of 357. This improvement suggests

that our model has captured a significant amount of useful

information from the data.

4.1.2 Evaluating Predictive Accuracy

Second, we created a task to evaluate the predictive power

of our model. To this end, we split the data chronologically

into two halves, and further divided the first half into a

training set and a validation set. Using the first half of the

data, we trained a 100-dimensional model. Our goal is to

use this model to predict which new artists various cities

will begin listening to in the second half of the data.

We accomplish this by considering, for each city, the set

of artists which had no observed tweets in that city in the

first half of the data. We then sorted these artists by their

score in the model – namely, for city c and artist a, the

function −||X(c) − Y (a)||22 + pa. Using this ordering as

a ranking function, we calculated the precision at k of our

ranking for various values of k, where an artist is consid-

ered to be relevant if that artist receives at least one tweet

from that city in the second half of the data. We average

the results of each city’s ranking.

We compare the performance of our model on this task

to three baselines. First, we consider a random ranking of

all the artists which a city has not yet tweeted. Second,

we sort the yet untweeted artists by their raw global tweet

count in the first half of the data – which we label the un-
igram baseline. Third, we use the raw artist tweet counts

for a city’s nearest neighbor city in the first half of data to

rank untweeted artists for that city. In this case, the nearest
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neighbor is not determined using our embedding but rather

based on the maximum cosine similarity between the vec-

tor of artist tweet counts for the city and the vectors of

tweet count for all other cities.

The results can be seen in Figure 1. At k = 1, our model

correctly guesses an artist that a city will later tweet with

64% accuracy, compared to 46% for the cosine similar-

ity, 42% for unigram and around 5% for the random base-

line. This advantage is consistent as k increases, with our

method attaining about 24% precision at 100, compared to

18% for unigram and 14% for cosine similarity. We also

show the performance of the same model at this task when

popularity terms are excluded from the scoring function at

ranking time. Interestingly, the performance in this case

is still quite good. We see precision at 1 of about 51% in

this case, with the gap between this method and the method

with popularity terms growing smaller as k increases. This

suggests that proximity in the space is very meaningful,

which is an important validation of the analyses to follow.

Finally, the good performance on this task invites an ap-

plication of the space to making marketing predictions –

which cities are prone to pick up on which artists in the

near future? – but we leave this for future work.

4.2 Visual Inspection of the Embedding Space
In Figure 2 we present plots of the two-dimensional em-

bedding space, with labels for some key cities (left) and

artists (right). Note that the two plots are separated by city

and artists only for readability, and that all points lie in

the same space. In this figure, we can already see a strik-

ing segmentation in city space, with extreme distinction

between, e.g., Brazilian cities, Southeast Asian cities, and

American cities. We can also already see distinct regional

and cultural groupings in some ways – the U.S. cities

largely form a gradient, with Chicago, Atlanta, Washing-

ton, D.C., and Philadelphia in the middle, Cleveland and

Detroit on one edge of the cluster, and New York and Los

Angeles on the opposite edge. Interestingly, Toronto is also

on the edge of the U.S. cluster, and on the same edge where

New York and Los Angeles – arguably the most “interna-

tional” of the U.S. cities shown here – end up.

It is also interesting to note that the space has a very

clear segmentation in terms of genre – just as clear as em-

beddings produced in previous work from songs alone [5]

or songs and individual users [6]. Of course, this does not

translate into an effective user model – surely there are

many users in Recife, Brazil that would quickly tire of a

radio station inspired by Linkin Park – but we believe it is

still a meaningful phenomenon. Specifically, this suggests

that the taste of the average listener can vary dramatically

from one city to the next, even within the same country.

More surprisingly, this variation in the average user is so

dramatic that cities themselves can form nearly as coherent

a taste space as individual users, as the genre segmentation

is barely any less clear than in other authors’ work with

user modeling.

4.3 Higher-dimensional Models
Directly visualizing two-dimensional models can give us

striking images from which rough patterns can be easily

gleaned. However, higher dimensional models are able to

achieve perplexities on the validation set which far exceed

those of lower dimensional models. For example, as men-

tioned before, our best performing 2-dimensional model

attains a validation perplexity of 357, while our best per-

forming 100-dimensional model attains a perplexity of 290

on the validation set. This suggests that higher dimensional

models capture more of the nuanced patterns present in the

data. On the other hand, simple plotting is no longer suf-

ficient to inspect high-dimensional data – we must resort

to alternative methods, for example, clustering and nearest

neighbor queries. First, in Figure 3, we present the re-

sults of using k-means clustering in the city space of the

100-dimensional model. The common algorithm for solv-

ing the k-means clustering problem is known to be prone

to getting stuck in local optima, and in fact can be diffi-

cult to validate properly. We attempted to overcome these

problems by using cross validation and repeated random

restarts. Specifically, we used 10-fold cross-validation on

the set of all cities in order to find a validation objective for

each candidate value of k from 2 to 20. Then, we selected

the parameter k by choosing the largest value for which no

larger value offers more than a 5% improvement over the

immediately previous value.

Once the value of k was chosen, we tried to overcome

the problem of local optima by running the clustering al-

gorithm 10 times on the entire set of cities with that value

of k and different random initializations, finally choosing

the trial with the best objective value. This process resulted

in optimal k values ranging from 6 to 13. Smaller values

resulted in some clusterings with granularity too coarse to

see interesting patterns, while larger values were noisy and

produced unstable clusterings. Ultimately, we found that

k = 9 was a good trade-off.

Additionally, in Table 1, we obtain a complementary

view of the 100-dimensional embedding by listing the re-

sults of nearest-neighbor queries for some well-known,

hand-selected cities. These queries give us an alternative

perspective of the city space, pointing out similarities that

may not be apparent from the clustering alone. By com-

bining these views, we can start to see many interesting

patterns arise:

The French-speaking supercluster: French-speaking

cities form an extremely tight cluster, as can also be seen

in the 2-dimensional embedding in Figure 2. Virtually ev-

ery French city is part of this cluster, as well as French-

speaking cities in nearby European countries, such as

Brussels and Geneva. Indeed even beyond the top 10 listed

in Table 1, almost all of the top 100 nearest neighbors for

Paris are French-speaking. Language is almost certainly

the biggest factor in this effect, but if we consider the coun-

tries near France, we see that despite linguistic divides, in

the clustering, many cities in the U.K. still group closely

with Dutch cities and even Spanish cities. Furthermore,

this grouping can be seen in every view of the data – in

the two-dimensional space, the clustering, and the nearest

neighbor queries. It should be noted that in our own tri-

als clustering the data, the French cluster is one of the first

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

442



Figure 2: The joint city/artist space with some key cities and artists labeled.

Figure 3: A k-means clustering of cities around the world with k = 9.

Kuala Lumpur Paris Singapore Los Angeles, CA Chicago, IL São Paulo
Kulim Boulogne-Billancourt Hougang Grand Prairie, TX Buffalo, NY Osasco
Sungai Lembing Brussels Seng Kang Ontario, CA Clarksville, TN Jundiaı́
Ipoh Rennes USJ9 Riverside, CA Cleveland, OH Carapicuı́ba
Kuching Lille Subang Sacramento, CA Durham, NC Ribeirão Pires
Sunway City Aix-en-Provence Kota Bahru Salinas, CA Birmingham, AL Shinjuku
Seremban Limoges Bangkok Paterson, NJ Flint, MI Vargem Grande Paulista
Seri Kembangan Amiens Alam Damai San Bernardino, CA Montgomery, AL Santa Maria
Taman Cheras Hartamas Marseille Kota Padawan Inglewood, CA Nashville, TN Itapevi
Kuantan Geneva Glenmarie Modesto, CA Jackson, MS Cascavel
Selayang Grenoble Budapest Pomona, CA Paterson, NJ Embu das Artes

Brooklyn, NY Atlanta, GA Madrid Amsterdam Sydney Montréal
Minneapolis, MN Savannah, GA Sevilla Eindhoven Toronto Montpellier
Winston-Salem, NC Tallahassee, FL Granada Tilburg Denver, CO Geneva
Arlington, VA Cleveland, OH Barcelona Emmen Windhoek Raleigh, NC
Waterbury, CT Washington, DC Murcia Nijmegen Angers Limoges
Washington, DC Memphis, TN Sorocaba Enschede Rialto, CA Angers
Syracuse, NY Flint, MI Ponta Grossa Zwolle Hamilton Ontario, CA
Jersey City, NJ Huntsville, AL Huntington Beach, CA Amersfoort Rotterdam Anchorage, AK
Louisville, KY Montgomery, AL Istanbul Maastricht Ottawa Nice
Tallahassee, FL Jackson, MS Vigo Antwerp London - Tower Hamlets Lyon
Ontario, CA Lafayette, LA Oxford Coventry London - Southwark Rennes

Table 1: Nearest neighbor query results in 100-dimensional city space. Brooklyn was chosen over New York, NY due to

having more tweets in the data set. In addition, only result cities with population at least 100,000 are displayed.
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Country Least typical Most typical
Brazil Criciúma, Santa Catarina Itapevi, São Paulo

Canada Surrey, BC Toronto, ON
Netherlands Leiden Emmen

Mexico Campeche, CM Cuauhtémoc, DF
Indonesia Panunggangan Barat RW 02

France Bordeaux Mantes-la-Jolie, Île-de-France
United States Huntington Beach, CA Jackson, MS

Malaysia Kota Damansara Kuala Lumpur
United Kingdom Wolverhampton, England London Borough of Camden

Russia Ufa Podgory

Spain Álora, Andalusia Barcelona

Table 2: Most and least typical cities in taste profile for

various countries.

clusters to become apparent, as well as one of the most

consistent to appear. We can also see that the French clus-

ter is indeed a linguistic and cultural one which is not just

due to geographic proximity: although Montreal has sev-

eral nearest neighbors in North America, it is present in

the French group in the k-means clustering (as is Quebec

City) and is also very close to many French-speaking cities

in Europe, such as Geneva and Lyon. We can also see that

Abidjan, Ivory Coast joins the French k-means cluster, as

do Dakar in Senegal, Les Abymes in Guadeloupe and Le

Lamentin and Fort-de-France in Martinique – all cities in

countries which are members of the Francophonie.

Australia: Here again, despite the relatively tight geo-

graphical proximity of Australia and Southeast Asia, and

the geographic isolation of Australia from North America,

Australian cities tend to group closely with Canadian cities

and some cities in the United Kingdom. One way of see-

ing this is the fact that Sydney’s nearest neighbors include

Toronto, Hamilton, Ontario, Ottawa, and two of London’s

boroughs. In addition, other cities in Australia also be-

long to a cluster that mainly includes cities in the Com-

monwealth (e.g., U.K., Canada).

Cultural divides in the United States: the cities in the

U.S. tend to form at least two distinct subgroups in terms

of listening patterns. One group contains many cities in the

Southeast and Midwest, as well as a few cities on the south-

ern edge of what some might call the Northeast (Philadel-

phia, for example). The other group consists primarily of

cities in the Northeast, on the West Coast, and in the South-

west of the country, including most of the cities in Texas.

Intuitively, there are two results that might be surprising

to some here. The first is that the listening patterns of

Chicago tend to cluster with listening patterns in the South

and the rest of the Midwest, and not those of very large

cities on the coasts (after all, Chicago is the third-largest

city in the country). The second is that Texas groups with

the West Coast and Northeast, and not with the Southeast,

which would be considered by many to be more culturally

similar in many ways.

4.4 Most and least typical cities
We can also consider the relation of individual cities to

their member countries. For this analysis, we considered

all the countries which have at least 10 cities represented

in the data. Then for each country we calculated the aver-

age position in embedding space of cities in that country.

With this average city position, we can then measure the

distance of individual cities from the mean of cities in their

country and find the cities which have the most and least

typical taste profiles for that country.

The results are shown in Table 2. We can see a few inter-

esting patterns here. First, in Brazil, the most typical city is

an outlying city near São Paulo city, while the least typical

is a city in Santa Catarina, the second southernmost state in

Brazil, which is also less populous than the southernmost,

Rio Grande do Sul, which was also well-represented in the

data. In Canada, the least typical city is an edge city on

Vancouver’s east side, while the most typical is the largest

city, Toronto. In France, the most typical city is in Île-de-

France, not too far from Paris. We also see in England that

the least typical city is Wolverhampton, and edge city of

Birmingham towards England’s industrial north, while the

most typical is a borough of London.

5. CONCLUSIONS
In this work, we learned probabilistic embeddings of the

Million Musical Tweets Dataset, a large corpus of tweets

containing track plays which has rich geographical infor-

mation for each play. Through the use of embeddings, we

were able to easily process a large amount of data and sift

through it visually and with spatial analysis in order to un-

cover examples of how musical taste conforms to or tran-

scends geography, language, and culture. Our findings re-

flect that differences in culture and language, as well as his-

torical affinities among countries otherwise separated by

vast distances, can be seen very clearly in the differences in

taste among average listeners from one region to the next.

More generally, this paper shows how nuanced patterns in

large collections of preference data can be condensed into

a taste space, which provides a powerful tool for discover-

ing complex relationships. Acknowledgments: This work

was supported by NSF grants IIS-1217485, IIS-1217686,

IIS-1247696, and an NSF Graduate Research Fellowship.
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ABSTRACT

Collaborative filtering (CF) techniques have shown great

success in music recommendation applications. However,

traditional collaborative-filtering music recommendation al-

gorithms work in a greedy way, invariably recommend-

ing songs with the highest predicted user ratings. Such a

purely exploitative strategy may result in suboptimal per-

formance over the long term. Using a novel reinforcement

learning approach, we introduce exploration into CF and

try to balance between exploration and exploitation. In

order to learn users’ musical tastes, we use a Bayesian

graphical model that takes account of both CF latent fac-

tors and recommendation novelty. Moreover, we designed

a Bayesian inference algorithm to efficiently estimate the

posterior rating distributions. In music recommendation,

this is the first attempt to remedy the greedy nature of CF

approaches. Results from both simulation experiments and

user study show that our proposed approach significantly

improves recommendation performance.

1. INTRODUCTION

In the field of music recommendation, content-based ap-

proaches and collaborative filtering (CF) approaches have

been the prevailing recommendation strategies. Content-

based algorithms [1, 9] analyze acoustic features of the

songs that the user has rated highly in the past and recom-

mend only songs that have high degrees of acoustic simi-

larity. On the other hand, collaborative filtering (CF) algo-

rithms [7, 13] assume that people tend to get good recom-

mendations from someone with similar preferences, and

the user’s ratings are predicted according to his neighbors’

ratings. These two traditional recommendation approaches,

however, share a weakness.

Working in a greedy way, they always generate “safe”

recommendations by selecting songs with the highest pre-

dicted user ratings. Such a purely exploitative strategy may

result in suboptimal performance over the long term due to

the lack of exploration. The reason is that user preference

c© Zhe Xing, Xinxi Wang, Ye Wang.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Zhe Xing, Xinxi Wang, Ye Wang.
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exploration and exploitation”, 15th International Society for Music Infor-
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is only estimated based on the current knowledge avail-

able in the recommender system. As a result, uncertainty

always exists in the predicted user ratings and may give

rise to a situation where some of the non-greedy options

deemed almost as good as the greedy ones are actually bet-

ter than them. Without exploration, however, we will never

know which ones are better. With the appropriate amount

of exploration, the recommender system could gain more

knowledge about the user’s true preferences before exploit-
ing them.

Our previous work [12] tried to mitigate the greedy prob-

lem in content-based music recommendation, but no work

has addressed this problem in the CF context. We thus

aim to develop a CF-based music recommendation algo-

rithm that can strike a balance between exploration and ex-

ploitation and enhance long-term recommendation perfor-

mance. To do so, we introduce exploration into collabo-

rative filtering by formulating the music recommendation

problem as a reinforcement learning task called n-armed
bandit problem. A Bayesian graphical model taking ac-

count of both collaborative filtering latent factors and rec-

ommendation novelty is proposed to learn the user pref-

erences. The lack of efficiency becomes a major chal-

lenge, however, when we adopt an off-the-shelf Markov

Chain Monte Carlo (MCMC) sampling algorithm for the

Bayesian posterior estimation. We are thus prompted to

design a much faster sampling algorithm for Bayesian in-

ference. We carried out both simulation experiments and a

user study to show the efficiency and effectiveness of the

proposed approach. Contributions of this paper are sum-

marized as follows:

• To the best of our knowledge, this is the first work in

music recommendation to temper CF’s greedy nature by

investigating the exploration-exploitation trade-off using a

reinforcement learning approach.

• Compared to an off-the-shelf MCMC algorithm, a

much more efficient sampling algorithm is proposed to speed

up Bayesian posterior estimation.

• Experimental results show that our proposed approach

enhances the performance of CF-based music recommen-

dation significantly.

2. RELATED WORK

Based on the assumption that people tend to receive good

recommendations from others with similar preferences, col-
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laborative filtering (CF) techniques come in two categories:

memory-based CF and model-based CF. Memory-based

CF algorithms [3, 8] first search for neighbors who have

similar rating histories to the target user. Then the target

user’s ratings can be predicted according to his neighbors’

ratings. Model-based CF algorithms [7, 14] use various

models and machine learning techniques to discover latent

factors that account for the observed ratings.

Our previous work [12] proposed a reinforcement learn-

ing approach to balance exploration and exploitation in

music recommendation. However, this work is based on

a content-based approach. One major drawback of the per-

sonalized user rating model is that low-level audio features

are used to represent the content of songs. This purely

content-based approach is not satisfactory due to the se-

mantic gap between low-level audio features and high-level

user preferences. Moreover, it is difficult to determine

which underlying acoustic features are effective in mu-

sic recommendation scenarios, as these features were not

originally designed for music recommendation. Another

shortcoming is that songs recommended by content-based

methods often lack variety, because they are all acousti-

cally similar to each other. Ideally, users should be pro-

vided with a range of genres rather than a homogeneous

set.

While no work has attempted to address the greedy prob-

lem of CF approaches in the music recommendation con-

text, Karimi et al. tried to investigate it in other recommen-

dation applications [4, 5]. However, their active learning

approach merely explores items to optimize the prediction

accuracy on a pre-determined test set [4]. No attention is

paid to the exploration-exploitation trade-off problem. In

their other work, the recommendation process is split into

two steps [5]. In the exploration step, they select an item

that brings maximum change to the user parameters, and

then in the exploitation step, they pick the item based on

the current parameters. The work takes balancing explo-

ration and exploitation into consideration, but only in an

ad hoc way. In addition, their approach is evaluated us-

ing only an offline and pre-determined dataset. In the end,

their algorithm is not practical for deployment in online

recommender systems due to its low efficiency.

3. PROPOSED APPROACH

We first present a simple matrix factorization model for

collaborative filtering (CF) music recommendation. Then,

we point out major limitations of this traditional CF algo-

rithm and describe our proposed approach in detail.

3.1 Matrix Factorization for Collaborative Filtering

Suppose we have m users and n songs in the music recom-

mender system. Let R = {rij}m×n denote the user-song

rating matrix, where each element rij represents the rating

of song j given by user i.

Matrix factorization characterizes users and songs by

vectors of latent factors. Every user is associated with a

user feature vector ui ∈ R
f , i = 1, 2, ...,m, and every

song a song feature vector vj ∈ R
f , j = 1, 2, ..., n. For

a given song j, vj measures the extent to which the song

contains the latent factors. For a given user i, ui measures

the extent to which he likes these latent factors. The user

rating can thus be approximated by the inner product of the

two vectors:

r̂ij = uT
i vj (1)

To learn the latent feature vectors, the system minimizes

the following regularized squared error on the training set:

∑
(i,j)∈I

(rij −uT
i vj)

2+λ(

m∑
i=1

nui ‖ui‖2+
n∑

j=1

nvj ‖vj‖2) (2)

where I is the index set of all known ratings, λ a regular-

ization parameter, nui
the number of ratings by user i, and

nvj
the number of ratings of song j. We use the alternating

least squares (ALS) [14] technique to minimize Eq. (2).

However, this traditional CF recommendation approach

has two major drawbacks. (I) It fails to take recommen-

dation novelty into consideration. For a user, the novelty

of a song changes with each listening. (II) It works greed-
ily, always recommending songs with the highest predicted

mean ratings, while a better approach may be to actively

explore a user’s preferences rather than to merely exploit

available rating information [12]. To address these draw-

backs, we propose a reinforcement learning approach to

CF-based music recommendation.

3.2 A Reinforcement Learning Approach

Music recommendation is an interactive process. The sys-

tem repeatedly choose among n different songs to recom-

mend. After each recommendation, it receives a rating

feedback (or reward) chosen from an unknown probability

distribution, and its goal is to maximize user satisfaction,

i.e., the expected total reward, in the long run. Similarly,

reinforcement learning explores an environment and takes

actions to maximize the cumulative reward. It is thus fitting

to treat music recommendation as a well-studied reinforce-

ment learning task called n-armed bandit.
The n-armed bandit problem assumes a slot machine

with n levers. Pulling a lever generates a payoff from the

unknown probability distribution of the lever. The objec-

tive is to maximize the expected total payoff over a given

number of action selections, say, over 1000 plays.

3.2.1 Modeling User Rating

To address drawback (I) in Section 3.1, we assume that

a song’s rating is affected by two factors: CF score, the

extent to which the user likes the song in terms of each CF

latent factor, and novelty score, the dynamically changing

novelty of the song.

From Eq. (1), we define the CF score as:

UCF = θTv (3)

where vector θ indicates the user’s preferences for dif-

ferent CF latent factors and v is the song feature vector
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learned by the ALS CF algorithm. For the novelty score,

we adopt the formula used in [12]:

UN = 1− e−t/s
(4)

where t is the time elapsed since when the song was last

heard, s the relative strength of the user’s memory, and

e−t/s the well-known forgetting curve. The formula as-

sumes that a song’s novelty decreases immediately when

listened and gradually recovers with time. (For more de-

tails on the novelty definition, please refer to [12].) We

thus model the final user rating by combining these two

scores:
U = UCFUN = (θTv)(1− e−t/s) (5)

Given the variability in musical taste and memory strength,

each user is associated with a pair of parameters Ω =
(θ, s), to be learned from the user’s rating history. More

technical details will be explained in Section 3.2.2.

Since the predicted user ratings always carry uncertainty,

we assume them to be random variables rather than fixed

numbers. Let Rj denote the rating of song j given by the

target user, and Rj follows an unknown probability distri-

bution. We assume that the expectation of Rj is the Uj

defined in Eq. (5). Thus, the expected rating of song j can

be estimated as:

E[Rj ] = Uj = (θTvj)(1− e−tj/s) (6)

Traditional recommendation strategy will first obtain the

vj and tj of each song in the system to compute the ex-

pected rating using Eq. (6) and then recommend the song

with the highest expected rating. We call this a greedy rec-

ommendation as the system is exploiting its current knowl-

edge of the user ratings. By selecting one of the non-

greedy recommendations and gathering more user feed-

back, the system explores further and gains more knowl-

edge about the user preferences. A greedy recommenda-

tion may maximize the expected reward in the current it-

eration but would result in suboptimal performance over

the long term. This is because several non-greedy recom-

mendations may be deemed nearly as good but come with

substantial variance (or uncertainty), and it is thus possi-

ble that some of them are actually better than the greedy

recommendation. Without exploration, however, we will

never know which ones they are.

Therefore, to counter the greedy nature of CF (draw-

back II), we introduce exploration into music recommen-

dation to balance exploitation. To do so, we adopt one of

the state-of-the-art algorithms called Bayesian Upper Con-

fidence Bounds (Bayes-UCB) [6]. In Bayes-UCB, the ex-

pected reward Uj is a random variable rather than a fixed

value. Given the target user’s rating history D, the pos-

terior distribution of Uj , denoted as p(Uj |D), needs to be

estimated. Then the song with the highest fixed-level quan-

tile value of p(Uj |D) will be recommended to the target

user.

3.2.2 Bayesian Graphical Model

To estimate the posterior distribution of U , we adopt the

Bayesian model (Figure 1) used in [12]. The correspond-

τ 

N

θ s

v R t

     

Figure 1: Bayesian Graphical Model.

ing probability dependency is defined as follows:

R|v, t,θ, s, σ2 ∼ N (θTv(1− e−t/s), σ2) (7)

θ|σ2 ∼ N (0, a0σ
2I) (8)

s ∼ Gamma(b0, c0) (9)

τ = 1/σ2 ∼ Gamma(d0, e0) (10)

I is the f × f identity matrix. N represents Gaussian

distribution with parameters mean and variance. Gamma
represents Gamma distribution with parameters shape and

rate. θ, s, and τ are parameters. a0, b0, c0, d0, and e0 are

hyperparameters of the priors.

At current iteration h+1, we have gathered h observed

recommendation history Dh = {(vi, ti, ri)}hi=1. Given

that each user in our model is described as Ω = (θ, s),
we have according to the Bayes theorem:

p(Ω | Dh) ∝ p(Ω)p(Dh | Ω) (11)

Then the posterior probability density function (PDF) of

the expected rating Uj of song j can be estimated as:

p(Uj |Dh) =

∫
p(Uj |Ω)p(Ω|Dh)dΩ (12)

Since Eq. (11) has no closed form solution, we are unable

to directly estimate the posterior PDF in Eq. (12). We thus

turn to a Markov Chain Monte Carlo (MCMC) algorithm

to adequately sample the parameters Ω = (θ, s). We then

substitute every parameter sample into Eq. (6) to obtain a

sample of Uj . Finally, the posterior PDF in Eq. (12) can

be approximated by the histogram of the samples of Uj .

After estimating the posterior PDF of each song’s ex-

pected rating, we follow the Bayes-UCB approach [6] to

recommend song j∗ that maximizes the quantile function:

j∗ = arg max
j=1,...,|S|

Q (α, p(Uj |Dh)) (13)

where α = 1− 1
h+1 , |S| is the total number of songs in the

recommender system, and the quantile function Q returns

the value x such that Pr(Uj ≤ x|Dh) = α. The pseudo

code of our algorithm is presented in Algorithm 1.

3.3 Efficient Sampling Algorithm

Bayesian inference is very slow with an off-the-shelf MCMC

sampling algorithm because it takes a long time for the

Markov chain to converge. In response, we previously pro-

posed an approximate Bayesian model using piecewise lin-

ear approximation [12]. However, not only is the original

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

447



Algorithm 1 Exploration-Exploitation Balanced Music

Recommendation
for h = 1 → N do

if h == 1 then
Recommend a song randomly;

else
Draw samples of θ and s based on p(Ω | Dh−1);
for song j = 1 → |S| do

Obtain vj and tj of song j and compute samples of
Uj using Eq. (6);
Estimate p(Uj |Dh−1) using histogram of the samples
of Uj ;

Compute quantile qhj = Q
(
1− 1

h
, p(Uj |Dh−1)

)
;

end for
Recommend song j∗ = argmaxj=1,...,|S| q

h
j ;

Collect user rating rh and update p(Ω | Dh);
end if

end for

Bayesian model altered, tuning the numerous (hyper)para-

meters is also tedious. In this paper, we present a bet-

ter way to improve efficiency. Since it is simple to sam-

ple from a conditional distribution, we develop a specific

Gibbs sampling algorithm to hasten convergence.

Given N training samples D = {vi, ti, ri}Ni=1, the con-

ditional distribution p(θ|D, τ, s) is still a Gaussian distri-

bution and can be obtained as follows:

p(θ|D, τ, s) ∝ p(τ)p(θ|τ)p(s)
N∏
i=1

p(ri|vi, ti,θ, s, τ)

∝ p(θ|τ)
N∏
i=1

p(ri|vi, ti,θ, s, τ) ∝ exp

(
−1

2
θT (a0σ

2I)−1θ

)

×exp

(
N∑
i=1

− 1

2σ2

(
ri − θTvi(1− e−ti/s)

)2
)

∝ exp

(
−1

2
θTΛθ + ηTθ

)
∝ N (μ,Σ) (14)

where μ and Σ, respectively the mean and covariance of

the multivariate Gaussian distribution, satisfy:

Σ−1 = Λ = τ

(
1

a0
I+

N∑
i=1

(1− e−ti/s)2viv
T
i

)
(15)

μTΣ−1 = ηT = τ

(
N∑
i=1

ri(1− e−ti/s)vT
i

)
(16)

Similarly, the conditional distribution p(τ |D,θ, s) re-

mains a Gamma distribution and can be derived as:

p(τ |D,θ, s) ∝ p(τ)p(θ|τ)p(s)
N∏
i=1

p(ri|vi, ti,θ, s, τ)

∝ p(τ)p(θ|τ)
N∏
i=1

p(ri|vi, ti,θ, s, τ)

∝ τd0−1
exp(−e0τ)× exp

(
−1

2
θT (a0σ

2I)−1θ

)
×

(
σ
√
2π

)−N

exp

(
N∑
i=1

− 1

2σ2

(
ri − θTvi(1− e−ti/s)

)2
)

∝ τα−1
exp(−βτ) ∝ Gamma (α, β) (17)

# Users # Songs # Observations % Density

100,000 20,000 20,699,820 1.035%

Table 1: Size of the dataset. Density is the percentage of entries
in the user-song matrix that have observations.

where α and β are respectively the shape and rate of the

Gamma distribution and satisfy:

α = d0 +
f +N

2
(18)

β = e0 +
θTθ

2a0
+

1

2

N∑
i=1

(
ri − θTvi(1− e−ti/s)

)2

(19)

The conditional distribution p(s|D,θ, τ) has no closed

form expression. We thus adopt the Metropolis-Hastings

(MH) algorithm [2] with a proposal distribution q(st+1|st) =
N (st, 1) to draw samples of s. Our detailed Gibbs sam-

pling process is presented in Algorithm 2.

Algorithm 2 Gibbs Sampling for Bayesian Inference

Initialize θ, s, τ ;
for t = 1 → MaxIteration do

Sample θ(t+1)
∼ p(θ|D, τ (t), s(t));

Sample τ (t+1)
∼ p(τ |D,θ(t+1), s(t));

stmp = s(t);
for i = 1 → K do # MH Step

Draw y ∼ N (stmp, 1);

α = min
(

p(y|D,θ(t+1),τ(t+1))

p(stmp|D,θ(t+1),τ(t+1))
, 1
)

;

Draw u ∼ Uniform(0, 1);
if u < α then

stmp = y;
end if

end for
s(t+1) = stmp;

end for

4. EVALUATION

4.1 Dataset

The Taste Profile Subset 1 used in the Million Song Dataset

Challenge [10] has over 48 million triplets (user, song,

count) describing the listening history of over 1 million

users and 380,000 songs. We select 20,000 songs with top

listening counts and 100,000 users who have listened to the

most songs. Since this collection of listening history is a

form of implicit feedback data, we use the approach pro-

posed in [11] to perform negative sampling. The detailed

statistics of the final dataset are shown in Table 1.

4.2 Learning CF Latent Factors

First, we determine the optimal value of λ, the regular-

ization parameter, and f , the dimensionality of the latent

feature vectors. We randomly split the dataset into three

disjoint parts: training set (80%), validation set (10%),

and test set (10%). Training set is used to learn the CF

latent factors, and the convergence criteria of the ALS al-

gorithm is achieved when the change in root mean square

1 http://labrosa.ee.columbia.edu/millionsong/tasteprofile
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Figure 2: Prediction accuracy of sampling algorithms.

error (RMSE) on the validation set is less than 10−4. Then

we use the learned latent factors to predict the ratings on

the test set. We first fix f = 55 and vary λ from 0.005 to

0.1; minimal RMSE is achieved at λ = 0.025. We then

fix λ = 0.025 and vary f from 10 to 80, and f = 75
yields minimal RMSE. Therefore, we adopt the optimal

value λ = 0.025 and f = 75 to perform the final ALS CF

algorithm and obtain the learned latent feature vector of

each song in our dataset. These vectors will later be used

for reinforcement learning.

4.3 Efficiency Study

To show that our Gibbs sampling algorithm makes Bayesian

inference significantly more efficient, we conduct simula-

tion experiments to compare it with an off-the-shelf MCMC

algorithm developed in JAGS 2 . We implemented the Gibbs

algorithm in C++, which JAGS uses, for a fair comparison.

For each data point di ∈ {(vi, ti, ri)}ni=1 in the simu-

lation experiments, vi is randomly chosen from the latent

feature vectors learned by the ALS CF algorithm. ti is

randomly sampled from uniform(50, 2592000), i.e. be-

tween a time gap of 50 seconds and one month. ri is calcu-

lated using Eq. (6) where elements of θ are sampled from

N (0, 1) and s from uniform(100, 1000).
To determine the burn-in and sample size of the two

algorithms and to ensure they draw samples equally effec-

tively, we first check to see if they converge to a similar

level. We generate a test set of 300 data points and vary

the size of the training set to gauge the prediction accuracy.

We set K = 5 in the MH step of our Gibbs algorithm.

While our Gibbs algorithm achieves reasonable accuracy

with burn-in = 20 and sample size = 100, the MCMC al-

gorithm gives comparable results only when both parame-

ters are 10000. Figure 2 shows their prediction accuracies

averaged over 10 trials. With burn-in and sample size de-

termined, we then conduct an efficiency study of the two

algorithms. We vary the training set size from 1 to 1000

and record the time they take to finish the sampling pro-

cess. We use a computer with Intel Core i7-2600 CPU

@ 3.40Ghz and 8GB RAM. The efficiency comparison re-

sult is shown in Figure 3. We can see that computation

time of both two sampling algorithms grows linearly with

the training set size. However, our proposed Gibbs sam-

pling algorithm is hundreds of times faster than MCMC,

2 http://mcmc-jags.sourceforge.net/

Figure 3: Efficiency comparison of sampling algorithms.
(T imeMCMC = 538.762s and T imeGibbs = 0.579s when
TrainingSetSize = 1000).

Figure 4: Online evaluation platform.

suggesting that our proposed approach is practical for de-

ployment in online recommender systems.

4.4 User Study

In an online user study, we compare the effectiveness of

our proposed recommendation algorithm, Bayes-UCB-CF,

with that of two baseline algorithms: (1) Greedy algo-

rithm, representing the traditional recommendation strat-

egy without exploration-exploitation trade-off. (2) Bayes-

UCB-Content algorithm [12], which also adopts the Bayes-

UCB technique but is content-based instead of CF-based.

We do not perform offline evaluation because it cannot cap-

ture the effect of the elapsed time t in our rating model and

the interactiveness of our approach.

Eighteen undergraduate and graduate students (9 females

and 9 males, age 19 to 29) are invited to participate in the

user study. The subject pool covers a variety of majors

of study and nationalities, including American, Chinese,

Korean, Malaysian, Singaporean and Iranian. Subjects re-

ceive a small payment for their participation. The user

study takes place over the course of two weeks in April

2014 on a user evaluation website we constructed (Figure

4). The three algorithms evaluated are randomly assigned

to numbers 1-3 to avoid bias. For each algorithm, 200 rec-

ommendations are evaluated using a rating scale from 1 to

5. Subjects are reminded to take breaks frequently to avoid

fatigue. To minimize the carryover effect, subjects can-

not evaluate two different algorithms in one day. For the

user study, Bayes-UCB-CF’s hyperparameters are set as:

a0 = 10, b0 = 3, c0 = 0.01, d0 = 0.001 and e0 = 0.001.

Since maximizing the total expected rating is the main

objective of a music recommender system, we thus com-

pare the cumulative average rating of the three algorithms.

Figure 5 shows the average rating and standard error of
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Figure 5: Recommendation performance comparison.

each algorithm from the beginning till the n-th recommen-

dation iteration. We can see that our proposed Bayes-UCB-

CF algorithm significantly outperforms Bayes-UCB-Content,

suggesting that the latter still fails to bridge the semantic

gap between high-level user preferences and low-level au-

dio features.

T-tests show that Bayes-UCB-CF starts to significantly

outperform the Greedy baseline after the 46th iteration (p-

value < 0.0472). In fact, Greedy’s performance decays

rapidly after the 60th iteration while others continue to

improve. Because Greedy solely exploits, it is quickly

trapped at a local optima, repeatedly recommending the

few songs with initial good ratings. As a result, the novelty

of those songs plummets, and users become bored. Greedy

will introduce new songs after collecting many low ratings,

only to be soon trapped into a new local optima. By con-

trast, our Bayes-UCB-CF algorithm balances exploration

and exploitation and thus significantly improves the rec-

ommendation performance.

5. CONCLUSION

We present a novel reinforcement learning approach to mu-

sic recommendation that remedies the greedy nature of the

collaborative filtering approaches by balancing exploita-

tion with exploration. A Bayesian graphical model incor-

porating both the CF latent factors and novelty is used to

learn user preferences. We also develop an efficient sam-

pling algorithm to speed up Bayesian inference. In mu-

sic recommendation, our work is the first attempt to in-

vestigate the exploration-exploitation trade-off and to ad-

dress the greedy problem in CF-based approaches. Results

from simulation experiments and user study have shown

that our proposed algorithm significantly improves recom-

mendation performance over the long term. To further im-

prove recommendation performance, we plan to deploy a

hybrid model that combines content-based and CF-based

approaches in the proposed framework.
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ABSTRACT 

The success of a music recommender system depends on 
its ability to predict how much a particular user will like 
or dislike each item in its catalogue. However, such pre-
dictions are difficult to make accurately due to the com-
plex nature of music tastes. In this paper, we review the 
literature on music tastes from social psychology and so-
ciology of music to identify the correlates of music tastes 
and to understand how music tastes are formed and 
evolve through time. Research shows associations be-
tween music preferences and a wide variety of sociodem-
ographic and individual characteristics, including person-
ality traits, values, ethnicity, gender, social class, and po-
litical orientation. It also reveals the importance of social 
influences on music tastes, more specifically from family 
and peers, as well as the central role of music tastes in the 
construction of personal and social identities. Suggestions 
for the design of music recommender systems are made 
based on this literature review.  

1. INTRODUCTION 

The success of a music recommender system (RS) de-
pends on its ability to propose the right music, to the right 
user, at the right moment. This, however, is an extremely 
complex task. A wide variety of factors influence the de-
velopment of music preferences, thus making it difficult 
for systems to predict how likely a particular user is to 
like or dislike a piece of music. This probably explains 
why music RS are often based on collaborative filtering 
(CF): it allows systems to uncover complex patterns in 
preferences that would be difficult to model based on mu-
sical attributes [1]. However, in order to make those pre-
dictions as accurate as possible, these systems need to 
collect a considerable amount of information about the 
music preferences of each user. To do so, they elicit ex-
plicit feedback from users, inviting them to rate, ban, or 
love songs, albums, or artists. They also collect implicit 
feedback, most often in the form of purchase or listening 
history data (including songs skipped) of individual users. 
These pieces of information are combined to form the us-
er’s music taste profile, which allows the systems to iden-
tify like-minded users and to recommend music based on 

the taste profiles of these users. One of the principal limi-
tations of RS based on CF is that, before they could gath-
er sufficient information about the preferences of a user, 
they perform poorly. This corresponds to the well-
documented new user cold-start problem.  

One way to ease this problem would be to try to enrich 
the taste profile of a new user by relying on other types of 
information that are known to be correlated with music 
preferences. More recently, it has become increasingly 
common for music RS to encourage users to create a per-
sonal profile, or to allow them to connect to the system 
with a general social network site account (for instance, 
Deezer users can connect with their Facebook or their 
Google+ account). Music RS thus have access to a wider 
array of information regarding new users.  

Research on music tastes can provide insights into how 
to take advantage of this information. More than a decade 
ago, similar reasoning led Uitdenbogerd and Schyndel [2] 
to review the literature on the subject to identify the fac-
tors affecting music tastes. In 2003, however, a paper 
published by Rentfrow and Gosling [3] on the relation-
ship between music and personality generated a renewed 
interest for music tastes among researchers, which trans-
lated into a sharp increase in research on this topic.  

In this paper, we propose to review the recent literature 
on music preferences from social psychology and sociol-
ogy of music to identify the correlates of music tastes and 
to understand how music tastes are formed and evolve 
through time. We first explain the process by which we 
identified and selected the articles and books reviewed. 
We then present the structure and the correlates of music 
preferences based on the literature review. We conclude 
with a brief discussion on the implications of these find-
ings for music RS design.    

2. METHODS 

We used two databases to identify the literature on music 
preferences, one in psychology, PsycINFO (Ovid), and 
one in sociology, Sociological Abstracts (ProQuest). We 
used the thesaurus of each database to find the de-
scriptors that were used to represent the two concepts of 
interest (i.e., music, preferences), which led to the que-
ries presented in Table 1.   

PsycINFO music AND preferences 

Sociological  
Abstracts:  

(music OR "music/musical") AND ("pref-
erence/preferences" OR preferences) 

Table 1. Queries used to retrieve articles in databases 

 © Audrey Laplante 
Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Audrey Laplante. “Improving
Music Recommender Systems: What Can We Learn from Research on 
Music Tastes?”, 15th International Society for Music Information
Retrieval Conference, 2014. 
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Both searches were limited to the subject heading field. 
We also limited the search to peer-reviewed publications 
and to articles published in 1999 or later to focus on the 
articles published during the last 15 years. This yielded 
155 articles in PsycINFO and 38 articles in Sociological 
Abstracts. Additional articles and books were identified 
through chaining (i.e., by following citations in retrieved 
articles), which allowed us to add a few important docu-
ments that had been published before 1999. Considering 
the limited space and the large number of documents on 
music tastes, further selection was needed. After ensuring 
that all aspects were covered, we rejected articles with a 
narrow focus (e.g., articles focusing on a specific music 
genre or personality trait). For topics on which there were 
several publications, we retained articles with the highest 
number to citations based on Google Scholar. We also 
decided to exclude articles on the relationship between 
music preferences and the functions of music to concen-
trate on individual characteristics.  

3. REVIEW OF LITERATURE ON MUSIC 
TASTES 

Research shows that people, especially adolescents, use 
their music tastes as a social badge through which they 
convey who they are, or rather how they would like to be 
perceived [4, 5]. This indicates that people consider that 
music preferences reflect personality, values, and beliefs. 
In the same line, people often make inferences about the 
personality of others based on their music preferences, as 
revealed by a study in which music was found to be the 
main topic of conversation between two young adults 
who are given the task of getting to know each other [6]. 
The same study showed that these inferences are often 
accurate: people can correctly infer several psychological 
characteristics based on one’s music preferences, which 
suggests that they have an intuitive knowledge of the re-
lationships that exist between music preferences and per-
sonality. Several researchers have studied these relation-
ships systematically to identify the correlates of music 
preferences that pertain to personality and demographic 
characteristics, values and beliefs, and social influences 
and stratification.  

3.1 Dimensions of music tastes 

There are numerous music genres and subgenres. How-
ever, as mentioned in [7], attitudes toward genres are not 
isolated from one another: there are genres that seem to 
go together while others seem to oppose. Therefore, to 
reduce the number of variables, prior to attempting to 
identify the correlates of music preferences, most re-
searchers start by examining the nature of music prefer-
ences to identify the principal dimensions. The approach 
of Rentfrow and Gosling [3] is representative of the 
work of several researchers. To uncover the underlying 
structure of music preferences, they first asked 1,704 
students from an American university to indicate their 
liking of 14 different music genres using a 7-point Likert 
scale. This questionnaire was called the Short Test Of 
Music Preferences (STOMP). They then performed fac-
tor analysis by means of principal-components analysis 

with varimax rotation on participants’ ratings. This al-
lowed them to uncover a factor structure of music prefer-
ences, composed of four dimensions, which they labeled 
Reflective and Complex, Intense and Rebellious, Upbeat 
and Conventional, and Energetic and Rhythmic. Table 2 
shows the genres most strongly associated with each di-
mension. To verify the generalizability of this structure 
across samples, they replicated the study with 1,384 stu-
dents of the same university, and examined the music 
libraries of individual users in a peer-to-peer music ser-
vice. This allowed them to confirm the robustness of the 
model. 
 

Music-preference di-
mension 

Genres most strongly 
associated 

Reflective and Complex Blues, Jazz, Classical, Folk 

Intense and Rebellious 
 

Rock, Alternative, Heavy 
metal  

Upbeat and Conventional Country, Sound tracks, Re-
ligious, Pop 

Energetic and Rhythmic 
 

Rap/hip-hop, Soul/funk, 
Electronica/dance 

Table 2. Music-preference dimensions of Rentfrow and 
Gosling (2003). 

Several other researchers replicated Rentfrow and 
Gosling’s study with other populations and slightly dif-
ferent methodologies. To name a few, [8] surveyed 2,334 
Dutch adolescents aged 12–19; [9] surveyed 268 Japa-
nese college students; [10, 11] surveyed 422 and 170 
German students, respectively; and [12] surveyed 358 
Canadian students. Although there is a considerable de-
gree of similarity in the results across these studies, there 
also appears to be a few inconsistencies. Firstly, the 
number of factors varies: while 4 studies revealed a 4-
factor structure [3, 8-10], one found 5 factors [11], and 
another, 9 factors1 [12]. These differences could poten-
tially be explained by the fact that researchers used dif-
ferent music preference tests: the selection of the genres 
to include in these tests depends on the listening habits of 
the target population and thus needs to be adapted. The 
grouping of genres also varies. In the 4 above-mentioned 
studies in which a 4-factor structure was found, rock and 
metal music were consistently grouped together. Howev-
er, techno/electronic was not always grouped with the 
same genres: while it was grouped with rap, hip-hop, and 
soul music in 3 studies, it was grouped with popular mu-
sic in the study with the Dutch sample [8]. Similarly, re-
ligious music was paired with popular music in Rentfrow 
and Gosling’s study, but was paired with classical and 
jazz music in the 3 other studies. These discrepancies 
could come from the fact that some music genres might 
have different connotations in different cultures. It can 
also be added that music genres are problematic in them-
selves: they are broad, inconsistent, and ill-defined. To 

                                                             
1 For this study, the researchers started with 30 genres, as opposed to 
others who used between 11 and 21 genres. 
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solve these problems, Rentfrow and colleagues [13, 14] 
replicated the study yet again, but used 52 music excerpts 
representing 26 different genres to measure music prefer-
ences instead of a list of music genres. The resulting 
structure was slightly different. It was composed of 5 fac-
tors labeled Mellow, Unpretentious, Sophisticated, In-
tense, and Contemporary (MUSIC). This approach also 
allowed them to examine the ties between the factors and 
the musical attributes. To do so, they asked non-experts 
to rate each music excerpt according to various attributes 
(i.e., auditory features, affect, energy level, perceived 
complexity) and used this information to identify the mu-
sical attributes that were more strongly associated with 
each factor. 

3.2 Personality traits 

Several researchers have examined the relationship be-
tween music preferences and personality traits [3, 8-10] 
using the 5-factor model of personality, commonly called 
the “Big Five” dimensions of personality (i.e., Extraver-
sion, Emotional Stability, Agreeableness, Conscientious-
ness, and Openness to Experience). Rentfrow and Gos-
ling [3] were the first to conduct a large-scale study fo-
cusing on this aspect, involving more than 3,000 partici-
pants. In addition to taking the STOMP test for measur-
ing their music preferences, participants had to complete 
6 personality tests, including the Big Five Inventory. The 
analysis of the results revealed associations between 
some personality traits and the 4 dimensions of music 
preferences. For instance, they found that liking Reflec-
tive and Complex music (e.g., classical, jazz) or Intense 
and Rebellious music (e.g., rock, metal) was positively 
related to Openness to Experience; and liking Upbeat and 
Conventional music (e.g., popular music) or Energetic 
and Rhythmic music (e.g., rap, hip-hop) was positively 
correlated with extraversion. Emotional Stability was the 
only personality dimension that had no significant corre-
lation with any of the music-preference dimensions. 
Openness and Extraversion were the best predictors of 
music preferences.   

As mentioned previously, since researchers use differ-
ent genres and thus find different music-preference di-
mensions, comparing results from various studies is prob-
lematic. Nonetheless, subsequent studies seem to confirm 
most of Rentfrow and Gosling’s findings. Delsing et al. 
[8] studied Dutch adolescents and found a similar pattern 
of associations between personality and music prefer-
ences dimensions. Only two correlations did not match. 
However, it should be noted that the correlations were 
generally lower, a disparity the authors attribute to the 
age difference between the two samples (college student 
vs. adolescents): adolescents being more influenced than 
young adults by their peers, personality might have a 
lesser effect on their music preferences. Brown [9] found 
fewer significant correlations when studying Japanese 
university students. The strongest correlations concerned 
Openness, which was positively associated with liking 
Reflective and Complex music (e.g., classical, jazz) and 
negatively related to liking Energetic and Rhythmic mu-
sic (e.g., hip-hop/rap). The positive correlation between 

Energetic and Rhythmic music and Extraversion, which 
was found in most other studies [3, 8, 10], was not found 
with the Japanese sample.  

3.3 Values and Beliefs 
Fewer recent studies have focused on the relationship be-
tween music preferences and values or beliefs compared 
to personality. Nevertheless, several correlates of music 
preferences were found in this area, from political orien-
tation to religion to vegetarianism [15].  

3.3.1 Political Orientation 
In the 1980s, Peterson and Christenson [16] surveyed 259 
American university students on their music preferences 
and political orientation. They found that liberalism was 
positively associated with liking jazz, reggae, soul, or 
hardcore punk, whereas linking 70s rock or 80s rock was 
negatively related to liberalism. They also uncovered a 
relationship between heavy metal and political alienation: 
heavy metal fans were significantly more likely than oth-
ers to check off the “Don’t know/don’t care” box in re-
sponse to the question about their political orientation. 
More recently, Rentfrow and Gosling [3] found that polit-
ical conservatism was positively associated with liking 
Upbeat & Conventional music (e.g., popular music), 
whereas political liberalism was positively associated 
with liking Energetic and Rhythmic (e.g., rap, hip-hop) or 
Reflective and Complex (e.g., classical, jazz) music, alt-
hough the last two correlations were weak. North and 
Hargreaves [15], who surveyed 2,532 British individuals, 
and Gardikiotis and Baltzis [17], who surveyed 606 
Greek college students, also found that people who liked 
classical music, opera, and blues were more likely to have 
liberal, pro-social beliefs (e.g., public health care, protec-
tion of the environment, taking care of the most vulnera-
ble). In contrast, fans of hip-hop, dance, and DJ-based 
music were found to be among the least likely groups to 
hold liberal beliefs (e.g., increased taxation to pay for 
public services, public health care) [15]. As we can see, 
liking jazz and classical music was consistently associat-
ed with liberalism, but no such clear patterns of associa-
tions emerged for other music genres, which suggests that 
further research is needed.   

3.3.2 Religious Beliefs 
There are very few studies that examined the link be-
tween music preferences and religion. The only recent 
one we could find was the study by North and Hargreaves 
previously mentioned [15]. Their analysis revealed that 
fans of western, classical music, disco, and musicals were 
the most likely to be religious; whereas fans of dance, in-
die, or DJ-based music were least likely to be religious. 
They also found a significant relation between music 
preferences and the religion affiliation of people. Fans of 
rock, musicals, or adult pop were more likely to be 
Protestant; fans of opera or country/western were more 
likely to be Catholic; and fans of R&B and hip-hop/rap 
were more likely to adhere to other religions. Another 
older study used the 1993 General Social Survey to ex-
amine the attitude of American adults towards heavy 
metal and rap music and found that people who attended 
religious services were more likely to dislike heavy metal 
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(no such association was found with rap music) [18]. 
Considering that religious beliefs vary across cultures, 
further studies are needed to discern a clear pattern of as-
sociations between music preferences and religion.  

3.4 Demographic Variables 

3.4.1 Gender 
Several studies have revealed associations between gen-
der and music tastes. It was found that women were more 
likely to be fans of chart pop or other types of easy listen-
ing music (e.g., country) [7, 12, 15, 19, 20], whereas men 
were more likely to prefer rock and heavy metal [12, 15, 
19, 20]. This is not to say that women do not like rock: in 
Colley’s study [19], which focused on gender differences 
in music tastes, rock was the second most highly rated 
music genre among women: the average rating for wom-
en was 4.1 (on an 8-point scale from 0 to 7) vs. 4.8 for 
men. There was, however, a much greater gap in the atti-
tudes towards popular music between men and women, 
who attributed 3.17 and 4.62 on average, respectively. 
This was the genre for which gender difference was the 
most pronounced. Lastly, it is worth mentioning that most 
studies did not find any significant gender difference for 
rap [7, 12, 19], which indicates that music in this category 
appeals to both sexes. This is a surprising result consider-
ing the misogynistic message conveyed by many rap 
songs. Christenson and Roberts [7] speculated that this 
could be due to the fact that men appreciate rap for its 
subversive lyrics while women appreciate it for its dance-
ability.  

3.4.2 Race and Ethnicity 
Very few studies have examined the ties between music 
preferences and race and ethnicity. In the 1970s, a survey 
of 919 American college students revealed that, among 
the demographic characteristics, race was the strongest 
predictor of music preferences [21]. In a book published 
in 1998 [7], Christenson and Roberts affirmed that racial 
and ethnic origins of fans of a music genre mirror those 
of its musicians. To support their affirmation, they re-
ported the results of a survey of adolescents conducted in 
the 1990s by Carol Dykers in which 7% of black adoles-
cents reported rap as their favourite music genre, com-
pared with 13% of white adolescents. On the other hand, 
25% of white adolescents indicated either rock or heavy 
metal as their favourite genre, whereas these two genres 
had been only mentioned by a very small number of 
black adolescents (less than 5% for heavy metal). North 
& Hargreaves [15] also found a significant relationship 
between ethnic background and music preferences. This 
study was conducted more recently (in 2007), with Brit-
ish adults, and with a more diversified sample in terms of 
ethnic origins. Interestingly, they found that a high pro-
portion of the respondents who were from an Asian back-
ground liked R&B, dance, and hip-hop/rap, which seems 
to challenge Christenson and Roberts’ affirmation. [22] 
who studied 3,393 Canadian adolescents, performed a 
cluster analysis to group respondents according to their 
music preferences. They then examined the correlates of 
each music-taste cluster. The analysis revealed a different 
ethnic composition for different clusters. For instance, the 

Black Stylists cluster was composed of fans of hip-hop 
and reggae who were largely black, with some South 
Asian representation. By contrast, the Hard Rockers, who 
like heavy metal and alternative music, were almost ex-
clusively white.  

3.4.3 Age 
Most researchers who study music preferences draw their 
participants from the student population of the university 
where they work. As a result, samples are mostly homog-
enous in terms of age, which explains the small number 
of studies that focused on the relationship between age 
and music preferences. Age was found to be significantly 
associated with music preferences. For instance, [23] 
compared the music preferences of different age groups 
and found that there were only two genres—rock and 
country—that appeared in the five most highly rated gen-
res of both the 18-24 year olds and the 55-64 year olds. 
While the favourite genres of younger adults were rap, 
metal, rock, country, and blues; older adults preferred 
gospel, country, mood/easy listening, rock, and classi-
cal/chamber music. [15] also found a correlation between 
age and preferences for certain music genres. Unsurpris-
ingly, their analysis revealed that people who liked what 
could be considered trendy music genres (e.g., hip-
hop/rap, DJ-based music, dance, indie, chart pop) were 
more likely to be young, whereas people who liked more 
conventional music genres (e.g., classical music, sixties 
pop, musicals, country) were more likely to be older. [24] 
conducted a study involving more than 250,000 partici-
pants and found that the interest for music genres associ-
ated with the Intense (e.g., rock, heavy metal, punk) and 
the Contemporary (e.g., rap, funk, reggae) music-
preference dimensions  decreases with age, whereas the 
interest for music genres associated with the Unpreten-
tious (e.g., pop, country) and the Sophisticated (e.g., clas-
sical, folk, jazz) dimensions increases. 

Some researchers have also looked at the trajectory of 
music tastes. Studies on the music preferences of children 
and adolescents revealed that as they get older, adoles-
cents tend to move away from mainstream rock and pop, 
although these genres remain popular throughout adoles-
cence [7]. Research has also demonstrated that music 
tastes are already fairly stable in early adolescence and 
further crystallize in late adolescence or early adulthood 
[25, 26]. Using data from the American national Survey 
of Public Participation in the Arts (SPPA) of 1982, 1992, 
and 2002, [23] examined the relationship between age 
and music tastes, with a focus on older age. They looked 
at the number of genres liked per age group and found 
that in young adulthood, people had fairly narrow tastes. 
Their tastes expand into middle age (i.e., 55 year old), to 
then narrow again, suggesting that people disengage from 
music in older age. They also found that although music 
genres that are popular among younger adults change 
from generation to generation; they remain much more 
stable among older people.  

3.4.4 Education 
Education was also found to be significantly correlated to 
music preferences. [15] found that individuals who held a 
master’s degree or a Ph.D. were most likely to like opera, 
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jazz, classical music, or blues; whereas fans of country, 
musicals, or 1960s pop were most likely to have a lower 
level of education.  [27] studied 325 adolescents and their 
parents and also found an association between higher ed-
ucation and a taste for classical and jazz music. Parents 
with lower education were more likely to like popular 
music and to dislike classical and jazz music.  

3.5 Social influences 

As mentioned before, research established that people use 
their music preferences as a social badge that conveys 
information about their personality, values, and beliefs. 
But music does not only play a role in the construction of 
personal identity. It is also important to social identity. 
Music preferences can also act as a social badge that in-
dicates membership in a social group or a social class.  

3.5.1 Peers and Parents 
Considering the importance adolescents ascribe to both 
friendship and music, it is not surprising to learn that so-
cial groups often identify with music subcultures during 
adolescence [4]. Therefore, it seems legitimate to posit 
that in the process of forming their social identity, ado-
lescents may adopt music preferences similar to that of 
other members of the social group to which they belong 
or they aspire to belong. This hypothesis seems to be con-
firmed by recent studies. [28] examined the music prefer-
ences of 566 Dutch adolescents who formed 283 same-
sex friendship dyads and found a high degree of similari-
ty in the music preferences of mutual friends. Since they 
surveyed the same participants one year after the initial 
survey, they could also examine the role of music prefer-
ences in the formation of new friendships and found that 
adolescents who had similar music preferences were 
more likely to become friends, as long as their music 
preferences were not associated with the most main-
stream dimensions. In the same line, Boer and colleagues 
[29] conducted three studies (two laboratory experiments 
involving German participants and one field study in-
volving Hong Kong university students) to examine the 
relationship between similarity in music preferences and 
social attraction. They found that people were more likely 
to be attracted to others who shared their music tastes be-
cause it suggests that they might also share the same val-
ues.   

Adolescents were also found to be influenced by the 
music tastes of their parents. ter Bogt and colleagues [27] 
studied the music tastes of 325 adolescents and their par-
ents. Their analysis revealed some significant correlations. 
The adolescents whose parents liked classical or jazz mu-
sic were also more likely to appreciate these music genres. 
Parents’ preferences for popular music were associated 
with a preference for popular and dance music in their 
adolescent children. Parents were also found to pass on 
their liking of rock music to their adolescent daughters 
but not to their sons. One possible explanation for the in-
fluence of parents on their children’s music tastes is that 
since family members live under the same roof, children 
are almost inevitably exposed to the favourite music of 
their parents.  

3.5.2 Social Class 
In La Distinction [30], Bourdieu proposed a social strati-
fication of tastes and cultural practices according to 
which a taste for highbrow music or other cultural prod-
ucts (and a disdain for lowbrow culture) is considered the 
expression of a high status. Recent research, however, 
suggests that a profound transformation in the tastes of 
the elite has occurred. In an article published in 1996, Pe-
terson and Kern [31] reported the results of a study of the 
musical tastes of Americans based on data from the Sur-
vey of Public Participation in the Arts of 1982 and 1992. 
Their analysis revealed that far from being snobbish in 
their tastes, individuals with a high occupational status 
had eclectic tastes which spanned across the low-
brow/highbrow spectrum. In fact, people of high status 
were found to be more omnivorous than others, and their 
level of omnivorousness has increased over time. This 
highly cited study has motivated several other researchers 
to study the link between social class and music prefer-
ences. Similar studies were conducted in other countries, 
notably in France [32], Spain [33], and the Netherlands 
[34], and yielded similar results. 

4. IMPLICATION FOR MUSIC RECOMMENDER 
SYSTEM DESIGN 

A review of the literature on music tastes revealed many 
interesting findings that could be used to improve music 
RS. Firstly, we saw that researchers had been able to un-
cover the underlying structure of music preferences, 
which is composed of 4 or 5 factors. The main advantage 
for music RS is that these factors are fairly stable across 
populations and time, as opposed to genres, which are 
inconsistent and ill-defined. As suggested by Rentfrow, 
Goldberg, and Levitin themselves [13], music RS could 
characterize the music preferences of their users by calcu-
lating a score for each dimension.  

Secondly, some personality dimensions were found to 
be correlated to music preferences. In most studies, 
Openness to experience was the strongest predictor of 
music tastes. It was positively related to liking Reflective 
and Complex music (e.g., jazz and classical) and, to a 
lesser extent, to Intense and Rebellious music (e.g., rock, 
heavy metal). This could indicate that users who like the-
se music genres are more open to new music than other 
users. RS could take that into account and adapt the nov-
elty level accordingly.  

Finally, the demographic correlates of music prefer-
ences (e.g., age, gender, education, race), as well as reli-
gion and political orientation, could help ease the new 
user cold-start problem. As mentioned in the introduc-
tion, many music RS invite new users to create a profile 
and/or allow them to connect with a social networking 
site account, in which they have a profile. These profiles 
contain various types of information about users. Music 
RS could combine such information to make inferences 
about the music preferences of new users. In the same 
line, information about the education and the occupation 
of a user could be used to identify potential high-status, 
omnivore users.   
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5. CONCLUSION 

The abundant research on music tastes in sociology and 
social psychology has been mostly overlooked by music 
RS developers. This review of selected literature on the 
topic allowed us to present the patterns of associations 
between music preferences and demographic characteris-
tics, personality traits, values and beliefs. It also revealed 
the importance of social influences on music tastes and 
the role music plays in the construction of individual and 
social identities.  
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ABSTRACT 

This paper builds an understanding of how music is cur-
rently experienced by a social group travelling together in a 
car—how songs are chosen for playing, how music both 
reflects and influences the group’s mood and social interac-
tion, who supplies the music, the hardware/software that 
supports song selection and presentation. This fine-grained 
context emerges from a qualitative analysis of a rich set of 
ethnographic data (participant observations and interviews) 
focusing primarily on the experience of in-car music on 
moderate length and long trips. We suggest features and 
functionality for music software to enhance the social expe-
rience when travelling in cars, and prototype and test a user 
interface based on design suggestions drawn from the data. 

1. INTRODUCTION 

Automobile travel occupies a significant space in modern 
Western lives and culture. The car can become a ‘home-
from-home’ for commuters in their largely solitary travels, 
and for groups of people (friends, families, work col-
leagues) in both long and short journeys [20]. Music is 
commonly seen as a natural feature of automotive travel, 
and as cars become increasingly computerized [17] the op-
portunities are increased for providing music tailored to the 
specific characteristics of a given journey. To achieve this 
goal, however, we must first come to a more fine-grained 
understanding of these car-based everyday music experi-
ences. To that end, this paper explores the role of music in 
supporting the ‘peculiar sociality’ [20] of car travel.  

2. BACKGROUND 

Most work investigating the experience of music in cars 
focuses on single-users, (e.g. [4], [5]). Solo drivers are free 
to create their own audio environment: “the car is a space of 
performance and communication where drivers report being 
in dialogue with the radio or singing in their own 
auditized/privatized space” [5]. Walsh [21] notes that “a 

 
 
large majority of drivers in the United States declare they 
sing aloud when driving”.  

Walsh provides the most detailed discussion of the 
social aspects of music in cars, noting the interaction with 
conversation (particularly through volume levels) and 
music’s role in filling “chasms of silence” [21]. Issues of 
impression management [9, 21] (music I like but wouldn’t 
want others to know I like) are more acute in the confined 
environment of a car and vary depending on the social 
relationships between the occupants [21]. Music selections 
are often the result of negotiations between the passengers 
and the driver [14, 21], where the driver typically has 
privileged access to the audio controls. 

Bull [6] reports a particularly interesting example of the 
intersection between the private environment of personal 
portable devices and the social environment of a car with 
passengers: 

Jim points to the problematic nature of joint listening 
in the automobile due to differing musical tastes. The 
result is that he plays his iPod through the car radio 
whilst his children listen to theirs independently or 
playfully in ‘harmony’ resulting in multiple sound-
worlds in the same space. 

Here, although the children have personal devices they 
try to synchronize the playback so that they can experience 
the same song at the same time; even though their activity 
will occur in the context of another piece of music on the 
car audio system. Alternative methods for sharing include 
explicit (and implicit) recommendation, as in Push!Music  
[15], and physical sharing of earbuds [3]. Bull [6] also 
highlights another aspect of music in cars: selection 
activities that occur prior to a journey. The classic 
‘roadtrip’ activity of choosing music to accompany a long 
drive is also noted: “drivers would intentionally set up and 
prepare for their journey by explicitly selecting music to 
accompany the protracted journey “on the road”” [21].  

Sound Pryer [18] is a joint-listening prototype that 
enables drivers to ‘pry’ into the music playing in other 
cars. This approach emphasizes driving as a social practice, 
though it focuses on inter-driver relationships rather than 
those involving passengers. Sound Pryer can also be 
thought of as a transfer of some of the mobile music 
sharing concepts in the tunA system [2] to the car setting. 

 © S.J. Cunningham, D.M. Nichols, D. Bainbridge, H. Ali. 
Licensed under a Creative Commons Attribution 4.0 International 
License (CC BY 4.0). Attribution: S.J. Cunningham, D.M. Nichols, D. 
Bainbridge, H. Ali.. “Social Music in Cars”, 15th International Society 
for Music Information Retrieval Conference, 2014. 

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

457



  
 

Driver distraction is known to be a significant factor in 
vehicle accidents and has led to legislation around the 
world restricting the use of mobile phones whilst driving. 
In addition to distraction effects caused by operating audio 
devices there are the separate issues of how the music itself 
affects the driver. Driving style can be influenced by genre, 
volume and tempo of music [10]: “at high levels, fast and 
loud music has been shown to divert attention [from 
driving]” [11], although drivers frequently use music to 
relax [11]. Several reports indicate that drivers use music 
to relieve boredom on long or familiar routes [1, 21], e.g. 
“as repetitious scenery encourages increasing disinterest … 
the personalized sounds of travel assume a greater role in 
allowing the driver-occupants respite via intermitting the 
sonic activity during protracted driving stints” [21].  

Many accidents are caused by driver drowsiness; when 
linked with physiological sensors to assess the driver’s 
state, music can be used to assist in maintaining an 
appropriate level of driver vigilance [16]. Music can also 
counteract driver vigilance by masking external sounds and 
auditory warnings, particularly for older drivers where age-
related hearing loss is more likely to occur [19].  

In summary, music fulfils a variety of different roles in 
affecting the mental state of the driver. It competes and 
interacts with passenger conversation, the external 
environmental and with audio functions from the 
increasingly computerized driving interface of the car. 
When passengers are present, the selection and playing of 
music is a social activity that requires negotiation between 
the occupants of the vehicle. 

3. DATA COLLECTION AND METHODOLOGY 

Our research uses data collected in a third year university 
Human Computer Interaction (HCI) course in which stu-
dents design and prototype a system for the set application, 
where their designs are informed by an ethnographic inves-
tigations into behavior associated with the application do-
main.  This present paper focuses on the ethnographic data 
collected that relates to music and car travel, as gathered by 
22 student investigators (Table 1).  All data gathering for 
this study occurred within New Zealand. 
To explore the problem of designing a system to support 
groups of people in selecting and playing music while trav-
eling, The students performed participant observations, 
with the observations focusing on how the music is chosen 
for playing, how the music fits in with the other activities 
being conducted, who supplies the music, and how/who 
changes the songs or alters the volume. The students then 
explored subjective social music experiences through auto-
ethnographies [8] and interviews of friends. The data com-
prises 19 participant observations, two self-interviews, and 
four interviews (approximately 45 printed pages). Of the 19 
participant observations, four were of short drives (10 to 30 
minutes), 14 were lengthier trips (50 minutes to 2 hours), 
and one was a classic ‘road trip’ (7 hours). The number of 

people participating in a trip ranged from one to five (Table 
2). Of the 69 total travelers across the nineteen journeys, 45 
were male and 24 were female. One set of travelers were all 
female, 7 were all male, and the remainder (11) were mixed 
gender. 

Table 1. Demographics of student investigators 
Male Female National Origin Count 

17 5 NZ/Australia 5 
  China 13 
Age Range: Mid-East 3 
     20 - 27 Other 1 

Grounded Theory methods [13] were used to analyze the 
student summaries of their participant observations and in-
terviews. This present paper teases out the social behaviors 
that influence, and are influenced by, music played during 
group car travel. Supporting evidence drawn from the eth-
nographic data is presented below in italics. 

Table 2. Number of travelers in observed journeys 
1 2 3 4 5 
1 0 7 7 4 

4. MUSIC BEHAVIOR IN CAR TRAVEL 

This section explores: the physical car environment and the 
reported car audio devices; the different reported roles of 
the driver; observed behaviors surrounding the choice of 
songs and the setting of volume; music and driving safety; 
ordering of songs that are selected to be played; and the ‘ac-
tivities’ that music supports and influences. 

4.1 Pre-trip Activities 

The owner of a car often keeps personal music on hand in 
the vehicle (CDs, an MP3 player loaded with ‘car music’) 
as well as carrying along a mobile or MP3 player loaded 
with his/her music collection).  If only the owner’s music is 
played on the trip, then that person should, logically, also 
manage the selection of songs during the journey. Unfortu-
nately the owner of the car is also often the driver as well—
and so safety may be compromised when the driver is ac-
tively involved in choosing and ordering songs for play. 

Passengers are also likely to have on hand a mobile or 
MP3 player, and for longer trips may select CDs to share.  
If two or more people contribute music to be played on the 
journey, the challenge then becomes to bring all the songs 
together onto a single device—otherwise they experience 
the hassle of juggling several players. A consequence of 
merging collections, however, is that no one person will be 
familiar with the full set of songs, making on-the-road con-
struction of playlists more difficult (particularly given the 
impoverished display surface of most MP3 players). 

A simple pooling of songs from the passengers’ and 
driver’s personal music devices is unlikely to provide an 
efficiently utilizable source for selection of songs for a spe-
cific journey. The music that an individual listens to during 
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a usual day’s activities may not be suitable for a particular 
trip, or indeed for any car journey. People tend to tailor 
their listening to the activity at hand [7], and so songs that 
are perfect ‘gym music’ or ‘study music’ may not have the 
appropriate tempo, mood, or emotional tenor.  Further, an 
individual’s music collection may include ‘guilty pleasures’ 
that s/he may not want others to become aware of [9]: 

What mainly made [him] less comfortable in provid-
ing music that he likes is because he did [not] want to 
destroy the hyper atmosphere in the car as a result of 
the mostly energetic songs being played throughout 
the trip. His taste is mostly doom and death metal, 
with harsh emotion and so will create a bleak atmos-
phere in the car.  

4.2 Physical Environment and Audio Equipment 

The travel described in the participant observations primari-
ly occurred in standard sized cars with two seating areas, 
comfortably seating at most two people in the front and 
three in the rear sections.  In this environment physical 
movement is constrained. If the audio device controller is 
fixed in place then not everyone can easily reach it or view 
its display; if the controller is a handheld device, then it 
must be passed around (and even then it may be awkward 
to move the controller between the two sections).  

As is typical of student vehicles in New Zealand, the 
cars tended to be older (10+ years) and so were less likely 
to include sophisticated audio options such as configurable 
speakers and built-in MP3 systems. The range of audio 
equipment reported included radio, built-in CD player, 
portable CD player, stand-alone MP3 player plus speakers, 
and MP3 player connected to the car audio system.  

The overwhelming preference evinced in this study is for 
devices that give more fine-grained control over song selec-
tion (i.e., MP3 players over CD players, CD players over 
radio). The disadvantages of radio are that music choice is 
by station rather than by song, reception can be disrupted if 
the car travels out of range, and most channels include ads. 
On the other hand, radio can provide news and talkback, to 
break up a longer journey. 

4.3 Music in Support of Journey Social Activities 

Music is seen as integral to the group experience on a trip; 
it would be unacceptable and anti-social for the car’s occu-
pants to simply each listen to their individual MP3 player, 
for example. We identify a wide variety of ways that travel-
ers select songs so as to support group social activities dur-
ing travel: 
• Music can contribute to driving safety, by playing songs 

that will reduce driver drowsiness and keep the driver fo-
cused (music… can liven up a drive and keep you enter-
tained or awake much longer). For passengers, it can re-
duce the tedium associated with trips through un-
interesting or too-familiar scenery (music can reduce the 
boredom for you and your friends with the journey). 

Conversely, loud, fast tempo music can adversely affect 
safety ([As the driver, I] changed the volume very high… 
my body was shaking with the song. I stepped on the ac-
celerator in my car;  The driver [was] seen to increase 
the speed when the songs he liked is on). 

• Listening to music can be the main source of entertain-
ment during a trip, as the driver and passengers focus on 
the songs played. 

• Songs need not be listened to passively; travelers may 
engage in group sing-alongs, with the music providing 
support for their ‘performances’. These sessions may be 
loud and include over-the-top emotive renditions for the 
amusement of the singer and the group, and be accompa-
nied by clapping and ‘dancing’ in the seats (The partici-
pants would sing along to the lyrics of the songs, and al-
so sometimes dance along to the music, laughing and 
smiling throughout it). 

• A particular song may spark a conversation about the 
music—to identify a song (they would know what song 
they wanted to hear but they would not know the artist or 
name of the song. When this happened, they would … try 
to think of the artist name together) or to discuss other 
aspects of the artist/song/genre/etc (‘In the air tonight,  
Phil Collins!’ Ann asked Joan and I, ‘did you know that 
it’s top of the charts at the moment’  … There was con-
versation about Phil Collins re-releasing his music.) A 
lively debate can surround the choice and ordering of the 
songs to play, if playlists are created during the trip itself. 

• Music can provide a background to conversation; at 
this point the travelers pay little or no attention to the 
songs but they mask traffic noises (when we were chat-
ting… no one really cared what was on as long as there 
was some ambient sound). By providing ‘filler’ for awk-
ward silences, music is particularly useful in supporting 
conversations among groups who don’t know each other 
particularly well (it seemed more natural to talk when 
there was music to break the silence).  
For shorter trips, music might serve only one or two of 

these social purposes—playing as background to a debate 
over where to eat, for example.  On longer journeys, the 
focus of group attention and activity is likely to shift over 
time, and with that shift the role of the music will vary as 
well: At some times it would be the focus activity, with eve-
ryone having input on what song to choose and then sing-
ing along. While at other times the group just wanted to 
talk with each other and so the music was turned right 
down and became background music… 

4.4 Selecting and Ordering Songs 

The physical music device plays a significant role in deter-
mining who chooses the music on a car trip.  If the device is 
fixed (typically in the center of the dashboard), then it is 
easily accessible only by the driver or front passenger—and 
so they are likely to have primary responsibility for choos-
ing, or arbitrating the choice, of songs. The driver is often 
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the owner of the vehicle, and in that case is likely to be as-
sertive at decision points (Since I was the driver, I was ba-
sically the DJ. I would select the CD and the song to be 
played. I also changed the song if I didn’t like it even if oth-
ers in the car did.).  Given the small display surfaces of 
most music devices and the complexity of interactions with 
those devices, it is likely that safety is compromised when 
the driver acts as DJ.  Consider, for example: 

I select some remixed trance music from the second 
CD at odd slots of the playlist, and then insert some 
pop songs from other CDs in the rest of the slots of the 
list.  … I manually change the play order to random. 
Also I disable the volume protect. And enable the max 
volume that from the subwoofer due to the noises from 
the outside of my car … 
If the music system has a hand-held controller, then the 

responsibility for song selection can move through the car. 
At any one point, however, a single individual will assume 
responsibility for music management. Friends are often fa-
miliar with each other’s tastes, and so decisions can be 
made amicably with little or no consultation (I felt comfort-
able in choosing the music because they were mostly 
friends and I knew what kind of music they were all into 
and what music some friends were not into…). Imposing 
one’s will might go against the sense of a group experience 
and social expectations (…having the last word means it 
could cause problems between friends), or alternatively 
close ties might make unilateral decisions more acceptable 
(I did occasionally get fed up from their music and put back 
my music again without even asking them for permission, 
you know we are all friends.).  

As noted in Section 4.1, song selection on the fly can be 
difficult because the chooser may not be familiar with the 
complete base collection, or because the base collection in-
cludes songs not suited to the current mood of the trip. A 
common strategy is to listen to the first few seconds of a 
song, and if it is unacceptable then to skip to the song that 
comes up ‘next’ in the CD / shuffle / predetermined 
playlist. This strategy provides a choppy listening experi-
ence, but does have the advantage of simplicity: a song is 
skipped if any one person in the car expresses an objection 
to it. It may, however, be embarrassing to ask for a change 
if one is not in current possession of the control device.  

Song-by-song selection is appropriate for shorter trips, as 
the setup time for a playlist may be longer than the journey 
itself. Suggesting and ordering songs can also be a part of 
the fun of the event and engage travelers socially (My 
friends would request any songs that they would like to 
hear, and the passenger in control of the iPod acted like a 
human playlist; trying to memorise the requests in order 
and playing them as each song finished.)   

For longer trips, a set of pre-created playlists or mixes 
(supporting the expected moods or phases of the journey) 
can create a smoother travel experience.  A diverse set of 
playlists may be necessary to match the range of social mu-

sic behaviors reported in Section 4.2. Even with careful 
pre-planning, however, a song may be rejected at time of 
play for personal, idiosyncratic reasons (for example, one 
participant skips particular songs … associated with par-
ticular memories and events so I don’t like to listen to them 
while driving for example). 

4.5 Music Volume 

Sound volume is likely to change during a trip, signaling a 
change in the mood of the gathering, an alteration in the 
group focus, or to intensify / downplay the effects of a giv-
en song.  Participant observations included the following 
reasons for altering sound levels: to focus group attention 
on a particular song (louder); for the group to sing along 
with a song (louder); to switch the focus of group activity 
from the music to conversation (softer); to ‘energize’ the 
mood of the group (louder); to calm the group mood, and 
particularly to permit passengers to sleep (softer); and to 
move the group focus from conversation back to the music, 
particularly when conversation falters (louder). 

Clearly the ability to modulate volume to fit to the cur-
rent activity or mood is crucial. A finer control than is cur-
rently available would be desirable, as often speaker place-
ment means perceived volume depends on one’s seat in the 
car ([he] asked the driver to turn the bass down … because 
the bass effect was too strong, and the driver … think[s] the 
bass is fine in the front).   

Further, the physical division of a car into separate rows 
of seats and its restriction of passenger movement can en-
courage separate activity ‘zones’ (for example, front seats / 
back seats)—and the appropriate volume for the music can 
differ between seating areas:   

One of our friends who sets beside the driver is paying 
more attentions on the music, the rest 3 of us set in the 
back were communicate a lot more, and didn’t paying 
too much attention on the music… the front people can 
hear the music a lot more clear then the people sets in 
the back, and it’s harder for the front people to join 
the communication with the back people because he 
need to turn his head around for the chat sometimes. 

5. IMPLICATIONS FOR A SOCIAL AUDIO 
SYSTEM FOR CAR TRAVEL 

Leveraging upon music information retrieval capabilities, 
we now describe how our findings can inform the design of 
software specially targeted for song selection during car 
trips—personified, the software we seek in essence acts as a 
music host.  In general a playlist generator [12] for song 
selection coupled with access to a distributed network of 
self-contained digital music libraries for storing, organiz-
ing, and retrieving items (the collections of songs the vari-
ous people travelling have) are useful building blocks to 
developing such software; however, to achieve a digital 
music host, what is needed ultimately goes beyond this. 
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In broad terms, we envisage a software application with 
two phases: initial configuration and responsive adaptation.  
During configuration, the application gathers the pool of 
songs for the trip from the individuals’ devices, taking into 
account preferences such as which songs they wish to keep 
private and which types of songs (genre, artist, tempo, etc.) 
that they wish to have considered for the trip playlist. The 
users are then prompted to enter the approximate length of 
the upcoming road trip, and an initial playlist is constructed 
based on the user preferences and pool of songs. 

During the trip, the application can make use of a varie-
ty of inputs to dynamically adjust the sequence of songs 
played.  Here significant gains can be made from inventive 
uses of MIR techniques coupled with temporal and spatial 
information–even data sensors from the car.  For instance, 
if the application noticed the driver speeding for that sec-
tion of road it could alter the selection of the next song to 
one that is quieter with a slower tempo (beat detection); 
alternatively, triggered by the detection of the conversation 
lapsing into silence (noise cancelling) the next song played 
could be altered to be one labeled with a higher “interest” 
value (tagged, for instance, using semantic web technolo-
gies, and captured in the playlist as metadata). News 
sourced from a radio signal (whichever is currently in 
range) can be interspersed with the songs being played. 

As evidenced by our analysis, the role of the driv-
er/owner of the car takes on special significance in terms of 
the interface and interaction design.  As the host of the ve-
hicle, there is a perception that they are more closely 
linked to the software (the digital music host) that is mak-
ing the decision over what to play next.  While it is not a 
strict requirement of the software, for the majority of situa-
tions it will be an instinctive decision that the key audio 
device used to play the songs on the trip will be the one 
owned by the driver. For the adaptive phase of the software 
then, there is a certain irony that the driver (for reasons of 
driving safely) has less opportunity to influence the song 
selection during the trip.  To address this imbalance, an as-
pect the software could support is the prioritization of input 
from the “master” application at noted times that are 
deemed safe (such when the car is stationary). 

More prosaically, the travellers will requires support in 
tweaking the playlist as the trip progresses. We developed 
and tested a prototype of this aspect of the system, to eval-
uate the design’s potential. The existing behaviors explored 
in Section 3 suggest that this system should be targeted at 
tablet devices rather than smaller mobiles: while the device 
should be lightweight enough to be easily passed between 
passengers in a vehicle, the users should be able to clearly 
see the screen details from an arm’s length, and controls 
should be large and spaced to minimize input error.  

Figure 1 presents screenshots for primary functionality 
of our prototype:  the view of the trip playlist, which fea-
tures the current song in context with the preceding and 
succeeding songs (Figure 1a); the lyrics display for the cur-
rent song, sized to be viewable by all (Figure 1b); and a 

screen allowing selected songs to be easily inserted into 
different points in the playlist (Figure 1c). While it was 
tempting on a technical level to include mobile-based wire-
less voting (using their smart phones) to move the current-
ly playing item up or down as an expression of like/dislike 
(relevance feedback), we recognize that face-to-face dis-
cussion and argument over songs is often a source of en-
joyment and bonding for fellow travelers—and so we de-
liberately support only manual playlist manipulation. 

 
Figure 1a.  Playlist view. 

Figure 1b. Lyrics view for the active song. 

 
Figure 1c. After searching for a song, ‘smart options’ for 
inserting the song into the current section of the playlist. 

Given the practical and safety difficulties in evaluating 
our prototype system in a moving car, we instead used a 
stationary simulation. Two groups of four high school aged 
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males participated in the evaluation, with each trial consist-
ing of approximately 30 minutes in which they listened to 
songs on a pre-prepared playlist, both collaboratively and 
individually selected additional songs, inserted them into 
the playlist, and viewed lyrics to sing along. The research-
ers took manual notes of the simulations, and participants 
engaged in focus group discussions post-simulation. 

While the participants found the prototype to be general-
ly usable (though usability tweaks were identified), we 
identified worrying episodes in which the drivers switched 
focus from the wheel to the tablet. While we recognize that 
behavior may be different in a simulation than in real driv-
ing conditions, we also saw strong evidence from the eth-
nographic data that drivers—particularly young, male driv-
ers—can prioritize song selection over road safety. Further 
design iterations must recognize that drivers will inevitably 
seize control of a car’s music system, and so should priori-
tize design that supports fast, one-handed interactions. 
 

6. CONCLUSIONS 

The primary contribution of this paper is understanding of 
social music behavior of small groups of people while on 
‘road trips’, developed through a qualitative analysis of 
ethnographic data (participant observations and inter-
views). We prototyped and evaluated the more prosaic as-
pects of a system to support social music listening on road 
trips, and suggest further extensions—including sensor-
based input to modify the trip playlist—for future research. 
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ABSTRACT

Most of modern advertisements contain a song to illustrate

the commercial message. The success of a product, and

its economic impact, can be directly linked to this choice.

Finding the most appropriate song is usually made man-

ually. Nonetheless, a single person is not able to listen

and choose the best music among millions. The need for

an automatic system for this particular task becomes in-

creasingly critical. This paper describes the LIA music

recommendation system for advertisements using both tex-

tual and acoustic features. This system aims at providing

a song to a given commercial video and was evaluated in

the context of the MediaEval 2013 Soundtrack task [14].

The goal of this task is to predict the most suitable sound-

track from a list of candidate songs, given a TV commer-

cial. The organizers provide a development dataset includ-

ing multimedia features. The initial assumption of the pro-

posed system is that commercials which sell the same type

of product, should also share the same music rhythm. A

two-fold system is proposed: find commercials with close

subjects in order to determine the mean rhythm of this sub-

set, and then extract, from the candidate songs, the music

which better corresponds to this mean rhythm.

1. INTRODUCTION

The success of a product or a service essentially depends

of the way to present it. Thus, companies pay much at-

tention to choose the most appropriate advertisement that

will make a difference in the customer choice. The ad-

vertisers have different media possibilities, such as journal

paper, radio, TV or Internet. In this context, they can ex-

ploit the audio media (TV, radio...) to attract listeners using

a song related to the commercial. The choice of an appro-

priate song is crucial and can have a significant economic

impact [5,18]. Usually, this choice is made by a human ex-

pert. Nonetheless, while millions of musics exist, a human

agent could only choose a song among a limited subset.

This choice could then be inappropriate, or simply not the

best one, since the agent could not search into a large num-
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ber of musics. For these reasons, the need for an automatic

song recommandation system, to illustrate advertisements,

becomes a critical subject for companies.

In this paper, an automatic system for songs recomman-

dation is proposed. The proposed approach combines both

textual (web pages) and audio (acoustic) features to select,

among a large number of songs, the most appropriate and

relevant music knowing the commercial content. The first

step of the proposed system is to represent commercials

into a thematic space built from a Latent Dirichlet Alloca-

tion (LDA) [4]. This pre-processing subtask uses the re-

lated textual content of the commercial. Then, acoustic

features of each song are extracted to find a set of the most

relevant songs for a given commercial.

An appropriate benchmark is needed to evaluate the ef-

fectiveness of the proposed recommandation system. For

these reasons, the proposed system is evaluated in the con-

text of the challenging MediaEval 2013 Soundtrack task

for commercials [10]. Indeed, the MusiClef task seeks to

make this process automated by taking into account both

context- and content-based information about the video,

the brand, and the music. The main difficulty of this task

is to find the set of relevant features that best describes the

most appropriate song for a video.

Next section describes related work in topic space mod-

eling for information retrieval and music tasks. Section 3

presents the proposed music recommandation system us-

ing both textual content and acoustic features related to

musics from commercials. Section 4 explains in details

the unsupervised Latent Dirichlet Allocation (LDA) tech-

nique, while Section 4.2 describes how the acoustic fea-

tures are used to evaluate the proximity of a music to a

commercial. Finally, experiments are presented in Sec-

tion 5, while Section 6 gives conclusions and perspectives.

2. RELATED WORKS

Latent Dirichlet Allocation (LDA) [4] is widely used in

several tasks of information retrieval such as classifica-

tion or keywords extraction. However, this unsupervised

method is not much considered in the music processing

tasks. Next sections describe related works using LDA

techniques with text corpora (Section 2.1) and in the con-

text of music tasks (Section 2.3).
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2.1 Topic modeling

Several methods were proposed by Information Retrieval

(IR) researchers to build topic spaces such as Latent Se-

mantic Analysis or Indexing (LSA/LSI) [2, 6], that use a

singular value decomposition (SVD) to reduce the space

dimension.

This method was improved by [11] which proposed a

probabilistic LSA/LSI (pLSA/pLSI). The pLSI approach

models each word in a document as a sample from a mix-

ture model, where the mixture components are multino-

mial random variables that can be viewed as representa-

tions of topics. This method demonstrated its performance

on various tasks, such as sentence [3] or keyword [24] ex-

traction. In spite of the effectiveness of the pLSI approach,

this method has two main drawbacks. The distribution of

topics in pLSI is indexed by training documents. Thus, the

number of these parameters grows with the training doc-

ument set size, and then, the model is prone to overfitting

which is a main issue in an IR task such as document clus-

tering. However, to address this shortcoming, a tempering

heuristic is used to smooth the parameter of pLSI model for

acceptable predictive performance. Nonetheless, authors

showed in [20] that overfitting can occur even if tempering

process is used.

As a result, IR researchers proposed the Latent Dirichlet

allocation (LDA) [4] method to overcome these two draw-

backs. Thus, the number of parameters of LDA does not

grow with the size of the training corpus and LDA is not

candidate for overfitting. LDA is a generative model which

considers a document, seen as a bag-of-words [21], as a

mixture of latent topics. In opposition to a multinomial

mixture model, LDA considers that a theme is associated

to each occurrence of a word composing the document,

rather than associate a topic with the complete document.

Thereby, a document can change of topics from a word to

another. However, the word occurrences are connected by

a latent variable which controls the global respect of the

distribution of the topics in the document. These latent

topics are characterized by a distribution of word proba-

bilities which are associated with them. pLSI and LDA

models have been shown to generally outperform LSI on

IR tasks [12]. Moreover, LDA provides a direct estimate

of the relevance of a topic knowing a word set or a docu-

ment such as a web pages in the proposed system.

α θ z w

β φ

wordtopic N
D

topic

distribution

word
distribution

Figure 1. LDA Formalism.

Figure 1 presents the LDA formalism. For every docu-

ment d of a corpus D, a first parameter θ is drawn according

to a Dirichlet law of parameter α. A second parameter φ
is drawn according to the same Dirichlet law of parameter

β. Then, to generate every word w of the document d, a

latent topic z is drawn from a multinomial distribution on

θ. Knowing this topic z, the distribution of the words is

a multinomial of parameters φ. The parameter θ is drawn

for all the documents from the same prior parameter α.

This allows to obtain a parameter binding the documents

all together [4].

2.2 Gibbs sampling

Several techniques have been proposed to estimate LDA

parameters, such as Variational Methods [4], Expectation-

Propagation [17] or Gibbs Sampling [8]. Gibbs Sampling

is a special case of Markov-chain Monte Carlo (MCMC) [7]

and gives a simple algorithm for approximate inference

in high-dimensional models such as LDA [9]. This over-

comes the difficulty to directly and exactly estimate param-

eters that maximize the likelihood of the whole data col-

lection defined as: P (W |−→α ,
−→
β ) =

∏M
m=1 P (−→wm|−→α ,

−→
β )

for the whole data collection W = {−→wm}Mm=1 knowing

the Dirichlet parameters −→α and
−→
β .

The first use of Gibbs Sampling for estimating LDA is

reported in [8] and a more comprehensive description of

this method can be found in [9]. One can refer to these pa-

pers for a better understanding of this sampling technique.

2.3 Topic modeling and Music

Topic modeling was already used in music processing, such

as [13], where the authors presented a system which learns

musical key as a key-profile. Thus, the proposed approach

considered a song as a random mixture of key-profiles.

In [25], authors described a classification method to assign

a label to an unseen music. The authors use LDA to build

a topic space from music-tags to get the probability of ev-

ery music-tag belonging to each music genre. Then, each

music is labeled to a genre knowing its tags. The purpose

of the proposed approach is to find a set of relevant musics

for a TV commercial.

3. PROPOSED APPROACH

The goal of the proposed automatic system is to recom-

mend a set of musics given a TV commercial. The sys-

tem uses external knowledge to find these songs. These

external resources are composed with a set of TV commer-

cials associated, for each one, with a song and a set of web

pages (see [14] for more details about the MediaEval 2013

Soundtrack task). The idea behind the proposed approach

is to assume that two commercials sharing same subjects or

interests, also share the same kind of songs. The main issue

in this approach is to find commercials, from the external

dataset, that have sets of subjects close to those in commer-

cials from the test set. As described in Section 2.1, a doc-

ument can be represented as a set of latent topics. Thus,

two documents sharing the same topics could be seen as

thematically close.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

466



{C ,S  }
d�D

dd

{C ,S  }
t�T

t1

Topic
SpaceLDA

Development set

Topic 
vectors

{V  }d�D
d

Topic 
vector

V1

Mapping

V  d

V  1

cos (�    )  
-1

d,1

l commercial from
development set D

{C ,S }
with the highest
similarity with C
from test set T

l l

1
S

S  t

cos (�    )  
-1

l,t

S

A TV commercial C 
and the candidate songs S 

from test set T

1
t

5 nearest soundtracks
{S }

with the commercial C1

t
t=1, ... , 5

Cosine similarity �

Cosine similarity �
Mean rhythm pattern

Figure 2. Global architecture of the proposed system.

Basically, the first process of the proposed three step

system is to map each TV commercial from the test and

development sets, into a topic space learnt with a LDA al-

gorithm. A TV commercial from the test set is then linked

to TV commercials from development set sharing a set of

close topics. Moreover, each commercial of the develop-

ment set is related to a music. Thus, as a result, a commer-

cial from the test set is related to a subset of songs from

the development set, considered as thematically close to

the commercial textual content.

The second step has the responsibility to estimate a list

of candidate songs (see Figure 2) using song audio features

from the subset of songs thematically close associated dur-

ing the first step. This subset of songs is used to evaluate a

rhythm pattern of the ideal song for this commercial.

The last step retrieves, from all candidate songs from

the test set, the closest song to the rhythm pattern estimated

during the previous step.

In details, the development set D is composed of TV

commercials Cd, with for each, a soundtrack Sd and a vec-

tor representation V d related to the dth TV commercial. In

the same manner, the test set T is composed of TV com-

mercials Ct, with, for the tth one, a vector representation

V t and a soundtrack St to predict. Then a similarity score

{αd,t}t=1,...,T
d=1,...,D is computed for each commercial Cd

i of the

development set given one from the test set Ct:

D = {Cd, V D, Sd}d=1,...,D (1)

T = {Ct, V T , St
k}k=1,...,5000

t=1,...,T .

In the next sections, the topic space representation and

the mapping of a commercial in this topic representation

to evaluate both V d and V t are described. Then, the com-

puted similarity score is detailed. Finally, the soundtrack

prediction process from a TV commercial is explained.

4. TOPIC REPRESENTATION OF A TV
COMMERCIAL

Let’s consider a corpus D from the development set of TV

commercials with a word vocabulary V = {w1, . . . , wN}
of size N . A topic representation from corpus D is then

performed using a Latent Dirichlet Allocation (LDA) [4]

approach. At the final LDA analysis, a topic space m of n
topics is obtained with, for each theme z, the probability

of each word w of V knowing z, and for the entire model

m, the probability of each theme z knowing the model m.

Each TV commercial from both development and test sets

is mapped into the topic space (see Figure 3) to obtain a

vector representation (V d and V t) of web pages related to

a commercial into the thematic space computed as follow:

V d[i](Cd
j ) = P (zi|Cd

j ) (2)

where P (zi|Cd
j ) is the probability of a topic zi to be

generated by the web pages from the commercial Cd
j , esti-

mated using Gibbs sampling as described in Section 2.2. In

the same way, V t is estimated with the same topic space,

and with the use of web pages of commercials of test set

Ct
j (see Figure 3).

TV Commercial

z3

. . .

P (w1|z3)

WORD WEIGHT

w1

P (w2|z3)w2

P (w|V ||z3)w|V |

. . .

z2
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. . .
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Vd[3]

Vd[4]
Vd[n]

Figure 3. Mapping of a TV commercial in the topic space.

4.1 Similarity measure

Each commercial from both development and test set, is

mapped into the topic space to produce a vector represen-

tation for each one, respectively V d and V t as outcomes.

Then, given a TV commercial C1 from the test set T, a

subset of other TV commercials from the development set

D is selected knowing their thematic proximity with C1.
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To estimate the similarity between C1 and commercials

from development set, the cosine metric α is used. This

similarity metric is expressed thereafter:

cosine(V d, V t) = αd,t

=

n∑
i=1

V d[i]× V t[i]√
n∑

i=1

V d[i]
2

√
n∑

i=1

V t[i]
2

(3)

This metric allows to extract a subset of commercials

from D thematically close to C1.

4.2 Rhythm pattern

The cosine measure, presented in previous section, is also

used to evaluate the similarity between a mean rhythm pat-

tern vector Sd of a song, and all the candidate songs St
k of

the test set.

<?xml version="1.0" ?>
<rhythmdescription>
    <media>363445_sum.wav</media>
    <description>
        <bpm_mean>99.982723</bpm_mean>
        <bpm_std>0.047869</bpm_std>
        <meter>22.000000</meter>
        <perc>47.023527</perc>
        <perc_norm>1.910985</perc_norm>
        <complex>29.630575</complex>
        <complex_norm>0.652134</complex_norm>
        <speed>2.660229</speed>
        <speed_norm>1.201633</speed_norm>
        <periodicity>0.900763</periodicity>
        <rhythmpattern>0.124231 ... 0.098873</rhythmpattern>
    </description>
</rhythmdescription>

bmp_mean

bmp_std

meter

perc

perc_norm

complex

complex_norm

speed

speed_norm

peiodicity

rhythmpattern_1

rhythmpattern_2

...

rhythmpattern_48{

Rhythm pattern vectorRhythm pattern of a song

(a) (b)

Figure 4. Rhythm pattern of a song from the development

set in xml (a) and vector (b) representations.

In details, each commercial from D is related with a

soundtrack that is represented with a rhythm pattern vector.

The organizers provide for each song contained into the

MusicClef 2013 dataset:

• video features (MPEG-7 Motion Activity and Scal-

able Color Descriptor [15]),

• web pages about the respective brands and music

artists,

• music features:

− MFCC or BLF [22],

− PS209 [19],

− beat, key, harmonic pattern extracted with the

Ircam software [1].

In our experiments, 10 rhythm features of songs are

used (speed, percussion, . . . , periodicity) as shown in Fig-

ure 4. These features of beat, key or harmonic pattern are

extracted using the Ircam software available at [1]. More

information about features extraction from songs are de-

tailed in [14].

As an outcome, each commercial is represented by a

rhythm pattern vector of size 58 (10 from song features and

48 from rhythm pattern). From the subset of soundtracks

of the l nearest commercials from D, a mean rhythm vector

S is performed as:

S =
1

l

∑
d∈l

Sd .

Finally, the cosine measure between this mean rhythm

S of the l nearest commercials from D, and each commer-

cial (cosine(S, St)t∈T ), is used to find, from the sound-

track St of the test set T, the 5 songs from all the candi-

dates having the closest rhythm pattern.

5. EXPERIMENTS AND RESULTS

Previous sections described the proposed automatic music

recommandation system for TV commercials. This sys-

tem is decomposed into three sub-processes. The first one

maps the commercials into a topic space to evaluate the

proximity of a commercial from the test set and all com-

mercials from the development set. Then, the mean rhythm

pattern of the thematically close commercials is computed.

Finally, this rhythm pattern is computed with all ones from

the test set of candidate songs to find a set of relevant mu-

sics.

5.1 Experimental protocol

The first step of the proposed approach, detailed in pre-

vious section, maps TV commercial textual content into a

topic space of size n (n = 500). This one is learnt from a

LDA in a large corpus of documents. Section 4 describes

the corpus D of web pages. This corpus contains 10, 724
Web pages related to brands of the commercials contained

in D. This corpus is composed of 44, 229, 747 words for

a vocabulary of 4, 476, 153 unique words. More details

about this text corpus, and the way to collect it, is explained

into [14].

The first step of the proposed approach is to map each

commercial textual content into a topic space learnt from a

latent Dirichlet allocation (LDA). During the experiments,

the MALLET tool is used [16] to perform a topic model.

The proposed system is evaluated in the MediaEval 2013

MusiClef benchmark [14]. The aim of this task is to pre-

dict, for each video of the test set, the most suitable sound-

track from 5,000 candidate songs. The dataset is split into

3 sets. The development set contains multimodal infor-

mation on 392 commercials (various metadata including

Youtube uploader comments, audio features, video fea-

tures, web pages and text features). The test set is a set

of 55 videos to which a song should be associated using

the recommandation set of 5,000 soundtracks (30 seconds

long excerpts).
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5.2 Experimental metrics

For each video in the test set, a ranked list of 5 candidate

songs should be proposed. The song prediction evaluation

is manually performed using the Amazon Mechanical Turk

platform. This novel task is non-trivial in terms of “ground

truth”, that is why human ratings for evaluation are used.

Three scores have been computed from our system output.

Let V be the full collection of test set videos, and let sr(v)
be the average suitability score for the audio file suggested

at rank r for the video v. Then, the evaluation measures

are computed as follows:

• Average suitability score of the first-ranked song:

1
V

|V |∑
i=1

s1(vi)

• Average suitability score for the full top-5:

1
V

|V |∑
i=1

1
5sr(vi)

• Weighted average suitability score of the full top-

5. Here, we apply a weighted harmonic mean score

instead of an arithmetic mean:

1
V

|V |∑
i=1

∑5
r=1 sr(vi)∑5
r=1

sr(vi)

r

The previously presented measures are used to study

both rating and ranking aspects of the results.

5.3 Results

The measures defined in the previous section are used to

evaluate the effectiveness of songs selected to be associ-

ated to TV commercials from the test set. The proposed

topic space-based approach is evaluated in the same way,

and obtained the results detailed thereafter:

• First rank average score: 2.16

• Top 5 average score (arithmetic mean): 2.24

• Top 5 average score (harmonic mean, taking rank

into account): 2.22

Considering that human judges rate the predicted songs

from 1 (very poor) to 4 (very well), we can consider that

our system is slightly better than the mean evaluation score

(2) no matter the metric considered. While the system

proposed in [23] is clearly different from ours, results are

very similar. This shows the difficulty to build an auto-

matic song recommendation system for TV commercials,

the evaluation being also a critical point to discuss.

6. CONCLUSIONS AND PERSPECTIVES

In this paper, an automatic system to assign a soundtrack

to a TV commercial has been proposed. This system com-

bines two media: textual commercial content and audio

rhythm pattern. The proposed approach obtains good re-

sults in spite of the fact that the system is automatic and un-

supervised. Indeed, both subtasks are unsupervised (LDA

learning and commercials mapping into the topic space)

and songs extraction (rhythm pattern estimation of the ideal
songs for a commercial from the test set). Moreover, this

promising approach, combining thematic representation of

the textual content of a set of web pages describing a TV

commercial and acoustic features, shows the relevance of

topic-based representation in automatic recommandation

using external resources (development set).

The choice of a relevant song to describe the idea behind

a commercial, is a challenging task when the framework

does not take into account relevant features related to:

• mood, such as harmonic content, harmonic progres-

sions and timbre,

• music rhythm, such as musical style, texture, spec-

tral centroid, or tempo.

The proposed automatic music recommendation system

is limited by this small number (58) of features which not

describe all music aspects. For these reasons, in future

works, we plan to use others features, such as the song

lyrics or the audio transcription of the TV commercials,

and evaluate the effectiveness of the proposed hybrid frame-

work into other information retrieval tasks such as classifi-

cation of music genre or music clustering.
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ABSTRACT 

We hypothesize that different genres of writing use dif-
ferent adjectives for the same concept. We test our hy-
pothesis on lyrics, articles and poetry. We use the English 
Wikipedia and over 13,000 news articles from four lead-
ing newspapers for the article data set. Our lyrics data set 
consists of lyrics of more than 10,000 songs by 56 popu-
lar English singers, and our poetry dataset is made up of 
more than 20,000 poems from 60 famous poets. We find 
the probability distribution of synonymous adjectives in 
all the three different categories and use it to predict if a 
document is an article, lyrics or poetry given its set of ad-
jectives. We achieve an accuracy level of 67% for lyrics, 
80% for articles and 57% for poetry. Using these proba-
bility distribution we show that adjectives more likely to 
be used in lyrics are more rhymable than those more like-
ly to be used in poetry, but they do not differ significantly 
in their semantic orientations. Furthermore we show that 
our algorithm is successfully able to detect poetic lyricists 
like Bob Dylan from non-poetic ones like Bryan Adams, 
as their lyrics are more often misclassified as poetry.  

1. INTRODUCTION 

The choice of a particular word, from a set of words that 
can instead be used, depends on the context we use it in, 
and on the artistic decision of the authors. We believe that 
for a given concept, the words that are more likely to be 
used in lyrics will be different from the ones which are 
more likely to be used in articles or poems, because lyri-
cists have different objectives typically. We test our hy-
pothesis on adjective usage in these categories of docu-
ments. We use adjectives, as a majority have synonyms 
that can be used depending on context. To our surprise, 
just the adjective usage is sufficient to separate docu-
ments quite effectively. 

Finding the synonyms of a word is still an open prob-
lem. We used three different sources to obtain synonyms 
for a word – the WordNet, Wikipedia and an online the-
saurus. We prune synonyms, obtained from the three 
sources, which fall below an experimentally determined 
threshold for the semantic distance between the synonyms 

and the word. The list of relevant synonyms obtained af-
ter pruning was used to obtain the probability distribution 
over words. 

A key requirement of our study is that there exists a 
difference, albeit a hazy one, between poetry and lyrics. 
Poetry attracts a more educated and sensitive audience 
while lyrics are written for the masses. Poetry, unlike lyr-
ics, is often structurally more constrained, adhering to a 
particular meter and style. Lyrics are often written keep-
ing the music in mind while poetry is written against a si-
lent background. Lyrics, unlike poetry, often repeat lines 
and segments, causing us to believe that lyricists tend to 
pick more rhymable adjectives; of course, some poetic 
forms also repeat lines, such as the villanelle. For twenty 
different concepts we compare adjectives which are more 
likely to be used in lyrics rather than poetry and vice ver-
sa. 

Figure 1. The bold-faced words are the adjectives our 
algorithm takes into account while classifying a docu-
ment, which in this case in a snippet of lyrics by the 
Backstreet Boys. 

We use a bag of words model for the adjectives, where 
we do not care about their relative positions in the text, 
but only their frequencies. Finding synonyms of a given 
word is a vital step in our approach and since it is still 
considered a difficult task improvement in synonyms 
finding approaches will lead to an improvement in our 
classification accuracy. Our algorithm has a linear run 
time as it scans through the document once to come up 
with the prediction, giving us an accuracy of 68% overall. 
Lyricists with a relatively high percentage of lyrics mis-
classified as poetry tend to be recognized for their poetic 
style, such as Bob Dylan and Annie Lennox. 

2. RELATED WORK 

We do not know of any work on the classification of 
documents based on the adjective usage into lyrics, poet-
ry or articles nor are we aware of any computational 
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work which discerns poetic from non-poetic lyricists. 
Previous works have used adjectives for various purposes 
like sentiment analysis [1]. Furthermore in Music Infor-
mation Retrieval, work on poetry has focused on poetry 
translator, automatic poetry generation. 

Chesley et al. [1] classifies blog posts according to 
sentiment using verb classes and adjective polarity, 
achieving accuracy levels of 72.4% on objective posts, 
84.2% for positive posts, and 80.3% for negative posts. 
Entwisle et al. [2] analyzes the free verbal productions of 
ninth-grade males and females and conclude that girls use 
more adjectives than boys but fail to reveal differential 
use of qualifiers by social class. 

Smith et al. [13] use of tf-idf weighting to find typical 
phrases and rhyme pairs in song lyrics and conclude that 
the typical number one hits, on average, are more cli-
chéd. Nichols et al. [14] studies the relationship between 
lyrics and melody on a large symbolic database of popu-
lar music and conclude that songwriters tend to align sa-
lient notes with salient lyrics.

There is some existing work on automatic generation 
of synonyms. Zhou et al. [3] extracts synonyms using 
three sources - a monolingual dictionary, a bilingual cor-
pus and a monolingual corpus, and use a weighted en-
semble to combine the synonyms produced from the 
three sources. They get improved results when compared 
to the manually built thesauri, WordNet and Roget. 

Christian et al. [4] describe an approach for using 
Wikipedia to automatically build a dictionary of named 
entities and their synonyms. They were able to extract a 
large amount of entities with a high precision, and the 
synonyms found were mostly relevant, but in some cases 
the number of synonyms was very high. Niemi et al. [5] 
add new synonyms to the existing synsets of the Finnish 
WordNet using Wikipedia’s links between the articles of 
the same topic in Finnish and English. 

As to computational poetry, Jiang et al. [6] use statis-
tical machine translation to generate Chinese couplets 
while Genzel et al. [7] use statistical machine translation 
to translate poetry keeping the rhyme and meter con-
straints. 

3. DATA SET 

The training set consists of articles, lyrics and poetry and 
is used to calculate the probability distribution of adjec-
tives in the three different types of documents. We use 
these probability distributions in our document classifica-
tion algorithms, to identify poetic from non-poetic lyri-
cists and to determine adjectives more likely to be used in 
lyrics rather than poetry and vice versa. 

3.1 Articles 

We take the English Wikipedia and over 13,000 news ar-
ticles from four major newspapers as our article data set. 
Wikipedia, an enormous and freely available data set is 

edited by experts. Both of these are extremely rich 
sources of data on many topics. To remove the influence 
of the presence of articles about poems and lyrics in Wik-
ipedia we set the pruning threshold frequency of adjec-
tives to a high value, and we ensured that the articles were 
not about poetry or music. 

3.2 Lyrics 

We took more than 10,000 lyrics from 56 very popular 
English singers. Both the authors listen to English music 
and hence it was easy to come up with a list which in-
cluded singers from many popular genres with diverse 
backgrounds. We focus on English-language popular mu-
sic in our study, because it is the closest to “universally” 
popular music, due to the strength of the music industry in 
English-speaking countries. We do not know if our work 
would generalize to non-English Language songs. Our 
data set includes lyrics from the US, Canada, UK and Ire-
land.  

3.3 Poetry 

We took more than 20,000 poems from more than 60 fa-
mous poets, like Robert Frost, William Blake and John 
Keats, over the last three hundred years. We selected the 
top poets from Poem Hunter [19]. We selected a wide 
time range for the poets, as many of the most famous 
English poets are from that time period. None of the poet-
ry selected were translations from another language. Most 
of the poets in our dataset are poets from North America 
and Europe. We believe that our training data, is repre-
sentative of the mean, as a majority of poetry and poetic 
style are inspired by the work of these few extremely fa-
mous poets. 

3.4 Test Data 

For the purpose of document classification we took 100 
from each category, ensuring that they were not present in 
the training set. While collecting the test data we ensured 
the diversity, the lyrics and poets came from different 
genres and artists and the articles covered different topics 
and were selected from different newspapers.  

To determine poetic lyricists from non-poetic ones we 
took eight of each of the two types of lyricists, none of 
whom were present in our lyrics data sets. We ensured 
that the poetic lyricists we selected were indeed poetic by 
looking up popular news articles or ensuring that they 
were poet along with being lyricists. Our list for poetic 
lyricists included Bob Dylan and Annie Lennox etc. while 
the non-poetic ones included Bryan Adams and Michael 
Jackson. 

4. METHOD 

These are the main steps in our method: 
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1) Finding the synonyms of all the words in the 
training data set. 

2) Finding the probability distribution of word for 
all the three types of documents. 

3) The document classification algorithm. 

4.1 Extracting Synonyms 

We extract the synonyms for a term from three sources: 
WordNet, Wikipedia and an online thesaurus. 

WordNet is a large lexical database of English where 
words are grouped into sets of cognitive synonyms 
(synsets) together based on their meanings. WordNet in-
terlinks not just word forms but specific senses of words. 
As a result, words that are found in close proximity to one 
another in the network are semantically disambiguated. 
The synonyms returned by WordNet need some pruning.  

We use Wikipedia redirects to discover terms that are 
mostly synonymous. It returns a large number of words, 
which might not be synonyms, so we need to prune the 
results. This method has been widely used for obtaining 
the synonyms of named entities e.g. [4], but we get decent 
results for adjectives too. 

We also used an online Thesaurus that lists words 
grouped together according to similarity of meaning. 
Though it gives very accurate synonyms, pruning is nec-
essary to get better results. 

We prune synonyms obtained from the three sources, 
which fall below an experimentally determined threshold 
for the semantic distance between the synonyms and the 
word. To calculate the semantic similarity distance be-
tween words we use the method described by Pirro et al. 
[8]. Extracting synonyms for a given word is an open 
problem and with improvement in this area our algorithm 
will achieve better classification accuracy levels.  

4.2 Probability Distribution 

We believe that the choice of an adjective to express a 
given concept depends on the genre of writing: adjectives 
used in lyrics will be different from ones used in poems or 
in articles. We calculate the probability of a specific ad-
jective for each of the three document types.  

First, WordNet is used to identify the adjectives in our 
training sets. For each adjective we compute the frequen-
cy of that were in the training set and the frequency of it 
and its synonyms; the ratio of these is the frequency with
which that adjective represents its synonym group in that 
class of writing. 

We exclude adjectives that occur infrequently (fewer 
than 5 times in our lyrics/poetry set or 50 in articles). The 
enormous size of the Wikipedia justifies the high thresh-
old value. 

4.3 Document classification algorithm 

We use a simple linear time algorithm which takes as in-
put the probability distributions for adjectives, calculated 

above, and the document(s) to be classified, calculates the 
score of the document being an article, lyrics or poetry, 
and labels it with the class with the highest score. The al-
gorithm takes a single pass along the whole document and 
identifies adjectives using WordNet. 

For each word in the document we check its presence 
in our word list. If found, we add the probability to the 
score, with a special penalty of -1 for adjectives never 
found in the training set and a special bonus of +1 for 
words with probability 1. The penalty and boosting values 
used in the algorithm were determined experimentally.
Surprisingly, this simple approach gives us much better 
accuracy rates than Naïve Bayes, which we thought would 
be a good option since it is widely used in classification 
tasks like spam filtering. We have decent accuracy rates 
with this simple, naïve algorithm; one future task could be 
to come up with a better classifier. 

5. RESULTS 

First, we look at the classification accuracies between lyr-
ics, articles and poems obtained by our classifier. We 
show that the adjectives used in lyrics are much more 
rhymable than the ones used in poems but they do not dif-
fer significantly in their semantic orientations. Further-
more, our algorithm is able to identify poetic lyricists 
from non-poetic ones using the word distributions, calcu-
lated in earlier section. We also compare adjectives for a 
given concepts which are more likely to be used in lyrics 
rather than poetry and vice versa. 

5.1 Document Classification 
Our test set consists of the text of 100 each of our three 
categories. Using our algorithm with the adjective distri-
butions we get an accuracy of 67% for lyrics, 80% for ar-
ticles and 57% for poems.  

The confusion matrix, Table 1 we find the best accura-
cy for articles. This might be because of the enormous 
size of the article training set which consisted of all Eng-
lish Wikipedia articles. A slightly more number of articles 
get misclassified as lyrics than poetry. 

Surprisingly, a large number of misclassified poems 
get classified as articles rather than poetry, but most mis-
classified lyrics get classified as poems.  

5.2 Adjective Usage in Lyrics versus Poems 

Poetry is written against a silent background while lyrics 
are often written keeping the melody, rhythm, instrumen-
tation, the quality of the singer’s voice and other qualities 
of the recording in mind. Furthermore, unlike most poet-
ry, lyrics include repeated lines. This led us to believe the 
adjectives which were more likely to be used in lyrics ra-
ther than poetry would be more rhymable. 

We counted the number of words an adjective in our 
lyrics and poetry list rhymes with from the website 
rhymezone.com. The values are tabulated in Table 2. 
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From the values in Table 2, we can clearly see that the 
adjectives which are more likely to be used in lyrics to be 
much more rhymable than the adjectives which are more 
likely to be used in poetry. 

Predicted
Actual Lyrics Articles Poems
Lyrics 67 11 22
Articles 11 80 6
Poems 10 33 57

Table 1. The confusion matrix for document classifica-
tion. Many lyrics are categorized as poems, and many po-
ems as articles. 

Lyrics Poetry
Mean 33.2 22.9
Median 11 5
25th percentile 2 0
75th percentile 38 24

Table 2. Statistical values for the number of words an ad-
jective rhymes with. 

Lyrics Poetry
Mean -.05 -.053
Median 0.0 0.0
25th percentile -0.27 -0.27
75th percentile 0.13 0.13

Table 3. Statistical values for the semantic orientation of 
adjectives used in lyrics and poetry. 

We were also interested in finding if the adjectives 
used in lyrics and poetry differed significantly in their 
semantic orientations. SentiWordNet assigns to each syn-
set of WordNet three sentiment scores: positivity, nega-
tivity, objectivity. We calculated the semantic orienta-
tions, which take a value between -1 and +1, using Sen-
tiWordNet, of all the adjectives in the lyrics and poetry 
list, the values are in Table 3. They show no difference 
between adjectives in poetry and those in lyrics. 

5.3 Poetic vs non-Poetic Lyricists 

There are lyricists like Bob Dylan [15], Ani DiFranco 
[16], and Stephen Sondheim [17,18], whose lyrics are 
considered to be poetic, or indeed, who are published po-
ets in some cases. The lyrics of such poetic lyricists pos-
sibly could be structurally more constrained than a major-
ity of the lyrics or might adhere to a particular meter and 
style. While selecting the poetic lyricists we ensured that 
popular articles supported our claim or by going to their 
Wikipedia page and ensuring that they were poets along 
with being lyricists and hence the influence of their poetry 
on lyrics. 

Our algorithm consistently misclassifies a large frac-
tion of the lyrics of such poetic lyricists as poetry while 
the percentage of misclassified lyrics as poetry for the 
non-poetic lyricists is significantly much less. These val-
ues for poetic and non-poetic lyricists are tabulated in ta-
ble 4 and table 5 respectively. 
Poetic Lyricists % of lyrics misclassified as 

poetry
Bob Dylan 42%
Ed Sheeran 50%
Ani Di Franco 29%
Annie Lennox 32%
Bill Callahan 34%
Bruce Springsteen 29%
Stephen Sondheim 40%
Morrissey 29%
Average misclassification 
rate

36%

Table 4. Percentage of misclassified lyrics as poetry for 
poetic lyricists. 

Non-Poetic Lyricists % of lyrics misclassified as 
poetry

Bryan Adams 14%
Michael Jackson 22%
Drake 7%
Backstreet Boys 23%
Radiohead 26%
Stevie Wonder 17%
Led Zeppelin 8%
Kesha 18%
Average misclassification 
rate

17%

Table 5. Percentage of misclassified lyrics as poetry for 
non-poetic lyricists. 

From the values in table 4 and 5 we see that there is a 
clear separation between the misclassification rate be-
tween poetic and non-poetic lyricists. The maximum mis-
classification rate for the non-poetic lyricists i.e. 26% is 
less than the minimum mis-classification rate for poetic 
lyricists i.e. 29%. Furthermore the difference in average 
misclassification rate between the two groups of lyricists 
is 19%. Hence our simple algorithm can accurately identi-
fy poetic lyricists from non-poetic ones, based only on 
adjective usage. 

5.4 Concept representation in Lyrics vs Poetry 

We compare adjective uses for common concepts. To 
represent physical beauty we are more likely to use words 
like “sexy” and “hot” in lyrics but “gorgeous” and “hand-
some” in poetry. For 20 of these, results are tabulated in 
Table 6. The difference could possibly be because unlike 
lyrics, which are written for the masses, poetry is general-
ly written for people who are interested in literature. It 
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has been shown that the typical number one hits, on aver-
age, are more clichéd [13]. 

Lyrics Poetry

proud, arrogant, cocky haughty, imperious

sexy, hot, beautiful, cute gorgeous, handsome

merry, ecstatic, elated happy, blissful, joyous

heartbroken, brokenhearted sad, sorrowful, dismal

real genuine

smart wise, intelligent

bad, shady lousy, immoral, dishonest

mad, outrageous wrathful, furious

royal noble, aristocratic, regal

pissed angry, bitter

greedy selfish

cheesy poor, worthless

lethal, dangerous, fatal mortal, harmful, destructive

afraid, nervous frightened, cowardly, timid

jealous envious, covetous

lax, sloppy lenient, indifferent

weak, fragile feeble, powerless

black ebon

naïve, ignorant innocent, guileless, callow

corny dull, stale

Table 6. For twenty different concepts, we compare ad-
jectives which are more likely to be used in lyrics rather 
than poetry and vice versa. 

6. APPLICATIONS 

The algorithm developed has many practical applications 
in Music Information Retrieval (MIR). They could be 
used for automatic poetry/lyrics generation to identify ad-
jectives more likely to be used in a particular type of doc-
ument. As we have shown we can analyze documents, an-
alyze how lyrical, poetic or article-like a document is. For 
lyricists or poets we can come up with alternate better ad-
jectives to make a document fit its genre better. Using the 
word distributions we can come up with a better measure 
of distance between documents where the weights are as-
signed to a word depending on its probability of usage in 
a particular type of document. And, of course, our work 
here can be extended to different genres of writings like 
prose or fiction.  

7. CONCLUSION 

Our key finding is that the choice of synonym for even a 
small number of adjectives are sufficient to reliably iden-
tify genre of documents. In accordance with our hypothe-
sis, we show that there exist differences in the kind of ad-
jectives used in different genres of writing. We calculate 
the probability distribution of adjectives over the three 
kinds of documents and using this distribution and a sim-
ple algorithm we are able to distinguish among lyrics, po-
etry and article with an accuracy of 67%, 57% and 80% 
respectively. 

Adjectives likely to be used in lyrics are more 
rhymable than the ones used in poetry. This might be be-
cause lyrics are written keeping in mind the melody, 
rhythm, instrumentation, quality of the singer’s voice and
other qualities of the recording while poetry is without 
such concerns. There is no significant difference in the 
semantic orientation of adjectives which are more likely 
to be used in lyrics and those which are more likely to be 
used in poetry. Using the probability distributions, ob-
tained from training data, we present adjectives more like-
ly to be used in lyrics rather than poetry and vice versa for 
twenty common concepts.  

Using the probability distributions and our algorithm 
we show that we can discern poetic lyricists from non-
poetic ones. Our algorithm consistently misclassifies a 
majority of the lyrics of such poetic lyricists as poetry 
while the percentage of misclassified lyrics as poetry for 
the non-poetic lyricists is significantly much less.

Calculating the probability distribution of adjectives 
over the various document types is a vital step in our 
method which in turn depends on the synonyms extracted 
for an adjective. Synonym extraction is still an open prob-
lem and with improvements in it our algorithm will give 
better accuracy levels. We extract synonyms from three 
different sources – Wikipeia, WordNet and an online 
Thesaurus, and prune the results based on the semantic 
similarity between the adjectives and the obtained syno-
nyms. 
     We use a simple naïve algorithm, which gives us better 
result than Naïve Bayes. An extension to the work can be 
coming up with an improved version of the algorithm 
with better accuracy levels. Future works can use a larger 
dataset for lyrics and poetry (we have an enormous da-
taset for articles) to come up with better probability dis-
tribution for the two document types or to identify parts 
of speech that effectively separates genres of writing. Our 
work here can be extended to different genres of writings 
like prose, fiction etc. to analyze the adjective usage in 
those writings. It would be interesting to do similar work 
for verbs and discern if different words, representing the 
same action, are used in different genres of writings. 
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ABSTRACT

Monaural source separation is important for many real

world applications. It is challenging since only single chan-

nel information is available. In this paper, we explore us-

ing deep recurrent neural networks for singing voice sep-

aration from monaural recordings in a supervised setting.

Deep recurrent neural networks with different temporal con-

nections are explored. We propose jointly optimizing the

networks for multiple source signals by including the sepa-

ration step as a nonlinear operation in the last layer. Differ-

ent discriminative training objectives are further explored

to enhance the source to interference ratio. Our proposed

system achieves the state-of-the-art performance, 2.30∼2.48

dB GNSDR gain and 4.32∼5.42 dB GSIR gain compared

to previous models, on the MIR-1K dataset.

1. INTRODUCTION

Monaural source separation is important for several real-

world applications. For example, the accuracy of auto-

matic speech recognition (ASR) can be improved by sep-

arating noise from speech signals [10]. The accuracy of

chord recognition and pitch estimation can be improved by

separating singing voice from music [7]. However, current

state-of-the-art results are still far behind human capabil-

ity. The problem of monaural source separation is even

more challenging since only single channel information is

available.

In this paper, we focus on singing voice separation from

monaural recordings. Recently, several approaches have

been proposed to utilize the assumption of the low rank

and sparsity of the music and speech signals, respectively

[7, 13, 16, 17]. However, this strong assumption may not

always be true. For example, the drum sounds may lie in

the sparse subspace instead of being low rank. In addition,

all these models can be viewed as linear transformations in

the spectral domain.
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Figure 1. Proposed framework.

With the recent development of deep learning, with-

out imposing additional constraints, we can further extend

the model expressibility by using multiple nonlinear layers

and learn the optimal hidden representations from data. In

this paper, we explore the use of deep recurrent neural net-

works for singing voice separation from monaural record-

ings in a supervised setting. We explore different deep re-

current neural network architectures along with the joint

optimization of the network and a soft masking function.

Moreover, different training objectives are explored to op-

timize the networks. The proposed framework is shown in

Figure 1.

The organization of this paper is as follows: Section 2

discusses the relation to previous work. Section 3 intro-

duces the proposed methods, including the deep recurrent

neural networks, joint optimization of deep learning mod-

els and a soft time-frequency masking function, and differ-

ent training objectives. Section 4 presents the experimental

setting and results using the MIR-1K dateset. We conclude

the paper in Section 5.

2. RELATION TO PREVIOUS WORK

Several previous approaches utilize the constraints of low

rank and sparsity of the music and speech signals, respec-

tively, for singing voice separation tasks [7, 13, 16, 17].

Such strong assumption for the signals might not always

be true. Furthermore, in the separation stage, these models

can be viewed as a single-layer linear network, predicting

the clean spectra via a linear transform. To further improve

the expressibility of these linear models, in this paper, we

use deep learning models to learn the representations from
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Figure 2. Deep Recurrent Neural Networks (DRNNs) architectures: Arrows represent connection matrices. Black, white,

and grey circles represent input frames, hidden states, and output frames, respectively. (Left): standard recurrent neural

networks; (Middle): L intermediate layer DRNN with recurrent connection at the l-th layer. (Right): L intermediate layer

DRNN with recurrent connections at all levels (called stacked RNN).

data, without enforcing low rank and sparsity constraints.

By exploring deep architectures, deep learning approaches

are able to discover the hidden structures and features at

different levels of abstraction from data [5]. Deep learn-

ing methods have been applied to a variety of applications

and yielded many state of the art results [2,4,8]. Recently,

deep learning techniques have been applied to related tasks

such as speech enhancement and ideal binary mask estima-

tion [1, 9–11, 15].

In the ideal binary mask estimation task, Narayanan and

Wang [11] and Wang and Wang [15] proposed a two-stage

framework using deep neural networks. In the first stage,

the authors use d neural networks to predict each output

dimension separately, where d is the target feature dimen-

sion; in the second stage, a classifier (one layer perceptron

or an SVM) is used for refining the prediction given the

output from the first stage. However, the proposed frame-

work is not scalable when the output dimension is high.

For example, if we want to use spectra as targets, we would

have 513 dimensions for a 1024-point FFT. It is less de-

sirable to train such large number of neural networks. In

addition, there are many redundancies between the neural

networks in neighboring frequencies. In our approach, we

propose a general framework that can jointly predict all

feature dimensions at the same time using one neural net-

work. Furthermore, since the outputs of the prediction are

often smoothed out by time-frequency masking functions,

we explore jointly training the masking function with the

networks.

Maas et al. proposed using a deep RNN for robust auto-

matic speech recognition tasks [10]. Given a noisy signal

x, the authors apply a DRNN to learn the clean speech y.

In the source separation scenario, we found that modeling

one target source in the denoising framework is subopti-

mal compared to the framework that models all sources. In

addition, we can use the information and constraints from

different prediction outputs to further perform masking and

discriminative training.

3. PROPOSED METHODS

3.1 Deep Recurrent Neural Networks

To capture the contextual information among audio sig-

nals, one way is to concatenate neighboring features to-

gether as input features to the deep neural network. How-

ever, the number of parameters increases rapidly according

to the input dimension. Hence, the size of the concatenat-

ing window is limited. A recurrent neural network (RNN)

can be considered as a DNN with indefinitely many lay-

ers, which introduce the memory from previous time steps.

The potential weakness for RNNs is that RNNs lack hier-

archical processing of the input at the current time step. To

further provide the hierarchical information through multi-

ple time scales, deep recurrent neural networks (DRNNs)

are explored [3, 12]. DRNNs can be explored in different

schemes as shown in Figure 2. The left of Figure 2 is a

standard RNN, folded out in time. The middle of Figure

2 is an L intermediate layer DRNN with temporal connec-

tion at the l-th layer. The right of Figure 2 is an L interme-

diate layer DRNN with full temporal connections (called

stacked RNN (sRNN) in [12]).

Formally, we can define different schemes of DRNNs as

follows. Suppose there is an L intermediate layer DRNN

with the recurrent connection at the l-th layer, the l-th hid-

den activation at time t is defined as:

hl
t = fh(xt,h

l
t−1)

= φl

(
Ulhl

t−1 +Wlφl−1

(
Wl−1

(
. . . φ1

(
W1xt

))))
,

(1)

and the output, yt, can be defined as:

yt = fo(h
l
t)

= WLφL−1

(
WL−1

(
. . . φl

(
Wlhl

t

)))
, (2)

where xt is the input to the network at time t, φl is an

element-wise nonlinear function, Wl is the weight matrix

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

478



for the l-th layer, and Ul is the weight matrix for the re-

current connection at the l-th layer. The output layer is a

linear layer.

The stacked RNNs have multiple levels of transition

functions, defined as:

hl
t = fh(h

l−1
t ,hl

t−1)

= φl(U
lhl

t−1 +Wlhl−1
t ), (3)

where hl
t is the hidden state of the l-th layer at time t. Ul

and Wl are the weight matrices for the hidden activation at

time t−1 and the lower level activation hl−1
t , respectively.

When l = 1, the hidden activation is computed using h0
t =

xt.

Function φl(·) is a nonlinear function, and we empir-

ically found that using the rectified linear unit f(x) =
max(0,x) [2] performs better compared to using a sig-

moid or tanh function. For a DNN, the temporal weight

matrix Ul is a zero matrix.

3.2 Model Architecture

At time t, the training input, xt, of the network is the con-

catenation of features from a mixture within a window. We

use magnitude spectra as features in this paper. The out-

put targets, y1t
and y2t

, and output predictions, ŷ1t
and

ŷ2t , of the network are the magnitude spectra of different

sources.

Since our goal is to separate one of the sources from a

mixture, instead of learning one of the sources as the tar-

get, we adapt the framework from [9] to model all different

sources simultaneously. Figure 3 shows an example of the

architecture.

Moreover, we find it useful to further smooth the source

separation results with a time-frequency masking technique,

for example, binary time-frequency masking or soft time-

frequency masking [7, 9]. The time-frequency masking

function enforces the constraint that the sum of the pre-

diction results is equal to the original mixture.

Given the input features, xt, from the mixture, we ob-

tain the output predictions ŷ1t and ŷ2t through the net-

work. The soft time-frequency mask mt is defined as fol-

lows:

mt(f) =
|ŷ1t

(f)|
|ŷ1t(f)|+ |ŷ2t(f)|

, (4)

where f ∈ {1, . . . , F} represents different frequencies.

Once a time-frequency mask mt is computed, it is ap-

plied to the magnitude spectra zt of the mixture signals to

obtain the estimated separation spectra ŝ1t
and ŝ2t

, which

correspond to sources 1 and 2, as follows:

ŝ1t(f) = mt(f)zt(f)
ŝ2t

(f) = (1−mt(f)) zt(f),
(5)

where f ∈ {1, . . . , F} represents different frequencies.

The time-frequency masking function can be viewed as

a layer in the neural network as well. Instead of training the

network and applying the time-frequency masking to the

results separately, we can jointly train the deep learning

models with the time-frequency masking functions. We

Input Layer

Hidden Layers

Source 1 Source 2

Output

xt

ht1

y1t

ht3

y1t y2t

ht+1

zt zt

ht2

ht-1

y2t

Figure 3. Proposed neural network architecture.

add an extra layer to the original output of the neural net-

work as follows:

ỹ1t
=

|ŷ1t
|

|ŷ1t
|+ |ŷ2t

|  zt

ỹ2t
=

|ŷ2t |
|ŷ1t |+ |ŷ2t |

 zt,
(6)

where the operator  is the element-wise multiplication

(Hadamard product). In this way, we can integrate the

constraints to the network and optimize the network with

the masking function jointly. Note that although this extra

layer is a deterministic layer, the network weights are op-

timized for the error metric between and among ỹ1t , ỹ2t

and y1t
, y2t

, using back-propagation. To further smooth

the predictions, we can apply masking functions to ỹ1t and

ỹ2t
, as in Eqs. (4) and (5), to get the estimated separation

spectra s̃1t
and s̃2t

. The time domain signals are recon-

structed based on the inverse short time Fourier transform

(ISTFT) of the estimated magnitude spectra along with the

original mixture phase spectra.

3.3 Training Objectives

Given the output predictions ŷ1t and ŷ2t (or ỹ1t and ỹ2t )

of the original sources y1t
and y2t

, we explore optimizing

neural network parameters by minimizing the squared er-

ror and the generalized Kullback-Leibler (KL) divergence

criteria, as follows:

JMSE = ||ŷ1t
− y1t

||22 + ||ŷ2t
− y2t

||22 (7)

and

JKL = D(y1t ||ŷ1t
) +D(y2t

||ŷ2t
), (8)

where the measure D(A||B) is defined as:

D(A||B) =
∑
i

(
Ai log

Ai

Bi
−Ai +Bi

)
. (9)
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D(·‖·) reduces to the KL divergence when
∑

i Ai =
∑

i Bi =
1, so that A and B can be regarded as probability distribu-

tions.

Furthermore, minimizing Eqs. (7) and (8) is for increas-

ing the similarity between the predictions and the targets.

Since one of the goals in source separation problems is to

have high signal to interference ratio (SIR), we explore dis-

criminative objective functions that not only increase the

similarity between the prediction and its target, but also

decrease the similarity between the prediction and the tar-

gets of other sources, as follows:

||ŷ1t
−y1t

||22−γ||ŷ1t
−y2t

||22+||ŷ2t
−y2t

||22−γ||ŷ2t
−y1t

||22
(10)

and

D(y1t ||ŷ1t
)−γD(y1t ||ŷ2t

)+D(y2t
||ŷ2t

)−γD(y2t ||ŷ1t
),

(11)

where γ is a constant chosen by the performance on the

development set.

4. EXPERIMENTS

4.1 Setting

Our system is evaluated using the MIR-1K dataset [6]. 1 A

thousand song clips are encoded with a sample rate of 16

KHz, with durations from 4 to 13 seconds. The clips were

extracted from 110 Chinese karaoke songs performed by

both male and female amateurs. There are manual annota-

tions of the pitch contours, lyrics, indices and types for un-

voiced frames, and the indices of the vocal and non-vocal

frames. Note that each clip contains the singing voice

and the background music in different channels. Only the

singing voice and background music are used in our exper-

iments.

Following the evaluation framework in [13, 17], we use

175 clips sung by one male and one female singer (‘ab-

jones’ and ‘amy’) as the training and development set. 2

The remaining 825 clips of 17 singers are used for testing.

For each clip, we mixed the singing voice and the back-

ground music with equal energy (i.e. 0 dB SNR). The goal

is to separate the singing voice from the background music.

To quantitatively evaluate source separation results, we

use Source to Interference Ratio (SIR), Source to Arti-

facts Ratio (SAR), and Source to Distortion Ratio (SDR)

by BSS-EVAL 3.0 metrics [14]. The Normalized SDR

(NSDR) is defined as:

NSDR(v̂,v,x) = SDR(v̂,v)− SDR(x,v), (12)

where v̂ is the resynthesized singing voice, v is the orig-

inal clean singing voice, and x is the mixture. NSDR is

for estimating the improvement of the SDR between the

preprocessed mixture x and the separated singing voice

v̂. We report the overall performance via Global NSDR

1 https://sites.google.com/site/unvoicedsoundseparation/mir-1k
2 Four clips, abjones 5 08, abjones 5 09, amy 9 08, amy 9 09, are

used as the development set for adjusting hyper-parameters.

(GNSDR), Global SIR (GSIR), and Global SAR (GSAR),

which are the weighted means of the NSDRs, SIRs, SARs,

respectively, over all test clips weighted by their length.

Higher values of SDR, SAR, and SIR represent better sep-

aration quality. The suppression of the interfering source is

reflected in SIR. The artifacts introduced by the separation

process are reflected in SAR. The overall performance is

reflected in SDR.

For training the network, in order to increase the va-

riety of training samples, we circularly shift (in the time

domain) the singing voice signals and mix them with the

background music.

In the experiments, we use magnitude spectra as input

features to the neural network. The spectral representation

is extracted using a 1024-point short time Fourier trans-

form (STFT) with 50% overlap. Empirically, we found

that using log-mel filterbank features or log power spec-

trum provide worse performance.

For our proposed neural networks, we optimize our mod-

els by back-propagating the gradients with respect to the

training objectives. The limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm is used to train the

models from random initialization. We set the maximum

epoch to 400 and select the best model according to the

development set. The sound examples and more details of

this work are available online. 3

4.2 Experimental Results

In this section, we compare different deep learning models

from several aspects, including the effect of different in-

put context sizes, the effect of different circular shift steps,

the effect of different output formats, the effect of different

deep recurrent neural network structures, and the effect of

the discriminative training objectives.

For simplicity, unless mentioned explicitly, we report

the results using 3 hidden layers of 1000 hidden units neu-

ral networks with the mean squared error criterion, joint

masking training, and 10K samples as the circular shift

step size using features with a context window size of 3

frames. We denote the DRNN-k as the DRNN with the re-

current connection at the k-th hidden layer. We select the

models based on the GNSDR results on the development

set.

First, we explore the case of using single frame features,

and the cases of concatenating neighboring 1 and 2 frames

as features (context window sizes 1, 3, and 5, respectively).

Table 1 reports the results using DNNs with context win-

dow sizes 1, 3, and 5. We can observe that concatenating

neighboring 1 frame provides better results compared with

the other cases. Hence, we fix the context window size to

be 3 in the following experiments.

Table 2 shows the difference between different circular

shift step sizes for deep neural networks. We explore the

cases without circular shift and the circular shift with a step

size of {50K, 25K, 10K} samples. We can observe that

the separation performance improves when the number of

training samples increases (i.e. the step size of circular

3 https://sites.google.com/site/deeplearningsourceseparation/
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Model (context window size) GNSDR GSIR GSAR

DNN (1) 6.63 10.81 9.77

DNN (3) 6.93 10.99 10.15

DNN (5) 6.84 10.80 10.18

Table 1. Results with input features concatenated from

different context window sizes.

Model
GNSDR GSIR GSAR

(circular shift step size)

DNN (no shift) 6.30 9.97 9.99

DNN (50,000) 6.62 10.46 10.07

DNN (25,000) 6.86 11.01 10.00

DNN (10,000) 6.93 10.99 10.15

Table 2. Results with different circular shift step sizes.

Model (num. of output
GNSDR GSIR GSAR

sources, joint mask)

DNN (1, no) 5.64 8.87 9.73

DNN (2, no) 6.44 9.08 11.26

DNN (2, yes) 6.93 10.99 10.15

Table 3. Deep neural network output layer comparison

using single source as a target and using two sources as

targets (with and without joint mask training). In the “joint

mask” training, the network training objective is computed

after time-frequency masking.

shift decreases). Since the improvement is relatively small

when we further increase the number of training samples,

we fix the circular shift size to be 10K samples.

Table 3 presents the results with different output layer

formats. We compare using single source as a target (row

1) and using two sources as targets in the output layer (row

2 and row 3). We observe that modeling two sources simul-

taneously provides better performance. Comparing row 2

and row 3 in Table 3, we observe that using the joint mask

training further improves the results.

Table 4 presents the results of different deep recurrent

neural network architectures (DNN, DRNN with different

recurrent connections, and sRNN) and the results of dif-

ferent objective functions. We can observe that the models

with the generalized KL divergence provide higher GSARs,

but lower GSIRs, compared to the models with the mean

squared error objective. Both objective functions provide

similar GNSDRs. For different network architectures, we

can observe that DRNN with recurrent connection at the

second hidden layer provides the best results. In addition,

all the DRNN models achieve better results compared to

DNN models by utilizing temporal information.

Table 5 presents the results of different deep recurrent

neural network architectures (DNN, DRNN with differ-

ent recurrent connections, and sRNN) with and without

discriminative training. We can observe that discrimina-

tive training improves GSIR, but decreases GSAR. Over-

all, GNSDR is slightly improved.

Model (objective) GNSDR GSIR GSAR

DNN (MSE) 6.93 10.99 10.15

DRNN-1 (MSE) 7.11 11.74 9.93

DRNN-2 (MSE) 7.27 11.98 9.99

DRNN-3 (MSE) 7.14 11.48 10.15

sRNN (MSE) 7.09 11.72 9.88

DNN (KL) 7.06 11.34 10.07

DRNN-1 (KL) 7.09 11.48 10.05

DRNN-2 (KL) 7.27 11.35 10.47

DRNN-3 (KL) 7.10 11.14 10.34

sRNN (KL) 7.16 11.50 10.11

Table 4. The results of different architectures and different

objective functions. The “MSE” denotes the mean squared

error and the “KL” denotes the generalized KL divergence

criterion.

Model GNSDR GSIR GSAR

DNN 6.93 10.99 10.15

DRNN-1 7.11 11.74 9.93

DRNN-2 7.27 11.98 9.99

DRNN-3 7.14 11.48 10.15

sRNN 7.09 11.72 9.88

DNN + discrim 7.09 12.11 9.67

DRNN-1 + discrim 7.21 12.76 9.56

DRNN-2 + discrim 7.45 13.08 9.68

DRNN-3 + discrim 7.09 11.69 10.00

sRNN + discrim 7.15 12.79 9.39

Table 5. The comparison for the effect of discriminative

training using different architectures. The “discrim” de-

notes the models with discriminative training.

Finally, we compare our best results with other previous

work under the same setting. Table 6 shows the results

with unsupervised and supervised settings. Our proposed

models achieve 2.30∼2.48 dB GNSDR gain, 4.32∼5.42

dB GSIR gain with similar GSAR performance, compared

with the RNMF model [13]. An example of the separation

results is shown in Figure 4.

5. CONCLUSION AND FUTURE WORK

In this paper, we explore using deep learning models for

singing voice separation from monaural recordings. Specif-

ically, we explore different deep learning architectures, in-

cluding deep neural networks and deep recurrent neural

networks. We further enhance the results by jointly op-

timizing a soft mask function with the networks and ex-

ploring the discriminative training criteria. Overall, our

proposed models achieve 2.30∼2.48 dB GNSDR gain and

4.32∼5.42 dB GSIR gain, compared to the previous pro-

posed methods, while maintaining similar GSARs. Our

proposed models can also be applied to many other appli-

cations such as main melody extraction.
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(a) Mixutre (b) Clean vocal (c) Recovered vocal (d) Clean music (e) Recovered music

Figure 4. (a) The mixture (singing voice and music accompaniment) magnitude spectrogram (in log scale) for the clip

Ani 1 01 in MIR-1K; (b) (d) The groundtruth spectrograms for the two sources; (c) (e) The separation results from our

proposed model (DRNN-2 + discrim).

Unsupervised

Model GNSDR GSIR GSAR

RPCA [7] 3.15 4.43 11.09

RPCAh [16] 3.25 4.52 11.10

RPCAh + FASST [16] 3.84 6.22 9.19

Supervised

Model GNSDR GSIR GSAR

MLRR [17] 3.85 5.63 10.70

RNMF [13] 4.97 7.66 10.03

DRNN-2 7.27 11.98 9.99
DRNN-2 + discrim 7.45 13.08 9.68

Table 6. Comparison between our models and previous

proposed approaches. The “discrim” denotes the models

with discriminative training.
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ABSTRACT

The next generation of music recommendation systems will

be increasingly intelligent and likely take into account user

behavior for more personalized recommendations. In this

work we consider user behavior when making recommen-

dations with features extracted from a user’s history of lis-

tening events. We investigate the impact of listener’s be-

havior by considering features such as play counts, “main-

streaminess”, and diversity in music taste on the perfor-

mance of various music recommendation approaches. The

underlying dataset has been collected by crawling social

media (specifically Twitter) for listening events. Each user’s

listening behavior is characterized into a three dimensional

feature space consisting of play count, “mainstreaminess”

(i.e. the degree to which the observed user listens to cur-

rently popular artists), and diversity (i.e. the diversity of

genres the observed user listens to). Drawing subsets of

the 28,000 users in our dataset, according to these three

dimensions, we evaluate whether these dimensions influ-

ence figures of merit of various music recommendation ap-

proaches, in particular, collaborative filtering (CF) and CF

enhanced by cultural information such as users located in

the same city or country.

1. INTRODUCTION

Early attempts in collaborative filtering (CF) recommender

systems for music content have generally treated all users

as equivalent in the algorithm [1]. The predicted score (i.e.

the likelihood that the observed user would like the ob-

served music piece) was a weighted average of the K near-

est neighbors in a given similarity space [8]. The only way

the users were treated differently was the weight, which

reflected the similarity between users. However, users’ be-

havior in the consumption of music (and other multimedia

material in general) has more dimensions than just ratings.

Recently, there has been an increase of research in mu-

sic consumption behavior and recommender systems that

draw inspiration from psychology research on personal-

ity. Personality accounts for the individual difference in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2014 International Society for Music Information Retrieval.

users in their behavioral styles [9]. Studies showed that

personality affects rating behavior [6], music genre prefer-

ences [11] and taste diversity both in music [11] and other

domains (e.g. movies in [2]).

The aforementioned work inspired us to investigate how

user features intuitively derived from personality traits af-

fect the performance of a CF recommender system in the

music domain. We chose three user features that are ar-

guably proxies of various personality traits for user clus-

tering and fine-tuning of the CF recommender system. The

chosen features are play counts, mainstreaminess and di-
versity. Play count is a measure of how often the observed

user engages in music listening (intuitively related to ex-

traversion). Mainstreaminess is a measure that describes

to what degree the observed user prefers currently popular

songs or artists over non-popular (and is intuitively related

to openness and agreeableness). The diversity feature is

a measure of how diverse the observed user’s spectrum of

listened music is (intuitively related to openness).

In this paper, we consider the music listening behavior

of a set of 28,000 users, obtained by crawling and ana-

lyzing microblogs. By characterizing users across a three

dimensional space of play count, mainstreaminess, and di-

versity, we group users and evaluate various recommenda-

tion algorithms across these behavioral features. The goal

is to determine whether or not the evaluated behavioral

features influence the recommendation algorithms, and if

so which directions are most promising. Overall, we find

that recommending with collaborative filtering enhanced

by continent and country information generally performs

best. We also find that recommendations for users with

large play counts, higher diversity and mainstreaminess

values are better.

2. RELATED WORK

The presented work stands at the crossroads of personality-

inspired user features and recommender systems based on

collaborative filtering.

Among various models of personality, the Five-factor

model (FFM) is the most widely used and is composed

of the following traits: openness, conscientiousness, ex-
traversion, agreeableness and neuroticism [9]. The per-

sonality theory inspired several works in the field of rec-

ommender systems. For example, Pu et al. [6] showed that

user rating behavior is correlated with personality factors.

Tkalčič et al. [13] used FFM factors to calculate similari-

ties in a CF recommender system for images. A study by
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Rentfrow et al. [11] showed that scoring high on certain

personality traits is correlated with genre preferences and

other listening preferences like diversity. Chen et al. [2]

argue that people who score high in openness to new expe-

riences prefer more diverse recommendations than people

who score low. The last two studies explore the relations

between personality and diversity. In fact, the study of di-

versity in recommending items has become popular after

the publishing of two popular books, The Long Tail [4]

and The Filter Bubble [10]. However, most of the work

was focused on the trade-off between recommending di-

verse and similar items (e.g. in [7]). In our work, we treat

diversity not as a way of presenting music items but as a

user feature, which is a novel way of addressing the usage

of diversity in recommender systems.

The presented work builds on collaborative filtering (CF)

techniques that are well established in the recommender

systems domain [1]. CF methods have been improved us-

ing context information when available [3]. Recently, [12]

incorporated geospatial context to improve music recom-

mendations on a dataset gathered through microblog crawl-

ing [5]. In the presented work, we advance this work by

including personality-inspired user features.

3. USER BEHAVIOR MODELING
3.1 Dataset

We use the “Million Musical Tweets Dataset” 1 (MMTD)

dataset of music listening activities inferred from micro-

blogs. This dataset is freely available [5], and contains ap-

proximately 1,100,000 listening events of 215,000 users

listening to a total of 134,000 unique songs by 25,000 art-

ists, collected from Twitter. The data was acquired crawl-

ing Twitter and identifying music listening events in tweets,

using several databases and rule-based filters. Among oth-

ers, the dataset contains information on location for each

post, which enables location-aware analyses and recom-

mendations. Location is provided both as GPS coordi-

nates and semantic identifiers, including continent, coun-

try, state, county, and city.

The MMTD contains a large number of users with only

a few listening events. These users are not suitable for re-

liable recommendation and evaluation. Therefore, we con-

sider a subset of users who had at least five listening events

over different artists. This subset consists of 28,000 users.

Basic statistics of the data used in all experiments are

given in Table 1. The second column shows the total amount

of the entities in the corresponding first row, whereas the

right-most six columns show principal statistics based on

the number of tweets.

3.2 Behavioral Features

Each user is defined by a set of three behavioral features:

play count, diversity, and mainstreaminess, defined next.

These features are used to group users and to determine

how they influence the recommendation process.

1 http://www.cp.jku.at/datasets/MMTD

Play count The play count of a user, P (u), is a measure

of the quantity of listening events for a user u. It is com-

puted as the total number of listening events recorded over

all time for a given user.

Diversity The diversity of a user, D(u), can be thought

of as a measure which captures the range of listening tastes

by the user. It is computed as the total number of unique

genres associated with all of the artists listened to by a

given user. Genre information was obtained by gathering

the top tags from Last.fm for each artist in the collection.

We then identified genres within these tags by matching the

tags to a selection of 20 genres indicated by Allmusic.com.

Mainstreaminess The mainstreaminess M(u) is a mea-

sure of how mainstream a user u is in terms of her/his lis-

tening behavior. It reflects the share of most popular artists

within all the artists user u has listened to. Users that listen

mostly to artists that are popular in a given time window

tend to have high M(u), while users who listen more to

artists that are rarely among the most popular ones tend to

score low.

For each time window i ∈ {1 . . . I} within the dataset

(where I is the number of all time windows in the dataset)

we calculated the set of the most popular artists Ai. We

calculated the most popular artists in an observed time pe-

riod as follows. For the given period we sorted the artists

by the aggregate of the listening events they received in a

decreasing order. Then, the top k artists, that cover at least

50% of all the listening events of the observed period are

regarded as popular artists. For each user u in a given time

window i we counted the number of play counts of popu-

lar artists P p
i (u) and normalized it with all the play counts

of that user in the observed time window P a
i (u). The final

value M(u) was aggregated by averaging the partial values

for each time window:

M(u) =
1

I

I∑
i=1

P p
i (u)

P a
i (u)

(1)

In our experiments, we investigated time windows of six

months and twelve months.

Table 3 shows the correlation between individual user

features. No significant correlation was found, except for

the mainstreaminess using an interval of six months and an

interval of twelve months, which is expected.

3.3 User Groups

Each user is characterized by a three dimensional feature

vector consisting of M(u), D(u), P (u). The distribution

of users across these features are illustrated in Figures 1

and 2. In Figure 3, mainstreaminess is considered with a

6 month interval. The results illustrate the even distribu-

tion of users across these features. Therefore, for group-

ing users, we consider each feature individually and divide

users between groups considering a threshold.

For mainstreaminess, we consider the histogram of M(u)
(Figure 2 for a 6 month (top) and 12 month (bottom)) in

making the groups. We consider 2 different cases for group-

ing users. First, we divide the users into 2 groups according

to the median value (referred to as M6(12)-median-G1(2)).

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

484



Level Amount Min. 1st Qu. Median Mean 3rd Qu. Max.

Users 27,778 5 7 10 27.69 17 89,320

Artists 21,397 1 1 2 35.95 9 11,850

Tracks 108,676 1 1 1 7.08 4 2,753

Continents 7 9 4,506 101,400 109,900.00 142,200 374,300

Countries 166 1 12 71 4,633.00 555 151,600

States 872 1 7 40 882.00 195 148,900

Counties 3557 1 2 10 216.20 41 191,900

Cities 15123 1 1 5 50.86 16 148,900

Table 1. Basic dataset characteristics, where “Amount” is the number of items, and the statistics correspond to the values

of the data.

RB Ccnt Ccry Csta Ccty Ccit CF CCcnt CCcry CCsta CCcty CCcit

P-top10 10.28 11.75 11.1 5.70 5.70 5.70 11.22 10.74 10.47 5.89 5.89 5.89

P-mid5k 1.33 1.75 2.25 2.43 1.46 1.96 4.47 4.59 4.51 3.56 1.96 2.56

P-bottom22k 0.64 0.92 1.10 1.03 0.77 1.07 1.85 1.95 1.95 1.56 0.96 1.16

P-G1 0.45 0.67 0.72 0.68 0.44 0.56 1.13 1.26 1.17 0.78 0.26 0.35

P-G2 0.65 1.32 1.34 1.01 0.69 0.92 1.71 1.78 1.77 1.32 0.80 0.89

P-G3 1.08 2.04 2.02 1.88 1.30 1.73 3.51 3.60 3.59 2.90 1.68 2.16

D-G1 0.64 0.85 1.16 1.04 0.87 0.88 2.22 2.24 2.16 1.59 0.97 0.93

D-G2 0.73 0.93 1.05 1.23 0.84 1.02 2.04 2.21 2.20 1.68 0.98 1.08

D-G3 0.93 1.63 1.49 1.56 0.93 1.41 2.49 2.56 2.59 2.03 1.08 1.54

M6-03-G1 0.50 0.88 0.95 0.96 0.64 0.88 1.76 1.84 1.84 1.43 0.81 1.00

M6-03-G2 1.34 2.73 2.43 2.22 1.49 2.00 3.36 3.50 3.50 2.81 1.67 2.08

M6-median-G1 0.35 0.58 0.62 0.65 0.48 0.61 1.35 1.46 1.45 1.04 0.56 0.66

M6-median-G2 1.25 2.49 2.89 2.25 1.47 1.97 3.14 3.27 3.29 2.67 1.66 2.07

M12-05-G1 1.35 2.02 2.27 2.25 1.50 1.93 2.90 3.02 3.04 2.47 1.54 1.94

M12-05-G2 0.36 0.59 0.69 0.61 0.41 0.57 1.30 1.38 1.38 1.01 0.52 0.66

M12-median-G1 0.36 0.62 0.71 0.64 0.43 0.59 1.41 1.50 1.50 1.10 0.56 0.71

M12-median-G2 1.34 2.09 2.33 2.34 1.57 2.01 3.10 3.24 3.26 2.66 1.67 2.10

Table 2. Maximum F-score for all combinations of methods and user sets. C refers to the CULT approaches, CC to

CF CULT; cnt indicates continent, cry country, sta state, cty county, and cit city. The best performing recommenders for

a given group are in bold.

Second, we divide users into 2 groups for which borders

are defined by a mainstreaminess of 0.3 and 0.5, respec-

tively, for the 6 month case and the 12 month case (referred

to as M6(12)-03(05)-G1(2)). These values were chosen

by considering the histograms in Figure 2 and choosing

values which naturally grouped users. For the diversity,

we create 3 groups according to the 0.33 and 0.67 per-

centiles (referred to as D-G1(2,3)). For play counts, we

consider 2 different groupings. The first is the same as

for diversity, i.e. dividing groups according to the 0.33
and 0.67 percentiles (referred to as P-G1(2,3)). The sec-

ond splits the users according to the accumulative play

counts into the following groups, each of which accounts

for approximately a third of all play counts: top 10 users,

mid 5,000 users, bottom 22,000 users (referred to as P-

top10(mid5k,bottom22k)).

4. RECOMMENDATION MODELS

In the considered music recommendation models, each user

u ∈ U is represented by a list of artists listened to A(u).
All approaches determine for a given seed user u a num-

ber K of most similar neighbors VK(u), and recommend

the artists listened to by these VK(u), excluding the artists

D(u) M(u) (6 mo.) P(u)
D(u) - 0.119 0.292

M(u) (12 mo.) 0.069 0.837 0.013

P(u) 0.292 0.021 -

Table 3. Feature correlations. Note due to the symmetry of

these featuers, mainstreaminess is presented for 6 months

on one dimension and 12 months on another. Overall, none

of the features are highly correlated other than the main-

streaminess 6 and 12 month features, which is expected.

A(u) already known by u. The recommended artists R(u)
for user u are computed as R(u) =

⋃
v∈VK(u) A(v)\A(u)

and VK(u) = argmaxKv∈U\{u} sim(u, v), where argmaxKv
denotes the K users v with highest similarities to u. In con-

sidering geographical information for user-context models,

we investigate the following approaches, which differ in

the way this similarity term sim(u, v) is computed. The

following approaches were investigated:

CULT: In the cultural approach, we select the neighbors

for the seed user only according to a geographical similar-

ity computed by means of the Jaccard index on listening

distributions over semantic locations. We consider as such
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Figure 1. Histogram of (top) play counts (note the log

scale on the y-axis) and (bottom) diversity over users.

semantic categories continent, country, state, county, and

city. For each user, we obtain the relevant locations by

computing the relative frequencies of his listening events

over all locations. To exclude the aforementioned geoen-

tities that are unlikely to contribute to the user’s cultural

circle, we retain only locations at which the user has lis-

tened to music with a frequency above his own average 2 .

On the corresponding listening vectors over locations of

two users u and v, we compute the Jaccard index to obtain

sim(u, v). Depending on the location category user simi-

larities are computed on, we distinguish CULT continent,

CULT country, CULT state, CULT county, and CULT city.

CF: We also consider a user-based collaborative filter-

ing approach. Given the artist play counts of seed user

u as a vector �P (u) over all artists in the corpus, we first

omit the artists that occur in the test set (i.e. we set to 0 the

play count values for artists we want our algorithm to pre-

dict). We then normalize �P (u) so that its Euclidean norm

equals 1 and compute similarities sim(u, v) as the inner

product between �P (u) and �P (v).
CF CULT: This approach works by combining the CF

similarity matrix with the CULT similarity matrix via point-

wise multiplication, in order to incorporate both music pref-

erence and cultural information.

RB: For comparison, we implemented a random base-

line model that randomly picks K users and recommends

2 This way we exclude, for instance, locations where the user might
have spent only a few days during vacation.
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Figure 2. Histogram of mainstreaminess considering a

time interval of (top) 6 months and (bottom) 12 months.

the artists they listened to. The similarity function can thus

be considered sim(u, v) = rand [0,1].

5. EVALUATION

5.1 Experimental Setup

For experiments, we perform 10-fold cross validation on

the user level. For each user, we predict 10% of the artists

based on the remaining 90% used for training. We com-

pute precision, recall, and F-measure by averaging the re-

sults over all folds per user and all users in the dataset. To

compare the performance between approaches, we use a

parameter N for the number of recommended artists, and

adapt dynamically the number of neighbors K to be con-

sidered for the seed user u. This is necessary since we do

not know how many artists should be predicted for a given

user (this number varies over users and approaches). To

determine a suited value of K for a given recommenda-

tion approach and a given N , we start the approach with

K = 1 and iteratively increase K until the number of rec-

ommended artists equals or exceeds N . In the latter case,

we sort the returned artists according to their overall popu-

larity among the K neighbors and recommend the top N .

5.2 Results

Table 2 depicts the maximum F-score (over all values of

N ) for each combination of user set and method. We de-

cided to report the maximum F-scores, because recall and
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Figure 3. Users plot as a function of (top) D(u) vs P (u)
and (bottom) M(u) (6 months) vs D(u). Note the log scale

for P (u) only. These figures illustrate the widespread,

even distribution of users across the feature space.

precision show an inverse characteristics over N . Since

the F-score equals the harmonic mean of precision and

recall, it is less influenced by variations of N , neverthe-

less aggregate performance in a meaningful way. We fur-

ther plot precision/recall-curves for several cases reported

in Table 2. In Figure 4, we present the results of all of

the recommendation algorithms for one group on the play

counts. For this case, the CF approach with integrated con-

tinent and country information performed best, followed

by the CF approach. Predominantly, these three methods

outperformed all of the other approaches for the various

groups, which is also apparent in Table 2. The only ex-

ception was the P-top10 case, where the CULT continent

approach outperformed CF approaches. However, consid-

ering the small number of users in this subset (10), the dif-

ference of one percentage point between CULT continent

and CF CULT continent is not significant. We observe the

CF approach with the addition of the continent and coun-

try information are very good recommenders in general for

the data we are using.

Now we are interested to know how the recommenda-

tions performed across user groups and respective features.
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Figure 4. Recommendation performance of investigated

methods on user group P-G3.

In terms of play counts, we observe as the user has a larger

number of events in the dataset, the performance increases

significantly (P-G3 and P-top10). This can be explained by

the fact that more comprehensive user models can be cre-

ated for users about whom we know more, which in turn

yields better recommendations.

Also in terms of diversity, there are performance dif-

ferences across groups given a particular recommender al-

gorithm. Especially between the high diversity listeners

D-G3 and low diversity listeners D-G1, results differ sub-

stantially. This can be explained by the fact that it is eas-

ier to find a considerable amount of like-minded users for

seeds who have a diverse music taste, in technical terms,

less sparse A(u) vector.

When considering mainstreaminess, taking either a 6

month or 12 month interval does not appear to have a sig-

nificant impact on recommendation performance. There

are minor differences depending on the recommendation

algorithm. However, in general, the groups with larger

mainstreaminess (M6-03-G2, M6-med-G2, M12-med-G2)

always performed much better for all approaches than the

groups with smaller mainstreaminess. It hence seems eas-

ier to satisfy users with a mainstream music taste than users

with diverging taste.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we consider the role of user listening be-

havior related to the history of listening events in order

to evaluate how this may effect music recommendation,

particularly considering the direction of personalization.

We investigate three user characteristics, play count, main-

streaminess, and diversity, and form groups of users along

these dimensions. We evaluate several different recom-

mendation algorithms, particularly collaborative filtering

(CF), and CF augmented by location information. We find

the CF and CF approaches augmented by continent and

country information about the listener to outperform the

other methods. We also find recommendation algorithms

for users with large play counts, higher diversity, and higher
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Figure 5. Precision vs. recall for play count (top), diver-

sity (middle), and mainstreaminess with a 12 month inter-

val (bottom) experiments over groups and various recom-

mendation approaches.

mainstreaminess have better performance.

As part of future work, we will investigate content-based

music recommendation models as well as combinations of

content-based, CF-based, and location-based models. Ad-

ditional characteristics of the user, such as age, gender, or

musical education, will be addressed, too.
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lion Musical Tweets Dataset: What Can We Learn From Mi-
croblogs. In Proc. ISMIR, Curitiba, Brazil, November 2013.

[6] R. Hu and P. Pu. Exploring Relations between Personality
and User Rating Behaviors. 1st Workshop on Emotions and
Personality in Personalized Services (EMPIRE), June 2013.

[7] N. Hurley and M. Zhang. Novelty and diversity in top-n rec-
ommendation – analysis and evaluation. ACM Trans. Internet
Technol., 10(4):14:1–14:30, March 2011.

[8] J. Konstan and J. Riedl. Recommender systems: from algo-
rithms to user experience. User Modeling and User-Adapted
Interaction, 22(1-2):101–123, March 2012.

[9] R. McCrae and O. John. An Introduction to the Five-
Factor Model and its Applications. Journal of Personality,
60(2):175–215, 1992.

[10] E. Pariser. The filter bubble: What the Internet is hiding from
you. Penguin UK, 2011.

[11] P. Rentfrow and S. Gosling. The do re mi’s of everyday life:
The structure and personality correlates of music preferences.
Journal of Personality and Social Psychology, 84(6):1236–
1256, 2003.

[12] M. Schedl and D. Schnitzer. Hybrid Retrieval Approaches to
Geospatial Music Recommendation. In Proc. ACM SIGIR,
Dublin, Ireland, July–August 2013.
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ABSTRACT

Internet performance faces the challenge of network la-

tency. One proposed solution is music prediction, wherein

musical events are predicted in advance and transmitted

to distributed musicians ahead of the network delay. We

present a context-aware music prediction system focusing

on expressive timing: a Bayesian network that incorporates

stylistic model selection and linear conditional gaussian

distributions on variables representing proportional tempo

change. The system can be trained using rehearsals of dis-

tributed or co-located ensembles.

We evaluate the model by comparing its prediction ac-

curacy to two others: one employing only linear condi-

tional dependencies between expressive timing nodes but

no stylistic clustering, and one using only independent dis-

tributions for timing changes. The three models are tested

on performances of a custom-composed piece that is played

ten times, each in one of two styles. The results are promis-

ing, with the proposed system outperforming the other two.

In predictable parts of the performance, the system with

conditional dependencies and stylistic clustering achieves

errors of 15ms; in more difficult sections, the errors rise

to 100ms; and, in unpredictable sections, the error is too

great for seamless timing emulation. Finally, we discuss

avenues for further research and propose the use of predic-

tive timing cues using our system.

1. INTRODUCTION

Ensemble performance between remote musicians playing

over the Internet is generally made difficult or impossi-

ble by high latencies in data transmission [3] [5]. While

many composers and musicians have chosen to treat la-

tency as a feature of network music, performance of con-

ventional music, such as that of classical repertoire, re-

mains extremely difficult in network scenarios. Audio la-

tency frequently results in progressively decreasing tempo

c© Bogdan Vera, Elaine Chew.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Bogdan Vera, Elaine Chew. “Towards

Seamless Network Music Performance: Predicting an Ensemble’s Ex-

pressive Decisions for Distributed Performance”, 15th International So-

ciety for Music Information Retrieval Conference, 2014.

and difficulty in synchronizing.

One aspect that has received less attention than the la-

tency is the lack of visual contact when performing over

the internet. Visual cues can be transmitted via video, but

such data is at least as slow as audio, and was previously

found to not be of significant use for transmitting synchro-

nization cues even when the audio had an acceptable la-

tency [6].

Since the start of network music research, several re-

searchers have posited theoretically that music prediction

could be the solution to network latency (see, for example,

Chafe [2]). Ideally, if the music can be predicted ahead of

time with sufficient accuracy, then it can be replicated at

all connected end-points with no apparent latency. Recent

efforts have made limited progress towards this goal. One

example is a system for predicting tabla drumming pat-

terns [12], and recent proposals by Alexandraki [1]. Both

assume that the tempo of the piece will be at least locally

smooth and, in the case Alexandraki’s system, timing al-

terations are always based on one reference recording.

In many styles of music, such as romantic classical mu-

sic, the tempo can vary widely, with musicians interacting

on fine-scale note-to-note timing changes and using visual

cues to synchronize. The tempo cannot be expected to al-

ways evolve in the exact same way as one previous perfor-

mance, rather the musicians significantly improvise timing

deviations to some constraints.

In this paper we propose a system for predicting timing

in network performance in real time, loosely inspired by

Raphael’s approach based on Bayesian networks [11]. We

propose and test a way to incorporate abstract notions of

expressive context within a probabilistic framework, mak-

ing use of time series clustering. Flossman et al. [8] em-

ployed similar ideas when they extended the YQX model

for expressive offline rendering of music by using condi-

tional gaussian distributions to link expressive predictions

over time. Our model contains an extra layer of stylistic

abstraction and is applied to modeling and real-time track-

ing of one performer or ensemble’s expressive choice at

the inter-onset interval level. We also describe how the

method could be used for predicting musical timing in net-

work performance, and discuss ideas for further work.
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2. MOTIVATION

Our goal is to use observable sources of information during

a live performance to predict the timing of future notes so

as to counter the effects of network latency. The sources

of information we can use include the timing of previous

notes and the intensity with which the notes are played.

The core idea is reminiscent of Raphael’s approach to

automatic accompaniment [11], which uses a Bayesian net-

work relating note onset times, tempo and its change over

time. In Raphael’s model, changes in tempo and local

note timing are represented as independent gaussian vari-

ables, with distributions estimated from rehearsals. Dur-

ing a performance, the system generates an accompani-

ment that emulates the rehearsals by applying similar al-

terations of timing and tempo at each note event in the per-

formance. The model has been demonstrated in live per-

formances and proven to be successful, however as long as

the system generates musically plausible expression in the

accompaniment, it is difficult to determine an error value,

as it is simply meant to follow a musician and replicate a

performance style established in rehearsals. An underlying

assumption of this statistical model is that the solo musi-

cian leading the performance tends to perform the piece

with the same expressive style each time.

In an ensemble performance scenario, two-way com-

munication exists between musicians. The requirement for

the system to simply ‘follow’ is no longer enough. As a

step towards tighter ensemble, we set as a goal a stringent

accuracy requirement for our prediction system: to have

errors small enough−no higher than 20-40ms−as to be in-

distinguishable from the normal fluctuations in ensemble

playing. Note that actual playing may have higher errors,

even in ideal conditions, due to occasional mistakes and

fluctuations in motor control.

The same ensemble might also explore a variety of ways

to perform a piece expressively. When expressive possibil-

ities are explored during rehearsals, the practices establish

a common ‘vocabulary’ for possible variations in timing

that the musicians can then anticipate. Another goal of our

system is to account for several distinct ways of applying

expression to the same piece. This is accomplished in two

ways. Like Flossman et al. [8], we deliberately encode the

context of the local expression by introducing dependen-

cies between the expressive tempo changes at each time

step. We additionally propose and test a form of model

selection using discrete variables that represent the chosen

stylistic mode of the expression. For example, given two

samples exhibiting the same tempo change, one may be

part of a longer term tempo increase, while another may

be part of an elastic time-stretching gesture. Knowing the

stylistic context for a tempo change will allow us to better

predict its trajectory.

3. CONTEXTUALIZING TIMING PREDICTION

We combine two techniques to implement ensemble per-

formance prediction. First, we condition the expressive

‘update’ distributions characterizing temporal expression

on those from preceding events, making the timing changes

dependent on both musicians’ previous timing choices, while

also allowing the system to respond to the interplay be-

tween the two musicians. Secondly, we abstract different

ways of performing the piece by summarizing these larger

scale differences in an unsupervised manner in a new dis-

crete node in the network: a stylistic cluster node.

3.1 Linear Gaussian Conditional Timing Prediction

Our goal is to predict the timing of events such as notes,

chords, articulations, and rests. In particular, we wish to

determine the time until the next event given the score in-

formation and a timing model. We collapse all chords into

single events. Assume that the performance evolves ac-

cording to the following equations,

tn+1 = snln + tn, and

sn+1 = sn · δn, (1)

where tn is the onset time of the n-th event, sn is the corre-

sponding inter-beat period, ln is the length of the event in

beats, and δn is a proportional change in beat duration that

is drawn from the gaussian distributions Δn. For simplic-

ity, there is no distinction between tempo and local timing

in our model, though it could be extended to include this

separation.

Because δn’s reflect proportional change in beat dura-

tion, prediction of future beat durations are done on a log-

arithmic scale:

log2 sn+1 = log2 sn + log2 δn.

log(tempo) = log(1/sn), thus log sn as well, has been

shown in recent research to be a more consistent measure

of tempo variation in expressive performance [4].

The parameters of the Δn distributions are predicted

during the performance from previous observations, such

as δn−1. Thus, each inter-beat interval, sn, is shaped from

event to event by the random changes, δn. The conditional

dependencies between the random variables are illustrated

in Figure 1. The first and last layers in the network, labeled

P1 and P2 in the diagram, are the observed onset times.

The 3rd layer, labeled ‘Composite’ following Raphael’s

terminology, embodies the time and tempo information at

each event, regardless of which ensemble musician is play-

ing, and it is on this layer that our model focuses. The 2nd

layer, Expression, consists of the variables Δn.

The Δn variables are conditioned upon their predeces-

sors, using any number of previous timing changes as in-

put; formally, they are represented by linear conditional

gaussian distributions [9]. Let there be a Bayesian network

node with a normal distribution Y . We can condition Y
on its k continuous parents C = {C1, . . . , Ck} and dis-

crete parents D = {D1, . . . , Dk} by using a linear regres-

sion model to predict the mean and variance of Y given the

values of C and D. The following equation describes the

conditional probability of Y given only continuous parent

nodes:
P (Y |C = c) = N (β0 +

k∑
i=1

βici, σ
2).
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Figure 1: A section of the graphical model. Round nodes

are continuous gaussian variables, and the square node (S)

is a discrete stylistic cluster node.

This is the equation for both continuous and discrete par-

ents:

P (Y |D = d, C = c) = N (βd,0 +
k∑

j=1

βd,jcj , σ
2
d).

Simply speaking, the mean and variance of each lin-

ear conditional gaussian node is calculated from the values

of its continuous and discrete parent nodes. The mean is

derived through linear regression from its continuous par-

ents’ values with one weight matrix per configuration of its

discrete parents.

The use of conditional gaussian distributions means that

rather than having fixed statistics for how the timing should

occur at each point, the parameters for the timing distri-

butions are predicted in real time from previous observa-

tions using linear regression. This simple linear relation-

ship provides a means of predicting the extent of temporal

expression as an ongoing gesture. For example, if the per-

formance is slowing down, the model can capture the rate

of slowdown, or a sharp tempo turnaround if this occurred

during rehearsals.

Our network music approach involves interaction be-

tween two actual musicians rather than a musician and a

computer. Thus, each event observed is a ‘real’ event,

and we update the Δn probability distributions at each step

during run-time with the present actions of the musicians

themselves. Unlike a system playing in automatic accom-

paniment or an expressive rendering system, our system is

never left to play on its own, and its task is simply to con-

tinue from the musicians’ choices, leaving less opportunity

for errors to accumulate. Additionally, we can correct the

musicians’ intended timing by compensating for latency

post-hoc - this implies that we can make predictions that

emulate what the musicians would have done without the

interference of the latency.

We may also choose the number of previous changes to

consider. Experience shows that adding up to 3 previous

inputs improves the performance moderately, but the per-

formance decreases thereafter with more inputs. For sim-

plicity, we currently use only one previous input, which

provides the most significant step improvement.

In constrast to a similar approach by Flossman et al. [8],

we do not attempt to link score features to the performance;

we only consider the local context of their temporal ex-

pression. Our goal is to capture the essence of one partic-

ular ensemble’s interpretation of a particular piece rather

than attempting to construct a universal model for mapping

score to performance. As a result, the amount of training

data will generally be much smaller as we may only use

the most recent recorded and annotated rehearsals of the

ensemble. The next section describes a clustering method

we use to account for large-scale differences in timing.

3.2 Unsupervised Stylistic Characterization

Although we could add a large number of previous inputs

to each of the Δn nodes, we cannot tractably condition

these variables’ distributions on potentially hundreds of

previous observations. This would require a large amount

of training data to estimate the parameters in a meaning-

ful way. Instead, we propose to summarize larger-scale

expression using a small number of discrete nodes repre-

senting the stylistic mode. For example, a musician may

play the same section of music in few distinct ways, and

a listener may describe it as ‘static’, ‘swingy’ or ‘loose’.

If these playing styles could be classified in real time, pre-

diction could be improved by considering this stylistic con-

text. Our ultimate goal is to perform this segmentally on a

piece of music, discovering distinct stylistic choices that

occured in the ensemble’s rehearsals. In this paper, we

present the first steps towards this goal: we characterize

the style of the entire performance using a single discrete

stylistic node.

The stylistic node is shown at the top of Figure 1. In our

model this node links to all of the Δn nodes in the piece, so

that each of the Δn’s is now linearly dependent on the pre-

vious timing changes with weights that are dependent on

the stylistic node. Assuming that each Δn node is linked

to one previous one, the parameters of the Δn distributions

are then predicted at run-time using

P (Δt|S = s,Δt−1 = δ) = N (βs,0 + βs,1δ, σ
2
s),

where S is the style node.

To predict note events, we can simply take the means of

the Δn distributions, and use Equation 1 to find the onset

time of the next event given the current one.

To use this model, we must first discover the distinct

ways (if any) in which the rehearsing musicians perform

the piece. We apply k-means clustering to the log(δn) time

series obtained from each rehearsal. We find the optimal

number of clusters by using the Bayes Information Crite-

rion (BIC) as described by Pelleg and Moore [10]. Note

that other methods exist for estimating an optimal number

of clusters. To train the Bayesian network, a training set is

generated containing all of the δn values for each rehearsal

as well as the cluster to which each time series is allocated.

We then use the algorithm by Murphy [9] to find all the

parameters of the linear conditional nodes. Note that all of

the nodes are observable and we have training data for the

Δn.

During the performance, the system can update its be-

lief about the stylistic node’s value from the note timings

that have been observed at any point; we do not need to

re-cluster the performance, as the network has learned the

relationships between the Δn’s and the stylistic node. We
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use the message passing algorithm of Bayesian networks to

infer the most likely state of the node. As the performance

progresses, the belief about the state of the node is gradu-

ally established. Intuitively, the system arrives at a stable

answer after some observations, otherwise the overall style

is ambiguous. The state of the node is then used to place

future predictions into some higher level context. The next

section shows that the prediction performance is improved

by using the stylistic node to select the best regression pa-

rameters to predict the subsequent timing changes, which

can be thought of as a form of model selection.

4. EVALUATION

4.1 Methodology

In this section we present an evaluation of the basic form of

our model. Evaluation of such predictive models remains a

challenge because testing in live performance requires fur-

ther work on performance tracking and optimization, while

offline testing necessitates a large number of annotated per-

formances from the same ensemble. We present initial re-

sults on a small dataset; in our future work we will study

real time performances of more complex pieces.

We evaluate the performance of three models: one uses

linear conditional nodes and a stylistic cluster node; the

second uses only linear conditional nodes; and, the third

has independent gaussian distributions for the Δ variables.

Our dataset consists of 20 performances by one pianist

of the short custom-composed piece shown in Figure 2.

Notice that we have not added any dynamics or tempo-

related markings - the interpretation is left entirely to the

musicians. While this is not an ensemble piece, the perfor-

mances are sufficient to test the prediction accuracy of our

model in various conditions. In this simple example, we

consider only the composite layer in the model, without

P1 and P2.

Figure 2: Custom-composed piano test piece.

The piece was played on an M-Audio AXIOM MIDI

keyboard in one of two expressive styles decided before-

hand, ten times for each style. We used IRCAM’s An-

tescofo score follower [7] for live tracking of the perfor-

mance in our system, and annotation of the note and chord

events. The log-period plots for every performance in the

dataset are shown in Figure 4a. The changes in log-period

per event are shown in Figure 4b, and we also show the

same changes but for the data in each cluster found, to

demonstrate the difference between the two playing styles.

We evaluated the system using a ‘leave-one-out’ approach,

where out of the 20 performances we always trained on

19 of them and tested on the remaining one. We always

used one previous input to the Δn nodes, using the actual

observations in the performances rather than our predic-

tions (like the extended YQX), simulating the process of

live performance. We evaluated the prediction accuracy by

measuring timing errors, which we define as the absolute

difference between the true event times and those predicted

by the model (in seconds).

The training performances were clustered correctly in

all cases, dividing the dataset into the two styles, with the

first 10 performances being grouped with cluster 1 and the

second 10 becoming part of cluster 2. Figure 3 shows the

stylistic inference process. In the matrix, performances are

arranged as rows, with events on the x-axis. Recall that we

predict the time between events rather than just notes. So,

we also consider the timing of rests, and chords are com-

bined into single events rather than individual notes. The

colors indicate the inferred value of the style node: grey

for Style 1 and white for Style 2. We see that the system

correctly infers the stylistic cluster of each performance

within the first 19 events. In many cases the classification

assigns the performance to the correct cluster after only

two events.

Inferred Style per Event, per Performance

Event Number
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rm
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ce
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Figure 3: Matrix showing most likely style state after each

event’s observed δ. Performances 1-10 are in Style 1, and

11-20 are in Style 2. Classification result: grey = Style 1,

white = Style 2.

Figure 4 shows the tempo information for the dataset.

Figure 4(a) shows the inter-beat period contours of all of

the performances, while Figure 4(b) shows boxplots (indi-

cating the mean and variability) of the period at each mu-

sical event, for the entire dataset and for the two clusters.

4.2 Results

Figure 5a and Figure 5b show the performance of the mod-

els, measured using mean absolute error averaged over events

in each performance, and over performances for each event,

respectively. We also show a detailed ‘zoomed in’ plot of

the errors between events 20-84 to make the different mod-

els’ mean errors clearer in Figure 5c. For network mu-

sic performance, we would want to predict at least as far

forward as needed to counter the network (and other sys-

tem) latency. As some inter-event time differences may be

shorter than the latency, we may occasionally need to pre-

dict more than one event ahead.

The model with stylistic clustering and linear condi-

tional nodes performed best, followed by the one with only

linear conditional nodes, then the model with independent
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Figure 4: Tempo Data

Δn nodes. In all cases the errors were higher for the second

style (the latter 10 performances), which was much looser

than the first. The mean absolute errors for each model,

considering all of the events in all of the performances are

summarized in Table 1.

Observe in Figure 5b that some parts of the performance

were very difficult to predict. For example, we note high

prediction errors in the first 12 events of the piece and one

large spike in the error at the end of the piece. These are

1-bar and 2-bar long chords, for which musicians in an en-

semble would have to use visual gestures or other informa-

tion to synchronize. We would not expect any prediction

system to do better than a musician anticipating the same

timing without any form of extra-musical information. We

discuss potential applications of music prediction for vir-

tual cueing in the next section. The use of clustering and

conditional timing distributions reduced the error rate for

the events which were poorly predicted with independent

timing distributions. For much of the piece the mean error

was as low as 15ms, but even for these predictable parts

of the performance, the models with conditional distribu-

tions and clustering lowered the error, as can be seen from

Figure 5c.

5. CONCLUSIONS AND FUTURE WORK

We have outlined a novel approach to network music pre-

diction using a Bayesian network incorporating contextual

inference and linear gaussian conditional distributions. In

an evaluation comparing the model with stylistic cluster-

ing and linear conditional nodes, one with only linear con-

ditional nodes without clustering, and one with indepen-
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(c) A ‘zoomed-in’ view of the error rates between events 20-84.

Figure 5: Mean absolute error per event.

dent nodes, we have shown that the proposed approach

produces promising results. Specifically, we have shown

evidence that considering a notion of large scale expressive

context, drawn from performance styles of a particular en-

semble, can intuitively increase the accuracy of timing pre-

diction. The model remains to be tested on more data. As

creative musicians are infinitely diverse in their expressive

interpretations, the true test of the model would ultimately

be in live performances.

The end goal of this research is to implement and evalu-

ate network music performance systems based on the pre-

diction model. Whether music prediction can ever be pre-

cise enough to allow seamless network performance re-

mains an open question. Important questions arise in pur-

Model Mean Abs. Error

Independent 69.8ms

Conditional 57.4ms

Clustering and Conditional 48.5ms

Table 1: Overall Timing Errors for Each Model
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suit of this goal: how much should the system lead the

musicians to help them stay in time without making the

performance artificial? Predicting musical timing with suf-

ficient accuracy will open up interesting avenues for net-

work music research, especially when we consider parallel

research into predicting other information such as inten-

sity and even pitch information, but whether any musician

would truly want to let a machine impersonate them ex-

pressively remains to be seen, which is why we propose

that a ‘minimally-invasive’ conductor-like approach to reg-

ulating tempo would be more appropriate than complete

audio prediction.

5.1 The Bayesian Network

It would be straightforward to extend our model by imple-

menting prediction of timing from other forms of expres-

sion that tend to correlate with tempo. For example, using

event loudness in the prediction would simply require the

addition of another layer of variables in the Bayesian net-

work and conditioning the timing variables on these nodes

as well.

5.2 Capturing Style

Much work remains to expand on the characterization of

stylistic mode. As previously mentioned, we plan to ex-

plore segmental stylistic characterization, considering dif-

ferent contextual information for each part of the perfor-

mance. In our current model we use only one stylistic

node. This may be a plausible for a small segment of mu-

sic, but in a longer performance the choice of performance

style may vary over time. If the predicted performance

starts within one style but changes to another, the model is

ill-informed to predict the parameters. In our future work

we would like to extend the model to capture such stylis-

tic tendencies over time. One approach would require pre-

segmentation of the piece based on the choice of expressive

choices during the reharsal stage, and introduction of one

stylistic node per segment. The prediction context would

then be local to each part of the performance. We may

then, for example, have causal conditional dependencies

between the stylistic nodes in each segment of the piece,

which would allow the system to both infer the style within

a part of the performance from what is being played and

from the previous stylistic choices.

In practice, a musician or ensemble’s rehearsals may

not comprise of completely distinct interpretations; how-

ever, capturing expression contextually will likely offer a

larger degree of freedom to the musicians in an internet

performance, who may then explore a greater variety of

temporal and other articulations.

5.3 Virtual Cueing

Virtual cueing forms an additional application of interest.

As mentioned at the start of the paper, visual communi-

cation is generally absent or otherwise delayed in network

music performance. If we could predict with reasonable

accuracy the timing in sections of a piece requiring tem-

poral coordination, then we could help musicians synchro-

nize by providing them with perfectly simultaneous pre-

dicted cues. We regard the use of predictive virtual cues as

less invasive to networked ensembles than complete pre-

dictive sonification. In situations where the audio latency

is low enough for performance to be feasible but video la-

tency is still too high for effective transmission of gestural

cues, predictive sonification may be omitted completely,

and virtual cues could be implemented as a regulating fac-

tor.
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ABSTRACT 

Playing a music instrument relies on the harmonious 
body movements. Motor sequences are trained to achieve 
the perfect performances in musicians. Thus, the infor-
mation from audio signal is not enough to understand the 
sensorimotor programming in players. Recently, the in-
vestigation of muscular activities of players during per-
formance has attracted our interests. In this work, we 
propose a multi-channel system that records the audio 
sounds and electromyography (EMG) signal simultane-
ously and also develop algorithms to analyze the music 
performance and discover its relation to player’s motor 
sequences. The movement segment was first identified by 
the information of audio sounds, and the direction of vio-
lin bowing was detected by the EMG signal. Six features 
were introduced to reveal the variations of muscular ac-
tivities during violin playing. With the additional infor-
mation of the audio signal, the proposed work could effi-
ciently extract the period and detect the direction of mo-
tor changes in violin bowing. Therefore, the proposed 
work could provide a better understanding of how players 
activate the muscles to organize the multi-joint movement 
during violin performance. 

1. INTRODUCTION 

For musicians, their motor skills must be honed by many 
hours of daily practice to maintain the performing quality. 
Motor sequences are trained to achieve the perfect per-
formances. Playing a musical instrument relies on the 
harmonious coordination of body movements, arm and 
fingers. This is fundamental to understanding the neuro-
physiological mechanisms that underpin learning. It 
therefore becomes important to understand the sen-
sorimotor programming in players. In the late 20th centu-
ry, Harding et al. [1] directly measured the force between 
player’s fingers and piano keys with different skill levels. 
Engel et al. [2] found there is an anticipatory change of 
sequential hand movements in pianists. Parlitz et al. [3]

explored the dynamic pressures to analyze how pianists 
depressed the piano keys and hold them down during 
playing. The pressure measurement advances the evalua-
tion of the keystroke in piano playing [4-5]. The use of 
muscle activity via electromyography (EMG) signals al-
lows further investigation into the motor control sequenc-
es that produce the music. EMG is a technique which 
evaluates the electrical activity of the muscle by rec-
ording the electrical potentials when muscles generate an
electrical voltage during activation, which results in a 
movement or coordinated action. 

EMG is generally recorded in two protocols; invasive 
electromyography (IEMG) and surface electromyography 
(SEMG). IEMG is used to measure deep muscles and 
discrete positions using a fine-wire needle; however, it is 
not a preferable model for subjects due to the invasive-
ness and being less repetitive. Compared to IEMG, 
SEMG has the following characteristics: (1) it is non-
invasive; (2) it provides global information; (3) it is com-
paratively simple and inexpensive; (4) it is applicable by 
non-medical personnel; and (5) it can be used over a
longer time during work and sport activities [6]. There-
fore, the SEMG is suitable for use within biomechanics 
and movement analysis, and was used in this paper. 

For the analysis of musical performance, EMG has 
been used to evaluate behavioral changes of the fingers 
[7-8], upper limbs [9-10] shoulder [11-12] and wrist [13] 
in piano, violin, cello and drum players. The EMG meth-
od allows for differentiating the variations and reproduci-
bility of muscular activities in individual players. Com-
paring the EMG activity between expert pianists and nov-
ice players [7-14] has also been studied. 

There have been many approaches developed for seg-
mentation of EMG signals [15]. Prior EMG segmentation 
techniques were mainly used to detect the time period for 
a certain muscle contraction, but we found that the poten-
tial variations from various muscles maybe different dur-
ing a movement. It causes the conventional EMG seg-
mentation to fail to extract the accurate timing of move-
ment in instrument playing.

In this paper, the timing activation of the muscle group 
is assessed, and the changes in motor control of players 
during performance are investigated.  We propose a sys-
tem with the function of concurrently recording the audio 
signal and behavioral changes (EMG) while playing an 
instrument. This work is particularly focused on violin 
playing, which is considered difficult to segment with the 

© L.C. Hsu, Y.J. Lin, Y.L. Wang, A.W.Y. Su, C.D. Metcalf.
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soft onsets of the notes. The segment with body move-
ments was first identified by the information of audio 
sounds. It is believed that if there is an audio signal, then 
there is a corresponding movement. Six features were 
then introduced to EMG signals to discover the variation 
of movements. This work identifies the individual 
movement segments, i.e. up-bowing and down-bowing, 
during violin playing. Thus, how motor systems operated
in musicians and affected during performance could be 
explored using this methodology. 

This paper is organized as follows. The multi-channel 
signal recording system and its experimental protocol are 
shown in section 2. In section 3, we introduce the pro-
posed algorithms for segmenting the EMG signal with 
additional audio information. The experimental results 
are shown in section 4 and the conclusion and future 
work are given in section 5. 

2. AUDIO SOUNDS AND BIOSIGNAL 
RECORDING SYSTEM 

This work proposed a multi-channel signal recording 
system capable of recording audio and EMG signals 
concurrently. The system is illustrated in Figure 1 and 
comprises: (a) a signal pre-amplifier acquisition board, 
(b) an analog to digital signal processing unit, and (c) a 
host-system. 

Figure 1. The proposed multi-channel recording system 
for recording audio signal and EMG concurrently.

The violin signal was recorded in a chamber and the 
microphone was placed 30cm from the player with a 
sampling rate of 44100Hz. With this real violin recording, 
the sound is supposedly embedded with the noise and the 
artifacts.  

Furthermore, there is three subjects in the experiment 
database. The violinist play music and be recorded. Each 
participant was requested to press one string during play-
ing. This experiment included two tasks for performance 
evaluation, and each task contained 10 movements. The 
movements for task#1 and task#2 are defined as follows. 
Movements for task#1:  

(1) Player presses the 2nd string then is idle for 2s 
(begin the bow at the frog).   

(2) Pulls the bow from the frog to the tip for 4s 
(whole bow down). 

(3) Pulls the whole bow up for 4s. 

Movements for task#2: 
(1) Player presses the 3rd string then is idle for 2s 

(begin the bow at the tip).   
(2) Pulls the whole bow up for 4s. 
(3) Pulls the whole bow down for 4s. 

Two seconds resting time was given between the two 
consecutive movements. 

The EMG sampling rate was 1000Hz. The electrodes
attached on the surface of the player’s skin as shown Fig-
ure 2. In this study, the direction of violin bowing, i.e. up-
bowing and down-bowing, is detected by the correspond-
ing muscle activity (EMG signal). The total of 8 muscles 
in the upper limb and body is measured in our system. 
Figure 3 shows the 8-channel EMG signals of up-bowing 
movement, and potential variations were shown in all 
channels when bowing. Three types of variations were 
observed and grouped: 

(1) Channel#1 to Channel#6: it is seen that the trend of 
six channels is similar; additionally, the average 
noise floor between channel#3 and channel#6 are 
lower than others; finally, we choose channel#6 be-
cause the position is convenient to place the elec-
trode. 

(2) Channel#7: the channel involving the most noise. 
(3) Channel#8: although it has more noise than Chan-

nel#1 to Channel#6, it is the important part when we 
have a whole-bowing movement. 

Figure 2. The placement of the electrodes attached on 
the player’s skin [16, 17]. 

Figure 3. The 8-channel EMG signals of up-down bow-
ing movements. 
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To reduce the computation and retain the variety of 
features, only channel#6 and channel#8 were thereafter 
used for further analysis. Figure 4 shows the EMG sig-
nals of channel#6 and channel#8 while during down-
bowing. 

Figure 4. The EMG signals of triceps (channel#6) and 
pectoralis (channel#8) during down-bowing movements. 

3. METHOD 

The following section will introduce the proposed algo-
rithm for detecting the bowing states during violin play-
ing. The proposed system is capable of recording audio 
and EMG signals concurrently, and in this study a bow-
ing state detection algorithm was developed, which was
implemented the embedded system. The flowchart of the 
proposed method is shown in Figure 5. 

Figure 5. Flowchart of the proposed system. 

The EMG signals were segmented according to the vi-
olin sounds. Then, six features were identified to detect 
the direction of bowing movements. For analyzing the 
audio signal, the window size of a frame is 2048 samples 
and the hop size 256 samples. 

3.1 Onset/Transition/Offset detection 

This section elaborates on the state detection of audio 
sounds. The states of audio sounds are defined as Onset,
Transition and Offset in this study. The Onset is the be-
ginning of bowing; the Transition is the timing when the 
next bowing movement occurred; the Offset is the end of 

the bowing; the Sustain is the duration of the note seg-
ment. Both frequency and spatial features were calculated 
and used as the inputs to our developed finite state ma-
chine (FSM). The diagram of our proposed FSM is illus-
trated in Figure 6. The output of FSM identifies the result 
of note detection and further used for EMG segmentation. 

Figure 6. The state diagram of audio sounds. 

The violin signal was analyzed both in frequency and 
time domains. For frequency analysis, the violin signal 
was first transformed by short time Fourier transform.
The inverse correlation (IC) was then applied to calculate 
the possible note onset period. The inverse correlation (IC) 
coefficients are computed from the correlation coeffi-
cients of two consecutive discrete Fourier transform spec-
tra [18]. A support vector machine (SVM), denoted as 
SVMic (1), was applied for detecting the accurate timing 
of onset. SVM is a popular methodology, with high speed 
and simple implementation, for classification and regres-
sion analysis [19].

 (1) 
For spatial analysis, the amplitude envelop (AE) was 

used to detect the segment of the sound data. AE is eval-
uated as the maximum value of a frame. There are two 
similar classifiers, called SVMae1 (2) and SVMae2 (3). 
SVMae1 is used to identify the possible onsets and SVMae2
is used to identify the possible offsets.

 (2) 

(3) 

Figure 7 shows (a) a segment of audio sounds with one 
sequence of down-bowing and up-bowing, while Figure 
7(b) and (c) display the results of IC and AE, respectively. 

During the bowing state, the IC value is extremely 
small when compared to the results of the non-bowing 
state. IC seems to be a good index to identify the state of 
whether the violin is being played, or not. However, it 
can be seen that a time deviation is introduced if the sys-
tem simply applies a hard threshold, e.g. 0.3. Alternative-
ly, the AE value becomes larger at the playing state. But 
the issue of time deviation is also present in this feature, 
if a hard threshold is applied. 

After calculating the IC and AE values, their variation 
is considered as one set of input data for SVM. The time 
period of each data is 100ms. Therefore, SVMic, SVMae1
and SVMae2 are designed to detect the most plausible tim-
ing of onset, transition and offset. 
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Figure 7. (a) The audio sounds of down-bowing and up-
bowing; (b) the results of IC; (c) the results of AE 

3.2 Detection of bowing direction 

In each movement, there are one onset, one offset, and 
several transitions. However, the total number of transi-
tions will differ from the number of notes. After detection 
of the bowing state is completed, the duration between 
onset and offset is applied for segmenting the EMG sig-
nal of triceps (channel#6) and pectroalis (channel#8). For 
each note duration, there are three cases: 

(1)The duration from the onset to the first transition. 

(2)The duration from the current transition to the next 
transition. 

(3)The duration from the last transition of the offset.  

This note duration extracted from the audio sound is 
called an active frame and the active frames are variant 
lengths from each other. The segment extracted by the 
audio sounds is called an active frame and the active 
frames are variant lengths from each other. 

For each active frame, six features in [20] were applied 
to calculate the variations of EMG signal while bowing. 
The features are:  
� Mean absolute value (MAV) 

� Mean absolute value slope (MAVS) 

� Zero crossings (ZC) 

� Slope sign changes (SSC) 

� Waveform length (WL) 

� Correlation variation (CV) 

Here, the active frame is experimentally divided into 
20 segments for calculating MAV and WL, thus each ac-
tive frame has 20 values of MAV and WL. For CV, we 
calculate the auto-correlation and cross-correlation of 
channel#6 and channel#8, and therefore there are 3 values 

of CV for each active frame. Table 1 lists the number of 
each feature for each channel. 

Table 1. The number of each feature per channel 

Feature MAV MAVS ZC SSC WL

Number 20 19 1 1 20

A more detailed description of those applied features 
could be found in [20]. Figure 8 displays the triceps EMG 
signal of one active frame (8s ~ 16s) and the results cal-
culated by MAV, MAVS, ZC, SSC and WL.  It can be 
seen that variations are exhibited for 6 features in violin 
playing with a down-up bowing movement. 

The detection of bowing direction is also determined 
by a SVM classifier which is denoted as SVMdir (3). For 
SVMdir, a total of 125 inputs are used (61 inputs for chan-
nel#6 and channel#8 each, plus 3 values of CV) and it 
identifies whether the active EMG frame is in the up-
bowing or down-bowing state. 

               (3) 

Figure 8. One down-up bowing movement and its six 
features:  (a) the down-bowing movement, (b) the up-
bowing movement. 

3.3 Performance evaluation 
In our experiment, 10-fold cross-validation is used for 
SVMic, SVMae and SVMdir, and the performance evalua-
tion calculates the accuracy (4), precision (5), recall (6)
and F-score (7) of each detecting function. 

;           (4)

;           (5) 

;  (6) 

;            (7) 

The true positive means it correctly detected the 
movement; the false positive is a falsely detected move-
ment; and the false negative is a missed detection. 
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4. EXPERIMENTAL RESULTS 

In this section, the efficiency of the proposed SVMs is 
observed. An example of the proposed EMG segmenta-
tion is then compared to the prior work [15]. Finally, the 
averaged and overall simulation results are given.

4.1 The performance of SVM classifications 
To illustrate both the proposed IC and AE effectively 
identify the sound states of onset and offset, respectively, 
Figure 9 shows the trend of IC and AE values in one 
down-up bowing movement by using the classification 
results for SVMic and SVMae1 and SVMae2. Table 2 shows 
that, with the given FSM, the detection rate of onsets, 
transitions and offsets are 90%, 100%, 100%, respective-
ly.  

Figure 9. The results of 3 classifiers: (a) onsets, (b) tran-
sitions, (c) offsets. 

Table 2. The detection results of the bowing states with 
the given FSM. 

Onset Transition Offset
Accuracy 90.00% 100% 100%
Precision 90.00% 100% 100%

Recall 90.00% 100% 100%
F-score 90.00% 100% 100%

Figure 10 shows the distribution of active EMG frames 
during up-bowing and down-bowing states, and it dis-
plays the distribution of MAV, MAVS and WL. The 
SVMdir classifies the data with 85% accuracy. 

Figure 10. (a) The original distribution of up-bowing and 
down-bowing EMG frames; (b) the results of SVMdir

classification. 

4.2 EMG segmentation 
The results of EMG segmentation and its comparison to 
[15] are both illustrated in Figure 11. Figure 11 shows the 

violin signal of task#1 with three movements. Figure 11 
(b) and (c) are the EMG segmentations of our proposed 
method and [15], respectively. Channel#6 is used in this
example to illustrate a sample output. It is believed that if 
there is an audio signal, then there is a corresponding 
movement. It can be seen that the results segmented by 
[15], without the additional information of the audio sig-
nal, could not precisely identify the segment of move-
ments during bowing. However, the proposed method is 
based on the information from audio signals and clearly 
identifies the segment of behavioral changes during violin 
playing.

Figure 11. (a) The violin signal; (b) the proposed EMG 
segmentations; (c) the EMG segmentations of [15].

4.3 The simulation results 
The detection result of violin bowing direction was given 
in Table 3 where accuracy, precision, recall and F-score 
are presented. 

Table 3. The detection results of the bowing direction: (1) 
the detection results of ground truths of active frames; (2) 
the detection results of extracted active frames. 

(1) (2)
Accuracy 85% 87.5% 
Precision 76.92% 82.61% 

Recall 100% 95% 
F-score 86.96% 88.37% 

The average detection results were shown to have excel-
lent performance with an accuracy of 85%~87.5%. The 
results show that the proposed method efficiently identi-
fies the bowing direction in violin playing. 

5. CONCLUSION AND FUTURE WORK 

The proposed biomechanical system for recording the au-
dio sounds and EMG signals during playing an instru-
ment was developed. The proposed method not only ex-
tracts the segment during movement and detects the mov-
ing direction of bowing, but with the additional infor-
mation of violin sounds, changes in muscle activity as an 
element of motor control, could be efficiently detected 
when compared to the prior EMG segmentation (without 
any sound information). To the authors’ knowledge, this 
is the first study which proposes such concept.
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Future work will improve the detection rate of onset, 
transition and offset to extract the period of an active 
frame more precisely. The detection of the bowing direc-
tion will be also improved. Furthermore, the relationship 
between the musical sounds and the muscular activities of 
players in musical performance will be observed and ana-
lyzed. By measuring the music and the player’s muscular 
activity, better insights can be made into the neurophysio-
logical control during musical performances and may 
even prevent players from the injuries as greater insights 
into these mechanisms are made.
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ABSTRACT

Key information is a useful information for tonal music

analysis. It is related to chord progressions, which follows

some specific structures and rules. In this paper, we de-

scribe a generative account of chord progression consist-

ing of phrase-structure grammar rules proposed by Martin

Rohrmeier. With some modifications, these rules can be

used to partition a chord symbol sequence into different

key areas, if modulation occurs. Exploiting tonal grammar

rules, the most musically sensible key partition of chord

sequence is derived. Some examples of classical music

excerpts are evaluated. This rule-based system is com-

pared against another system which is based on dynamic

programming of harmonic-hierarchy information. Using

Kostka-Payne corpus as testing data, the experimental re-

sult shows that our system is better in terms of key detec-

tion accuracy.

1. INTRODUCTION

Chord progression is the foundation of harmony in tonal

music and it can determine the key. The key involves cer-

tain melodic tendencies and harmonic relations that main-

tain the tonic as the centre of attention [4]. Key is an in-

dicator of the musical style or character. For example, the

key C major is related to innocence and pureness, whereas

F minor is related to depression or funereal lament [16].

Key detection is useful for music analysis. A classical mu-

sic piece may have several modulations (key changes). A

change of key means a change of tonal center, the adop-

tion of a different tone to which all the other tones are to

be related [10]. Key change allows tonal music to convey

a sense of long-range motion and drama [17].

Keys and chord labels are interdependent. Even if

the chord labels are free from errors, obtaining the key

path is often a non-trivial task. For example, if a mu-

sic excerpt has been analyzed with the chord sequence

[B�, F,Gmin, Amin, G,C], how would you analyze its

key? Is it a phrase entirely in B� major or C major, as

c© Lam Wang Kong, Tan Lee.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Lam Wang Kong, Tan Lee. “Auto-

matic key partition based on Tonal Organization Information of Classical

Music”, 15th International Society for Music Information Retrieval Con-

ference, 2014.

they are the beginning or ending chords? Seems it is not,

as B� major chord is normally not a member chord of C

major and vice versa. It seems that there must be a key

change in the middle. But how would you find out the

point of key change, and how does the key change? With

the help of the tonal grammar tree analysis in §2.1, a good

estimate of the key path can be obtained. To start with, we

assume that the excerpt consists of harmonically complete

phrase(s) and the chord labels are free from errors.

There are some existing algorithms to estimate the key

based on chord progression. These algorithms can be clas-

sified into two categories: statistical-based and rule-based
approach. Hidden Markov model is very often used in the

statistical approach. Lee & Stanley [7] extracted key in-

formation by performing harmonic analysis on symbolic

training data and estimated the model parameters from

them. They built 24 key-specific HMMs (all major and mi-

nor keys) for recognizing a single global key which has the

highest likelihood. Raphael & Stoddard [11] performed

harmonic analysis on pitch and rhythm. They divided the

music into a fixed musical period, usually a measure, and

associate a key and chord to each of period. They per-

formed functional analysis of chord progression to deter-

mine the key. Unlabeled MIDI files were used to train the

transition and output distributions of HMM. Instead of rec-

ognizing the global key, it can track the local key. Catteau

et al. [2] described a probabilistic framework for simulta-

neous chord and key recognition. Instead of using training

data, Lerdahl’s representation of tonal space [8] were used

as a distance metric to model the key and chord transition

probabilities. Shenoy et al. [15] proposed a rule-based ap-

proach for determining the key from chord sequence. They

created a reference vector for each of the 12 major and

minor keys, including the possible chords within the key.

Higher weights were assigned to primary chords (tonic,

subdominant and dominant chords). The chord vector ob-

tained from audio data were compared against the refer-

ence vector using weighted cosine similarity. The pattern

with the highest rank is chosen as the selected global key.

This paper uses a rule-based approach to model tonal

harmony. A context-free dependency structure is used to

exhaust all the possible combinations of key paths, and

the best one is selected according to music knowledge.

The main objective of this research is to exploit this tonal

context-free dependency structure in order to partition an

excerpt of classical music into several key sections.
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Functional level Scale degree level

TR → DR T T → I

DR → SR D T → I IV I

TR → TR DR S → IV

XR → XR XR D → V | vii
phrase → TR T → vi | III

D → V II (minor)

Added rules for scale degree level: S → ii (major)

S → ii (minor) S → V I | bII (minor)

T → I IV V I | V I IV I | I bII I X → D(X)X

D → I V , after S or D(V ) D(X) → V/X | vii/X
TR tonic region S predominant function

DR dominant region X any specific function

SR predominant region D(�) secondary dominant

XR any specific region X / Y X of Y chord

T tonic function I, III... major chords

D dominant function ii, vi... minor chords

Table 1. Rules (top) and labels (bottom) used in our system

2. TONAL THEORY OF CLASSICAL MUSIC

2.1 Schenkerian analysis and formalization

To interpret the structure of the tonal music, Schenkerian

analysis [14] is used. The input is assumed to be classical

music with one or more tonal centre (tonal region). Each

tonal centre can be elaborated into tonic – dominant – tonic

regions [1]. The dominant region can be further elaborated

into predominant-dominant regions. Each region can be

recursively elaborated to form a tonal grammar tree. We

can derive the key information by referring to the top of the

tree, which groups the chord sequence into a tonal region.

Context-free grammar can be used to formalize this

tree structure. A list of generative syntax is proposed by

Rohrmeier [13] in the form of V → w. V is a single non-

terminal symbol, while w is a string of terminals and/or

non-terminals. Chord symbols (eg. IV ) are represented

by terminals. They are the leaves of the grammar tree.

Tonal functions (eg. T for tonic) or regions (eg. TR for

tonic region) are represented by non-terminals. They can

be the internal nodes or the root of the grammar tree. For

instance, the rule D → V | vii indicates that the V or vii
chord can be represented by the dominant function. The

rule S → ii (major) indicates that ii chord can be repre-

sented by the predominant function only when the current

key is major. Originally Rohrmeier has proposed 28 rules.

Some of them were modified to suit classical music and

were listed in Table 1.

Based on this set of rules, Cocke–Younger–Kasami

parsing algorithm [18] is used to construct a tonal grammar

tree. If a music input is harmonically valid, a single tonal

grammar tree can be built like in Figure 1. Else some scat-

tered tree branches are resulted and cannot be connected to

one single root.

Figure 1. Example of a tonal grammar tree (single key)

Figure 3. Flow diagram of our key partitioning system

2.2 Modulation

In Rohrmeier’s generative syntax of tonal harmony, modu-

lation is formalized as a new local tonic [13]. Each func-

tional region (new key section) is grouped as a single non-

tonic chord in the original passage, and they may relate this

(elaborated) chord to the neighbouring chords.

In this research we have a more general view of mod-

ulation. As a music theorist, Reger had published a book

Modulation, showing how to modulate from C major / mi-

nor to every other key [12]. Modulation to every other key

is possible, but modulation to harmonically closer keys is

more common [10]. For instance, if the music is origi-

nally in C major, it is more probable to modulate to G ma-

jor instead of B major. Lerdahl’s chordal distance [8] is

used to measure the distance between different keys. Here

Rohrmeier’s modulation rules in [13] are not used. Instead,

a tonal grammar tree is built for each new key section,

and the key path with the best score is chosen. Any key

changes explainable by tonicization (temporary borrowing

of chords from other keys), such as the chords [I V/V V
I], is not considered as a modulation. Figure 2 shows an

example of tonal grammar tree with modulation, from E

minor to D� minor. It is presented by two disjunct trees.

3. SYSTEM BUILDING BLOCKS

3.1 Overview

The proposed key partitioning system is shown as in Figure

3. This system takes a sequence of chord labels (e.g. A

minor, E major) and outputs the best key path. The path

may consist of only one key, or several keys. For example,

[F F F F F F] or [Am Am Am C C C] (m indicates minor
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Figure 2. Example of a tonal grammar tree with modulation

chords, other chords are major) are both valid key paths.

The Tonal Grammar Tree mentioned in §2.1 is the main

tool used in this system.

3.2 Algorithm for key partitioning

Each key section is assumed to have at least one tonic

chord. The top of each grammar tree must be TR (tonic re-

gion), so the key section is a complete tonal grammar tree

by itself. Furthermore, the minimum length of each key

section is assumed to be 3 chords. However, if no valid

paths can be found, key sections with only 2 chords are

also considered.

The algorithm is as follows:

1. In a chord sequence, hypothesize any of the chord

label as the tonic of a key. Derive the tonal grammar

tree of each key.

2. Find if there is any key that can build a single com-

plete tree for the entire sequence. If yes, limit the

valid paths to these single-key paths and go to step

7. This phrase is assumed to have a single key only.

Else go to next step.

3. For each chord label in the sequence, find the max-

imum possible accumulated chord sequence length

of each key section (up to that label). Determine

if this sequence is breakable at that label (The sec-

ondary dominant chord is dependent on the subse-

quent chord. For example, the tonicization segment

V/V V cannot be broken in the middle, as V/V is

dependent on V chord).

4. Find out all possible key sections with at least 3

chords including at least one tonic chord.

5. Find out all valid paths traversing all the possible

key sections, from beginning to end, in a brute-force

manner.

Path no. Key paths

1 Gm Gm Gm Am Am Am

2 Gm Gm Gm C C C

3 B� B� B� Am Am Am

4 B� B� B� C C C

Table 2. All valid key paths in the example

6. If no valid paths can be found, go back to step 4 and

change the requirement to “at least 2 chords”. Else

proceed to step 7.

7. Evaluate the path score of all valid paths and select

the one with the highest score to be the best key path.

A simple example is used to illustrate this process. The

input chord sequence is [B� F Gm Am G C]. Incomplete

trees with the keys (B�, F, Gm, Am, G, C) are built. As all

the trees are incomplete, proceed to step 3 and the accu-

mulated length is calculated. The B� major tree is shown

in Figure 4 as an example. Other five trees (F, Gm, Am,

G, C) were built in the same fashion. Either key sections

1-3 or 1-4 of B�major are valid key sections as they can

all be grouped into a single TR and they have at least 3

chords. Then all the valid key paths were found and they

are listed in Table 2. All the path scores were evaluated by

the equation (1) of the next section.

3.3 Formulation

We have several criteria for choosing the best key path. A

good choice of a key section should be rich in tonic and

dominant chords, as they are the most important chords to

define and establish a key [10]. It is more preferable if the

key section starts and ends with the tonic chord, and with

less tonicizations as a simpler explanation is better than a

complicated one. In a music excerpt, less modulations and

modulations to closer keys are preferred. We formulate
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Figure 4. The incomplete B� major Tree

these criteria with equation (1):

Stotal = aStd − bSton − cScost + dSstend − eSsect (1)

where Std is the no. of tonic and dominant chords, Ston

is the total number of tonicization steps. For example, in

chord progression V/V/ii V/ii ii, the first chord has two

steps, while the second chord has one step. Ston = 2+1+
0 = 3. Scost is the total modulation cost: the total tonal

distance of each modulation measured by Lerdahl’s dis-

tance defined in [8]. Sstend indicates whether the excerpt

starts and ends with tonic or not. Ssect is the total number

of key sections. If a key section has only 2 chords, it is

counted as 3 in Ssect as a penalty. These parameters con-

trol how well chords fit in a key section against how often

the modulation occurs. Std, Ston and Sstend maximizes

fitness of the chord sequence to a key section. Scost and

Ssect induce penalty whenever modulation occurs. The pa-

rameters Std, Ston, Scost, Sstend and Ssect are normalized

so that their mean and standard deviation are 0 and 1 re-

spectively. All the coefficients, namely a, b, c, d, e, are de-

termined experimentally, although a slightly different set

of values does not have a large effect on the key partition-

ing results. They are set at [a, b, c, d, e] = [1, 0.4, 2, 2, 0.4].
Key structure is generally thought to be hierarchical. An

excerpt may have one level of large-scale key changes and

another level of tonicizations [17], and the boundary is not

well-defined. So it seemed fair to adjust these parameters

in order to match the level of key changes labeled by the

ground truth. The key path with the highest Stotal is cho-

sen as the best path.

4. EXPERIMENTS

4.1 Settings

To test the system, we have chosen the Kostka-Payne cor-

pus, which contains classical music excerpts in a theory

book [5]. This selection has 46 excerpts, covering compo-

sitions of many famous composers. They serve as repre-

sentative examples of classical music in common practice

period (around 1650-1900). All of the excerpts were exam-

ined. This corpus has ground truth key information labeled

by David Temperley 1 . The mode (major or minor) of the

key was labeled by an experienced musician. The chord

labels are also available from the website, with the mode

1 http://www.theory.esm.rochester.edu/temperley/kp-stats/

added by the experienced musician 2 . All the chord types

have been mapped to their roots: major or minor. There

are 25 excerpts with a single key and 21 excerpts with key

changes (one to four key changes). The longest excerpt

has 47 chords whereas the shortest excerpt has 8 chords.

The instrumentation ranges from solo piano to orchestral.

As we assume the input chord sequence to be harmoni-

cally complete, the last chord of excerpts 9, 14 and 15 were

truncated as they are the starting chord of another phrase.

There are 866 chords in total. For every excerpt, the parti-

tioning algorithm in §3.2 is used to obtain the best path.

4.2 Baseline system

To the best of author’s knowledge, there is currently no

key partitioning algorithm directly use chord labels as in-

put. To compare the performance of our key partitioning

system, another system based on Krumhansl’s harmonic-

hierarchy information and dynamic programming were

set up. Krumhansl’s key profile has been used in many

note-based key tracking systems such as [3, 9]. Here

Krumhansl’s harmonic-hierarchy ratings (listed in Chap-

ter 7 of [6]) are used to obtain the perceptual closeness of

a chord in a particular key. A higher rating corresponds

to a higher tendency to be part of the key. As a fair com-

parison, the number of chords in a key section is restricted

to be at least three, which is the same in our system. To

prevent fluctuations of the key, a penalty term D(x, y) is

imposed on key changes. The multiplicative constant of

penalty term α is determined experimentally to give the

best result. The best key path is found iteratively by the

dynamic programming technique presented by equations

(2) and (3):

Ax[1] = Hx[1] ∀x ∈ K (2)

Ax[n] = max

{
Ax[n− 1] +Hx[n],

Ay[n− 1] +Hx[n]− αD(x, y)

}
∀x, y ∈ K, where y �= x

(3)

Hx[n] is the harmonic-hierarchy rating of the nth chord

with the key x. Ax[n] is the accumulated key strength of

the nth chord when the current key is x. K is the set of all

possible keys. D(x, y) is the distance between keys x, y
based on the key distance in [6] derived from multidimen-

sional scaling. The best path can be found by obtaining

the largest Ax of the last chord and tracking all the way

back to Ax[1]. The same Kostka-Payne corpus chord la-

bels were used to test this baseline system. The best result

was obtained by setting α = 4.5.

4.3 Results

The key partitioning result of our proposed system and the

baseline system were compared against the ground truth

provided by Temperley. Four kinds of result metrics were

used. The average matching score is shown in Figure 5.

2 All the chord and key labels can be found here:
https://drive.google.com/file/d/0B0Td6LwTUL-

vMVJ6MFcyYWsxVzQ/edit?usp=sharing
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Figure 5. Key partitioning result, with 95% confidence

interval

Exact indicates the exact matches between the obtained

key path and the ground truth. As modulation is a grad-

ual process, the exact location of key changes may not be

definitive. It is more meaningful to consider Inexact. For

inexact, the obtained key is also considered as correct if

it matches the key of the previous or next chord. MIREX
refers to the MIREX 2014 Audio key detection evaluation

standard 3 . Harmonically close keys will be given a par-

tial point. Perfect fifth is awarded with 0.5 points, rela-

tive minor/ major 0.3 points, whereas parallel major/ mi-

nor 0.2 points. This is useful as sometimes a chord pro-

gression may be explainable by two different related keys.

MIREX in refers to the MIREX standard, but with the ad-

dition that the points of previous or next chord will also be

considered and the maximum point will be chosen as the

matching score of that chord.

The proposed system outperforms the baseline system

by about 18% for exact or inexact matching and 0.1 points

for MIREX-related scores. It shows that our knowledge-

based tonal grammar tree system is better than the base-

line system which is based on perceptual closeness. Tonal

structural information is exploited, so we have a better un-

derstanding of the chord progression and modulations.

4.4 Error analysis

The ground truth key information are compared against the

key labels generated by the proposed algorithm. 17 bound-

ary errors were detected, ie. the key label of the previous

or next chord was recognized instead. In classical music,

modulation is usually not a sudden event. It occurs gradu-

ally through several pivot chords (chords common to both

keys) [10]. Therefore it is sometimes subjective to deter-

mine the boundary between two key sections. It may not

be a wrong labeling if the boundary is different from the

ground truth. Other types of error are listed in Table 3.

The most common error is the misclassification as dom-

inant key, which is the closest related key [10]. It shares

many common chords with the tonic key. From Table 4,

the same chord sequence can be analyzed by two keys that

are dominantly-related. Although the B� major analysis

contains more tonicizations, the resultant score disadvan-

tage may be outweighed by the cost of key changes, if it is

followed by a B� major section.

3 http://www.music-ir.org/mirex/wiki/2014:Audio Key Detection

Key relation Semitone difference total no. %
Dominant 7 35 32.7

Supertonic 2 32 29.9

Relative 3 11 10.3

Parallel 0 11 10.3

Minor 3rd 3 9 8.4

Major 3rd 4 8 7.5

Leading tone 1 3 2.8

Tritone 6 2 1.9

Table 3. Eight categories of the 107 error labels

chord symbols Gm C F B� Gm C F

F major ii V I IV ii V I

B� major vi V/V V I vi V/V V

Table 4. Analysis with two different keys

Modulations between keys that are supertonically-

related (differs by 2 semitones) or relative major / minor

have a similar problem as the dominant key modulation.

Many common chords are shared among both keys, so it

is easy to confuse these two keys. It is worth to mention

that nine of the supertonically-related errors came from ex-

cerpt 45. In Temperley’s key labels, the whole excerpt is

labeled as C major with measures 10-12 considered as a

passage of tonicization. However, in [5], it was written that

“Measures 10-12 can be analyzed in terms of secondary
functions or as a modulation”. If the measures 10-12 are

considered as a modulation to D minor, then the analysis

of these nine chords is correct.

The parallel key modulation, for example from C major

to C minor, has a different problem. Sometimes composers

tend to start the phrase with a new mode (major or minor)

without much preparation, as the tonic is the same. Fluctu-

ation between major and minor of the same key has always

been common [10]. When the phrase information is ab-

sent, the exact position of modulation cannot be found by

the proposed system.

In another way, there may exist some ornament notes

that obscure the real identity of a chord, so that the chord

symbol analyzed acoustically is different from the chord

symbol analyzed structurally or grammatically. For exam-

ple, in Figure 6, the first two bars should be analyzed as

IV 6-viiφ7-I progression in A major. However, the C� of

the I chord is delayed to the next chord. The appoggiatura

B� made the I chord sound as a i chord, the tonic minor

chord instead. Similarly, the last two bars should be ana-

lyzed as IV 6/5-viio7-i in F� minor. However, the passing

note A� made the i chord sound as a I chord, the original

A is delayed to the next chord. In these two cases, the key

derived by the last chord in the progression is in conflict

with the other chords. Hence the key will be recognized

wrongly if the acoustic chord symbol is provided instead

of the structural chord symbol.

5. DIFFICULTIES

The biggest problem of this research is lack of labeled data.

To the best of our knowledge, large chord label database
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Figure 6. Excerpt from Mozart’s Piano Concerto no. 23,

2nd movement

for classical music is absent. The largest database we could

find is the Kostka-Payne corpus used in this paper. In the

future, we may consider manually label more music pieces

to check if the system works generally well in classical

music.

Moreover, key partitioning is sometimes subjective to

listener’s perception. In some cases, there are several pivot

chords to establish the new key center. “Ground truth”

boundaries of key sections are sometimes set arbitrarily.

Or there are several sets of acceptable and sensible parti-

tions of key sections. This problem is yet to be studied. In-

consistency between acoustic and structural chord symbols

mentioned in §4.4 is also yet to be solved. For any rule-

based systems, exceptions may occur. Composers may de-

liberately break some traditions in the creative process. It

is not possible to handle all these exceptional cases.

6. FUTURE WORK AND CONCLUSION

We have only considered major and minor chords in this

paper. As dominant 7th and diminished chords are com-

mon in classical music, we may consider expanding the

chord type selection to make chord labels more accurate.

The current system assumes chord labels to be free of er-

rors. We plan to study the method of key tracking in the

presence of chord label errors. Then we may incorporate

this system to the chord classification system for audio key

detection, as the key and chord progression is interdepen-

dent. Currently the input phrases must be complete in or-

der to make this tree building process work. We plan to find

the key partition method for incomplete input phrases. A

more efficient algorithm for tree building process, instead

of brute-force, is yet to be discovered. Then less trees are

required to be built.

In this paper, we have discussed the uses of tonal gram-

mar to partition key sections of classical music. The

proposed system outperforms the baseline system which

uses dynamic programming on Krumhansl’s harmonic-

hierarchy ratings. This tonal grammar is useful for tonal

classical music information retrieval and hopefully more

uses can be found.
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ABSTRACT

This paper presents a Bayesian nonnegative matrix fac-

torization (NMF) approach to extract singing voice from

background music accompaniment. Using this approach,

the likelihood function based on NMF is represented by

a Poisson distribution and the NMF parameters, consist-

ing of basis and weight matrices, are characterized by the

exponential priors. A variational Bayesian expectation-

maximization algorithm is developed to learn variational

parameters and model parameters for monaural source sep-

aration. A clustering algorithm is performed to establish

two groups of bases: one is for singing voice and the other

is for background music. Model complexity is controlled

by adaptively selecting the number of bases for different

mixed signals according to the variational lower bound.

Model regularization is tackled through the uncertainty

modeling via variational inference based on marginal like-

lihood. The experimental results on MIR-1K database

show that the proposed method performs better than var-

ious unsupervised separation algorithms in terms of the

global normalized source to distortion ratio.

1. INTRODUCTION

Singing voice conveys important information of a song.

This information is practical for many music-related ap-

plications including singer identification [11], music emo-

tion annotation [21], melody extraction, lyric recognition

and lyric synchronization [6]. However, singing voice is

usually mixed with background accompaniment in a mu-

sic signal. How to extract the singing voice from a single-

channel mixed signal is known as a crucial issue for mu-

sic information retrieval. Some approaches have been pro-

posed to deal with single-channel singing-voice separation.

There are two categories of approaches to source sep-

aration: supervised learning [2] and unsupervised learn-

ing [8,9,13,22]. Supervised approach conducts the single-

channel source separation given by the labeled training

data from different sources. In the application of singing-

voice separation, the separate training data of singing voice

c© Po-Kai Yang, Chung-Chien Hsu and Jen-Tzung Chien.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Po-Kai Yang, Chung-Chien Hsu
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and background music should be collected. But, it is

more practical to conduct the unsupervised learning for

blind source separation by using only the mixed test data.

In [13], the repeating structure of the spectrogram of the

mixed music signal was extracted and applied for sep-

aration of music and voice. The repeating components

from accompaniment signal were separated from the non-

repeating components from vocal signal. A binary time-

frequency masking was applied to identify the repeating

background accompaniment. In [9], a robust principal

component analysis was proposed to decompose the spec-

trogram of mixed signal into a low-rank matrix for accom-

paniment signal and a sparse matrix for vocal signal. Sys-

tem performance was improved by imposing the harmonic-

ity constraints [22]. A pitch extraction algorithm was in-

spired by the computational auditory scene analysis [3] and

was applied to extract the harmonic components of singing

voice.

In general, the issue of singing-voice separation is seen

as a single-channel source separation problem which could

be solved by using the learning approach based on the

nonnegative matrix factorization (NMF) [10, 19]. Using

NMF, a nonnegative matrix is factorized into a product

of a basis matrix and a weight matrix which are nonneg-

ative [10]. NMF can be directly applied in Fourier spec-

trogram domain for audio signal processing. In [7], the

nonnegative sparse coding was proposed to conduct sparse

learning for overcomplete representation based on NMF.

Such sparse coding provides efficient and robust solution

to NMF. However, how to determine the regularization pa-

rameter for sparse representation is a key issue for NMF. In

addition, the time-varying envelopes of spectrogram con-

vey important information. In [16], one dimensional con-

volutive NMF was proposed to extract the bases, which

considered the dependencies across successive columns of

input spectrogram, and was applied for supervised single-

channel speech separation. In [14], two dimensional NMF

was proposed to discover fundamental bases for blind mu-

sical instrument separation in presence of harmonic varia-

tions from piano and trumpet. Number of bases was empir-

ically determined. Nevertheless, the selection of the num-

ber of bases is known as a model selection problem in sig-

nal processing and machine learning. How to tackle this

regularization issue plays an important role to assure gen-

eralization for future data in ill-posed condition [1].

Basically, uncertainty modeling via probabilistic frame-

work is helpful to improve model regularization for NMF.
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The uncertainties in singing-voice separation may come

from improper model assumption, incorrect model order

and possible noise interference, nonstationary environ-

ment, reverberant distortion. Under probabilistic frame-

work, nonnegative spectral signals are drawn from proba-

bility distributions. The nonnegative parameters are also

represented by prior distributions. Bayesian learning is in-

troduced to deal with uncertainty decoding and build a ro-

bust source separation by maximizing the marginal likeli-

hood over the randomness of model parameters. In [15],

Bayesian NMF (BNMF) was proposed for image feature

extraction based on the assumption of Gaussian likelihood

and exponential prior. In the BNMF [4], an approximate

Bayesian inference based on variational Bayesian (VB) al-

gorithm using Poisson likelihood for observation data and

Gamma prior for model parameters was proposed for im-

age reconstruction. Implementation cost was demanding

due to the numerical calculation of shape parameter. Al-

though NMF was presented for singing-voice separation

in [19, 23], the regularization issue was ignored and the

sensitivity of system performance due to uncertain model

and ill-posed condition was serious.

This paper presents a new model-based singing-voice

separation. The novelties of this paper are twofold. The

first one is to develop Bayesian approach to unsupervised

singing-voice separation. Model uncertainty is compen-

sated to improve the performance of source separation of

vocal signal and background accompaniment signal. Num-

ber of bases is adaptively determined from the mixed signal

according to the variational lower bound of the logarithm

of a marginal likelihood over NMF basis and weight ma-

trices. The second one is the theoretical contribution in

Bayesian NMF. We construct a new Bayesian NMF where

the likelihood function in NMF is drawn from Poisson dis-

tribution and the model parameters are characterized by ex-

ponential distributions. A closed-form solution to hyperpa-

rameters using the VB expectation-maximization (EM) [5]

algorithm is derived for ease of implementation and com-

putation. This BNMF is connected to standard NMF with

sparseness constraint. But, using the BNMF, the regular-

ization parameters or hyperparameters are optimally esti-

mated from training data without empirical selection from

validation data. Beyond the approaches in [4, 15], the pro-

posed BNMF completely considers the dependencies of

the variational objective on hyperparameters and derives

the analytical solution to singing-voice separation.

2. NONNEGATIVE MATRIX FACTORIZATION

Lee and Seung [10] proposed the standard NMF where no

probabilistic distribution was assumed. Given a nonnega-

tive data matrix X ∈ RM×N
+ , NMF aims to decompose

data matrix X into a product of two nonnegative matrices

B ∈ RM×K
+ and W ∈ RK×N

+ . The (m,n)-th entry of X
is approximated by Xmn ≈ [BW]mn =

∑
k BmkWkn.

NMF parameters Θ = {B,W} consist of basis matrix B
and weight matrix W. The approximation based on NMF

is optimized by minimizing the Kullback-Leibler (KL) di-

vergence DKL(X‖BW) between the observed data X and

the approximated data BW

∑
m,n

(Xmn log
Xmn

[BW]mn
+ [BW]mn −Xmn) (1)

2.1 Maximum Likelihood Factorization

NMF approximation is revisited by introducing the prob-

abilistic framework based on maximum likelihood (ML)

theory. The nonnegative latent variable Zmkn is embedded

in data entry Xmn by Xmn =
∑

k Zmkn and is repre-

sented by a Poisson distribution with mean BmkWkn, i.e.

Zmkn ∼ Pois(Zmkn;BmkWkn) [4]. Log likelihood func-

tion of data matrix X given parameters Θ is expressed by

log p(X|B,W) = log
∏
m,n

Pois(Xmn;
∑
k

BmkWkn)

=
∑
m,n

(Xmn log[BW]mn − [BW]mn − log Γ(Xmn + 1))
(2)

where Γ(·) is the gamma function. Maximizing the log

likelihood function in Eq. (2) based on Poisson distribution

is equivalent to minimizing the KL divergence between X
and BW in Eq. (1). This ML problem with missing vari-

ables Z = {Zmkn} can be solved according to EM algo-

rithm. In E step, the expectation function of the log likeli-

hood of data X and latent variable Z given new parameters

B(τ+1) and W(τ+1) is calculated with respect to Z under

current parameters B(τ) and W(τ). In M step, we maxi-

mize the resulting auxiliary function to obtain the updating

of NMF parameters which is equivalent to that of standard

NMF in [10].

2.2 Bayesian Factorization

ML estimation is prone to find an over-trained model [1].

To improve model regularization, Bayesian approach is in-

troduced to establish NMF for single-source separation.

ML NMF was improved by considering the priors of ba-

sis matrix B and weight matrix W for Bayesian NMF

(BNMF). Different specifications of likelihood function

and prior distribution result in different solutions with dif-

ferent inference procedures. In [15], the approximation

error of Xmn using
∑

k BmkWkn is modeled by a zero-

mean Gaussian distribution

Xmn ∼ N (Xmn;
∑
k

BmkWkn, σ
2) (3)

with the variance parameter σ2 which is distributed by an

inverse gamma prior. The priors of nonnegative Bmk and

Wkn are modeled by the exponential distributions

Bmk ∼ Exp(Bmk;λ
b
mk), Wkn ∼ Exp(Wkn;λ

w
kn) (4)

where Exp(x; θ) = θ exp(−θx), with means (λb
mk)

−1 and

(λw
kn)

−1, respectively. Typically, the larger the exponen-

tial hyperparameter θ is involved, the sparser the expo-

nential distribution is shaped. The sparsity of basis pa-

rameter Bmk and weight parameter Wkn is controlled by

hyperparameters λb
mk and λw

kn, respectively. In [15], the

hyperparameters {λb
mk, λ

w
kn} were fixed and empirically

determined. The Gaussian likelihood does not adhere to
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the assumption of nonnegative data matrix X. The other

weakness in the BNMF [15] is that the exponential dis-

tribution is not conjugate prior to the Gaussian likelihood

function for NMF. There was no closed-form solution. The

parameters Θ = {B,W, σ2} were accordingly estimated

by Gibbs sampling procedure where a sequence of poste-

rior samples of Θ was drawn by the corresponding condi-

tional posterior probabilities.

Cemgil [4] proposed the BNMF for image reconstruc-

tion based on the Poisson likelihood function as given in

Eq. (2) and the gamma priors for basis and weight matri-

ces. The gamma distribution, represented by a shape pa-

rameter and a scale parameter, is known as the conjugate

prior to Poisson likelihood function. Variational Bayesian

(VB) inference procedure was developed for NMF im-

plementation. However, the shape parameter was imple-

mented by the numerical solution. The computation cost

was relatively high. Some dependencies of variational

lower bound on model parameters were ignored in [4]. The

resulting parameters did not reach true optimum of varia-

tional objective.

3. NEW BAYESIAN FACTORIZATION

This study aims to find an analytical solution to full

Bayesian NMF by considering all dependencies of varia-

tional lower bound on regularization parameters. Regular-

ization parameters are optimally estimated.

3.1 Bayesian Objectives

In accordance with the Bayesian perspective and the spirit

of standard NMF, we adopt the Poisson distribution as like-

lihood function and the exponential distribution as conju-
gate prior for NMF parameters Bmk and Wkn with hyper-

parameters λb
mk and λw

kn, respectively. Maximum a pos-
teriori (MAP) estimates of parameters Θ = {B,W} are

obtained by maximizing the posterior distribution or min-

imizing − log p(B,W|X) which is arranged as a regular-

ized KL divergence between X and BW

DKL(X||BW) +
∑
m,k

λb
mkBmk +

∑
k,n

λw
knWkn (5)

where the terms independent of Bmk and Wkn are treated

as constants. Notably, the regularization terms (2nd and

3rd terms) in this objective are nonnegative and seen as the


1 regularizers [18] which are controlled by hyperparame-

ters {λb
mk, λ

w
kn}. These regularizers impose sparseness in

the estimated MAP parameters.

However, MAP estimates are seen as point estimates.

The randomness of parameters is not considered in model

construction. To conduct full Bayesian treatment, BNMF

is developed by maximizing the marginal likelihood

p(X|Θ) over latent variables Z as well as NMF parame-

ters {B,W}∫ ∑
Z

p(X|Z,B,W)p(Z|B,W)p(B,W|Θ)dBdW (6)

and estimating the sparsity-controlled hyperparameters or

regularization parameters Θ = {λb
mk, λ

w
mk}. The resulting

evidence function is meaningful to act as an objective for

model selection which balances the tradeoff between data

fitness and model complexity [1]. In the singing-voice sep-

aration based on NMF, this objective is used to judge which

number of bases K should be selected. The selected num-

ber is adaptive to fit different experimental conditions with

varying lengths and the variations from different singers,

genders, songs, genres, instruments and music accompani-

ments. Model regularization is tackled accordingly. But,

using NMF without Bayesian treatment, the number of

bases was fixed and empirically determined.

3.2 Variational Bayesian Inference

The exact Bayesian solution to optimization problem in

Eq. (6) does not exist because the posterior probability of

three latent variables {Z,B,W} given the observed mix-

tures X could not be factorized. To deal with this issue, the

variational Bayesian expectation-maximization (VB-EM)

algorithm is developed to implement Poisson-Exponential

BNMF. VB-EM algorithm applies the Jensen’s inequal-

ity and maximizes the lower bound of the logarithm of

marginal likelihood

log p(X|Θ) ≥
∫ ∑

Z

q(Z,B,W) log
p(X,Z,B,W|Θ)

q(Z,B,W)

× dBdW = Eq [log p(X,Z,B,W|Θ)] +H[q(Z,B,W)]

(7)

where H[·] is an entropy function. The factorized vari-

ational distribution q(Z,B,W) = q(Z)q(B)q(W) is

assumed to approximate the true posterior distribution

p(Z,B,W|X,Θ).

3.2.1 VB-E Step

In VB-E step, a general solution to variational distribution

qj of an individual latent variable j ∈ {Z,B,W} is ob-

tained by [1]

log q̂j ∝ Eq(i �=j)
[log p(X,Z,B,W|Θ)]. (8)

Given the variational distributions defined by

q(Bmk) = Gam(Bmk;α
b
mk, β

b
mk)

q(Wkn) = Gam(Wkn;α
w
kn, β

w
kn)

q(Zmkn) = Mult(Zmkn;Pmkn)

(9)

the variational parameters {αb
mk, β

b
mk, α

w
kn, β

w
kn, Pmkn} in

three distributions are estimated by

α̂b
mk = 1 +

∑
n

〈Zmkn〉, β̂b
mk =

(∑
n

〈Wkn〉+ λb
mk

)−1

α̂w
kn = 1 +

∑
m

〈Zmkn〉, β̂w
kn =

(∑
k

〈Bmk〉+ λw
kn

)−1

P̂mkn =
exp(〈logBmk〉+ 〈logWkn〉)∑
j exp(〈logBmj〉+ 〈logWjn〉)

(10)

where the expectation function Eq[·] is replaced by 〈·〉 for

simplicity. By substituting the variational distribution into

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

509



Eq. (7), the variational lower bound is obtained by

BL = −
∑

m,n,k

〈Bmk〉〈Wkn〉

+
∑
m,n

(− log Γ(Xmn + 1)−
∑
k

〈Zmkn〉 log P̂mkn)

+
∑
m,k

〈logBmk〉
∑
n

〈Zmkn〉+
∑
k,n

〈logWkn〉
∑
m

〈Zmkn〉

+
∑
m,k

(log λb
mk − λb

mk〈Bmk〉) +
∑
k,n

(log λw
kn − λw

kn〈Wkn〉)

+
∑
m,k

(−(α̂b
mk − 1)Ψ(α̂b

mk) + log β̂b
mk + α̂b

mk + log Γ(α̂b
mk))

+
∑
k,n

(−(α̂w
kn − 1)Ψ(α̂w

kn) + log β̂w
kn + α̂w

kn + log Γ(α̂w
kn))

(11)

where Ψ(·) is the derivative of the log gamma function,

and is known as a digamma function.

3.2.2 VB-M Step

In VB-M step, the optimal regularization parameters Θ =
{λb

mk, λ
w
kn} are derived by maximizing Eq. (11) with re-

spect to Θ and yielding

∂BL

∂λb
mk

=
1

λb
mk

− 〈Bmk〉+
∂ log βb

mk

∂λb
mk

= 0

∂BL

∂λw
kn

=
1

λw
kn

− 〈Wkn〉+
∂ log βw

kn

∂λw
kn

= 0.

(12)

Accordingly, the solution to BNMF hyperparameters is de-

rived by solving a quadratic equation where nonnegative

constraint is considered to find positive values of hyperpa-

rameters by

λ̂b
mk =

1

2

(
−

∑
n

〈Wkn〉+
√

(
∑
n

〈Wkn〉)2 + 4

∑
n〈Wkn〉
〈Bmk〉

)

λ̂w
kn =

1

2

(
−

∑
m

〈Bmk〉+
√

(
∑
m

〈Bmk〉)2 + 4

∑
m〈Bmk〉
〈Wkn〉

)

(13)

where 〈Bmk〉 = αb
mkβ

b
mk and 〈Wkn〉 = αw

knβ
w
kn are ob-

tained as the means of gamma distributions. VB-E step

and VB-M step are alternatively and iteratively performed

to estimate BNMF parameters Θ with convergence. It is

meaningful to select the best number of bases (K) with the

largest lower bound of the log marginal likelihood which

integrates out the parameters of weight and basis matrices.

3.3 Poisson-Exponential Bayesian NMF

To the best of our knowledge, this is the first study where a

Bayesian approach is developed for singing-voice separa-

tion. The uncertainties in singing-voice separation due to

a variety of singers, songs and instruments could be com-

pensated. Model selection problem is tackled as well. In

this study, total number of basis vectors K is adaptively

selected for individual mixed signal according to the vari-

ational lower bound in Eq. (11) with the converged varia-

tional parameters {α̂b
mk, β̂

b
mk, α̂

w
kn, β̂

w
kn, P̂mkn} and model

parameters {λ̂b
mk, λ̂

w
kn}.

Considering the pairs of likelihood function and prior

distribution in NMF, the proposed method is also called

the Poisson-Exponential BNMF which is different from

the Gaussian-Exponential BNMF in [15] and the Poisson-

Gamma BNMF in [4]. The superiorities of the proposed

method to the BNMFs in [15, 4] are twofold. First, as-

suming the exponential priors provides a BNMF approach

with tractable solution as given in Eq. (13). Gibbs sam-

pling in [15] and Newton’s solution in [4] are computation-

ally expensive. Second, the dependencies of three terms of

the variational lower bound in Eq. (11) on hyperparame-

ters λb
mk or λw

kn are all considered in finding the true op-

timum while some dependencies were ignored in the solu-

tion to Poisson-Gamma BNMF [4]. Also, the observations

in Gaussian-Exponential BNMF [15] were not constrained

to be nonnegative.

4. EXPERIMENTS

4.1 Experimental Setup

We used the MIR-1Kdataset [8] to evaluate the proposed

method for unsupervised singing-voice separation from

background music accompaniment. The dataset consisted

of 1000 song clips extracted from 110 Chinese karaoke pop

songs performed by 8 female and 11 male amateurs. Each

clip recorded at 16 KHz sampling frequency with the dura-

tion ranging from 4 to 13 seconds. Since the music accom-

paniment and the singing voice were recorded at left and

right channels, we followed [8, 9, 13] and simulated three

different sets of monaural mixtures at signal-to-music-

ratios (SMRs) of 5, 0, and -5 dB where the singing-voice

was treated as signal and the accompaniment was treated

as music. The separation problem was tackled in the short-

time Fourier transform (STFT) domain. The 1024-point

STFT was calculated to obtain the Fourier magnitude spec-

trograms with frame duration of 40 ms and frame shift of

10 ms. In the implementation of BNMF, ML-NMF was

adopted as the initialization and 50 iterations were run to

find the posterior means of basis and weight parameters.

To evaluate the performance of singing-voice separation,

we measure the signal-to-distortion ratio (SDR) [20] and

then calculate the normalized SDR (NSDR) and the global

NSDR (GNSDR) as

NSDR(V̂,V,X) = SDR(V̂,V)− SDR(X,V)

GNSDR(V̂,V,X) =

∑Ñ
n=1 lnNSDR(V̂n,Vn,Xn)∑Ñ

n=1 ln

(14)

where V̂,V,X denote the estimated singing voice, the

original clean singing voice, and the mixture signal, re-

spectively, Ñ is the total number of the clips and ln is the

length of the nth clip. NSDR is used to measure the im-

provement of SDR between the estimated singing voice V̂
and the mixture signal X. GNSDR is used to calculate

the overall separation performance by taking the weighted

mean of the NSDRs.

4.2 Unsupervised Singing-Voice Separation

We implemented the unsupervised singing-voice separa-

tion where total number of bases (K) and the grouping of

these bases into vocal source and music source were both
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Figure 1. Performance comparison using BNMF1 (K-

means clustering) and BNMF2 (NMF-clustering) and five

competitive methods (Hsu [8], Huang [9], Yang [22], Rafii

[12], Rafii [13]) in terms of GNSDR under various SMRs.

learned from test data in an unsupervised way. No training

data were required. Model complexity based on K was de-

termined in accordance with the variational lower bound of

log marginal likelihood in Eq. (11) while the grouping of

bases for two sources was simply performed via the clus-

tering algorithms using the estimated basis vectors in B
or equivalently from the estimated variational parameters

{αb
mk, β

b
mk}. Following [17], we conducted the K-means

clustering algorithm based on the basis vectors B in Mel-

frequency cepstral coefficient (MFCC) domain. Each basis

vector was first transformed to the Mel-scaled spectrum by

applying 20 overlapping triangle filters spaced on the Mel

scale. Then, we took the logarithm and applied the discrete

cosine transform to obtain nine MFCCs. Finally, we nor-

malized each coefficient to zero mean and unit variance.

The K-means clustering algorithm was applied to partition

the feature set into two clusters through an iterative pro-

cedure until convergence. However, it is more meaningful

to conduct NMF-based clustering for the proposed BNMF

method. To do so, we transformed the basis vectors B into

Mel-scaled spectrum to form the Mel-scaled basis matrix.

ML-NMF was applied to factorize this Mel-scaled basis

matrix into two matrices B̃ of size N -by-2 and W̃ of size

2-by-K. The soft mask scheme based on Wiener gain was

applied to smooth the separation of B into basis vectors

for vocal signal and music signal. This same soft mask

was performed for the separation of mixed signal X into

vocal signal and music signal based on the K-means clus-

tering and NMF clustering. Finally, the separated singing

voice and music accompaniment signals were obtained by

the overlap-and-add method using the original phase.

NMF NMF NMF BNMF

(30) (40) (50) (adaptive)

K-means clustering 2.69 2.58 2.47 2.92

NMF clustering 3.15 3.13 2.97 3.25

Table 1. Comparison of GNSDR at SMR = 0 dB using

NMF with fixed number of bases {30, 40, 50} and BNMF

with adaptive number of bases.

Figure 2. Histogram of the selected number of bases using

BNMF under various SMRs.

4.3 Experimental Results

The unsupervised single-channel separation using BNMFs

(BNMF1 using K-means clustering and BNMF2 using

NMF clustering) and the other five competitive systems

(Hsu [8], Huang [9], Yang [22], Rafii [12], Rafii [13])

is compared in terms of GNSDR as depicted in Figure

1. Using K-means clustering in MFCC domain, the re-

sulting BNMF1 outperforms the other five methods under

SMRs of 0 dB and -5 dB while the results using Huang [9]

and Yang [22] perform better than BNMF1 under 5 dB

condition. This is because the methods in [9, 22] used

additional pre- and/or post-processing techniques as pro-

vided in [13, 22] which were not applied in BNMF1 and

BNMF2. Nevertheless, using BNMF factorization with

NMF clustering (BNMF2), the overall evaluation consis-

tently achieves around 0.33∼0.57 dB relative improvement

in GNSDR compared with BNMF1 including the SMR

condition at 5dB. In addition, we evaluate the effect on the

adaptive basis selection using BNMF. Table 1 reports the

comparison of BNMF1 and BNMF2 with adaptive basis

selection and ML-NMF with fixed number of bases under

SMR of 0 dB. Two clustering methods were also carried

out for NMF with different K. BNMF factorization com-

bined with NMF clustering achieves the best performance

in this comparison. Figure 2 shows the histogram of the

selected number of bases K using BNMF. It is obvious

that this adaptive basis selection plays an important role to

find suitable amount of bases to fit different experimental

conditions.
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5. CONCLUSIONS

We proposed a new unsupervised Bayesian nonnegative

matrix factorization approach to extract the singing voice

from background music accompaniment and illustrated the

novelty on an analytical and true optimum solution to the

Poisson-Exponential BNMF. Through the VB-EM infer-

ence procedure, the proposed method automatically se-

lected different number of bases to fit various experimen-

tal conditions. We conducted two clustering algorithms to

find the grouping of bases into vocal and music sources.

Experimental results showed the consistent improvement

of using BNMF factorization with NMF clustering over

the other singing-voice separation methods in terms of

GNSDR. In future works, the proposed BNMF shall be

extended to multi-layer source separation and applied to

detect unknown number of sources.
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ABSTRACT

We present a probabilistic way to extract beat positions

from the output (activations) of the neural network that is at

the heart of an existing beat tracker. The method can serve

as a replacement for the greedy search the beat tracker cur-

rently uses for this purpose. Our experiments show im-

provement upon the current method for a variety of data

sets and quality measures, as well as better results com-

pared to other state-of-the-art algorithms.

1. INTRODUCTION

Rhythm and pulse lay the foundation of the vast major-

ity of musical works. Percussive instruments like rattles,

stampers and slit drums have been used for thousands of

years to accompany and enhance rhythmic movements or

dances. Maybe this deep connection between movement

and sound enables humans to easily tap to the pulse of a

musical piece, accenting its beats. The computer, however,

has difficulties determining the position of the beats in an

audio stream, lacking the intuition humans developed over

thousands of years.

Beat tracking is the task of locating beats within an au-

dio stream of music. Literature on beat tracking suggests

many possible applications: practical ones such as auto-

matic time-stretching or correction of recorded audio, but

also as a support for further music analysis like segmenta-

tion or pattern discovery [4]. Several musical aspects hin-

der tracking beats reliably: syncopation, triplets and off-

beat rhythms create rhythmical ambiguousness that is dif-

ficult to resolve; varying tempo increases musical expres-

sivity, but impedes finding the correct beat times. The mul-

titude of existing beat tracking algorithms work reasonably

well for a subset of musical works, but often fail for pieces

that are difficult to handle, as [11] showed.

In this paper, we further improve upon the beat tracker

presented in [2]. The existing algorithm uses a neural net-

work to detect beats in the audio. The output of this neural

network, called activations, indicates the likelihood of a

c© Filip Korzeniowski, Sebastian Böck, Gerhard Widmer.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Filip Korzeniowski, Sebastian Böck,

Gerhard Widmer. “Probabilistic Extraction of Beat Positions from a Beat

Activation Function”, 15th International Society for Music Information

Retrieval Conference, 2014.

beat at each audio position. A post-processing step selects

from these activations positions to be reported as beats.

However, this method struggles to find the correct beats

when confronted with ambiguous activations.

We contribute a new, probabilistic method for this pur-

pose. Although we designed the method for audio with a

steady pulse, we show that using the proposed method the

beat tracker achieves better results even for datasets con-

taining music with varying tempo.

The remainder of the paper is organised as follows: Sec-

tion 2 reviews the beat tracker our method is based on. In

Section 3 we present our approach, describe the structure

of our model and show how we infer beat positions. Sec-

tion 4 describes the setup of our experiments, while we

show their results in Section 5. Finally, we conclude our

work in Section 6.

2. BASE METHOD

In this section, we will briefly review the approach pre-

sented in [2]. For a detailed discourse we refer the reader

to the respective publication. First, we will outline how

the algorithm processes the signal to emphasise onsets. We

will then focus on the neural network used in the beat

tracker and its output in Section 2.2. After this, Section 3

will introduce the probabilistic method we propose to find

beats in the output activations of the neural network.

2.1 Signal Processing

The algorithm derives from the signal three logarithmi-

cally filtered power spectrograms with window sizes W
of 1024, 2048 and 4096 samples each. The windows are

placed 441 samples apart, which results in a frame rate of

fr = 100 frames per second for audio sampled at 44.1kHz.

We transform the spectra using a logarithmic function to

better match the human perception of loudness, and filter

them using 3 overlapping triangular filters per octave.

Additionally, we compute the first order difference for

each of the spectra in order to emphasise onsets. Since

longer frame windows tend to smear spectral magnitude

values in time, we compute the difference to the last, sec-

ond to last, and third to last frame, depending on the win-

dow size W . Finally, we discard all negative values.
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Figure 1. Activations of pieces from two different datasets. The activations are shown in blue, with green, dotted lines

showing the ground truth beat annotations. On the left, distinct peaks indicate the presence of beats. The prominent

rhythmical structure of ballroom music enables the neural network to easily discern frames that contain beats from those

that do not. On the right, many peaks in the activations do not correspond to beats, while some beats lack distinguished

peaks in the activations. In this piece, a single woodwind instrument is playing a solo melody. Its soft onsets and lack of

percussive instruments make detecting beats difficult.

2.2 Neural Network

Our classifier consists of a bidirectional recurrent neural

network of Long Short-Term Memory (LSTM) units, called

bidirectional Long Short-Term Memory (BLSTM) recur-

rent neural network [10]. The input units are fed with the

log-filtered power spectra and their corresponding positive

first order differences. We use three fully connected hidden

layers of 25 LSTM units each. The output layer consists of

a single sigmoid neuron. Its value remains within [0, 1],
with higher values indicating the presence of a beat at the

given frame.

After we initialise the network weights randomly, the

training process adapts them using standard gradient de-

scent with back propagation and early stopping. We obtain

training data using 8-fold cross validation, and randomly

choose 15% of the training data to create a validation set.

If the learning process does not improve classification on

this validation set for 20 training epochs, we stop it and

choose the best performing neural network as final model.

For more details on the network and the learning process,

we refer the reader to [2].

The neural network’s output layer yields activations for

every feature frame of an audio signal. We will formally

represent this computation as mathematical function. Let

N be the number of feature frames for a piece, and N≤N =
{1, 2, . . . , N} the set of all frame indices. Furthermore,

let υn be the feature vector (the log-filtered power spectra

and corresponding differences) of the nth audio frame, and

Υ = (υ1, υ2, . . . , υN ) denote all feature vectors computed

for a piece. We represent the neural network as a function

Ψ : N≤N → [0, 1] , (1)

such that Ψ(n; Υ) is the activation value for the nth frame

when the network processes the feature vectors Υ. We will

call this function “activations” in the following.

Depending on the type of music the audio contains, the

activations show clear (or, less clear) peaks at beat posi-

tions. Figure 1 depicts the first 10 seconds of activations

for two different songs, together with ground truth beat an-

notations. In Fig. 1a, the peaks in the activations clearly

correspond to beats. For such simple cases, thresholding

should suffice to extract beat positions. However, we often

have to deal with activations as those in Fig. 1b, with many

spurious and/or missing peaks. In the following section,

we will propose a new method for extracting beat positions

from such activations.

3. PROBABILISTIC EXTRACTION OF BEAT
POSITIONS

Figure 1b shows the difficulty in deriving the position of

beats from the output of the neural network. A greedy local

search, as used in the original system, runs into problems

when facing ambiguous activations. It struggles to correct

previous beat position estimates even if the ambiguity re-

solves later in the piece. We therefore tackle this problem

using a probabilistic model that allows us to globally opti-

mise the beat sequence.

Probabilistic models are a frequently used to process

time-series data, and are therefore popular in beat track-

ing (e.g. [3, 9, 12, 13, 14]). Most systems favour generative

time-series models like hidden Markov models (HMMs),

Kalman filters, or particle filters as natural choices for this

problem. For a more complete overview of available beat

trackers using various methodologies and their results on a

challenging dataset we refer the reader to [11].

In this paper, we use a different approach: our model

represents each beat with its own random variable. We

model time as dimension in the sample space of our ran-

dom variables as opposed to a concept of time driving a

random process in discrete steps. Therefore, all activations

are available at any time, instead of one at a time when

thinking of time-series data.

For each musical piece we create a model that differs

from those of other pieces. Different pieces have different

lengths, so the random variables are defined over differ-

ent sample spaces. Each piece contains a different number

of beats, which is why each model consists of a different
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X1 X2 · · · XK

Figure 2. The model depicted as Bayesian network. Each

Xk corresponds to a beat and models its position. Y rep-

resents the feature vectors of a signal.

number of random variables.

The idea to model beat positions directly as random

variables is similar to the HMM-based method presented in

[14]. However, we formulate our model as a Bayesian net-

work with the observations as topmost node. This allows

us to directly utilise the whole observation sequence for

each beat variable, without potentially violating assump-

tions that need to hold for HMMs (especially those re-

garding the observation sequence). Also, our model uses

only a single factor to determine potential beat positions in

the audio – the output of a neural network – whereas [14]

utilises multiple features on different levels to detect beats

and downbeats.

3.1 Model Structure

As mentioned earlier, we create individual models for each

piece, following the common structure described in this

section. Figure 2 gives an overview of our system, depicted

as Bayesian network.

Each Xk is a random variable modelling the position of

the kth beat. Its domain are all positions within the length

of a piece. By position we mean the frame index of the ac-

tivation function – since we extract features with a frame

rate of fr = 100 frames per second, we discretise the con-

tinuous time space to 100 positions per second.

Formally, the number of possible positions per piece is

determined by N , the number of frames. Each Xk is then

defined as random variable with domain N≤N , the natural

numbers smaller or equal to N :

Xk ∈ N≤N with 1 ≤ k ≤ K, (2)

where K is the number of beats in the piece. We estimate

this quantity by detecting the dominant interval τ of a piece

using an autocorrelation-based method on the smoothed

activation function of the neural network (see [2] for de-

tails). Here, we restrict the possible intervals to a range

[τl..τu], with both bounds learned from data. Assuming a

steady tempo and a continuous beat throughout the piece,

we simply compute K = N/τ .

Y models the features extracted from the input audio.

If we divide the signal into N frames, Y is a sequence of

vectors:

Y ∈ {(y1, . . . , yN )} , (3)

where each yn is in the domain defined by the input fea-

tures. Although Y is formally a random variable with a

distribution P (Y ), its value is always given by the con-

crete features extracted from the audio.

The model’s structure requires us to define dependen-

cies between the variables as conditional probabilities. As-

suming these dependencies are the same for each beat but

the first, we need to define

P (X1 | Y ) and

P (Xk | Xk−1, Y ) .

If we wanted to compute the joint probability of the model,

we would also need to define P (Y ) – an impossible task.

Since, as we will elaborate later, we are only interested in

P (X1:K | Y ) 1 , and Y is always given, we can leave this

aside.

3.2 Probability Functions

Except for X1, two random variables influence each Xk:

the previous beat Xk−1 and the features Y . Intuitively, the

former specifies the spacing between beats and thus the

rough position of the beat compared to the previous one.

The latter indicates to what extent the features confirm the

presence of a beat at this position. We will define both as

individual factors that together determine the conditional

probabilities.

3.2.1 Beat Spacing

The pulse of a musical piece spaces its beats evenly in

time. Here, we assume a steady pulse throughout the piece

and model the relationship between beats as factor favour-

ing their regular placement according to this pulse. Fu-

ture work will relax this assumption and allow for varying

pulses.

Even when governed by a steady pulse, the position of

beats is far from rigid: slight modulations in tempo add

musical expressivity and are mostly artistic elements in-

tended by performers. We therefore allow a certain devi-

ation from the pulse. As [3] suggests, tempo changes are

perceived relatively rather than absolutely, i.e. halving the

tempo should be equally probable as doubling it. Hence,

we use the logarithm to base 2 to define the intermediate

factor Φ̃ and factor Φ, our beat spacing model. Let x and

x′ be consecutive beat positions and x > x′, we define

Φ̃ (x, x′) = φ
(
log2 (x− x′) ; log2 (τ) , σ

2
τ

)
, (4)

Φ (x, x′) =

{
Φ̃ (x, x′) if 0 < x− x′ < 2τ

0 else
, (5)

where φ
(
x;μ, σ2

)
is the probability density function of a

Gaussian distribution with mean μ and variance σ2, τ is

the dominant inter-beat interval of the piece, and σ2
τ repre-

sents the allowed tempo variance. Note how we restrict the

non-zero range of Φ: on one hand, to prevent computing

the logarithm of negative values, and on the other hand, to

reduce the number of computations.

1 We use Xm:n to denote all Xk with indices m to n
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The factor yields high values when x and x′ are spaced

approximately τ apart. It thus favours beat positions that

correspond to the detected dominant interval, allowing for

minor variations.

Having defined the beat spacing factor, we will now

elaborate on the activation vector that connects the model

to the audio signal.

3.2.2 Beat Activations

The neural network’s activations Ψ indicate how likely 2

each frame n ∈ N≤N is a beat position. We directly use

this factor in the definition of the conditional probability

distributions.

With both factors in place we can continue to define

the conditional probability distributions that complete our

probabilistic model.

3.2.3 Conditional Probabilities

The conditional probability distribution P (Xk | Xk−1, Y )
combines both factors presented in the previous sections. It

follows the intuition we outlined at the beginning of Sec-

tion 3.2 and molds it into the formal framework as

P (Xk | Xk−1, Y ) =
Ψ (Xk;Y ) · Φ (Xk, Xk−1)∑
Xk

Ψ(Xk;Y ) · Φ (Xk, Xk−1)
.

(6)

The case of X1, the first beat, is slightly different. There

is no previous beat to determine its rough position using

the beat spacing factor. But, since we assume that there

is a steady and continuous pulse throughout the audio, we

can conclude that its position lies within the first interval

from the beginning of the audio. This corresponds to a

uniform distribution in the range [0, τ ], which we define as

beat position factor for the first beat as

Φ1(x) =

{
1/τ if 0 ≤ x < τ,

0 else
. (7)

The conditional probability for X1 is then

P (X1 | Y ) =
Ψ (X1;Y ) · Φ1 (X1)∑
X1

Ψ(X1;Y ) · Φ1 (X1)
. (8)

The conditional probability functions fully define our

probabilistic model. In the following section, we show

how we can use this model to infer the position of beats

present in a piece of music.

3.3 Inference

We want to infer values x∗
1:K for X1:K that maximise the

probability of the beat sequence given Y = Υ, that is

x∗
1:K = argmax

x1:K

P (X1:K | Υ) . (9)

Each x∗
k corresponds to the position of the kth beat. Υ are

the feature vectors computed for a specific piece. We use

2 technically, it is not a likelihood in the probabilistic sense – it just
yields higher values if the network thinks that the frame contains a beat
than if not

a dynamic programming method similar to the well known

Viterbi algorithm [15] to obtain the values of interest.

We adapt the standard Viterbi algorithm to fit the struc-

ture of model by changing the definition of the “Viterbi

variables” δ to

δ1(x) = P (X1 = x | Υ) and

δk(x) = max
x′

P (Xk = x | Xk−1 = x′,Υ) · δk−1(x
′),

where x, x′ ∈ N≤N . The backtracking pointers are set

accordingly.

P (x∗
1:K | Υ) gives us the probability of the beat se-

quence given the data. We use this to determine how

well the deducted beat structure fits the features and in

consequence the activations. However, we cannot directly

compare the probabilities of beat sequences with different

numbers of beats: the more random variables a model has,

the smaller the probability of a particular value configura-

tion, since there are more possible configurations. We thus

normalise the probability by dividing by K, the number of

beats.

With this in mind, we try different values for the domi-

nant interval τ to obtain multiple beat sequences, and

choose the one with the highest normalised probability.

Specifically, we run our method with multiples of τ (1/2,
2/3, 1, 3/2, 2) to compensate for errors when detecting the

dominant interval.

4. EXPERIMENTS

In this section we will describe the setup of our experi-

ments: which data we trained and tested the system on,

and which evaluation metrics we chose to quantify how

well our beat tracker performs.

4.1 Data

We ensure the comparability of our method by using three

freely available data sets for beat tracking: the Ballroom
dataset [8,13]; the Hainsworth dataset [9]; the SMC dataset

[11]. The order of this listing indicates the difficulty asso-

ciated with each of the datasets. The Ballroom dataset con-

sists of dance music with strong and steady rhythmic pat-

terns. The Hainsworth dataset includes of a variety of mu-

sical genres, some considered easier to track (like pop/rock,

dance), others more difficult (classical, jazz). The pieces

in the SMC dataset were specifically selected to challenge

existing beat tracking algorithms.

We evaluate our beat tracker using 8-fold cross vali-

dation, and balance the splits according to dataset. This

means that each split consists of roughly the same relative

number of pieces from each dataset. This way we ensure

that all training and test splits represent the same distribu-

tion of data.

All training and testing phases use the same splits. The

same training sets are used to learn the neural network and

to set parameters of the probabilistic model (lower and up-

per bounds τl and τu for dominant interval estimation and

στ ). The test phase feeds the resulting tracker with data

from the corresponding test split. After detecting the beats
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for all pieces, we group the results according to the original

datasets in order to present comparable results.

4.2 Evaluation Metrics

A multitude of evaluation metrics exist for beat tracking al-

gorithms. Some accent different aspects of a beat tracker’s

performance, some capture similar properties. For a com-

prehensive review and a detailed elaboration on each of

the metrics, we refer the reader to [5]. Here, we restrict

ourselves to the following four quantities, but will publish

further results on our website 3 .

F-measure The standard measure often used in informa-

tion retrieval tasks. Beats count as correct if detected

within ±70ms of the annotation.

Cemgil Measure that uses a Gaussian error window with

σ = 40ms instead of a binary decision based on a

tolerance window. It also incorporates false posi-

tives and false negatives.

CMLt The percentage of correctly detected beats at the

correct metrical level. The tolerance window is set

to 17.5% of the current inter-beat interval.

AMLt Similar to CMLt, but allows for different metrical

levels like double tempo, half tempo, and off-beat.

In contrast to common practice 4 , we do not skip the

first 5 seconds of each audio signal for evaluation. Al-

though skipping might make sense for on-line algorithms,

it does not for off-line beat trackers.

5. RESULTS

Table 1 shows the results of our experiments. We obtained

the raw beat detections on the Ballroom dataset for [6, 12,

13] from the authors of [13] and evaluated them using our

framework. The results are thus directly comparable to

those of our method. For the Hainsworth dataset, we col-

lected results for [6,7,12] from [7], who does skip the first

5 seconds of each piece in the evaluation. In our experi-

ence, this increases the numbers obtained for each metric

by about 0.01.

The approaches of [6, 7] do not require any training.

In [12], some parameters are set up based on a separate

dataset consisting of pieces from a variety of genres. [13]

is a system that is specialised for and thus only trained on

the Ballroom dataset.

We did not include results of other algorithms for the

SMC dataset, although available in [11]. This dataset did

not exist at the time most beat trackers were crafted, so the

authors could not train or adapt their algorithms in order to

cope with such difficult data.

Our method improves upon the original algorithm [1,

2] for each of the datasets and for all evaluation metrics.

While F-Measure and Cemgil metric rises only marginally

(except for the SMC dataset), CMLt and AMLt improves

3 http://www.cp.jku.at/people/korzeniowski/ismir2014
4 As implemented in the MatLab toolbox for the evaluation of beat

trackers presented in [5]

SMC F Cg CMLt AMLt

Proposed 0.545 0.436 0.442 0.580

Böck [1, 2] 0.497 0.402 0.360 0.431

Hainsworth F Cg CMLt AMLt

Proposed 0.840 0.718 0.784 0.875

Böck [1, 2] 0.837 0.717 0.763 0.811

Degara* [7] - - 0.629 0.815

Klapuri* [12] - - 0.620 0.793

Davies* [6] - - 0.609 0.763

Ballroom F Cg CMLt AMLt

Proposed 0.903 0.864 0.833 0.910

Böck [1, 2] 0.889 0.857 0.796 0.831

Krebs [13] 0.855 0.772 0.786 0.865

Klapuri [12] 0.728 0.651 0.539 0.817

Davies [6] 0.764 0.696 0.574 0.864

Table 1. Beat tracking results for the three datasets. F
stands for F-measure and Cg for the Cemgil metric. Re-

sults marked with a star skip the first five seconds of each

piece and are thus better by about 0.01 for each metric, in

our experience.

considerably. Our beat tracker also performs better than

the other algorithms, where metrics were available.

The proposed model assumes a stable tempo throughout

a piece. This assumption holds for certain kinds of music

(like most of pop, rock and dance), but does not for others

(like jazz or classical). We estimated the variability of the

tempo of a piece using the standard deviation of the local

beat tempo. We computed the local beat tempo based on

the inter-beat interval derived from the ground truth an-

notations. The results indicate that most pieces have a

steady pulse: 90% show a standard deviation lower than

8.61 bpm. This, of course, depends on the dataset, with

97% of the ballroom pieces having a deviation below 8.61

bpm, 89% of the Hainsworth dataset but only 67.7% of the

SMC data.

We expect our approach to yield inferior results for

pieces with higher tempo variability than for those with

a more constant pulse. To test this, we computed Pear-

son’s correlation coefficient between tempo variability and

AMLt value. The obtained value of ρ = -0.46 indicates that

our expectation holds, although the relationship is not lin-

ear, as a detailed examination showed. Obviously, multiple

other factors also influence the results. Note, however, that

although the tempo of pieces from the SMC dataset varies

most, it is this dataset where we observed the strongest im-

provement compared to the original approach.

Figure 3 compares the beat detections obtained with the

proposed method to those computed by the original ap-

proach. It exemplifies the advantage of a globally opti-

mised beat sequence compared to a greedy local search.
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Figure 3. Beat detections for the same piece as shown in Fig. 1b obtained using the proposed method (red, up arrows)

compared to those computed by the original approach (purple, down arrows). The activation function is plotted solid

blue, ground truth annotations are represented by vertical dashed green lines. Note how the original method is not able to

correctly align the first 10 seconds, although it does so for the remaining piece. Globally optimising the beat sequence via

back-tracking allows us to infer the correct beat times, even if the peaks in the activation function are ambiguous at the

beginning.

6. CONCLUSION AND FUTURE WORK

We proposed a probabilistic method to extract beat posi-

tions from the activations of a neural network trained for

beat tracking. Our method improves upon the simple ap-

proach used in the original algorithm for this purpose, as

our experiments showed.

In this work we assumed close to constant tempo

throughout a piece of music. This assumption holds for

most of the available data. Our method also performs rea-

sonably well on difficult datasets containing tempo chang-

es, such as the SMC dataset. Nevertheless we believe that

extending the presented method in a way that enables track-

ing pieces with varying tempo will further improve the sys-

tem’s performance.
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ABSTRACT

Many countries and cities in the world tend to have dif-
ferent types of preferred or popular music, such as pop, 
K-pop, and reggae. Music-related applications utilize ge-
ographical proximity for evaluating the similarity of mu-
sic preferences between two regions. Sometimes, this can 
lead to incorrect results due to other factors such as cul-
ture and religion. To solve this problem, in this paper, we 
propose a scheme for constructing a music map in which 
regions are positioned close to one another depending on 
the similarity of the musical preferences of their popula-
tions. That is, countries or cities in a traditional map are 
rearranged in the music map such that regions with simi-
lar musical preferences are close to one another. To do 
this, we collect users’ music play history and extract pop-
ular artists and tag information from the collected data. 
Similarities among regions are calculated using the tags 
and their frequencies. And then, an iterative algorithm for 
rearranging the regions into a music map is applied. We 
present a method for constructing the music map along 
with some experimental results.

1. INTRODUCTION  

To recommend suitable music pieces to users, various 
methods have been proposed and one of them is the joint 
consideration of music and location information. In gen-
eral, users in the same place tend to listen to similar kinds 
of music and this is shown by the statistics of music lis-
tening history. Context-aware computing utilizes this 
human tendency to recommend songs to a user.

However, the current approach of exploring geograph-
ical proximity for obtaining a user’s music preferences 
might have several limitations due to various factors such 
as region scale, culture, religion, and language. That is, 
neighboring regions can show significant differences in 
music listening statistics and vice versa.

In fact, the geographical distance between two regions 
is not always proportional to the degree of difference in 
music preferences. For instance, assume that there are 
two neighboring countries having different music prefer-

ences. In the case of two regions near the border of the 
two countries, the people might show very different mu-
sic preferences from those living in a region far from the 
border but in the same country. The degree of preference 
differences can be varied because of the difference in the 
sizes of the countries. Furthermore, the water bodies that 
cover 71% of the Earth’s surface can lead to a disjunction 
of the differences.

Music from countries that have a high cultural influ-
ence might gain global popularity. For instance, pop mu-
sic from the United States is very popular all over the 
world. Countries that have a common cultural back-
ground might have similar musical preferences irrespec-
tive of the geographical distance between them. Lan-
guage is another important factor that can lead to differ-
ent countries, such as the US and the UK, having similar 
popular music charts.

For these reasons, predicting musical preferences on 
the basis of geographical proximity can lead to incorrect 
results. In this paper, we present a scheme for construct-
ing a music map where regions are positioned close to 
one another depending on the musical preferences of their 
populations. That is, regions such as cities in a traditional 
map are rearranged in the music map such that regions 
with similar musical preferences are close to one another. 
As a result, regions with similar musical preferences are 
concentrated in the music map and regions with distinct 
musical preferences are far away from the group.

The rest of this paper is organized as follows: In Sec-
tion 2, we present a brief overview of the related works. 
Section 3 presents the scheme for mapping a geograph-
ical region to a new music space. Section 4 describes the 
experiments that we performed and some of the results. 
In the last section, we conclude the paper with directions 
for future work.

2. RELATED WORK

Many studies have tried to utilize location information 
for various music-related applications such as music 
search and recommendation. Kaminskas et al. presented 
a context-aware music recommender system that sug-
gests music items on the basis of the users’ contextual 
conditions, such as the users’ mood or location [1]. They 
defined the term “place of interest (POI)” and considered 
the selection of suitable music tracks on the basis of the 
POI. In [2], Schedl et al. presented a music recommenda-

 © Sanghoon Jun, Seungmin Rho, Eenjun Hwang. 
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tion algorithm that combines information on the music 
content, music context, and user context by using a data 
set of geo-located music listing activities. In [3], Schedl 
et al derived and analyzed culture-specific music listen-
ing patterns by collecting music listening patterns of dif-
ferent countries (cities). They utilized social microblog 
such as Twitter and its tags in order to collect music-
related information and measure the similarities between 
artists. Jun et al. presented a music recommender that 
considers personal and general musical predilections on 
the basis of time and location [4]. They analyzed massive 
social network streams from twitter and extracted the 
music listening histories. On the basis of a statistical 
analysis of the time and location, a collection of songs is 
selected and blended using automatic mixing techniques. 
These location-aware methods show a reasonable music 
search and recommendation performance when the range 
of the place of interest is small. However, the aforemen-
tioned problems might occur when the location range 
increases. Furthermore, these methods do not consider 
the case where remote regions have similar music prefer-
ences, which is often the case.

On the basis of these observations, in this paper, we 
propose a new data structure called a “music map”, 
where regions with similar musical preferences are locat-
ed close to one another. Some pioneering studies to rep-
resent music by using visualization techniques have been 
reported. Lamere et al. presented an application for ex-
ploring and discovering new music by using a three-

dimensional (3D) visualization model [5]. Using the mu-
sic similarity model, they provided new tools for explor-
ing and interacting with a music collection. In [6], Knees 
et al. presented a user interface that creates a virtual 
landscape for music collection. By extracting features 
from audio signals and clustering the music pieces, they 
created a 3D island landscape. In [7], Pampalk et al. pre-
sented a system that facilitates the exploration of music 
libraries. By estimating the perceived sound similarities, 
music pieces are organized on a two-dimensional (2D) 
map so that similar pieces are located close to one anoth-
er. In [8], Rauber et al. proposed an approach to automat-
ically create an organization of music collection based on 
sound similarities. A 3D visualization of music collec-
tion offers an interface for an interactive exploration of 
large music repositories.

3. GEOGRAPHICAL REGION MAPPING

In this paper, we propose a scheme for geographical re-
gion mapping on the basis of the musical preferences of 
the people residing in these regions. The proposed 
scheme consists of three parts as shown in Figure 1. First-
ly, the music listening history and the related location da-
ta are collected from Twitter. After defining regions, the 
collected data are refined to tag the statistics per region 
by querying popular artists and their popularities from 
last.fm. Similarities between the defined regions are cal-
culated and stored in the similarity matrix. The similarity 
matrix is represented into a 2D space by using an iterative 
algorithm. Then, a Gaussian mixture model (GMM) is 
generated for constructing the music map on the basis of 
the relative location of the regions. 

3.1 Music Listen History and Location Collection

By analyzing the music listening history and location data, 
we can find out the music type that is popular in a certain 
city or country. In order to construct a music map, we 
need to collect the music listening history and location 
information on a global scale. To do this, we utilize 
last.fm, which is a popular music database. However, 
last.fm has several limitations related to the coverage of 
the global music listening history. The most critical one is 
that the database provides the listening data of a particu-
lar country only. In other words, we cannot obtain the da-
ta for a detailed region. Users in some countries (not all 
countries) use last.fm, and it does not contain sufficient 
data to cover the preferences of all the regions of these 
countries. Because of this, we observed that popular mu-
sic in the real world does not always match with the 
last.fm data.

On the other hand, an explosive number of messages 
are generated all over the world through Twitter. Twitter 
is one of the most popular social network services. In this 
study, we use Twitter for collecting a massive amount of 
music listening history data. By filtering music-related 
messages from Twitter, we can collect various types of 

Figure 1. Overall scheme

Figure 2. Collected data from twitter
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music-related information, such as artist name, song title, 
and the published location. Figure 2 shows the distribu-
tion of the collected music-related tweets from around the 
world.

We used the Tweet Stream provided through a Twitter 
application processing interface (API) for collecting 
tweets. In order to select only the music-related tweets, 
we used music-related hashtags. Hashtags are very useful 
for searching the relevant tweets or for grouping tweets 
on the basis of topics. As shown in Table 1, we used the 
music-related hashtag lists that have been defined in [4].
Music-related tweet messages contain musical infor-
mation such as song title and artist name. These textual 
data are represented in various forms. In particular, we 
considered the patterns shown in Table 2 for finding the 
artist names and the song titles. We employed a local 
MusicBrainz [9] server to validate the artist names.

For collecting location information, we gathered global 
positioning system (GPS) data that are included in tweet 
messages. However, we observed that the number of 
tweets that contain GPS data is quite small considering 
the total number of tweets. To solve this, we collected the 
profile location of the user who published a tweet mes-
sage. Profile location contains the text address of the 
country or the city of the user. We employed the Google 
Geocoding API [10] for validating the location name and 
converting the address to GPS coordinates.

3.2 Region Definition and Tag Representation

Using the collected GPS information, we created a set of 
regions on the basis of the city or country. For grouping 
data by city name or country name, the collected GPS in-
formation is converted into its corresponding city or 
country name. In this study, we got 1327 cities or 198 
countries from the music listening history collected 
through Twitter   

For each region, we collect two sets Ar and ACr of re-
ferred artist names and their play counts, respectively:  

                          �	 = {��, … , ��}                          (1)

                         ��	 = {���, … , ���}                           (2)

where n is the number of referred artists. Also, using an
artist name, we can collect his/her tag list. For a region r,
we construct a set Tr of top tags by querying top tags to
last.fm using the artist names of the region r as follows:

 !	 = {"#$!%&!�"�(��) ' … ' "#$!%&!�"�(��)| �� * �	}       = {$�, … $+}                                                                        (3) 

where getTopTags(a) returns a list of top tags of artist a
and m is the number of collected tags for the region r. We 
define a function RTC(r, t) that calculates the total count 
of tag t in region r using the following equation: 

      -!�(., $) = / ��� × "#$!�"�%0�$(��, $)�1*23     (4) 

Here, getTagCount(a, t) returns the count of tag t for the 
artist a in last.fm. In the same vein, RTC can return a set 
of tag counts when the second argument is a tag set T. 

         -!�(., 4) = {-!�(., $�), … , -!�(., $+)|$� * 4}         (5) 

3.3 Similarity Measurement

To construct a music map of regions, we need a meas-
urement for estimating musical similarity. In this paper, 
we assume that music proximity between regions is 
closely related to the artists and their tags because the 
musical characteristics of a region can be explained by 
the artists’ tags of the region. In particular, in order to 
measure the similarity among the regions represented by 
the tag groups, we employed a cosine similarity meas-
urement as shown in the following equation:

 !56(.�, .7) = 89:(	;,4<)×89:(	>,4<)
?89:@	;,43;A?×?89:@	>,43>A?                 (6) 

#nowplaying #np #music

#soundcloud #musicfans #listenlive

#hiphop #musicmondays #pandora

#mp3 #itunes #newmusic
  

Table 1. Music-related hashtags.

<Phrase A> by < Phrase B>
< Phrase A> - < Phrase B >
< Phrase A > / < Phrase B >

“< Phrase A >” - < Phrase B >
Table 2. Typical syntax for parsing song title and artist

Figure 3. Tag similarity matrix of 34 countries
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                             4B = 4	; C 4	>                                    (7) 

The cosine similarities of all possible pairs of regions 
were calculated and stored in the tag similarity matrix 
TSM. Hence, if there were m regions in the collection, we 
obtained a TSM of m × m. A sample TSM for 34 coun-
tries is shown in Figure 3.

3.4 2D Space Mapping

On the basis of the TSM, we generated a 2D space for a 
music map by converting tag similarities between regions 
into proper metric for 2D space mapping. In this paper, 
this conversion is done approximately using an iterative 
algorithm. The proposed algorithm is based on the com-
putational model such as a self-organizing map and an 
artificial neural network algorithm. By using an iterative 
phase, the algorithm gradually separates the regions in 
inverse proportion to the tag similarity.

3.4.1 Initialization

In the initialization phase, 2D space is generated where 
X-axis and Y-axis of the space have ranges from 0 to 1. 
Each region is randomly placed on the 2D space. We ob-
served that our random initialization does not provide de-
terministic result of the 2D space mapping.

3.4.2 Iterations

In each iteration, a region in the 2D space is randomly 
selected and the tag distance TD between the selected re-
gion rs and any other region ri is computed using the 
similarity matrix.

                   !D(.E, .�) = 1 G !56(.E, .�)                   (8) 

Subsequently, Euclidean distances ED between the se-
lected region rs and other region ri is computed using the 
following equation

HD(.E, .�) = I@J(.E) G J(.�)A7 + (L(.E) G L(.�))7 (9) 

where x(ri) and y(ri) returns x and y positions of the re-
gion ri in 2D space, respectively. In order for TD and ED
to have same value as much as possible, the following 
equation is applied

J(.�) = J(.�) +  M($)(HD(.E, .�) G !D(.E, .�)) (N(	O)PN(	1))
QR(	O,	1)

(10) 

L(.�) = L(.�) +  M($)(HD(.E, .�) G !D(.E, .�)) (S(	O)PS(	1))
QR(	O,	1)

(11) 

Here, ©(t) is a learning rate in t-th iteration. The learning 
rate is monotonically decreased during iteration accord-
ing to the following equation

M($) = MTexp (G$/!)                           (12) 

(a) iteration = 1 (b) iteration = 100

(c) iteration = 400 (d) iteration = 1000

Figure 4. Example of mapped space in iterations

Figure 5. Gaussian mixture model of 34 countries

Figure 6. Music map of 34 countries
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©0 denotes the initial learning rate, and T represents the 
total number of iterations. After each iteration, regions 
having higher TD are located far away from the selected 
region and regions having lower TD are located closer. 
Figure 4 shows examples of the mapped space after itera-
tions.

3.5 Space Representation

After 2D space mapping, the regions are mapped such 
that regions having similar music preferences are placed 
close to one another. As a result, they form distinct 
crowds in the 2D space. In contrast, regions having 
unique preferences are placed apart from the crowds. To 
represent them as a map, a 2D distribution on the space is 
not sufficient. In this paper, in order to represent the 
information like a real world map, we employed the 
GMM. The Gaussian with diagonal matrix is constructed 
using the following equations:

                              V(i) = {J(.�), L(.�)}                       (13) 

W(i) = X1 8�Z 0
0 1 8�Z \                      (14) 

                                      &(i) = �
��(	1)                           (15)

Here, n is total number of regions and nn(ri) returns the 
number of neighboring regions of region ri in the 2D 
space. To model the GMM in the crowded area of 2D 
space, mixing proportion p(i) is adjusted based on the 
number of neighbors nn(ri). In other words, nn(ri) has a 
higher value when p(i) is crowded and it reduces the pro-
portion of i-th Gaussian. It helps to prevent Gaussian
from over-height. An example of generated GMM is 
shown in Figure 5.

To generate a music map using the GMM, the proba-
bilistic density function (pdf) of the GMM is simplified 
by applying a threshold. By projecting the GMM on the 
2D plane after applying the threshold to the pdf, the 
boundaries of the GMM are created. We empirically 
found that the threshold value 0 gives an appropriate 
boundary. A boundary represents regions as a continent 

or a small island on the basis of their distribution. As a 
result, the mapped result is visualized as a music map 
having an appearance similar to that of a real world map. 
An example of a music map for 34 countries is shown in 
Figure 6. Although the generated music map contains less 
information than the contour graph of GMM, it could be 
more intuitive to the casual users to understand the rela-
tions between regions in terms of music preferences. 

4. EXPERIMENT

4.1 Experiment Setup

To collect the music-related tweets, we gathered the tweet 
streams from the Twitter server in real time in order to 
collect the music information of Twitter users. During 
one week, we collected 4.57 million tweets that had the 
hashtags listed in Table 1. After filtering the tweets 
through regular expressions, 1.56 million music listening 
history records were collected. We got 1327 cities or 198 

Figure 7. Average difference of distances in iterations

Figure 8. Music map of 239 countries

Figure 9. Top tags of music map. 
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countries from the music listening history collected 
through Twitter. We collected the lists of the top artists 
for 249 countries from last.fm. For these countries, 2735 
artists and their top tags were collected from last.fm.

4.2 Differences of ED and TD

In the proposed scheme, the iterative algorithm gradually 
reduces the difference between ED and TD, as mentioned 
above. In order to show that the algorithm reduces the 
difference and moves the regions appropriately, the aver-
age difference between ED and TD is measured in each 
iteration. Figure 7 shows the average distances during 
500 iterations. The early phases in the computation show 
high average distance differences due to the random ini-
tialization. As the iteration proceeds, the average distance 
differences are gradually reduced and converged.  

4.3 Map Generation for 249 Countries

In order to evaluate the effectiveness of the proposed 
scheme, we defined a region group that contained 249 
countries. After collecting the music listening history 
from Twitter and last.fm, we generated a music map by 
using the proposed scheme. Figure 8 shows the resulting 
music map. We observed that the map consisted of a big 
island (continent) and a few small islands. In the center of 
the big island, countries that had a high musical influence, 
such as the US and the UK, were located. On the other 
hand, countries having unique music preferences such as 
Japan and Hong Kong were formed as small islands and 
located far away from the big island.  

4.4 Top Tag Representation

A music map is based on the musical preferences be-
tween regions, and these preferences were calculated on 
the basis of the similarities of the musical tags. In the last 
experiment, we first find out the top tag of each country
and show the distribution of the top tags in the music map. 
Figure 9 shows the top tags of the map in Figure 8. In the 
map, “Rock” and “Pop”, which are the most popular tags 
in the collected data, are located in the center and occu-
pies a significant portion of the big island. On the north 
side of the big island, “Electronic” tag is located and in 
the south, “Indie” tag is placed. The “Pop” tag, which is 
popular in almost every country, is located throughout the 
map.

5. CONCLUSION 

In this paper, we proposed a scheme for constructing a 
music map in which regions such as cities and countries 
are located close to one another depending on the musical 
preferences of the people residing in them. To do this, we 
collected the music play history and extracted the popular 
artists and tag information from Twitter and last.fm. A 
similarity matrix for each region pair was calculated by 
using the tags and their frequencies. By applying an itera-
tive algorithm and GMM, we reorganized the regions into 

a music map according to the tag similarities. The possi-
ble application domains of the proposed scheme span a 
broad range—from music collection, browsing services, 
and music marketing tools, to a worldwide music trend 
analysis.
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ABSTRACT

For mirex 2013, the evaluation of audio chord estimation
(ace) followed a new scheme. Using chord vocabularies
of differing complexity as well as segmentation measures,
the new scheme provides more information than the ace
evaluations from previous years. With this new informa-
tion, however, comes new interpretive challenges. What
are the correlations among different songs and, more im-
portantly, different submissions across the new measures?
Performance falls off for all submissions as the vocabularies
increase in complexity, but does it do so directly in propor-
tion to the number of more complex chords, or are certain
algorithms indeed more robust? What are the outliers, song-
algorithm pairs where the performance was substantially
higher or lower than would be predicted, and how can they
be explained? Answering these questions requires mov-
ing beyond the Friedman tests that have most often been
used to compare algorithms to a richer underlying model.
We propose a logistic-regression approach for generating
comparative statistics for mirex ace, supported with gen-
eralised estimating equations (gees) to correct for repeated
measures. We use the mirex 2013 ace results as a case
study to illustrate our proposed method, including some of
interesting aspects of the evaluation that might not apparent
from the headline results alone.

1. INTRODUCTION

Automatic chord estimation (ace) has a long tradition
within the music information retrieval (mir) community,
and chord transcriptions are generally recognised as a useful
mid-level representation in academia as well as in industry.
For instance, in an academic context it has been shown that
chords are interesting for addressing musicological hypo-
theses [3,13], and that they can be used as amid-level feature
to aid in retrieval tasks like cover-song detection [7,10 ]. In

Johan Pauwels is no longer affiliated with stms. Data and source code
to reproduce this paper, including all statistics andfi gures, are available
from http://bitbucket.org/jaburgoyne/ismir-2014.

© John Ashley Burgoyne, W. Bas de Haas, Johan Pauwels.
Licensed under a Creative Commons Attribution4. 0 International License
(cc by 4.0). Attribution: John Ashley Burgoyne, W. Bas de Haas, Johan
Pauwels. “On comparative statistics for labelling tasks: What can we learn
from mirex ace 2013?”,15 th International Society for Music Information
Retrieval Conference,2014.

an industrial setting, music start-ups like Riffstation 1 and
Chordify 2 use ace in their music teaching tools, and at
the time of writing, Chordify attracts more than 2million
unique visitors every month [6].

In order to compare different algorithmic approaches in
an impartial setting, the Music Information Retrieval Evalu-
ation eXchange (mirex) introducted an annual ace task in
2008. Since then, between 11 and 18 algorithms have been
submitted each year by between 6 and 13 teams. Despite
the fact that ace algorithms are used outside of academic
environments, and even though the number of mirex par-
ticipants has decreased slightly over the last three years,
the problem of automatic chord estimation is nowhere near
solved. Automatically extracted chord sequences have clas-
sically been evaluated by calculating the chord symbol recall
(csr), which reflects the proportion of correctly labelled
chords in a single song, and a weighted chord symbol recall
(wcsr), which weights the average csr of a set of songs by
their length. On fresh validation data, the best-performing
algorithms in 2013 achieved wcsr of only 75 percent, and
that only when the range of possible chords was restricted
exclusively to the 25 major, minor and “no-chord” labels;
thefi gure drops to 60 percent when the evaluation is exten-
ded to include seventh chords (see Table1).

mirex is a terrific platform for evaluating the perform-
ance of ace algorithms, but by 2010 it was already being
recognised that the metrics could be improved. At that time,
they included only csr and wcsr using a vocabulary of12
major chords, 12 minor chords and a “no-chord” label. At
ismir 2010, a group of ten researchers met to discuss their
dissatisfaction. In the resulting ‘Utrecht Agreement’, 3 it
was proposed that future evaluations should include more
diverse chord vocabularies, such as seventh chords and in-
versions, as the25 -chord vocabulary was considered a rather
coarse representation of tonal harmony. Furthermore, the
group agreed that it was important to include a measure of
segmentation quality in addition to csr and wcsr.

At approximately the same time, Christopher Harte pro-
posed a formalisation of measures that implemented the
aspirations indicated in the Utrecht agreement [8]. Recently,
Pauwels and Peeters reformulated and extended Harte’s
work with the precise aim of handling differences in chord
vocabulary between annotated ground truth and algorithmic

1 http://www.riffstation.com/
2 http://chordify.net
3 http://www.music-ir.org/mirex/wiki/The_

Utrecht_Agreement_on_Chord_Evaluation
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Algorithm # Types Inversions? Training? I II III IV V VI VII VIII

ko2 7 • 76 74 72 60 58 84 79 89
nmsd2 10 75 71 69 59 57 82 79 86
cb4 13 • 76 72 70 59 57 85 80 90
nmsd1 10 74 71 69 58 56 83 79 86
cb3 13 76 72 70 58 56 85 81 89
ko1 7 75 71 69 54 52 83 80 88
pp4 5 69 66 64 51 49 83 78 87
pp3 2 70 68 65 50 48 83 82 84
cf2 10 • 71 67 65 49 47 83 83 83
ng1 2 71 67 65 49 46 82 79 86
ng2 5 67 63 61 44 43 82 81 83
sb8 2 9 7 6 5 5 51 92 35

Table1 . Number of supported chord types, inversion support, training support, and mirex results on the Billboard 2013test
set for all2013 ace submissions. I: root only; II: major-minor vocabulary; III: major-minor vocabulary with inversions; IV:
major-minor vocabulary with sevenths; V: major-minor vocabulary with sevenths and inversions; VI: mean segmentation
score; VII: under-segmentation; VIII: over-segmentation. Adapted from the mirex Wiki.

output on one hand, and among the output of different al-
gorithms on the other hand [15]. They also performed a
rigorous re-evaluation of all mirex ace submissions from
2010 to2012 . As of mirex 2013, these revised evalu-
ation procedures, including the chord-sequence segment-
ation evaluation suggested by Harte [8] and Mauch [12],
have been adopted in the context of the mirex ace task.

mirex ace evaluation has also typically included com-
parative statistics to help determine whether the differences
in performance between pairs of algorithms are statistically
significant. Traditionally, Friedman’s anova has been used
for this purpose, accompanied by Tukey’s Honest Signific-
ant Difference tests for each pair of algorithms. Friedman’s
anova is equivalent to a standard two-way anova with
the actual measurements (in our case wcsr or directional
Hamming distance [dhd], the new segmentation measure)
replaced by the rank of each treatment (in our case, each al-
gorithm) on that measure within each block (in our case, for
each song) [11]. The rank transformation makes Friedman’s
anova an excellent ‘one sizefi ts all’ approach that can be
applied with minimal regard to the underlying distribution
of the data, but these benefits come with costs. Like any non-
parametric test, Friedman’s anova can be less powerful
than parametric alternatives where the distribution is known,
and the rank transformation can obscure information in-
herent to the underlying measurement, magnifying trivial
differences and neutralising significant inter-correlations.

But there is no need to pay the costs of Friedman’s an-
ova for evaluating chord estimation. Fundamentally, wcsr
is a proportion, specifically the expected proportion of au-
dio frames that an estimation algorithm will label correctly,
and as such, itfi ts naturally into logistic regression (i.e., a
logit model). Likewise, dhd is constrained to fall between
0 and 100 percent, and thus it is also suitable for the same
type of analysis. The remainder of this paper describes how
logistic regression can be used to compare chord estimation
algorithms, using mirex results from 2013 to illustrate four
key benefits: easier interpretation, greater statistical power,
built-in correlation estimates for identifying relationships
among algorithms, and better detection of outliers.

2. LOGISTIC REGRESSIONWITH GEES

Proportions cannot be distributed normally because they are
supported exclusively on [0,1 ], and thus they present chal-
lenges for traditional techniques of statistical analysis. Logit
models are designed to handle these challenges without sac-
rificing the simplicity of the usual linear function relating
parameters and covariates [1, ch.4]:

π(x; β) =
ex′β

1 + ex′β , (1)

or equivalently

log
π(x; β)

1 − π(x; β)
= x′β , (2)

where π represents the relative frequency of ‘success’ given
the values of covariates in x and parameters β. In the case
of a basic model for mirex ace, x would identify the al-
gorithm and π would be the relative frequency of correct
chord labels for that algorithm (i.e., wcsr). In the case
of data like ace results, where there are proportions pi of
correct labels over ni analysis frames rather than binary suc-
cesses or failures, i indexing all combinations of individual
songs and algorithms, logistic regression assumes that each
pi represents the observed proportion of successes among
ni conditionally-independent binary observations, or more
formally, that the pi are distributed binomially:

fP |N,X(p | n,x; β) =

(
n
pn

)
πpn (1 − π)(1−p)n . (3)

The expected value for each pi is naturally πi = π(xi ; β),
the overall relative frequency of success given xi :

E [P | N,X] = π(x; β) . (4)

Logistic regression models are most oftenfi t by the
maximum-likelihood technique, i.e., one is seeking a vector
β̂ to maximise the log-likelihood given the data:

�P |N,X(β; p,n,X) =
∑
i

[
log

(
ni

pini

)
+

pini log πi + (1 − pi )ni log (1 − πi )
]
. (5)
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One thus solves the system of likelihood equations for β,
whereby the gradient of Equation 5 is set to zero:

∇β�P |N,X(β; p,n,X) =
∑
i

(pi − πi )nixi = 0 (6)

and so ∑
i

pinixi =
∑
i

πinixi . (7)

In the case of mirex ace evaluation, each xi is simply
an indicator vector to partition the data by algorithm, and
thus β̂ is the parameter vector for which πi equals the song-
length–weighted mean over all pi for that algorithm.

2.1 Quasi-Binomial Models

Under a strict logit model, the variance of each pi is inversely
proportional to ni :

var [P | N,X] =

(
1

n

)
π(1 − π) . (8)

Equation 8 only holds, however, if the estimates of chord
labels for each audio frame are independent. For ace, this is
unrealistic: only the most naïve algorithms treat every frame
independently. Some kind of time-dependence structure is
standard, most frequently a hidden Markov model or some
close derivative thereof. Hence one would expect that the
variance of wcsr estimates should be rather larger than the
basic logit model would suggest.

This type of problem is extremely common across dis-
ciplines, so much so that is has been given a name, over-
dispersion, and some authors go so far as to state that ‘unless
there are good external reasons for relying on the binomial
assumption [of independence], it seems wise to be cautious
and to assume that over-dispersion is present to some ex-
tent unless and until it is shown to be absent’ [14, p.125].
One standard approach to handling over-dispersion is to
use a so-called quasi-likelihood [1, §4.7 ]. In case of lo-
gistic regression, this typically entails a modification to the
assumption on the distribution of the pi that includes an
additional dispersion parameter φ. The expected values are
the same as a standard binomial model, but

var [P | N,X] =
(
φ

n

)
π(1 − π) . (9)

These models are known as quasi-likelihood models
because one loses a closed-form solution for the actual
probability distribution fP |N,X; one knows only that the
pi behave something like binomially-distributed variables,
with identical means but proportionally more variance. The
parameter estimates β̂ and predictions π(·; β̂) for a quasi-
binomial model are the same as ordinary logistic regression,
but the estimated variance-covariance matrices are scaled
by the estimated dispersion parameter φ̂ (and likewise the
standard errors are scaled by its square root). The disper-
sion parameter is estimated so that the theoretical variance
matches the empirical variance in the data, and because of
the form of Equation9 , it renders any scaling considerations
for the ni moot.

Other approaches to handling over-dispersion include
beta-binomial models [1, §13.3 ] and beta regression [5],
but we prefer the simplicity of the quasi-likelihood model.

2.2 Generalised Estimating Equations (gees)

The quasi-binomial model achieves most of what one would
be looking for when evaluating ace for mirex: it handles
proportions naturally, is consistent with the weighted aver-
aging used to compute wcsr, and adjusts for over-dispersion
in a way that also eliminates any worries about scaling. Non-
etheless, it is slightly over-conservative for evaluating ace.
As discussed earlier, quasi-binomial models are necessary
to account for over-dispersion, and one important source
of over-dispersion in these data is the lack of independence
of chord estimates from most algorithms within the same
song. mirex exhibits another important violation of the in-
dependence assumption, however: all algorithms are tested
on the same sets of songs, and some songs are clearly more
difficult than others. Put differently, one does not expect
the algorithms to perform completely independently of one
another on the same song but rather expects a certain cor-
relation in performance across the set of songs. By taking
that correlation into account, one can improve the preci-
sion of estimates, particularly the precision of pair-wise
comparisons [1, §10.1].

A relatively straightforward variant of quasi-likelihood
known as generalised estimating equations (gees) incor-
porates this type of correlation [1, ch.11 ]. With the gee
approach, rather than predicting each pi individually, one
predicts complete vectors of proportions pi for each relev-
ant group, much as Friedman’s test seeks to estimate ranks
within each group. For ace, the groups are songs, and thus
one considers the observations to be vectors pi , one for each
song, where pi j represents the csr or segmentation score
for algorithm j on song i. Analogous to the case of ordinary
quasi-binomial or logistic regression,

E
[
Pj | N,X j

]
= π(x j ; β) . (10)

Likewise, analogous to the quasi-binomial variance,

var
[
Pj | N,X j

]
=

(
φ

n

)
π j (1 − π j ) . (11)

Because the gee approach is concerned with vector-
valued estimates rather than point estimates, it also involves
estimating a full variance-covariance matrix. In addition to
β and φ, the approach requires a further vector of parameters
α and an a priori assumption on the correlation structure of
the Pj in the form of a function R(α) that yields a correlation
matrix. (One might, for example, assume that that the Pj

are exchangeable, i.e., that every pair shares a common
correlation coefficient.) Then if B is a diagonal matrix such
that Bj j = var [Pj | N,X j ],

cov [P | N,X] = B
1/2 R(α)B

1/2 . (12)

If all of the Pj are uncorrelated with each other, then this
formula reduces to the basic quasi-binomial model, which
assumes a diagonal covariance matrix. Thefi nal step of
gee estimation adjusts Equation 12 according to the actual
correlations observed in the data, and as such, gees are
quite robust in practice even when the a priori assumptions
about the correlation structure are incorrect [1, §11.4.2].
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Figure1 . Boxplots and compact letter displays for the mirex ace 2013 results on the Billboard 2013 test set with vocabulary
V (seventh chords and inversions), weighted by song length. Bold lines represent medians andfi lled dots means. N = 161
songs per algorithm. Given the respective models, there are insufficient data to distinguish among algorithms sharing a letter,
correcting to hold the fdr at α = .005. Although Friedman’s anova detects 2 more significant pairwise differences than
logistic regression (45 vs.43 ), it operates on a different scale than csr and misorders algorithms relative to wcsr.

3. ILLUSTRATIVE RESULTS

mirex ace 2013 evaluated 12 algorithms according to a
battery of eight rubrics (wcsr onfi ve harmonic vocabu-
laries and three segmentation measures) on each of three
different data sets (the Isophonics set, including music from
the Beatles, Queen, and Zweieck [12] and two versions of
the McGill Billboard set, including music from the Amer-
ican pop charts [4]). There is insufficient space to present
the results of logistic regression on all combinations, and so
we will focus on a single one of the data sets, the Billboard
2013 test set. In some cases, logistic regression allows us to
speak to all measures (11 592 observations), but in general,
we will also restrict ourselves to discussing the newest and
most challenging of the harmonic vocabularies for wcsr:
Vocabulary V (1932 observations), which includes major
chords, minor chords, major sevenths, minor sevenths, dom-
inant sevenths, and the complete set of inversions of all of
the above. We are interested in four key questions.

1. How do pairwise comparisons under logistic regres-
sion compare to pairwise comparisons with Fried-
man’s anova? Is logistic regression more powerful?

2. Are there differences among algorithms as the har-
monic vocabularies get more difficult, or is the drop
performance uniform? In other words, is there a be-
nefit to continuing with so many vocabularies?

3. Are all ace algorithms making similar mistakes, or
do they vary in their strengths and weaknesses?

4. Which algorithm-song pairs exhibited unexpectedly
good or bad performance, and is there anything to be
learned from these observations?

3.1 Pairwise Comparisons

The boxplots in Figure 1 give a more detailed view of the
performance of each algorithm than Table1 . Thefigure

is restricted to Vocabulary V, with the algorithms in des-
cending order by wcsr. Figure1 a comes from Friedman’s
anova weighted by song length, and thus its y-axis reflects
not csr directly but the per-song ranks with respect to csr.
Figure1 b comes from quasi-binomial regression estimated
with gees, as described in Section2 . Its y-axis does reflect
per-song csr. Above the boxplots, all significant pairwise
differences are recorded as a compact letter display. In the
interest of reproducible research, we used a stricter α =
.005 threshold for reporting pairwise comparisons with the
more contemporary false-discovery-rate (fdr) approach of
Benjamini and Hochberg, as opposed to more traditional
Tukey tests at α = .05[2 ,9]. Within either of the subfigures,
the difference in performance between two algorithms that
share any letter in the compact letter display is not statistic-
ally significant. Overall, Friedman’s anova found 2more
significant pairwise differences than logistic regression.

3.2 Effect of Vocabulary

To test the utility of the new evaluation vocabularies, we
ran both Friedman anovas (ranked separately for each
vocabulary) and logistic regressions and looked for signi-
ficant interactions among the algorithm, inversions (present
or absent from the vocabulary) and the complexity of the
vocabulary (root only, major-minor, or major-minor with
7ths). Under Friedman’s anova, there was a significant
Algorithm × Complexity interaction, F (22,9440 ) = 3.21,
p < .001. The logistic regression model identified a sig-
nificant three-way Algorithm × Complexity × Inversions
interaction, χ2(12) = 37.35, p < .001, but the additional
interaction with inversions should be interpreted with care:
only one algorithm (cf2) attempts to recognise inversions.

3.3 Correlation Matrices

Table 2 presents the inter-correlations of wcsr between
algorithms, rank-transformed (Spearman’s correlations, ana-
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Algorithm ko2 nmsd2 cb4 nmsd1 cb3 ko1 pp4 pp3 cf2 ng1 ng2 sb8

ko2 – .07 .11 −.05 .10 .03 −.41∗ −.44∗ −.03 −.35∗ .05 −.01
nmsd2 .25∗ – −.01 .49∗ −.25∗ −.20 −.19 −.36∗ .00 −.33∗ .02 −.06
cb4 .41∗ .39∗ – .12 .47∗ −.46∗ −.30∗ −.48∗ .09 −.38∗ .08 −.09
nmsd1 .30∗ .60∗ .53∗ – −.17 −.45∗ −.08 −.45∗ .27∗ −.44∗ .17 −.10
cb3 .34∗ .10 .76∗ .42∗ – −.19 −.26∗ −.14 −.08 −.17 −.16 −.08
ko1 −.04 −.42∗ −.51∗ −.51∗ −.29∗ – −.10 .42∗ −.41∗ .50∗ −.52∗ .05
pp4 −.22 .08 −.16 .06 −.07 −.05 – .37∗ −.03 .00 .05 −.03
pp3 −.49∗ −.46∗ −.61∗ −.53∗ −.37∗ .68∗ .22 – −.48∗ .66∗ −.48∗ .04
cf2 .09 .19 .24∗ .42∗ .17 −.49∗ .06 −.51∗ – −.48∗ .48∗ −.14
ng1 −.54∗ −.42∗ −.60∗ −.56∗ −.41∗ .68∗ .04 .85∗ −.47∗ – −.40∗ −.10
ng2 .09 .17 .17 .16 −.03 −.50∗ −.09 −.54∗ .50∗ −.40∗ – −.11
sb8 −.32∗ −.44∗ −.44∗ −.52∗ −.46∗ .00 −.32∗ .08 −.33∗ .08 −.16 –

Table2 . Pearson’s correlations on the coefficients from logistic regression (wcsr) for the Billboard 2013 test set with
vocabulary V (lower triangle); Spearman’s correlations for the same data (upper triangle). N = 161 songs per cell. Starred
correlations are significant at α = .005, controlling for the fdr. A set of algorithms (viz., ko1, pp3, ng1, and sb8) stands
out for negative correlations with the top performers; in general, these algorithms did not attempt to recognise seventh chords.

logous to Friedman’s anova) in the upper triangle, and in
the lower triangle, as estimated from logistic regression with
gees. Significant correlations are marked, again controlling
the fdr at α = .005. Positive correlations do not necessarily
imply that the algorithms perform similarly; rather it im-
plies that theyfi nd the same songs relatively easy or difficult.
Negative correlations imply that songs that one algorithm
finds difficult are relatively easy for the other algorithm.

3.4 Outliers

To identify outliers, we considered all evaluations on the
Billboard 2013 test set and examined the distribution of
residuals. Chauvenet’s criterion for outliers in a sample of
this size is to lie more than4. 09 standard deviations from the
mean [16, §6.2 ]. Under Friedman’s anova, Chauvenet’s
criterion identified 7 extreme data points. These are all for
algorithm sb8, a submission with a programming bug that
erroneously returned alternating C- and B-major chords re-
gardless of the song, on songs that were so difficult for most
other algorithms that the essentially random approach of
the bug did better. Under the logistic regression model, the
criterion identified 26 extreme points. Here, the unexpected
behaviour was primarily for songs that are tuned a quarter-
tone off from standard tuning (A4 = 440Hz). The ground
truth necessarily is ‘rounded off’ to standard tuning in one
direction or the other, but in cases where an otherwise high-
performing algorithm happened to round off in the opposite
direction, the performance is markedly low.

4. DISCUSSION

We were surprised tofi nd that in terms of distinguishing
between algorithms, Friedman’s anova was in fact more
powerful than logistic regression, detecting a few extra sig-
nificant pairs. Nonetheless, the two approaches yield sub-
stantially equivalent broad conclusions: that a group of top
performers – cb3, cb4, ko2, nmsd1, and nmsd2 – are
statistically indistinguishable from each other, with ko1
also indistinguishable from the lower end of this group.
Moreover, having now benefited from years of study, wcsr

is a reasonably intuitive and well-motivated measure of ace
performance, and it is awkward to have to work on the Fried-
man’s rank scale instead, especially since it ultimately ranks
the algorithms’ overall performance in a slightly different
order than the headline wcsr-based results.

Friedman’s anova did exhibit less power for our ques-
tion about interactions between algorithms and differing
chord vocabularies. Again, wcsr as a unit and as a concept
is highly meaningful for chord estimation, and there is a
conceptual loss from rank transformation. Given the rank
transformation, Friedman’s anova can only be sensitive to
reconfigurations of relative performance as the vocabularies
become more difficult; logistic regression can also be sens-
itive to different effect sizes across algorithms even when
their relative ordering remains the same.

It was encouraging to see that under either statistical
model, there was a benefit to evaluating with multiple vocab-
ularies. That encouraged us to examine the inter-correlations
for the performance of the algorithms. Figure 2summarises
the original correlation matrix in Table 2 more visually by
using the correlations from logistic regression as the basis
of a hierarchical clustering. Two clear groups emerge, both
from the clustering and from minding negative correlations
in the original matrix: one relatively low-performing group
including ko1, pp3, ng1, and sb8, and one relatively high-
performing group including all others but for perhaps pp4,
which does not seem to correlate strongly with any other
algorithm. The shape of the equivalent tree based on Spear-
man’s correlations is similar but for joining pp4 with sb8
instead of the high-performing group. Table 1 uncovers
the secret behind the low performers: ko1 excepted, none
of the low-performing algorithms attempt to recognise sev-
enth chords, which comprise 29 percent of all chords under
Vocabulary V. Furthermore, we performed an additional
evaluation of seventh chords only, in the style of [15] and
using their software available online. 4 From the resulting
low score of ko1, we can deduce that this algorithm is
able to recognise seventh chords in theory, but that it was
most likely trained on the relatively seventh-poor Isophon-

4 https://github.com/jpauwels/MusOOEvaluator
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Figure2 . Hierarchical clustering of algorithms based on
wcsr for for the Billboard 2013 test set with vocabulary V,
Pearson’s distance as derived from the estimated correlation
matrix under logistic regression, and complete linkage. The
group of algorithms that is negatively correlated with the
top performers appears at the left. pp4 stands out as the
most idiosyncratic performer.

ics corpus (only 15 percent of all chords). ko2 is the same
algorithm trained directly on the mirex Billboard training
corpus, and with that training, it becomes a top performer.

Our analysis of outliers again showed Friedman’s anova
to be less powerful than logistic regression, as one would
expect given the range restrictions on rank transformation.
But here also the more important advantage of logistic re-
gression is the ability to work on the wcsr scale. Outliers
under the logistic regression model are also points that have
an unusually strong effect on the reported results. In our
analysis, they highlight the practical consequences of the
well-known problem of atypically-tuned commercial record-
ings. Although we would not propose deleting outliers, it is
sobering to know that tuning problems may be having an
outsized effect on our headline evaluationfi gures. It might
be worth considering allowing algorithms their best score
in keys up to a semitone above or below the ground truth.

Overall, we have shown that as ace becomes more es-
tablished and its evaluation more thorough, it is useful to
use a subtler statistical model for comparative analysis. We
recommend that future mirex ace evaluations use logistic
regression in preference to Friedman’s anova. It preserves
the natural units and scales of wcsr and segementation
analysis, is more powerful for many (although not all) stat-
istical tests, and when augmented with gees, it allows for
a detailed correlational analysis of which algorithms tend
to have problems with the same songs as others and which
have perhaps genuinely broken innovative ground. This is
by no means to suggest that Friedman’s test is a bad test in
general – its near-universal applicability makes it an excel-
lent choice in many circumstances, including many other
mirex evaluations – but for ace, we believe that the ex-
tra understanding logistic regression can offer may help
researchers predict which techniques are most promising
for breaking the current performance plateau.
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ABSTRACT

This paper discusses a piano fingering model for both hands

and its applications. One of our motivations behind the

study is automating piano reduction from ensemble scores.

For this, quantifying the difficulty of piano performance is

important where a fingering model of both hands should

be relevant. Such a fingering model is proposed that is

based on merged-output hidden Markov model and can be

applied to scores in which the voice part for each hand is

not indicated. The model is applied for decision of finger-

ing for both hands and voice-part separation, automation of

which is itself of great use and were previously difficult. A

measure of difficulty of performance based on the finger-

ing model is also proposed and yields reasonable results.

1. INTRODUCTION

Music arrangement is one of the most important musical

activities, and its automation certainly has attractive appli-

cations. One common form is piano arrangement of en-

semble scores, whose purposes are, among others, to en-

able pianists to enjoy a wider variety of pieces and to ac-

company other instruments by substituting the role of or-

chestra. While certain piano reductions have high techni-

cality and musicality as in the examples by Liszt [8], those

for vocal scores of operas and reduction scores of orchestra

accompaniments are often faithful to the original scores in

most parts. The most faithful reduction score is obtained

by gathering every note in the original score, but the result

can be too difficult to perform, and arrangement such as

deleting notes is often in order.

In general, the difficulty of a reduction score can be re-

duced by arrangement, but then the fidelity also decreases.

If one can quantify the performance difficulty and the fi-

delity to the original score, the problem of “minimal” pi-

ano reduction can be considered as an optimization prob-

lem of the fidelity given constraints on the performance

difficulty. A method for guitar arrangement based on prob-

abilistic model with a similar formalization is proposed in

Ref. [5]. This paper is a step toward a realization of piano

reduction algorithm based on the formalization.

c© Eita Nakamura, Nobutaka Ono, Shigeki Sagayama.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Eita Nakamura, Nobutaka Ono,

Shigeki Sagayama. “ Merged-Output HMM for Piano Fingering of Both

Hands ”, 15th International Society for Music Information Retrieval Con-

ference, 2014.

The playability of piano passages is discussed in Refs. [3,

2] in connection with automatic piano arrangement. There,

constraints such as the maximal number of notes in each

hand, the maximal interval being played, say, 10th, and

the minimal time interval of a repeated note are consid-

ered. Although these constraints are simple and effective

to some extent, the actual situation is more complicated as

manifested in the fact that, for example, the playability can

change with tempos and players can arpeggiate chords that

cannot be played simultaneously. In addition, the playabil-

ity can depend on the technical level of players [3]. Given

these problems, it seems appropriate to consider perfor-

mance difficulty that takes values in a range.

There are various measures and causes of performance

difficulty including player’s movements and notational com-

plexity of the score [12, 1, 15]. Here we focus on the diffi-

culty of player’s movements, particularly piano fingering,

which is presumably one of the most important factors.

The difficulty of fingering is closely related to the decision

of fingering [4, 7, 13, 16]. Given the current situation that a

method of determining the fingering costs from first princi-

ples is not established, however, it is also effective to take a

statistical approach, and consider the naturalness of finger-

ing in terms of probability obtained from actual fingering

data. With a statistical model of fingering, the most natural

fingering can be determined, and one can quantify the dif-

ficulty of fingering in terms of naturalness. This will be ex-

plained in Secs. 2 and 3. The practical importance of piano

fingering and its applications are discussed in Ref. [17].

Since voice parts played by both hands are not a priori

separated or indicated in the original ensemble score, a fin-

gering model must be applicable in such a situation. Thus,

a fingering model for both hands and an algorithm to sep-

arate voice parts are necessary. We propose such a model

and an algorithm based on merged-output hidden Markov

model (HMM), which is suited for modeling multi-voice-

part structured phenomena [10, 11]. Since multi-voice-part

structure of music is common and voice-part separation

can be applied for a wide range of information processing,

the results are itself of great importance.

2. MODEL FOR PIANO FINGERING FOR BOTH
HANDS

2.1 Model for one hand

Before discussing the piano fingering model for both hands,

let us discuss the fingering model for one hand. Piano
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fingering models and algorithms for decision of fingering

have been studied in Refs. [13, 16, 4, 18, 19, 20, 7]. Here

we extend the model in Ref. [19] to including chords.

Piano fingering for one hand, say, the right hand, is indi-

cated by associating a finger number fn = 1, · · · , 5 (1 =
thumb, 2 = the index finger, · · · , 5 = the little finger)

to each note pn in a score 1 , where n = 1, · · · , N in-

dexes notes in the score and N is the number of notes. We

consider the probability of a fingering sequence f1:N =
(fn)

N
n=1 given a score, or a pitch sequence, p1:N = (pn)

N
n=1,

which is written as P (f1:N |p1:N ). As explained in detail

in Sec. 3.1, an algorithm for fingering decision can be ob-

tained by estimating the most probable candidate f̂1:N =
argmax

f1:N

P (f1:N |p1:N ). The fingering of a particular note

is more influenced by neighboring notes than notes that are

far away in score position. Dependence on neighboring

notes is most simply described by that on adjacent notes,

and it can be incorporated with a Markov model. It also

has advantages in efficiency in maximizing probability and

setting model parameters. Although the probability of fin-

gering may depend on inter-onset intervals between notes,

the dependence is not considered here for simplicity.

As proposed in Ref. [18, 19], the fingering model can be

constructed with an HMM. Supposing that notes in score

are generated by finger movements and the resulting per-

formed pitches, their probability is represented with the

probability that a finger would be used after another finger

P (fn|fn−1), and the probability that a pitch would result

from succeeding two used fingers. The former is called the

transition probability, and the latter output probability. The

output probability of pitch depends on the previous pitch

in addition to the corresponding used fingers, and it is de-

scribed with a conditional probability P (pn|pn−1, fn−1, fn).
In terms of these probabilities, the probability of notes and

fingerings is given as

P (p1:N , f1:N ) =
N∏

n=1

P (pn|pn−1, fn−1, fn)P (fn|fn−1),

(1)

where the initial probabilities are written as P (f1|f0) ≡
P (f1) and P (p1|p0, f0, f1) ≡ P (p1|f1). The probability

P (f1:N |p1:N ) can also be given accordingly.

To train the model efficiently, we assume some reason-

able constraints on the parameters. First we assume that

the probability depends on pitches only through their ge-

ometrical positions on the keyboard which is represented

as a two-dimensional lattice (Fig. 1). We also assume the

translational symmetry in the x-direction and the time in-

version symmetry for the output probability. If the coordi-

nate on the keyboard is written as 
(p) = (
x(p), 
y(p)),
the assumptions mean that the output probability has a form

P (p′|p, f, f ′) = F (
x(p
′) − 
x(p), 
y(p

′) − 
y(p); f, f
′),

and it satisfies F (
x(p
′) − 
x(p), 
y(p

′) − 
y(p); f, f
′) =

F (
x(p)− 
x(p
′), 
y(p)− 
y(p

′); f ′, f). A model for each

hand can be obtained in this way, and it is written as

Fη(
x(p
′) − 
x(p), 
y(p

′) − 
y(p); f, f
′) with η = L,R.

1 We do not consider the so-called finger substitution in this paper.

Figure 1. Keyboard lattice. Each key on a keyboard is

represented by a point of a two-dimensional lattice.

It is further assumed that these probabilities are related

by reflection in the x-direction, which yields FL(
x(p
′) −


x(p), 
y(p
′)−
y(p); f, f

′) = FR(
x(p
′)−
x(p), 
y(p

′)−

y(p); f, f

′).
The above model can be extended to be applied for pas-

sages with chords, by converting a polyphonic passage to

a monophonic passage by virtually arpeggiating the chords

[7]. Here, notes in a chord are ordered from low pitch to

high pitch. The parameter values can be obtained from fin-

gering data.

2.2 Model for both hands

Now let us consider the fingering of both hands in the sit-

uation that it is unknown a priori which of the notes are

to be played by the left or right hand. The problem can be

stated as associating the fingering information (ηn, fn)
N
n=1

for the pitch sequence p1:N , where ηn = L,R indicates the

hand with which the n-th note is played.

One might think to build a model of both hands by sim-

ply extending the one-hand model and using (ηn, fn) as

a latent variable. However, this is not an effective model

as far as it is a first-order Markov model since, for exam-

ple, probabilistic constraints between two successive notes

by the right hand cannot be directly incorporated when

they are interrupted by other notes of the left hand. Us-

ing higher-order Markov models leads to the problem of

increasing number of parameters that is hard to train as

well as the increasing computational cost. The underly-

ing problem is that the model cannot capture the structure

of dependencies that is stronger among notes in each hand

than those across hands.

Recently an HMM, called merged-output HMM, is pro-

posed that is suited for describing such voice-part-structured

phenomena [10, 11]. The basic idea is to construct a model

for both hands by starting with two parallel HMMs, called

part HMMs, each of which corresponds to the HMM for

fingering of each hand, and then merging the outputs of

the part HMMs. Assuming that only one of the part HMMs

transits and outputs an observed symbol at each time, the

state space of the merged-output HMM is given as a triplet

k = (η, fL, fR) of the hand information η = L,R and

fingerings of both hands: η indicate which of the HMMs

transits, and fL and fR indicate the current states of the

part HMMs. Let the transition and output probabilities

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

532



of the part HMMs be aηff ′ = Pη(f
′|f) and bηff ′(
) =

Fη(
; f, f
′) (η = L,R). Then the transition and output

probabilities of the merged-output HMM are given as

akk′ =

{
αLa

L
fLf ′

L
δfRf ′

R
, η′ = L;

αRa
R
fRf ′

R
δfLf ′

L
, η′ = R,

(2)

bkk′(
) =

{
bLfLf ′

L
(
), η′ = L;

bRfRf ′
R
(
), η′ = R,

(3)

where δ denotes Kronecker’s delta. Here, αL,R represent

the probability of choosing which of the hands to play the

note, and practically, they satisfy αL ∼ αR ∼ 1/2. As

shown in Ref. [11], certain interaction factors can be intro-

duced to Eqs. (2) and (3). Although such interactions may

be important in the future [14], we confine ourselves to the

case of no interactions in this paper for simplicity.

By estimating the most probable sequence k̂1:N , both

the optimal configuration of hands η̂1:N , which yields a

voice-part separation, and that of fingers (f̂L, f̂R)1:N are

obtained. For details of inference algorithms and other as-

pects of merged-output HMM, see Ref. [11].

2.3 Model for voice-part separation

The model explained in the previous section involves both

hands and the used hand and fingers are modeled simulta-

neously. We can alternatively consider the problem of as-

sociating fingerings of both hands as first separating voice

parts for both hands, and then associating fingerings for

notes in each voice part. In this subsection, a simple model

that can be used for voice-part separation is given. The

model is also based on a simpler merged-output HMM, and

it yields more efficient algorithm for voice-part separation.

We consider a merged-output HMM with a hidden state

x = (η, pL, pR), where η = L,R indicates the voice part,

and pL,R describes the pitch played in each voice part. If

the pitch sequence in the score is denoted by (yn)n, the

transition and output probabilities are written as

axx′ =

{
αLa

L
pLp′

L
δpRp′

R
, η′ = L;

αRa
R
pRp′

R
δpLp′

L
, η′ = R,

(4)

bx(y) = δy,pη
. (5)

Here the transition probability aL,R
pp′ describes the pitch se-

quence in each voice part directly, without any information

on fingerings. The corresponding distributions can be ob-

tained from actual data of piano pieces, as shown in Fig. 2.

So far we have considered a model of pitches and hor-

izontal intervals for voice-part separation. The voice-part-

separation algorithm can be derived by applying the Viterbi

algorithm to the above model. In fact, a voice part in the

score played by one hand is also constrained by vertical

intervals since it is physically difficult to play a chord con-

taining an interval far wider than a octave by one hand. The

constraint on the vertical intervals can also be introduced

in terms of probability.

 0
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Figure 2. Histograms of pitch transitions in piano scores

for each hand.

3. APPLICATIONS OF THE FINGERING MODEL

3.1 Algorithm for decision of fingering

A direct application of the model explained in Secs. 2.1

and 2.2 is the decision of fingering. The algorithm can be

derived by applying the Viterbi algorithm. For one hand,

the derived algorithm is similar as the one in Ref. [19], but

we reevaluated the accuracy since the present model can

be applied for polyphonic passages and the details of the

models are different.

For evaluation, we prepared manually labeled finger-

ings of classical piano pieces and compared them to the

one estimated with the algorithm. The test pieces were

Nos. 1, 2, 3, and 8 of Bach’s two-voice inventions, and

the introduction and exposition parts from Beethoven’s 8th

piano sonata in C minor. The training and test of the al-

gorithm was done with the leave-one-out cross validation

method for each piece. To avoid zero frequencies in the

training, we added a uniform count of 0.1 for every bin.

The averaged accuracy was 56.0% (resp. 55.4%) for the

right (resp. left) hand where the number of notes was 5202

(resp. 5539). Since the training data was not big, and we

had much higher rate of more than 70% for closed test,

the accuracy may improve if a larger set of training data is

given. The results were better than the reported values in

Ref. [19]. The reason would be that the constraints of the

model in the reference was too strong, which is relaxed in

the present model. For detailed analysis of the estimation

errors, see Ref. [19].

3.2 Voice-part separation

Voice-part separation between two hands can be done with

the model described in Sec. 2.3, and the algorithm can be

obtained by the Viterbi algorithm. In fact, we can derive

a more efficient estimation algorithm which is effectively

equivalent since the model has noiseless observations as in

Eq. (5).

It is obtained by minimizing the following potential with

respect to the variables {(ηn, hn)}, hn = 0, 1, · · · , Nh for
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Table 1. Error rates of the voice-part-separation algorithms.The 0-HMM (resp. 1-HMM, 2-HMM) indicates the algorithm

with the zeroth-order (resp. first-order, second-order) HMM.

Pieces # Notes 0-HMM [%] 1-HMM [%] 2-HMM [%] Merged-output HMM [%]

Bach (15 pcs) 9638 5.1 5.3 6.1 1.9

Beethoven (2 pcs) 18144 13.0 11.1 11.5 9.28

Chopin (5 pcs) 8508 5.7 4.0 4.29 3.8

Debussy (3 pcs) 3360 17.8 14.8 14.8 18.7

Total 39650 9.9 8.5 8.9 7.1

each note:

V (η,h) = −
∑
n

lnQ(ηn−1, hn−1; ηn, hn), (6)

Q(ηn−1, hn−1; ηn, hn)

=

{
αηn

a
(ηn)
yn−1,ynδhn,hn−1+1, ηn = ηn−1;

αηn
a
(ηn)
yn−2−hn−1

,ynδhn,0, ηn �= ηn−1.
(7)

Here hn is necessary to memorize the current state of the

voice part opposite of ηn. The minimization of the poten-

tial can be done with dynamic programming incrementally

for each n. The estimation result is the same as the one

with the Viterbi algorithm applied to the model when Nh

is sufficiently large, and we confirmed that Nh = 50 is

sufficient to provide a good approximation.

The algorithm was evaluated by applying it to several

classical piano pieces. The used pieces were all pieces of

Bach’s two-voice inventions, the first two piano sonatas by

Beethoven, Chopin’s Etude Op. 10 Nos. 1–5, and the first

three pieces in the first book of Debussy’s Préludes. For

comparison, we also evaluated algorithms based on lower-

order HMMs. The zeroth-order model with transition and

output probabilities P (η) and P (p|η) is almost equivalent

to the keyboard splitting method, the first-order model with

P (η′|η) and P (δp|η, η′) and the second-order model are

simple applications of HMMs whose latent variables are

hand informations η = L,R.

The results are shown in Table 1. In total, the merged-

output HMM yielded the lowest error rate, with which rel-

atively accurate voice part separation can be done. On

the other hand, there were less changes in results for the

lower-order HMMs, showing that the effectiveness of the

merged-output HMM. In Debussy’s pieces, the error rates

were relatively high since the pieces necessitate complex

fingerings with wide movements of the hands. An exam-

ple of the voice-part separation result is shown in Fig. 3.

3.3 Quantitative measure of difficulty of performance

A measure of performance difficulty based on the natural-

ness of the fingerings can be obtained by the probabilistic

fingering model. Although global structures in scores may

influence the difficulty, we concentrate on the effect of lo-

cal structures. It is supposed that the difficulty is additive

with regard to performed notes and an increasing function

of tempo. A quantity satisfying these conditions is the time

rate of probabilistic cost. Let p(t) denote the sequence of
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(a) Passage in Bach’s two-voice invention No. 1.

��

��

(b) Piano role representation of the voice-part separation result. Two voice
parts are colored red and blue.

Figure 3. Example of a voice-part separation result.

notes in the time range of [t −Δt/2, t + Δt/2], and f(t)
be the corresponding fingerings, where Δt is a width of the

time range to define the time rate. Then it is given as

D(t) = − lnP (p(t),f(t))/Δt. (8)

Since the minimal time interval of successive notes are

about a few 10 milli seconds and it is hard to imagine that

difficulty is strongly influenced by notes that are separated

more than 10 seconds, it is natural to set Δt within these

extremes. The right-hand side is given by Eq. (1). It is pos-

sible to calculate D(t) for a score without indicated finger-

ings by replacing f(t) with the estimated fingerings f̂(t)
with the model in Sec. 2. In addition to the difficulty for

both hands, that for each hand DL,R(t) can also be defined

similarly.

Fig. 4 shows some examples of DL,R(t) calculated for

several piano pieces. Here Δt was set to 1 sec. Although

it is not easy to evaluate the quantity in a strict way, the

results seems reasonable and reflects generic intuition of

difficulty. The invention by Bach that can be played by

beginners yields DL,R that are less than about 10, the ex-

ample of Beethoven’s sonata which requires middle-level

technicality has DL,R around 20 to 30, and Chopin’s Fan-

tasie Impromptu which involves fast passages and difficult

fingerings has DL,R up to about 40. It is also worthy of not-

ing that relatively difficult passages such as the fast chro-

matique passage of the right hand in the introduction of

Beethoven’s sonata and ornaments in the right hand of the
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(a) Difficulty for right hand DR (b) Difficulty for left hand DL

Figure 4. Examples of DR and DL. The red (resp. green, blue) line is for Bach’s two-voice invention No.=1, (resp. Intro-

duction and exposition parts of the first movement of Beethoven’s eighth piano sonata, Chopin’s Fantasie Impromptu).

slow part of the Fantasie Impromptu are also captured in

terms of DR.

4. CONCLUSIONS

In this paper, we considered a piano fingering model of

both hands and its applications especially toward a piano

reduction algorithm. First we reviewed a piano fingering

model for one hand based on HMM, and then constructed

a model for both hands based on merged-output HMM.

Next we applied the model for constructing an algorithm

for fingering decision and voice-part-separation algorithm

and obtained a measure of performance difficulty. The al-

gorithm for fingering decision yielded better results than

the previously proposed one by a modification in details

of the model. The results of voice-part separation is quite

good and encouraging. The proposed measure of perfor-

mance difficulty successfully captures the dependence on

tempos and complexity of pitches and finger movements.

The next step to construct a piano reduction algorithm

according to the formalization mentioned in the Introduc-

tion is to quantify the fidelity of the arranged score to the

original score and to integrate it with the constraints of

performance difficulty. The fidelity can be described with

edit probability, similarly as in Ref. [5], and an arrange-

ment model can be obtained by integrating the fingering

model with the edit probability. We are currently working

on these issues and the results will be reported elsewhere.
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ABSTRACT

A model for rhythm similarity in electronic dance music

(EDM) is presented in this paper. Rhythm in EDM is built

on the concept of a ‘loop’, a repeating sequence typically

associated with a four-measure percussive pattern. The

presented model calculates rhythm similarity between seg-

ments of EDM in the following steps. 1) Each segment

is split in different perceptual rhythmic streams. 2) Each

stream is characterized by a number of attributes, most no-

tably: attack phase of onsets, periodicity of rhythmic el-

ements, and metrical distribution. 3) These attributes are

combined into one feature vector for every segment, af-

ter which the similarity between segments can be calcu-

lated. The stages of stream splitting, onset detection and

downbeat detection have been evaluated individually, and

a listening experiment was conducted to evaluate the over-

all performance of the model with perceptual ratings of

rhythm similarity.

1. INTRODUCTION

Music similarity has attracted research from multidisci-

plinary domains including tasks of music information re-

trieval and music perception and cognition. Especially for

rhythm, studies exist on identifying and quantifying rhythm

properties [16, 18], as well as establishing rhythm similar-

ity metrics [12]. In this paper, rhythm similarity is studied

with a focus on Electronic Dance Music (EDM), a genre

with various and distinct rhythms [2].

EDM is an umbrella term consisting of the ‘four on

the floor’ genres such as techno, house, trance, and the

‘breakbeat-driven’ genres such as jungle, drum ‘n’ bass,

breaks etc. In general, four on the floor genres are charac-

terized by a four-beat steady bass-drum pattern whereas

breakbeat-driven exploit irregularity by emphasizing the

metrically weak locations [2]. However, rhythm in EDM

exhibits multiple types of subtle variations and embellish-

ments. The goal of the present study is to develop a rhythm

similarity model that captures these embellishments and al-

lows for a fine inter-song rhythm similarity.

c© Maria Panteli, Niels Bogaards, Aline Honingh.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Maria Panteli, Niels Bogaards, Aline

Honingh. “Modeling rhythm similarity for electronic dance music”, 15th

International Society for Music Information Retrieval Conference, 2014.
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Figure 1: Example of a common (even) EDM rhythm [2].

The model focuses on content-based analysis of audio

recordings. A large and diverse literature deals with the

challenges of audio rhythm similarity. These include, a-

mongst other, approaches to onset detection [1], tempo es-

timation [9,25], rhythmic representations [15,24], and fea-

ture extraction for automatic rhythmic pattern description

and genre classification [5, 12, 20]. Specific to EDM, [4]

study rhythmic and timbre features for automatic genre

classification, and [6] investigate temporal and structural

features for music generation.

In this paper, an algorithm for rhythm similarity based

on EDM characteristics and perceptual rhythm attributes is

presented. The methodology for extracting rhythmic ele-

ments from an audio segment and a summary of the fea-

tures extracted is provided. The steps of the algorithm are

evaluated individually. Similarity predictions of the model

are compared to perceptual ratings and further considera-

tions are discussed.

2. METHODOLOGY

Structural changes in an EDM track typically consist of

an evolution of timbre and rhythm as opposed to a verse-

chorus division. Segmentation is firstly performed to split

the signal into meaningful excerpts. The algorithm devel-

oped in [21] is used, which segments the audio signal based

on timbre features (since timbre is important in EDM struc-

ture [2]) and musical heuristics.

EDM rhythm is expressed via the ‘loop’, a repeating

pattern associated with a particular (often percussive) in-

strument or instruments [2]. Rhythm information can be

extracted by evaluating characteristics of the loop: First,

the rhythmic pattern is often presented as a combination of

instrument sounds (eg. Figure 1), thus exhibiting a certain

‘rhythm polyphony’ [3]. To analyze this, the signal is split

into the so-called rhythmic streams. Then, to describe the

underlying rhythm, features are extracted for each stream

based on three attributes: a) The attack phase of the on-

sets is considered to describe if the pattern is performed on
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Figure 2: Overview of methodology.

percussive or non-percussive instruments. Although this

is typically viewed as a timbre attribute, the percussive-

ness of a sound is expected to influence the perception

of rhythm [16]. b) The repetition of rhythmic sequences

of the pattern are described by evaluating characteristics

of different levels of onsets’ periodicity. c) The metrical

structure of the pattern is characterized via features ex-

tracted from the metrical profile [24] of onsets. Based on

the above, a feature vector is extracted for each segment

and is used to measure rhythm similarity. Inter-segment

similarity is evaluated with perceptual ratings collected via

a specifically designed experiment. An overview of the

methodology is shown in Figure 2 and details for each step

are provided in the sections below. Part of the algorithm is

implemented using the MIRToolbox [17].

2.1 Rhythmic Streams

Several instruments contribute to the rhythmic pattern of

an EDM track. Most typical examples include combina-

tions of bass drum, snare and hi-hat (eg. Figure 1). This

is mainly a functional rather than a strictly instrumental di-

vision, and in EDM one finds various instrument sounds

to take the role of bass, snare and hi-hat. In describing

rhythm, it is essential to distinguish between these sources

since each contributes differently to rhythm perception [11].

Following this, [15, 24] describe rhythmic patterns of

latin dance music in two prefixed frequency bands (low and

high frequencies), and [9] represents drum patterns as two

components, the bass and snare drum pattern, calculated

via non-negative matrix factorization of the spectrogram.

In [20], rhythmic events are split based on their perceived

loudness and brightness, where the latter is defined as a

function of the spectral centroid.

In the current study, rhythmic streams are extracted with

respect to the frequency domain and loudness pattern. In

particular, the Short Time Fourier Transform of the sig-

nal is computed and logarithmic magnitude spectra are as-

signed to bark bands, resulting into a total of 24 bands for

a 44.1 kHz sampling rate. Synchronous masking is mod-

eled using the spreading function of [23], and temporal

masking is modeled with a smoothing window of 50 ms.

This representation is hereafter referred to as loudness en-

velope and denoted by Lb for bark bands b = 1, . . . , 24. A

self-similarity matrix is computed from this 24-band rep-

resentation indicating the bands that exhibit similar loud-

ness pattern. The novelty approach of [8] is applied to

the 24× 24 similarity matrix to detect adjacent bands that

should be grouped to the same rhythmic stream. The peak

locations P of the novelty curve define the number of the

bark band that marks the beginning of a new stream, i.e., if

P = {pi ∈ {1, . . . , 24}|i = 1, . . . , I} for total number of

peaks I , then stream Si consists of bark bands b given by,

Si =

{
{b|b ∈ [pi, pi+1 − 1]} for i = 1, . . . , I − 1
{b|b ∈ [pI , 24]} for i = I.

(1)

An upper limit of 6 streams is considered based on the ap-

proach of [22] that uses a total of 6 bands for onset detec-

tion and [14] that suggests a total of three or four bands for

meter analysis.

The notion of rhythmic stream here is similar to the no-

tion of ‘accent band’ in [14] with the difference that each

rhythmic stream is formed on a variable number of adja-

cent bark bands. Detecting a rhythmic stream does not

necessarily imply separating the instruments, since if two

instruments play the same rhythm they should be grouped

to the same rhythmic stream. The proposed approach does

not distinguish instruments that lie in the same bark band.

The advantage is that the number of streams and the fre-

quency range for each stream do not need to be predeter-

mined but are rather estimated from the spectral represen-

tation of each song. This benefits the analysis of electronic

dance music by not imposing any constraints on the possi-

ble instrument sounds that contribute to the characteristic

rhythmic pattern.

2.1.1 Onset Detection

To extract onset candidates, the loudness envelope per bark

band and its derivative are normalized and summed with

more weight on loudness than its derivative, i.e.,

Ob(n) = (1− λ)Nb(n) + λN ′
b(n) (2)

where Nb is the normalized loudness envelope Lb, N ′
b the

normalized derivative of Lb, n = 1, . . . , N the frame num-

ber for a total of N frames, and λ < 0.5 the weighting fac-

tor. This is similar to the approach described by Equation

3 in [14] with reduced λ, and is computed prior summation

to the different streams as suggested in [14,22]. Onsets are

detected via peak extraction within each stream, where the

(rhythmic) content of stream i is defined as

Ri = Σb∈Si
Ob (3)

with Si as in Equation 1 and Ob as in Equation 2. This

onset detection approach incorporates similar methodolog-

ical concepts with the positively evaluated algorithms for

the task of audio onset detection [1] in MIREX 2012, and

tempo estimation [14] in the review of [25].
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Figure 3: Detection of rhyhmic streams using the novelty approach; first a bark-band spectrogram is computed, then its

self-similarity matrix, and then the novelty [7] is applied where the novelty peaks define the stream boundaries.

2.2 Feature Extraction

The onsets in each stream represent the rhythmic elements

of the signal. To model the underlying rhythm, features

are extracted from each stream, based on three attributes,

namely, characterization of attack, periodicity, and metri-

cal distribution of onsets. These are combined to a feature

vector that serves for measuring inter-segment similarity.

The sections below describe the feature extraction process

in detail.

2.2.1 Attack Characterization

To distinguish between percussive and non-percussive pat-

terns, features are extracted that characterize the attack pha-

se of the onsets. In particular, the attack time and attack

slope are considered, among other, essential in modeling

the perceived attack time [10]. The attack slope was also

used in modeling pulse clarity [16]. In general, onsets from

percussive sounds have a short attack time and steep attack

slope, whereas non-percussive sounds have longer attack

time and gradually increasing attack slope.

For all onsets in all streams, the attack time and at-

tack slope is extracted and split in two clusters; the ‘slow’

(non-percussive) and ‘fast’ (percussive) attack phase on-

sets. Here, it is assumed that both percussive and non-

percussive onsets can be present in a given segment, hence

splitting in two clusters is superior to, e.g., computing the

average. The mean and standard deviation of the two clus-

ters of the attack time and attack slope (a total of 8 features)

is output to the feature vector.

2.2.2 Periodicity

One of the most characteristic style elements in the musical

structure of EDM is repetition; the loop, and consequently

the rhythmic sequence(s), are repeating patterns. To ana-

lyze this, the periodicity of the onset detection function per

stream is computed via autocorrelation and summed across

all streams. The maximum delay taken into account is pro-

portional to the bar duration. This is calculated assuming a

steady tempo and 4
4 meter throughout the EDM track [2].

The tempo estimation algorithm of [21] is used.

From the autocorrelation curve (cf. Figure 4), a total of

5 features are extracted:

Lag duration of maximum autocorrelation: The lo-

cation (in time) of the second highest peak (the first being

at lag 0) of the autocorrelation curve normalized by the bar

duration. It measures whether the strongest periodicity oc-

curs in every bar (i.e. feature value = 1), or every half bar

(i.e. feature value = 0.5) etc.

Amplitude of maximum autocorrelation: The am-

plitude of the second highest peak of the autocorrelation

curve normalized by the amplitude of the peak at lag 0.

It measures whether the pattern is repeated in exactly the

same way (i.e. feature value = 1) or somewhat in a similar

way (i.e. feature value < 1) etc.

Harmonicity of peaks: This is the harmonicity as de-

fined in [16] with adaptation to the reference lag l0 cor-

responding to the beat duration and additional weighting

of the harmonicity value by the total number of peaks of

the autocorrelation curve. This feature measures whether

rhythmic periodicities occur in harmonic relation to the

beat (i.e. feature value = 1) or inharmonic (i.e. feature

value = 0).

Flatness: Measures whether the autocorrelation curve

is smooth or spiky and is suitable for distinguishing be-

tween periodic patterns (i.e. feature value = 0), and non-

periodic (i.e. feature value = 1).

Entropy: Another measure of the ‘peakiness’ of auto-

correlation [16], suitable for distinguishing between ‘clear’

repetitions (i.e. distribution with narrow peaks and hence

feature value close to 0) and unclear repetitions (i.e. wide

peaks and hence feature value increased).

2.2.3 Metrical Distribution

To model the metrical aspects of the rhythmic pattern, the

metrical profile [24] is extracted. For this, the downbeat

is detected as described in Section 2.2.4, onsets per stream

are quantized assuming a 4
4 meter and 16-th note resolu-

tion [2], and the pattern is collapsed to a total of 4 bars. The

latter is in agreement with the length of a musical phrase

in EDM being usually in multiples of 4, i.e., 4-bar, 8-bar,

or 16-bar phrase [2]. The metrical profile of a given stream

is thus presented as a vector of 64 bins (4 bars × 4 beats

× 4 sixteenth notes per beat) with real values ranging be-

tween 0 (no onset) to 1 (maximum onset strength) as shown

in Figure 5. For each rhythmic stream, a metrical pro-
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Figure 5: Metrical profile of the rhythm in Figure 1 assum-

ing for simplicity a 2-bar length and constant amplitude.

file is computed and the following features are extracted.

Features are computed per stream and averaged across all

streams.

Syncopation: Measures the strength of the events lying

on the weak locations of the meter. The syncopation model

of [18] is used with adaptation to account for the amplitude

(onset strength) of the syncopated note. Three measures of

syncopation are considered that apply hierarchical weights

with, respectively, sixteenth note, eighth note, and quarter

note resolution.

Symmetry: Denotes the ratio of the number of onsets

in the second half of the pattern that appear in exactly the

same position in the first half of the pattern [6].

Density: Is the ratio of the number of onsets over the

possible total number of onsets of the pattern (in this case

64).

Fullness: Measures the onsets’ strength of the pattern.

It describes the ratio of the sum of onsets’ strength over the

maximum strength multiplied by the possible total number

of onsets (in this case 64).

Centre of Gravity: Denotes the position in the pattern

where the most and strongest onsets occur (i.e., indicates

whether most onsets appear at the beginning or at the end

of the pattern etc.).

Aside from these features, the metrical profile (cf. Fig-

ure 5) is also added to the final feature vector. This was

found to improve results in [24]. In the current approach,

the metrical profile is provided per stream, restricted to a

total of 4 streams, and output in the final feature vector in

order of low to high frequency content streams.

2.2.4 Downbeat Detection

The downbeat detection algorithm uses information from

the metrical structure and musical heuristics. Two assump-

tions are made:

Assumption 1: Strong beats of the meter are more likely

to be emphasized across all rhythmic streams.

Assumption 2: The downbeat is often introduced by

an instrument in the low frequencies, i.e. a bass or a kick

drum [2, 13].

Considering the above, the onsets per stream are quan-

tized assuming a 4
4 meter, 16-th note resolution, and a set of

downbeat candidates (in this case the onsets that lie within

one bar length counting from the beginning of the seg-

ment). For each downbeat candidate, hierarchical weights

[18] that emphasize the strong beats of the meter as indi-

cated by Assumption 1, are applied to the quantized pat-

terns. Note, there is one pattern for each rhythmic stream.

The patterns are then summed by applying more weight to

the pattern of the low-frequency stream as indicated by As-

sumption 2. Finally, the candidate whose quantized pattern

was weighted most, is chosen as the downbeat.

3. EVALUATION

One of the greatest challenges of music similarity evalu-

ation is the definition of a ground truth. In some cases,

objective evaluation is possible, where a ground truth is de-

fined on a quantifiable criterion, i.e., rhythms from a partic-

ular genre are similar [5]. In other cases, music similarity

is considered to be influenced by the perception of the lis-

tener and hence subjective evaluation is more suitable [19].

Objective evaluation in the current study is not preferable

since different rhythms do not necessarily conform to dif-

ferent genres or subgenres 1 . Therefore a subjective eval-

uation is used where predictions of rhythm similarity are

compared to perceptual ratings collected via a listening ex-

periment (cf. Section 3.4). Details of the evaluation of

rhythmic stream, onset, and downbeat detection are pro-

vided in Sections 3.1 - 3.3. A subset of the annotations

used in the evaluation of the latter is available online 2 .

3.1 Rhythmic Streams Evaluation

The number of streams is evaluated with perceptual anno-

tations. For this, a subset of 120 songs from a total of 60
artists (2 songs per artist) from a variety of EDM genres

and subgenres was selected. For each song, segmentation

was applied using the algorithm of [21] and a characteristic

segment was selected. Four subjects were asked to evalu-

ate the number of rhythmic streams they perceive in each

segment, choosing between 1 to 6, where rhythmic stream

was defined as a stream of unique rhythm.

For 106 of the 120 segments, the subjects’ responses’

standard deviation was significantly small. The estimated

number of rhythmic streams matched the mean of the sub-

ject’s response distribution with an accuracy of 93%.

1 Although some rhythmic patterns are characteristic to an EDM genre
or subgenre, it is not generally true that these are unique and invariant.

2 https://staff.fnwi.uva.nl/a.k.honingh/rhythm_
similarity.html
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3.2 Onset Detection Evaluation

Onset detection is evaluated with a set of 25 MIDI and

corresponding audio excerpts, specifically created for this

purpose. In this approach, onsets are detected per stream,

therefore onset annotations should also be provided per

stream. For a number of different EDM rhythms, MIDI

files were created with the constraint that each MIDI in-

strument performs a unique rhythmic pattern therefore rep-

resents a unique stream, and were converted to audio.

The onsets estimated from the audio were compared to

the annotations of the MIDI file using the evaluation mea-

sures of the MIREX Onset Detection task 3 . For this, no

stream alignment is performed but rather onsets from all

streams are grouped to a single set. For 25 excerpts, an

F -measure of 85%, presicion of 85%, and recall of 86%
are obtained with a tolerance window of 50 ms. Inaccura-

cies in onset detection are due (on average) to doubled than

merged onsets, because usually more streams (and hence

more onsets) are detected.

3.3 Downbeat Detection Evaluation

To evaluate the downbeat the subset of 120 segments de-

scribed in Section 3.1 was used. For each segment the

annotated downbeat was compared to the estimated one

with a tolerance window of 50 ms. An accuracy of 51%
was achieved. Downbeat detection was also evaluated at

the beat-level, i.e., estimating whether the downbeat cor-

responds to one of the four beats of the meter (instead of

off-beat positions). This gave an accuracy of 59%, mean-

ing that in the other cases the downbeat was detected on the

off-beat positions. For some EDM tracks it was observed

that high degree of periodicity compensates for a wrongly

estimated downbeat. The overall results of the similarity

predictions of the model (Section 3.4) indicate only a mi-

nor increase when the correct (annotated) downbeats are

taken into account. It is hence concluded that the down-

beat detection algorithm does not have great influence on

the current results of the model.

3.4 Mapping Model Predictions to Perceptual Ratings
of Similarity

The model’s predictions were evaluated with perceptual

ratings of rhythm similarity collected via a listening ex-

periment. Pairwise comparisons of a small set of segments

representing various rhythmic patterns of EDM were pre-

sented. Subjects were asked to rate the perceived rhythm

similarity, choosing from a four point scale, and report also

the confidence of their rating. From a preliminary collec-

tion of experiment data, 28 pairs (representing a total of 18
unique music segments) were selected for further analysis.

These were rated from a total of 28 participants, with mean

age 27 years old and standard deviation 7.3. The 50% of

the participants received formal musical training, 64% was

familiar with EDM and 46% had experience as EDM mu-

sician/producer. The selected pairs were rated between 3 to

5 times, with all participants reporting confidence in their

3 www.MIREX.org

r p features
-0.17 0.22 attack characterization

0.48 0.00 periodicity

0.33 0.01 metrical distribution excl. metrical profile

0.69 0.00 metrical distribution incl. metrical profile

0.70 0.00 all

Table 1: Pearson’s correlation r and p-values between the

model’s predictions and perceptual ratings of rhythm sim-

ilarity for different sets of features.

rating, and all ratings being consistent, i.e., rated similarity

was not deviating more than 1 point scale. The mean of the

ratings was utilized as the ground truth rating per pair.

For each pair, similarity can be calculated via applying

a distance metric to the feature vectors of the underlying

segments. In this preliminary analysis, the cosine distance

was considered. Pearson’s correlation was used to compare

the annotated and predicted ratings of similarity. This was

applied for different sets of features as indicated in Table 1.

A maximum correlation of 0.7 was achieved when all

features were presented. The non-zero correlation hypoth-

esis was not rejected (p > 0.05) for the attack character-

ization features indicating non-significant correlation with

the (current set of) perceptual ratings. The periodicity fea-

tures are correlated with r = 0.48, showing a strong link

with perceptual rhythm similarity. The metrical distribu-

tion features indicate a correlation increase of 0.36 when

the metrical profile is included in the feature vector. This

is in agreement with the finding of [24].

As an alternative evaluation measure, the model’s pre-

dictions and perceptual ratings were transformed to a bi-

nary scale (i.e., 0 being dissimilar and 1 being similar)

and their output was compared. The model’s predictions

matched the perceptual ratings with an accuracy of 64%.

Hence the model matches the perceptual similarity ratings

at not only relative (i.e., Pearson’s correlation) but also ab-

solute way, when a binary scale similarity is considered.

4. DISCUSSION AND FUTURE WORK

In the evaluation of the model, the following considera-

tions are made. High correlation of 0.69 was achieved

when the metrical profile, output per stream, was added to

the feature vector. An alternative experiment tested the cor-

relation when considering the metrical profile as a whole,

i.e., as a sum across all streams. This gave a correlation of

only 0.59 indicating the importance of stream separation

and hence the advantage of the model to account for this.

A maximum correlation of 0.7 was reported, taking into

account the downbeat detection being 51% of the cases

correct. Although regularity in EDM sometimes compen-

sates for this, model’s predictions can be improved with a

more robust downbeat detection.

Features of periodicity (Section 2.2.2) and metrical dis-

tribution (Section 2.2.3) were extracted assuming a 4
4 me-

ter, and 16-th note resolution throughout the segment. This

is generally true for EDM, but exceptions do exist [2]. The
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assumptions could be relaxed to analyze EDM with ternary

divisions or no 4
4 meter, or expanded to other music styles

with similar structure.

The correlation reported in Section 3.4 is computed from

a preliminary set of experiment data. More ratings are cur-

rently collected and a regression analysis and tuning of the

model is considered in future work.

5. CONCLUSION

A model of rhythm similarity for Electronic Dance Music

has been presented. The model extracts rhythmic features

from audio segments and computes similarity by compar-

ing their feature vectors. A method for rhythmic stream

detection is proposed that estimates the number and range

of frequency bands from the spectral representation of each

segment rather than a fixed division. Features are extracted

from each stream, an approach shown to benefit the anal-

ysis. Similarity predictions of the model match perceptual

ratings with a correlation of 0.7. Future work will fine-tune

predictions based on a perceptual rhythm similarity model.
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ABSTRACT

Evaluating music recommender systems is a highly repet-

itive, yet non-trivial, task. But it has the advantage over

other domains that recommended songs can be evaluated

immediately by just listening to them.

In this paper, we present MUSE – a music recommen-

dation management system – for solving the typical tasks

of an in vivo evaluation. MUSE provides the typical off-

the-shelf evaluation algorithms, offers an online evaluation

system with automatic reporting, and by integrating on-

line streaming services also a legal possibility to evaluate

the quality of recommended songs in real time. Finally, it

has a built-in user management system that conforms with

state-of-the-art privacy standards. New recommender al-

gorithms can be plugged in comfortably and evaluations

can be configured and managed online.

1. INTRODUCTION

One of the hallmarks of a good recommender system is a

thorough and significant evaluation of the proposed algo-

rithm(s) [6]. One way to do this is to use an offline dataset

like The Million Song Dataset [1] and split some part of

the data set as training data and run the evaluation on top

of the remainder of the data. This approach is meaning-

ful for features that are already available for the dataset,

such as e.g. tag prediction for new songs. However, some

aspects of recommending songs are inherently subjective,

such as serendipity [12], and thus the evaluation of such

algorithms can only be done in vivo, i.e. with real users

not in an artificial environment.

When conducting an in vivo evaluation, there are some

typical issues that need to be considered:

User management. While registering for evaluations, users

should be able to provide some context information about

them to guide the assignment in groups for A/B testing.

Privacy & Security. User data is highly sensitive, and

high standards have to be met wrt. who is allowed to access

c© Martin Przyjaciel-Zablocki, Thomas Hornung, Alexan-

der Schätzle, Sven Gauß, Io Taxidou, Georg Lausen.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Martin Przyjaciel-Zablocki, Thomas

Hornung, Alexander Schätzle, Sven Gauß, Io Taxidou, Georg Lausen.

“MuSe: A Music Recommendation Management System”, 15th Interna-

tional Society for Music Information Retrieval Conference, 2014.

the data. Also, an evaluation framework needs to ensure

that user data cannot be compromised.

Group selection. Users are divided into groups for A/B

testing, e.g. based on demographic criteria like age or gen-

der. Then, recommendations for group A are provided by a

baseline algorithm, and for group B by the new algorithm.

Playing songs. Unlike other domains, e.g. books, users

can give informed decisions by just listening to a song.

Thus, to assess a recommended song, it should be possi-

ble to play the song directly during the evaluation.

Evaluation monitoring. During an evaluation, it is impor-

tant to have an overview of how each algorithm performs

so far, and how many and how often users participate.

Evaluation metrics. Evaluation results are put into graphs

that contain information about the participants and the per-

formance of the evaluated new recommendation algorithm.

Baseline algorithms. Results of an evaluation are often

judged by improvements over a baseline algorithm, e.g. a

collaborative filtering algorithm [10].

In this paper, we present MUSE – a music recommen-

dation management system – that takes care of all the reg-

ular tasks that are involved in conducting an in vivo eval-

uation. Please note that MUSE can be used to perform in

vivo evaluations of arbitrary music recommendation algo-

rithms. An instance of MUSE that conforms with state-of-

the-art privacy standards is accessible by using the link be-

low, a documentation is available on the MUSE website 2 .

muse.informatik.uni-freiburg.de
The remainder of the paper is structured as follows: Af-

ter a discussion of related work in Section 2, we give an

overview of our proposed music recommendation manage-

ment system in Section 3 with some insights in our evalu-

ation framework in Section 4. Included recommenders are

presented in Section 5, and we conclude with an outlook

on future work in Section 6.

2. RELATED WORK

The related work is divided in three parts: (1) music based

frameworks for recommendations, (2) recommenders’ eval-

uation, (3) libraries and platforms for developing and plu-

gin recommenders.

Music recommendation has attracted a lot of interest

from the scientific community since it has many real life

applications and bears multiple challenges. An overview

2 MUSE - Music Sensing in a Social Context:
dbis.informatik.uni-freiburg.de/MuSe
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of factors affecting music recommender systems and chal-

lenges that emerge both for the users’ and the recommend-

ers side are highlighted in [17]. Improving music rec-

ommendations has attracted equal attention. In [7, 12],

we built and evaluated a weighted hybrid recommender

prototype that incorporates different techniques for mu-

sic recommendations. We used Youtube for playing songs

but due to a complex process of identifying and matching

songs, together with some legal issues, such an approach

is no longer feasible. Music platforms are often combined

with social media where users can interact with objects

maintaining relationships. Authors in [2] leverage this rich

information to improve music recommendations by view-

ing recommendations as a ranking problem.

The next class of related work concerns evaluation of

recommenders. An overview of existing systems and meth-

ods can be found in [16]. In this study, recommenders are

evaluated based on a set of properties relevant for differ-

ent applications and evaluation metrics are introduced to

compare algorithms. Both offline and online evaluation

with real users are conducted, discussing how to draw valu-

able conclusion. A second review on collaborative recom-

mender systems specifically can be found in [10]. It con-

sists the first attempt to compare and evaluate user tasks,

types of analysis, datasets, recommendation quality and

attributes. Empirical studies along with classification of

existing evaluation metrics and introduction of new ones

provide insights into the suitability and biases of such met-

rics in different settings. In the same context, researchers

value the importance of user experience in the evaluation

of recommender systems. In [14] a model is developed

for assessing the perceived recommenders quality of users

leading to more effective and satisfying systems. Similar

approaches are followed in [3, 4] where authors highlight

the need for user-centric systems and high involvement of

users in the evaluation process. Relevant to our study is

the work in [9] which recognizes the importance for on-

line user evaluation, while implementing such evaluations

simultaneously by the same user in different systems.

The last class of related work refers to platforms and

libraries for developing and selecting recommenders. The

authors of [6] proposed LensKit, an open-source library

that offers a set of baseline recommendation algorithms

including an evaluation framework. MyMediaLite [8] is

a library that offers state of the art algorithms for collabo-

rative filtering in particular. The API offers the possibility

for new recommender algorithm’s development and meth-

ods for importing already trained models. Both provide a

good foundation for comparing different research results,

but without a focus on in vivo evaluations of music rec-

ommenders, thus they don’t offer e.g. capabilities to play

and rate songs or manage users. A patent in [13] describes

a portal extension with recommendation engines via inter-

faces, where results are retrieved by a common recommen-

dation manager. A more general purpose recommenders

framework [5] which is close to our system, allows using

and comparing different recommendation methods on pro-

vided datasets. An API offers the possibility to develop and

incorporate algorithms in the framework, integrate plugins,

make configurations and visualize the results. However,

our system offers additionally real-time online evaluations

of different recommenders, while incorporating end users

in the evaluation process. A case study of using Apache

Mahout, a library for distributed recommenders based on

MapReduce can be found in [15]. Their study provides in-

sights into the development and evaluation of distributed

algorithms based on Mahout.

To the best of our knowledge, this is the first system

that incorporates such a variety of characteristics and offers

a full solution for music recommenders development and

evaluation, while highly involving the end users.

3. MUSE OVERVIEW

We propose MUSE: a web-based music recommendation

management system, built around the idea of recommend-

ers that can be plugged in. With this in mind, MUSE is

based on three main system design pillars:

Extensibility. The whole infrastructure is highly extensi-

ble, thus new recommendation techniques but also other

functionalities can be added as modular components.

Reusability. Typical tasks required for evaluating music

recommendations (e.g. managing user accounts, playing

and rating songs) are already provided by MUSE in ac-

cordance with current privacy standards.

Comparability. By offering one common evaluation frame-

work we aim to reduce side-effects of different systems

that might influence user ratings, improving both compa-

rability and validity of in-vivo experiments.

A schematic overview of the whole system is depicted

in Fig. 1. The MUSE Server is the core of our music rec-

ommendation management system enabling the communi-

cation between all components. It coordinates the inter-

action with pluggable recommenders, maintains the data

in three different repositories and serves the requests from

multiple MUSE clients. Next, we will give some insights

in the architecture of MUSE by explaining the most rele-

vant components and their functionalities.

3.1 Web-based User Interface

Unlike traditional recommender domains like e-commerce,

where the process of consuming and rating items takes up

to several weeks, recommending music exhibits a highly

dynamic nature raising new challenges and opportunities

for recommender systems. Ratings can be given on the fly

and incorporated immediately into the recommending pro-

cess, just by listening to a song. However, this requires

a reliable and legal solution for playing a large variety of

songs. MUSE benefits from a tight integration of Spotify 3 ,

a music streaming provider that allows listening to millions

of songs for free. Thus, recommended songs can be em-

bedded directly into the user interface, allowing to listen

and rate them in a user-friendly way as shown in Fig. 2.

3 A Spotify account is needed to play songs
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Figure 1. Muse – Music Recommendation Management System Overview

Figure 2. Songs can be played & rated

In order to make sure that users can obtain recommen-

dations without having to be long-time MUSE users, we

ask for some contextual information during the registra-

tion process. Each user has to provide coarse-grained de-

mographic and preference information, namely the user’s

spoken languages, year of birth, and optionally a Last.fm

user name. In Section 5, we will present five different

approaches that utilize those information to overcome the

cold start problem. Beyond that, these information is also

exploited for dividing users into groups for A/B testing.

Fig. 3 shows the settings pane of a user. Note, that this

window is available only for those users, who are not par-

ticipating in an evaluation. It allows to browse all available

recommenders and compare them based on meta data pro-

vided with each recommender. Moreover, it is also pos-

sible to control how recommendations from different rec-

ommenders are amalgamated to one list. To this end, a

summary is shown that illustrates the interplay of novelty,

accuracy, serendipity and diversity. Changes are applied

and reflected in the list of recommendations directly.

3.2 Data Repositories

Although recommenders in MUSE work independently of

each other and may even have their own recommendation

model with additional data, all music recommenders have

access to three global data structures.

The first one is the Music Repository that stores songs

with their meta data. Only songs in this database can be

recommended, played and rated. The Music Retrieval En-
gine periodically collects new songs and meta data from

Web Services, e.g. chart lists or Last.fm. It can be easily

extended by new sources of information like audio analy-

sis features from the Million Song Dataset [1], that can be

requested periodically or dynamically. Each recommender

can access all data stored in the Music Repository.

The second repository stores the User Profile, hence

it also contains personal data. In order to comply with

German data privacy requirements only restricted access is

granted for both, recommenders and evaluation analyses.

The last repository collects the User Context, e.g. which

songs a user has listened to with the corresponding rating

for the respective recommender.

Access with anonymized user IDs is granted for all rec-

ommenders and evaluation analyses. Finally, both user-

related repositories can be enriched by the User Profile
Engine that fetches data from other sources like social net-

works. Currently, the retrieval of listening profiles of pub-

licly available data from Last.fm and Facebook is supported.

3.3 Recommender Manager

The Recommender Manager has to coordinate the interac-

tion of recommenders with users and the access to the data.

This process can be summarized as follows:

• It coordinates access to the repositories, forwards

user request for new recommendations, and receives

generated recommendations.

• It composes a list of recommendations by amalga-

mating recommendations from different recommend-

ers into one list based on individual user settings.
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Figure 3. Users can choose from available recommenders

• A panel for administrative users allows enabling, dis-

abling and adding of recommenders that implement

the interface described in Section 3.4. Moreover,

even composing hybrid recommenders is supported.

3.4 Pluggable Recommender

A cornerstone of MUSE is its support for plugging in rec-

ommenders easily. The goal was to design a rather simple

and compact interface enabling other developers to imple-

ment new recommenders with enough flexibility to incor-

porate existing approaches as well. This is achieved by

a predefined Java interface that has to be implemented for

any new recommender. It defines the interplay between the

MUSE Recommender Manager and its pluggable recom-

menders by (1) providing methods to access all three data

repositories, (2) forwarding requests for recommendations

and (3) receiving recommended items. Hence, new rec-

ommenders do not have to be implemented within MUSE

in order to be evaluated, it suffices to use the interface to

provide a mapping of inputs and outputs 4 .

4. EVALUATION FRAMEWORK

There are two types of experiments to measure the per-

formance of recommenders: (1) offline evaluations based

on historical data and (2) in vivo evaluations where users

can evaluate recommendations online. Since music is of

highly subjective nature with many yet unknown correla-

tions, we believe that in vivo evaluations have the advan-

tage of also capturing subtle effects on the user during the

evaluation. Since new songs can be rated within seconds

by a user, such evaluations are a good fit for the music do-

main. MUSE addresses the typical issues that are involved

in conducting an in-vivo evaluation and thus allows re-

searches to focus on the actual recommendation algorithm.

This section gives a brief overview of how evaluations

are created, monitored and analyzed.

4 More details can be found on our project website.

4.1 Evaluation Setup

The configuration of an evaluation consists of three steps

(cf. Fig. 4): (1) A new evaluation has to be scheduled,

i.e. a start and end date for the evaluation period has to

be specified. (2) The number and setup of groups for A/B

testing has to be defined, where up to six different groups

are supported. For each group an available recommender

can be associated with the possibility of hybrid combina-

tions of recommenders if desired. (3) The group placement

strategy based on e.g. age, gender and spoken languages is

required. As new participants might join the evaluation

over time, an online algorithm maintains a uniform distri-

bution with respect to the specified criteria. After the setup

is completed, a preview illustrates how group distributions

would resemble based on a sample of registered users.

Figure 4. Evaluation setup via Web interface

While an evaluation is running, both registered users

and new ones are asked to participate after they login to

MUSE. If a user joins an evaluation, he will be assigned to

a group based on the placement strategy defined during the

setup and all ratings are considered for the evaluation. So

far, the following types of ratings can be discerned:

Song rating. The user can provide three ratings for the

quality of the recommended song (“love”, “like”, and “dis-

like”). Each of these three rating options is mapped to a

numerical score internally, which is then used as basis for

the analysis of each recommender.

List rating. The user can also provide ratings for the entire

list of recommendations that is shown to him on a five-

point Likert scale, visualized by stars.

Question. To measure other important aspects of a rec-

ommendation like its novelty or serendipity, an additional

field with a question can be configured that contains either

a yes/no button or a five-point Likert scale.

The user may also decide not to rate some of the rec-

ommendations. In order to reduce the number of non-rated

recommendations in evaluations, the rating results can only

be submitted when at least 50% of the recommendations

are rated. Upon submitting the rating results, the user gets

a new list with recommended songs.

4.2 Monitoring Evaluations

Running in vivo evaluations as a black box is undesirable,

since potential issues might be discovered only after the
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evaluation is finished. Also, it is favorable to have an over-

view of the current state, e.g. if there are enough partici-

pants, and how the recommenders perform so far. MUSE

provides comprehensive insights via an administrative ac-

count into running evaluations as it offers an easy acces-

sible visualization of the current state with plots. Thus,

adjustments like adding a group or changing the runtime

of the evaluation can be made while the evaluation is still

running.

Figure 5. Evaluation results are visualized dynamically

4.3 Analyzing Evaluations

For all evaluations, including running and finished ones,

a result overview can be accessed that shows results in a

graphical way to make them easier and quicker to grasp

(c.f. Fig. 5). The plots are implemented in a dynamic fash-

ion allowing to adjust, e.g., the zoom-level or the displayed

information as desired. They include a wide range of met-

rics like group distribution, number of participants over

time, averaged ratings, mean absolute error, accuracy per

recommender, etc. Additionally, the complete dataset or

particular plotting data can be downloaded in CSV format.

5. RECOMMENDATION TECHNIQUES

MUSE comes with two types of recommenders out-of-the-

box. The first type includes traditional algorithms, i.e. Con-
tend Based and Collaborative Filtering [10] that can be

used as baseline for comparison. The next type of recom-

menders is geared towards overcoming the cold start prob-

lem by (a) exploiting information provided during regis-

tration (Annual, Country, and City Charts recommender),

or (b) leveraging knowledge from social networks (Social
Neighborhood and Social Tags recommender).

Annual Charts Recommender. Studies have shown, that

the apex of evolving music taste is reached between the

age of 14 and 20 [11]. The Annual Charts Recommender

exploits this insight and recommends those songs, which

were popular during this time. This means, when a user

indicates 1975 as his year of birth, he will be assigned to

the music context of years 1989 to 1995, and obtain recom-

mendations from that context. The recommendation rank-

ing is defined by the charts position in the corresponding

annual charts, where the following function is used to map

the charts position to a score, with cs as the position of

song s in charts c and n is the maximum rank of charts c:

score(s) = −log( 1
n
cs) (1)

Country Charts Recommender. Although music taste

is subject to diversification across countries, songs that a

user has started to listen to and appreciate oftentimes have

peaked in others countries months before. This latency as-

pect as well as an inter-country view on songs provide a

good foundation for serendipity and diversity. The source

of information for this recommender is the spoken lan-

guages, provided during registration, which are mapped to

a set of countries for which we collect the current charts.

Suppose there is a user a with only one country A assigned

to his spoken languages, and CA the set of charts songs for

A. Then, the set CR of possible recommendations for a is

defined as follows, where L is the set of all countries:

CR = (
⋃
X∈L

CX) \ CA

The score for a song s ∈ CR is defined by the average

charts position across all countries, where Function (1) is

used for mapping the charts position into a score.

City Charts Recommender. While music tastes differ

across countries, they may likewise differ across cities in

the same country. We exploit this idea by the City Charts

Recommender, hence it can be seen as a more granular

variant of the Country Charts Recommender. The set of

recommendations CR is now composed based on the city

charts from those countries a user was assigned to. Hereby,

the ranking of songs in that set is not only defined by the

average charts position, but also by the number of cities

where the song occurs in the charts: The fewer cities a

song appears in, the more “exceptional” and thus relevant

it is.

Social Neighborhood Recommender. Social Networks

are, due to their growing rates, an excellent source for con-

textual knowledge about users, which in turn can be uti-

lized for better recommendations. In this approach, we use

the underlying social graph of Last.fm to generate recom-

mendations based on user’s Last.fm neighborhood which

can be retrieved by our User Profile Engine. To compute

recommendations for a user a, we select his five closest

neighbors, an information that is estimated by Last.fm in-

ternally. Next, for each of them, we retrieve its recent top

20 songs and thus get five sets of songs, namely N1...N5.

Since that alone would provide already known songs in

general, we define the set NR of possible recommenda-

tions as follows, where Na is the set of at most 25 songs a
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user a recently listened to and appreciated:

NR = (
⋃

1≤i≤5

Ni) \Na

Social Tags Recommender. Social Networks collect an

enormous variety of data describing not only users but also

items. One common way of characterising songs is based

on tags that are assigned to them in a collaborative man-

ner. Our Social Tag Recommender utilizes such tags to

discover new genres which are related to songs a user liked

in the past. At first, we determine his recent top ten songs

including their tags from Last.fm. We merge all those tags

and filter out the most popular ones like “rock” or “pop” to

avoid getting only obvious recommendations. By count-

ing the frequency of the remaining tags, we determine the

three most common thus relevant ones. For the three se-

lected tags, we use again Last.fm to retrieve songs where

the selected tags were assigned to most frequently.

To test our evaluation framework as well as to assess the

performance of our five recommenders we conducted an in

vivo evaluation with MUSE. As a result 48 registered users

rated a total of 1567 song recommendations confirming the

applicability of our system for in vivo evaluations. Due

to space limitations, we decided to omit a more detailed

discussion of the results.

6. CONCLUSION

MUSE puts the fun back in developing new algorithms for

music recommendations by taking the burden from the re-

searcher to spent cumbersome time on programming yet

another evaluation tool. The module-based architecture of-

fers the flexibility to immediately test novel approaches,

whereas the web-based user-interface gives control and in-

sight into running in vivo evaluations. We tested MUSE

with a case study confirming the applicability and stability

of our proposed music recommendation management sys-

tem. As future work, we envision to increase the flexibility

of setting up evaluations, add more metrics to the result

overview, and to develop further connectors for social net-

works and other web services to enrich the user’s context

while preserving data privacy.
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ABSTRACT

We present an algorithm that, given a very small snippet

of an audio performance and a database of musical scores,

quickly identifies the piece and the position in the score.

The algorithm is both tempo- and transposition-invariant.

We approach the problem by extending an existing tempo-

invariant symbolic fingerprinting method, replacing the ab-

solute pitch information in the fingerprints with a relative

representation. Not surprisingly, this leads to a big de-

crease in the discriminative power of the fingerprints. To

overcome this problem, we propose an additional verifi-

cation step to filter out the introduced noise. Finally, we

present a simple tracking algorithm that increases the re-

trieval precision for longer queries. Experiments show that

both modifications improve the results, and make the new

algorithm usable for a wide range of applications.

1. INTRODUCTION

Efficient algorithms for content-based retrieval play an im-

portant role in many areas of music retrieval. A well known

example are audio fingerprinting algorithms, which permit

the retrieval of all audio files from the database that are

(almost) exact replicas of a given example query (a short

audio excerpt). For this task there exist efficient algorithms

that are in everyday commercial use (see e.g. [4], [13]).

A related task, relevant especially in the world of classi-

cal music, is the following: given a short audio excerpt of

a performance of a piece, identify both the piece (i.e. the

musical score the performance is based on), and the posi-

tion within the piece. For example, when presented with an

audio excerpt of Vladimir Horowitz playing Chopin’s Noc-

turne Op. 55 No. 1, the goal is to return the name and data

of the piece (Nocturne Op. 55 No. 1 by Chopin) rather than

identifying the exact audio recording. Hence, the database

for this task does not contain audio recordings, but sym-

bolic representations of musical scores. This is related to

version identification (see [11] for an overview), where the

c© Andreas Arzt1, Gerhard Widmer1,2, Reinhard

Sonnleitner1.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Andreas Arzt1, Gerhard Widmer1,2,

Reinhard Sonnleitner1. “Tempo- and Transposition-invariant Identifica-

tion of Piece and Score Position”, 15th International Society for Music

Information Retrieval Conference, 2014.

goal is to identify different versions of one and the same

song, mostly in order to detect cover versions in popular

music.

A common way to solve this task, especially for clas-

sical music, is to use an audio matching algorithm (see

e.g. [10]). Here, all the scores are first transformed into

audio files (or a suitable in-between representation), and

then aligned to the query in question, most commonly with

algorithms based on dynamic programming techniques. A

limitation of this approach is that relatively large queries

are needed (e.g. 20 seconds), to achieve good retrieval re-

sults. Another problem is computational cost. To cope

with this, in [8] clever indexing strategies were presented

that greatly reduce the computation time.

In [2] an approach is presented that tries to solve the

task in the symbolic domain instead. First, the query is

transformed into a symbolic list of note events via an audio
transcription algorithm. Then, a globally tempo-invariant

fingerprinting method is used to query the database and

identify matching positions. In this way even for queries

with lengths of only a few seconds very robust retrieval

results can be achieved. A downside is that this method

depends on automatic music transcription, which in gen-

eral is an unsolved problem. In [2] a state of the art tran-

scription system for piano music is used, thus limiting the

approach to piano music only, at least for the time being.

In addition, we identified two other limitations of this

algorithm, which we tackle in this paper. First, the ap-

proach depends on the performer playing the piece in the

correct key and the correct octave (i.e. in the same key

and octave as it is stored in the database). In music it

is quite common to transpose a piece of music accord-

ing to specific circumstances, e.g. a singer preferring to

sing in a specific range. Secondly, while this algorithm

works very well for small queries, larger queries with local

tempo changes within the query tend to be problematic. Of

course these limitations were already discussed in the lit-

erature for other approaches, see e.g. [10] for tempo- and

transposition-invariant audio matching.

In this paper we present solutions to both problems by

proposing (1) a transposition-invariant fingerprinting meth-

od for symbolic music representations which uses an ad-

ditional verification step that largely compensates for the

general loss in discriminative power, and (2) a simple but

effective tracking method that essentially achieves not only

global, but also local invariance to tempo changes.
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2. TEMPO-INVARIANT FINGERPRINTING

The basis of our algorithm is a fingerprinting method pre-

sented in [2] (which in turn is based on [13]) that is invari-
ant to the global tempo of both the query and the entries

in the database. In this section we will give a brief sum-

mary of this algorithm. Then we will show how to make

it transposition-invariant (Section 3) and how to make it

invariant to local tempo changes (Section 4).

2.1 Building the Score Database

In [2] a fingerprinting algorithm was introduced that is in-

variant to global tempo differences between the query and

the scores in the database. Each score is represented as an

ordered list of [ontime, pitch] pairs, which in turn are ex-

tracted from MIDI files with a suitable but constant tempo

for the whole piece.

For each score, fingerprint tokens are generated and stor-

ed in a database. Tokens are created from triplets of note-

on events according to some constraints to make them tem-

po invariant. A fixed event e is paired with the first n1

events with a distance of at least d seconds “in the fu-

ture” of e. This results in n1 event pairs. For each of

these pairs this step is repeated with the n2 future events

with a distance of at least d seconds. This finally results

in n1 ∗ n2 event triplets. In our experiments we used the

values d = 0.05 seconds and n1 = n2 = 5 (i.e. for each

event 25 tokens are created). The pair creation steps are

constrained to notes which are at most 2 octaves apart.

Given such a triplet consisting of the events e1, e2 and

e3, the time difference td1,2 between e1 and e2 and the

time difference td2,3 between e2 and e3 are computed. To

get a tempo independent fingerprint token, the ratio of the

time differences is computed: tdr =
td2,3

td1,2
. This finally

leads to a fingerprint token dbtoken = [pitch1 : pitch2 :
pitch3 : tdr ] : pieceID : time : td1,2, with the hash

key being [pitch1 : pitch2 : pitch3 : tdr ], pieceID the

identifier of the piece, and time the onset time of e1 . The

tokens in our database are unique, i.e. we only insert the

generated token if an equivalent one does not exist yet.

2.2 Querying the Database

Before querying the database, the query (an audio snippet

of a performance) has to be transformed into a symbolic

representation. The algorithm we use to transcribe musical

note onsets from an audio signal is based on the system

described in [3]. The result of this step is a possibly very

noisy list of [ontime, pitch] pairs.

This list is processed in exactly the same fashion as

above, resulting in a list of tokens of the form qtoken =
[qpitch1 : qpitch2 : qpitch3 : qtdr ] : qtime : qtd1,2.

Then, all the tokens which match hash keys of the query

tokens are extracted from the database (we allow a maxi-

mal deviation of the ratio of the time differences of 15%).

For querying, the general idea is to find regions in the

database of scores which share a continuous sequence of

tokens with the query. To quickly identify these regions

we use the histogram approach presented in [2] and [13].

This is a computationally inexpensive way of finding these

sequences by sorting the matched tokens into a histogram

with a bin width of 1 second such that peaks appear at the

start points of these regions (i.e. the start point where the

query matches a database position). We also included the

restriction that each query token can only be sorted at most

once into each bin of the histogram, effectively preventing

excessively high scores for sequences of repeated patterns

in a brief period of time.

The matching score for each score position is computed

as the number of tokens in the respective histogram bin. In

addition, we can also compute a tempo estimate, i.e. the

tempo of the performance compared to the tempo in the

score, by taking the mean of the ratios of td1,2 and qtd1,2

of the respective matching query and database tokens that

were sorted in the bin in question. We will use this infor-

mation for the tracking approach presented in Section 4.

3. TRANSPOSITION-INVARIANT
FINGERPRINTS

3.1 General Approach

In the algorithm described above, the pitches in the hash

keys are represented as absolute values. Thus, if a per-

former decides to transpose a piece by an arbitrary number

of semi-tones, any identification attempt by the algorithm

must fail.

To overcome this problem, we suggest a simple, relative
representation of the pitch values, which makes the algo-

rithm invariant to linear transpositions. Instead of using 3

absolute pitch values, we replace them by 2 differences,

pd1 = pitch2 − pitch1 and pd2 = pitch3 − pitch2 , re-

sulting in a hash key [pd1 : pd2 : tdr ]. For use in Section

3.2 below we additionally store pitch1, the absolute pitch

of the first note, in the token value.

In every other aspect the algorithm works in the same

way as the purely tempo-invariant version described above.

Of course this kind of transposition invariance cannot come

for free as the resulting fingerprints will not be as discrim-

inative as before. This has two important direct conse-

quences: (1) the retrieval accuracy will suffer, and (2) for

every query a lot more matching tokens are found in the

database, thus the runtime for each query increases (see

Section 5).

3.2 De-noising the Results: Token Verification

To compensate for the loss in discriminative power we pro-

pose an additional step before accepting a database token

as a match to the query. The general idea is taken from [9]

and was first used in a music context by [12]. It is based

on a verification step for each returned token that looks at

the context within the query and the context at the returned

position the database.

Each token dbtoken that was returned in response to

a qtoken can be used to project the query (i.e. the notes

identified from the query audio snippet by the transcrip-

tion algorithm) to the possibly matching position in the

score indicated by the dbtoken. The intuition then is that at
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true matching positions we will find a majority of the notes

from the query at their expected positions in the score. This

will permit us to more reliably decide if the match of hash

keys is a false positive or an actual match.

To do this, we need to compute the pitch shift and the

tempo difference between the query and the potential po-

sition in the database. The pitch shift is computed as the

difference of the pitch1 of qtoken and dbtoken. The dif-

ference in tempo is computed as the ratio of td1,2 of the

two tokens. This information can now in turn be used to

compute the expected time and pitch for each query note

at the current score position hypothesis. We actually do

not do this for the whole query, but only for a window of

w = 10 notes, centred at the event e1 of the query, and we

exclude the notes e1, e2 and e3 from this list (as they were

already used to come up with the match in the first place).

We now take these w notes and check if they appear in

the database as would be expected. In this search we are

strict on the pitch value, but allow for a window of ±100
ms with regards to the actual time in the database. If we can

confirm that a certain percentage of notes from the query

appears in the database as expected (in the experiments we

used 0.8), we finally accept the query token as an actual

match.

As this approach is computationally expensive, we actu-

ally compute the results in two steps: we first do ‘normal’

fingerprinting without the verification step and only keep

the top 5% of the results. We then perform the verification

step on these results only and recompute the scores. On

our dataset this effectively more than halves the computa-

tion time.

4. PROCESSING LONGER QUERIES:
MULTI-AGENT TRACKING

The fingerprinting method in [2] was mainly concerned

with invariance regarding the global tempo. When apply-

ing this algorithm to our database with longer queries, lo-
cal tempo changes (i.e. tempo changes within the query)

prove to be problematic, because they break the ‘cheap’

histogram approach that is used to determine continuous

regions of matching tokens.

Instead of using computationally much more expensive

methods for determining these regions, we propose to split

longer queries into shorter ones and track the results of

these sub-queries over time. This is based on the assump-

tion that in short queries the tempo is (quasi) stationary,

and that a few exceptions will not break the tracking algo-

rithm we use. In our implementation, we split each query

into sub-queries with a window size of w = 15 notes and

a hop size of h = 5 notes and then feed each sub-query to

the fingerprinter individually.

Each result of a sub-query (but at most the top 100 po-

sitions that are returned) is in turn fed to an on-line posi-

tion hypothesis tracking algorithm. In our current proof-

of-concept implementation we use a simple on-line rule-

based multi-agent approach, inspired by the beat-tracking

algorithm described in [6]. For a purely off-line retrieval

task a non-causal algorithm will lead to even better results.

The basic idea is to create virtual ‘agents’ for positions

in the result sets. Each agent has a current hypothesis of

the piece, the position within the piece and the tempo, and

a score based on the results of the sub-queries. The agents

are updated, if possible, with newly arriving data. In do-

ing so, agents that represent positions that successively oc-

cur in result sets will accumulate higher scores than agents

that represent positions that only occurred once or twice by

chance, and are most probably false positives.

More precisely, we iterate over all sub-queries and per-

form the following steps in each iteration:

• Normalise Scores: First the scores of the positions

in the result set of the sub-query are normalised by

dividing them by their median. This makes sure that

each iteration has approximately the same influence

on the tracking process.

• Update Agents: For every agent, we look for a match-

ing position in the result set of the sub-query (i.e. a

position that approximately fits the extrapolated po-

sition of the agent, given the old position, the tempo,

and the elapsed time). The position, the tempo and

the score of the agent are updated with the new data

from the matching result of the sub-query. If we do

not find a matching position in the result set, we up-

date the agent with a score of 0, and the extrapo-

lated position is taken as the new hypothesis. If a

matching position is found, the accumulated score

is updated in a fashion such that scores from further

in the past have a smaller impact than more recent

ones. Each agent has a ring buffer s of size 50, in

which the scores of the individual sub-queries are

being stored. The accumulated score of the agent is

then calculated as scoreacc =
50∑
i=1

si
1+log i , where s1

is the most recent score.

• Create Agents: Each sub-query result that was not

used to update an existing agent is used to initialise

a new agent at the respective score position (i.e. in

the first iteration up to 100 agents are created).

• Remove obsolete Agents: Finally, agents with low

scores are removed. In our implementation we sim-

ply remove agents that are older then 10 iterations

and are not part of the current top 25 agents.

At each point in time the agents are ordered by scoreacc
and can be seen as hypotheses about the current position

in the database of pieces. Thus, in the case of a single

long query, the agents with the highest accumulated scores

are returned in the end. In an on-line scenario, where an

audio stream is constantly being monitored by the finger-

printing system, the current top hypotheses can be returned

after each performed update (i.e. after each processed sub-

query).

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

551



5. EVALUATION

5.1 Dataset Description

For the evaluation of the proposed algorithms a ground

truth is needed. We need exact alignments of performances

(recordings) of classical music to their respective scores

such that we know exactly when each note given in the

score is actually played in the performance. This data can

either be generated by a computer program or by extensive

manual annotation but both ways are prone to errors.

Luckily, we have access to two unique datasets where

professional pianists played performances on a computer-

controlled piano 1 and thus every action (e.g. key presses,

pedal movements) was recorded. The first dataset (see

[14]) consists of performances of the first movements of

13 Mozart piano sonatas by Roland Batik. The second,

much larger, dataset consists of nearly the complete solo

piano works by Chopin performed by Nikita Magaloff [7].

For the latter set we do not have the original audio files and

thus replayed the symbolic performance data on a Yamaha

N2 hybrid piano and recorded the resulting performances.

As we have both symbolic and audio information about

the performances, we know the exact timing of each played

note in the audio files. To build the score database we con-

verted the sheet music to MIDI files with a constant tempo

such that the overall duration of the file is similar to a ‘nor-

mal’ performance of the piece.

In addition to these two datasets the score database in-

cludes the complete Beethoven piano sonatas, two sym-

phonies by Beethoven, and various other piano pieces. To

this data we have no ground truth, but this is irrelevant

since we do not actively query for them with performance

data in our evaluation runs. See Table 1 for an overview of

the complete dataset.

5.2 Results

For the evaluation we follow the procedure from [2]. A

score position X is considered correct if it marks the be-

ginning (+/- 1.5 seconds) of a score section that is identi-

cal in note content, over a time span the length of the query

(but at least 20 notes), to the note content of the ‘real’ score

situation corresponding to the audio segment that the sys-

tem was just listening to. We can establish this as we have

the correct alignment between performance time and score

positions — our ground truth). This complex definition

is necessary because musical pieces may contain repeated

sections or phrases, and it is impossible for the system (or

anyone else, for that matter) to guess the ‘true’ one out of a

set of identical passages matching the current performance

snippet, given just that performance snippet as input. We

acknowledge that a measurement of musical time in a score

in terms of seconds is rather unusual. But as the MIDI

tempos in our database generally are set in a meaningful

way, this seemed the best decision to make errors compa-

rable over different pieces, with different time signatures –

it would not be very meaningful to, e.g. compare errors in

bars or beats over different pieces.

1 Bösendorfer SE 290

We tested the algorithms with different query lengths:

10, 15, 20 and 25 notes (automatically transcribed from

the audio query). For each of the query lengths, we gener-

ated 2500 queries by picking random points in the perfor-

mances of our test database, and used them as input for the

proposed algorithms. Duplicate retrieval results (i.e. posi-

tions that have the exact same note content; also, duplicate

piece IDs for the experiments on piece-level) are removed

from the result set.

Table 2 shows the results of the original tempo-invariant

(but not pitch-invariant) algorithm on our dataset. Here,

we present results for two categories: correctly identified

pieces, and correctly identified piece and position in the

score. For both categories we give the percentage of cor-

rect results at rank 1, and the mean reciprocal rank. This

experiment basically confirms the results that were reported

in [2] on a larger database (more than twice as large), for

which a slight drop in performance is expected.

In addition, for the experiments with the transposition-

invariant fingerprinting method, we transposed each score

randomly by between -11 and +11 semitones – although

strictly speaking this was not necessary, as the transposition-

invariant algorithm returns exactly the same (large) set of

tokens for un-transposed and transposed queries or scores.

Table 3 gives the results of the transposition-invariant

method on these queries, both without (left) and with the

verification step (right). As expected, the use of pitch-

invariant fingerprints without additional verification causes

a big decrease in retrieval precision (compare left half of

Table 3 with Table 2). Furthermore, the loss in discrimi-

native power of the fingerprint tokens also results in an in-

creased number of tokens returned for every query, which

has a direct influence on the runtime of the algorithm (last

row in Table 3). The proposed verification step solves the

precision problem, at least to some extent, and in our opin-

ion makes the approach usable. Of course this does not

come for free, as the runtime increases slightly.

We also tried to use the verification step with the origi-

nal tempo-invariant algorithm but were not able to improve

on the retrieval results. At least on our test data the tempo-

invariant fingerprints are discriminative enough to mostly

avoid false positives.

Finally, Table 4 gives the results on slightly longer quer-

ies for both the original tempo-invariant and the new tempo-

and transposition-invariant algorithm. As can be seen, for

the detection of the exact position in the score, using no

tracking, the results based on queries with length 100 notes

are worse than those for queries with only 50 notes, i.e.

more information leads to worse results. This is caused

by local tempo changes within the query, which break the

histogram approach for finding sequences of matching to-

kens.

As shown on the right hand side for both fingerprinting

types in Table 4, the approach of splitting longer queries

into shorter ones and tracking the results takes care of this

problem. Please note that for the tracking approach we

check if the position hypotheses after the last tracking step

match the correct position in the score. Thus, as this is an
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Score Database Testset

Data Description Number of Pieces Notes in Score Notes in Performance Performance Duration

Chopin Corpus 154 325,263 326,501 9:38:36

Mozart Corpus 13 42,049 42,095 1:23:56

Additional Pieces 159 574,926 – –

Total 326 942,238

Table 1. Database and Testset Overview. In the database, all the pieces are included. As we only have performances

aligned to the scores for the Chopin and the Mozart corpus, only these are included in the test set to query the database.

Query Length in Notes 10 15 20 25

Correct Piece as Top Match 0.6 0.82 0.88 0.91
Correct Piece Mean Reciprocal Rank (MRR) 0.68 0.86 0.91 0.93
Correct Position as Top Match 0.53 0.72 0.77 0.79
Correct Position Mean Reciprocal Rank (MRR) 0.60 0.79 0.83 0.85
Mean Query Length in Seconds 1.47 2.26 3.16 3.82

Mean Query Execution Time in Seconds 0.02 0.06 0.11 0.16

Table 2. Results for different query sizes of the original tempo-invariant piece and score position identification algorithm

on the test database at the piece level (upper half) and on the score position level (lower half). Each estimate is based on

2500 random audio queries. For both categories the percentage of correct detections at rank 1 and the mean reciprocal rank

(MRR) are given. Additionally, the mean length of the query in seconds and the mean execution time for a query is shown.

Without Verification With Verification

Query Length in Notes 10 15 20 25 10 15 20 25

Correct Piece as Top Match 0.30 0.40 0.41 0.40 0.43 0.63 0.71 0.75
Correct Piece MRR 0.36 0.47 0.50 0.49 0.49 0.69 0.76 0.79
Correct Position as Top Match 0.23 0.33 0.32 0.32 0.33 0.51 0.57 0.60
Correct Position MRR 0.29 0.40 0.41 0.40 0.41 0.59 0.66 0.69
Mean Query Length in Seconds 1.47 2.26 3.16 3.82 1.47 2.26 3.16 3.82

Mean Query Execution Time in Seconds 0.10 0.32 0.62 0.91 0.12 0.38 0.72 1.09

Table 3. Results for different query sizes of the proposed tempo- and transposition-invariant piece and score position

identification algorithm on the test database with (right) and without (left) the proposed verification step. Each estimate is

based on 2500 random audio queries. The upper half shows recognition results on the piece level, the lower half on the

score position level. For both categories the percentage of correct detections at rank 1 and the mean reciprocal rank (MRR)

are given. Additionally, the mean length of the query in seconds and the mean execution time for a query is shown.

Tempo-invariant Tempo- and Pitch-invariant

No Tracking Tracking No Tracking Tracking

Query Length in Notes 50 100 50 100 50 100 50 100

Correct Piece as Top Match 0.95 0.96 0.98 1 0.81 0.79 0.92 0.98
Correct Piece MRR 0.97 0.98 0.99 1 0.85 0.82 0.94 0.99
Correct Position as Top Match 0.78 0.73 0.87 0.88 0.64 0.59 0.77 0.83
Correct Position MRR 0.85 0.81 0.89 0.90 0.72 0.66 0.82 0.86
Mean Query Length in Seconds 7.62 15.03 7.62 15.03 7.62 15.03 7.62 15.03

Mean Query Execution Time in Seconds 0.42 0.92 0.49 1.08 2.71 6.11 3.21 7.09

Table 4. Results of the proposed tracking algorithm on the test database for both the original tempo-invariant algorithm
(left) and the new tempo- and transposition-invariant approach (right), including the verification step. For the category ‘No

Tracking’, the query was fed directly to the fingerprinting algorithm. For ‘Tracking’, the queries were split into sub-queries

with a window size of 15 notes and a hop size of 5 notes, and the individual results were tracked by our proof-of-concept

multi-agent approach. Evaluation of the tracking approach is based on the finding the endpoint of a query (see text). Each

estimate is based on 2500 random audio queries. The upper half shows recognition results on the piece level, the lower half

on the score position level. For both categories the percentage of correct detections at rank 1 and the mean reciprocal rank

(MRR) are given. Additionally, the mean length of the query in seconds and the mean execution time for a query is shown.
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on-line algorithm, we are not interested in the start posi-

tion of the query in the score, but in the endpoint, i.e. if the

query was tracked successfully, and the correct current po-

sition is returned. Even the causal approach leads to a high

percentage of correct results with both the original and the

tempo- and pitch-invariant fingerprinting algorithm. Most

of the remaining mistakes happen because (very) similar

parts within one and the same piece are confused.

6. CONCLUSIONS

6.1 Applications

The proposed algorithm is useful in a wide range of ap-

plications. As a retrieval algorithm it enables fast and ro-

bust (inter- and intra-document) searching and browsing in

large collections of musical scores and corresponding per-

formances. Furthermore, we believe that the algorithm is

not limited to retrieval tasks in classical music, but may be

of use for cover version identification in general, and pos-

sibly many other tasks. For example, it was already suc-

cessfully applied in the field of symbolic music processing

to find repeating motifs and sections in complex musical

scores [5].

Currently, the algorithm is mainly used in an on-line

scenario (see [1]). In connection with a score following

algorithm it can act as a ‘piano music companion’. The

system is able to recognise arbitrary pieces of classical pi-

ano music, identify the position in the score and track the

progress of the performer. This enables a wide range of

applications for musicians and for consumers of classical

music.

6.2 Future Work

In its current state the algorithm is able to recognise the

correct piece and the score position even for very short

queries of piano music. It is invariant to both tempo dif-

ferences and transpositions and can be used in on-line con-

texts (i.e. to monitor audio streams and at any time report

what it is listening to) and as an off-line retrieval algorithm.

The main direction for future work is to lift the restriction

to piano music and make it applicable to all kinds of classi-

cal music, even orchestral music. The limiting component

at the moment is the transcription algorithm, which is only

trained on piano sounds.
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ABSTRACT

Music recommendation is a crucial task in the field of

music information retrieval. However, users frequently

withhold their real-world identity, which creates a negative

impact on music recommendation. Thus, the proposed

method recognizes users’ real-world identities based on

music metadata. The approach is based on using the tracks

most frequently listened to by a user to predict their gender

and age. Experimental results showed that the approach

achieved an accuracy of 78.87% for gender identification

and a mean absolute error of 3.69 years for the age

estimation of 48403 users, demonstrating its effectiveness

and feasibility, and paving the way for improving music

recommendation based on such personal information.

1. INTRODUCTION

Amid the rapid growth of digital music and mobile

devices, numerous online music services (e.g., Last.fm,

7digital, Grooveshark, and Spotify) provide music

recommendations to assist users in selecting songs. Most

music-recommendation systems are based on content- and

collaborative-based approaches [15]. For content-based

approaches [2,8,9], recommendations are made according

to the audio similarity of songs. By contrast,

collaborative-based approaches involve recommending

music for a target user according to matched listening

patterns that are analyzed from massive users [1, 13].

Because music preferences of users relate to their

real-world identities [12], several collaborative-based

approaches consider identification factors such as age

and gender for music recommendation [14]. However,

online music services may experience difficulty obtaining

such information. Conversely, music metadata (listening

history) is generally available. This motivated us to

recognize users’ real-world identities based on music

c© Ming-Ju Wu, Jyh-Shing Roger Jang, Chun-Hung Lu.

Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: Ming-Ju Wu, Jyh-Shing Roger

Jang, Chun-Hung Lu. “Gender Identification and Age Estimation of

Users Based on Music Metadata”, 15th International Society for Music

Information Retrieval Conference, 2014.

Identity unknown

Top-1 track Top-2 track Top-3 track …

Artist name Paul Anka The Platters Johnny Cash …

Song title You Are My 
Destiny

Only You I Love You 
Because

…

Our system

Gender: male
Age: 65

Music metadata
of the user

Input

Output

Figure 1. Illustration of the proposed system using a real

example.

metadata. Figure 1 illustrates the proposed system. In this

preliminary study, we focused on predicting gender and

age according to the most listened songs. In particular,

gender identification was treated as a binary-classification

problem, whereas age estimation was considered a

regression problem. Two features were applied for both

gender identification and age estimation tasks. The first

feature, TF*IDF, is a widely used feature representation

in natural language processing [16]. Because the music

metadata of each user can be considered directly as

a document, gender identification can be viewed as a

document categorization problem. In addition, TF*IDF is

generally applied with latent semantic indexing (LSI) to

reduce feature dimension. Consequently, this serves as the

baseline feature in this study.

The second feature, the Gaussian super vector (GSV)

[3], is a robust feature representation for speaker

verification. In general, the GSV is used to model acoustic

features such as MFCCs. In this study, music metadata was

translated into proposed hotness features (a bag-of-features

representation) and could be modeled using the GSV. The

concept of the GSV can be described as follows. First,
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a universal background model (UBM) is trained using a

Gaussian mixture model (GMM) to represent the global

music preference of users. A user-specific GMM can

then be obtained using the maximum a posteriori (MAP)

adaptation from the UBM. Finally, the mean vectors of the

user-specific GMM are applied as GSV features.

The remainder of this paper is organized as follows:

Section 2 describes the related literature, and Section 3

introduces the TF*IDF; the GSV is explained in Section

4, and the experimental results are presented in Section 5;

finally, Section 6 provides the conclusion of this study.

2. RELATED LITERATURE

Machine learning has been widely applied to music

information retrieval (MIR), a vital task of which is

content-based music classification [5, 11]. For example,

the annual Music Information Retrieval Evaluation

eXchange (MIREX) competition has been held since 2004,

at which some of the most popular competition tasks

have included music genre classification, music mood

classification, artist identification, and tag annotation.

The purpose of content-based music classification is to

recognize semantic music attributes from audio signals.

Generally, songs are represented by features with different

aspects such as timbre and rhythm. Classifiers are used

to identify the relationship between low-level features and

mid-level music metadata.

However, little work has been done on predicting

personal traits based on music metadata [7]. Figure 2

shows a comparison of our approach and content-based

music classification. At the top level, user identity provides

a basic description of users. At the middle level, music

metadata provides a description of music. A semantic gap

exists between music metadata and user identity. Beyond

content-based music classification, our approach serves

as a bridge between them. This enables online music

services to recognize unknown users more effectively and,

consequently, improve their music recommendations.

3. TF*IDF FEATURE REPRESENTATION

The music metadata of each user can be considered a

document. The TF*IDF describes the relative importance

of an artist for a specific document. LSI is then applied for

dimensionality reduction.

3.1 TF*IDF

Let the document (music metadata) of each user in the

training set be denoted as

di = {t1, t2, · · · , tn}, di ∈ D (1)

where tn is the artist name of the top-n listened to song of

user i. D is the collection of all documents in the training

set. The TF*IDF representation is composed of the term

frequency (TF) and inverse document frequency (IDF).

TF indicates the importance of an artist for a particular

document, whereas IDF indicates the discriminative power

Low level 

Middle level 

Top level 

Content-based music classification Our approach

Timbre

Rhythm

K

Artist 

Mood 

Genre

Artist 

Gender

Age

K

Features

Music
metadata

K

User identity

Music
metadata

Semantic gap

Semantic gap

Figure 2. Comparison of our approach and content-based

music classification.

of an artist among documents. The TF*IDF can be

expressed as

tfidfi,n = tfi,n × log

( |D|
dfn

)
(2)

where tfi,n is the frequency of tn in di, and dfn represents

the number of documents in which tn appears.

dfn = |{d : d ∈ D and tn ∈ d }| (3)

3.2 Latent Semantic Indexing

The TF*IDF representation scheme leads to high feature

dimensionality because the feature dimension is equal to

the number of artists. Therefore, LSI is generally applied

to transform data into a lower-dimensional semantic space.

Let W be the TF*IDF reorientation of D, where each

column represents document di. The LSI performs

singular value decomposition (SVD) as follows:

W ≈ UΣV T (4)

where U and V represent terms and documents in the

semantic space, respectively. Σ is a diagonal matrix

with corresponding singular values. Σ−1UT can be used

to transform new documents into the lower-dimensional

semantic space.

4. GSV FEATURE REPRESENTATION

This section introduces the proposed hotness features and

explains how to generate the GSV features based on

hotness features.

4.1 Hotness Feature Extraction

We assumed each artist tn may exude various degrees of

hotness to different genders and ages. For example, the
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count (the number of times) of Justin Bieber that occurs

in users’ top listened to songs of the training set was 845,

where 649 was from the female class and 196 was from

the male class. We could define the hotness of Justin

Bieber for females as 76.80% (649/845) and that for males

as 23.20% (196/845). Consequently, a user tends to be a

female if her top listened to songs related mostly to Justin

Bieber. Consequently, the age and gender characteristics of

a user can be obtained by computing the hotness features

of relevant artists.

Let D be divided into classes C according to users’

genders or ages:{
C1 ∪ C2 ∪ · · · ∪ Cp = D
C1 ∩ C2 ∩ · · · ∩ Cp = ∅ (5)

where p is the number of classes. Here, p is 2 for gender

identification and 51 (the range of age) for age estimation.

The hotness feature of each artist tn is defined as hn:

hn =

⎡⎢⎢⎢⎣
cn,1

α
cn,2

α
...

cn,p

α

⎤⎥⎥⎥⎦ (6)

where cn,p is the count of artist tn in Cp, and α is the count

of artist tn in all classes.

α =

p∑
l=1

cn,l (7)

Next, each document in (1) can be transformed to a

p × n matrix x, which describes the gender and age

characteristics of a user:

x = [h1, h2, · · · , hn] (8)

Because the form of x can be considered a bag-of-features,

the GSV can be applied directly.

4.2 GSV Feature Extraction

Figure 3 is a flowchart of the GSV feature extraction,

which can be divided into offline and online stages. At

the offline stage, the goal is to construct a UBM [10] to

represent the global hotness features, which are then used

as prior knowledge for each user at the online stage. First,

hotness features are extracted for all music metadata in

the training set. The UBM is then constructed through a

GMM estimated using the EM (expectation-maximization)

algorithm. Specifically, the UBM evaluates the likelihood

of a given feature vector x as follows:

f (x|θ) =
K∑

k=1

wkN(x|mk, rk) (9)

where θ = (w1, ..., wK ,m1, ...,mK , r1, ..., rK) is a set

of parameters, with wk denoting the mixture gain for

the kth mixture component, subject to the constraint∑K
k=1 wk = 1, and N(x|mk, rk) denoting the Gaussian

density function with a mean vector mk and a covariance

ML estimation

Training set 
(music metadata)

Offline

UBM

Hotness feature 
extraction 

Online

MAP adaptation

Hotness feature 
extraction 

A user in the 
training or test sets 
(music metadata)

1 2 km m m� �� ��

GSV

Figure 3. Flowchart of the GSV feature extraction.

matrix rk. This bag-of-features model is based on the

assumption that similar users have similar global artist

characteristics.

At the online stage, the MAP adaptation [6] is used to

produce an adapted GMM for a specific user. Specifically,

MAP attempts to determine the parameter θ in the

parameter space Θ that maximizes the posterior probability

given the training data x and hyperparameter ω, as follows:

θMAP = argmax
θ

f (x|θ) g (θ|ω) (10)

where f (x|θ) is the probability density function (PDF) for

the observed data x given the parameter θ, and g (θ|ω) is

the prior PDF given the hyperparameter ω.

Finally, for each user, the mean vectors of the adapted

GMM are stacked to form a new feature vector called

GSV. Because the adapted GMM is obtained using MAP

adaptation over the UBM, it is generally more robust

than directly modeling the feature vectors by using GMM

without any prior knowledge.

5. EXPERIMENTAL RESULTS

This section describes data collection, experimental

settings, and experimental results.

5.1 Data Collection

The Last.fm API was applied for data set collection,

because it allows anyone to access data including albums,

tracks, users, events, and tags. First, we collected

user IDs through the User.getFriends function. Second,

the User.getInfo function was applied to each user for

obtaining their age and gender information. Finally, the

User.getTopTracks function was applied to acquire at most

top-50 tracks listened to by a user. The track information

included song titles and artist names, but only artist names

were used for feature extraction in this preliminary study.

The final collected data set included 96807 users, in

which each user had at least 40 top tracks as well as

complete gender and age information. According to the

users’ country codes, they were from 211 countries (or
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Figure 4. Ratio of countries of the collected data set.
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Figure 5. Gender ratio of the collected data set.

regions such as Hong Kong). The ratio of countries

is shown in Figure 4. The majority were Western

countries. The gender ratio is shown in Figure 5, in which

approximately one-third of users (33.79%) were female

and two-thirds (66.21%) were male. The age distribution

of users is shown in Figure 6. The distribution was a

skewed normal distribution and most users were young

people.

Figure 7 shows the count of each artist that occurred

in the users’ top listened songs. Among 133938 unique

artists in the data set, the ranking of popularity presents a

pow-law distribution. This demonstrates that a few artists

dominate the top listened songs. Although the majority of

artists are not popular for all users, this does not indicate

that they are unimportant, because their hotness could be

discriminative over ages and gender.

5.2 Experimental Settings

The data set was equally divided into two subsets, the

training (48404) and test (48403) sets. An open source tool

of Python, Gensim, was applied for the TF*IDF and LSI

implementation. followed the default setting of Gensim
that maintained 200 latent dimensions for the TF*IDF. A

support vector machine (SVM) tool, LIBSVM [4], was

applied as the classifier. The SVM extension, support

vector regression (SVR) was applied as the regressor,

which has been observed in many cases to be superior
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Figure 6. Age distribution of the collected data set.
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Figure 7. Count of artists of users’ top listened songs.

Ranking of popularity presents a pow-law distribution.

to existing regression approaches. The RBF kernel with

γ = 8 was applied to the SVM and SVR. For the

UBM parameters, two Gaussian mixture components were

experimentally applied (similar results can be obtained

when using a different number of mixture components).

Consequently, the numbers of dimensions of GSV features

for gender identification and age estimation were 4 (2×2)

and 102 (2×51), respectively.

5.3 Gender Identification

The accuracy was 78.87% and 78.21% for GSV and

TF*IDF + LSI features, respectively. This indicates that

both features are adequate for such a task. Despite

the low dimensionality of GSV (4), it was superior to

the high dimensionality of TF*IDF + LSI (200). This

indicates the effectiveness of GSV use and the proposed

hotness features. Figures 8 and 9 respectively show

the confusion matrix of using GSV and TF*IDF + LSI

features. Both features yielded higher accuracies for

the male class than for the female class. A possible

explanation is that a portion of the females’ were similar to

the males’. The classifier tended to favor the majority class
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(male), resulting in many female instances with incorrect

predictions. The age difference can also be regarded for

further analysis. Figure 10 shows the gender identification

results of two features over various ages. Both features

tended to have lower accuracies between the ages of 25 and

40 years, implying that a user whose age is between 25 and

40 years seems to have more blurred gender boundaries

than do users below 25 years and above 40 years.

5.4 Age Estimation

Table 1 shows the performance comparison for age

estimation. The mean absolute error (MAE) was applied

as the performance index. The range of the predicted ages

of the SVR is between 15 and 65 years. The experimental

results show that the MAE is 3.69 and 4.25 years for GSV

and TF*IDF + LSI, respectively. The GSV describes the

age characteristics of a user and utilizes prior knowledge

from the UBM; therefore, the GSV features are superior to

86.40%
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13.60%
(4358)

35.89%
(5870)

64.11%
(10485)

Male
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M
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Accuracy 78.87%

Figure 8. Confusion matrix of gender identification by

using GSV features.
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Figure 9. Confusion matrix of gender identification by

using TF*IDF + LSI features.

Method MAE MAE (male) MAE (female)

GSV 3.69 4.31 2.48

TF*IDF+LSI 4.25 4.86 3.05

Table 1. Performance comparison for age estimation.

those of the TF*IDF + LSI.

For further analysis, gender difference was also

considered. Notably, the MAE of females is less than

that of males for both GSV and TF*IDF + LSI features.

In particular, the MAE differences between males and

females are approximately 1.8 for both features, implying

that females have more distinct age divisions than males

do.

6. CONCLUSION AND FUTURE WORK

This study confirmed the possibility of predicting users’

age and gender based on music metadata. Three of the

findings are summarized as follows.

• GSV features are superior to those of TF*IDF +

LSI for both gender identification and age estimation

tasks.

• Males tend to exhibit higher accuracy than females

do in gender identification, whereas females are

more predictable than males in age estimation.

• The experimental results indicate that gender

identification is influenced by age, and vice versa.

This suggests that an implicit relationship may exist

between them.

Future work could include utilizing the proposed

approach to improve music recommendation systems. We

will also explore the possibility of recognizing deeper

social aspects of user identities, such as occupation and

education level.
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Figure 10. Gender identification results for various ages.
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ABSTRACT

We present an information-theoretic approach to the mea-

surement of users’ music listening behaviour and selection

of music features. Existing ethnographic studies of mu-

sic use have guided the design of music retrieval systems

however are typically qualitative and exploratory in nature.

We introduce the SPUD dataset, comprising 10, 000 hand-

made playlists, with user and audio stream metadata. With

this, we illustrate the use of entropy for analysing music

listening behaviour, e.g. identifying when a user changed

music retrieval system. We then develop an approach to

identifying music features that reflect users’ criteria for

playlist curation, rejecting features that are independent of

user behaviour. The dataset and the code used to produce

it are made available. The techniques described support

a quantitative yet user-centred approach to the evaluation

of music features and retrieval systems, without assuming

objective ground truth labels.

1. INTRODUCTION

Understanding how users interact with music retrieval sys-

tems is of fundamental importance to the field of Music

Information Retrieval (MIR). The design and evaluation of

such systems is conditioned upon assumptions about users,

their listening behaviours and their interpretation of mu-

sic. While user studies have offered guidance to the field

thus far, they are mostly exploratory and qualitative [20].

The availability of quantitative metrics would support the

rapid evaluation and optimisation of music retrieval. In

this work, we develop an information-theoretic approach

to measuring users’ music listening behaviour, with a view

to informing the development of music retrieval systems.

To demonstrate the use of these measures, we compiled

‘Streamable Playlists with User Data’ (SPUD) – a dataset

comprising 10, 000 playlists from Last.fm 1 produced by

3351 users, with track metadata including audio streams

from Spotify. 2 We combine the dataset with the mood and

genre classification of Syntonetic’s Moodagent, 3 yielding

a range of intuitive music features to serve as examples.

c© Daniel Boland, Roderick Murray-Smith.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Daniel Boland, Roderick Murray-

Smith. “Information-Theoretic Measures of Music Listening Behaviour”,

15th International Society for Music Information Retrieval Conference,

2014.

We identify the entropy of music features as a metric

for characterising music listening behaviour. This mea-

sure can be used to produce time-series analyses of user

behaviour, allowing for the identification of events where

this behaviour changed. In a case study, the date when a

user adopted a different music retrieval system is detected.

These detailed analyses of listening behaviour can support

user studies or provide implicit relevance feedback to mu-

sic retrieval. More broad analyses are performed across

the 10, 000 playlists. A Mutual Information based feature

selection algorithm is employed to identify music features

relevant to how users create playlists. This user-centred

feature selection can sanity-check the choice of features in

MIR. The information-theoretic approach introduced here

is applicable to any discretisable feature set and distinct in

being based solely upon actual user behaviour rather than

assumed ground-truth. With the techniques described here,

MIR researchers can perform quantitative yet user-centred

evaluations of their music features and retrieval systems.

1.1 Understanding Users

User studies have provided insights about user behaviour

in retrieving and listening to music and highlighted the

lack of consideration in MIR about actual user needs. In

2003, Cunningham et al. bemoaned that development of

music retrieval systems relied on “anecdotal evidence of

user needs, intuitive feelings for user information seeking

behavior, and a priori assumptions of typical usage scenar-

ios” [5]. While the number of user studies has grown, the

situation has been slow to improve. A review conducted

a decade later noted that approaches to system evaluation

still ignore the findings of user studies [12]. This issue

is stated more strongly by Schedl and Flexer, describing

systems-centric evaluations that “completely ignore user

context and user properties, even though they clearly in-

fluence the result” [15]. Even systems-centric work, such

as the development of music classifiers, must consider the

user-specific nature of MIR. Downie termed this the multi-

experiential challenge, and noted that “Music ultimately

exists in the mind of its perceiver” [6]. Despite all of

this, the assumption of an objective ground truth for music

genre, mood etc. is common [4], with evaluations focusing

on these rather than considering users. It is clear that much

work remains in placing the user at the centre of MIR.

1 . http://www.last.fm

2 . http://www.spotify.com

3 . http://www.moodagent.com Last accessed: 30/04/14
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1.2 Evaluation in MIR

The lack of robust evaluations in the field of MIR was iden-

tified by Futrelle and Downie as early as 2003 [8]. They

noted the lack of any standardised evaluations and in par-

ticular that MIR research commonly had an “emphasis on

basic research over application to, and involvement with,

users.” In an effort to address these failings, the Music

Information Retrieval Evaluation Exchange (MIREX) was

established [7]. MIREX provides a standardised frame-

work of evaluation for a range of MIR problems using

common metrics and datasets, and acts as the benchmark

for the field. While the focus on this benchmark has done

a great deal towards the standardisation of evaluations, it

has distracted research from evaluations with real users.

A large amount of evaluative work in MIR focuses on

the performance of classifiers, typically of mood or genre

classes. A thorough treatment of the typical approaches to

evaluation and their shortcomings is given by Sturm [17].

We note that virtually all such evaluations seek to circum-

vent involving users, instead relying on a ‘ground truth’

which is assumed to be objective. An example of a widely

used ground truth dataset is GTZAN, a small collection

of music with the author’s genre annotations. Even were

the objectivity of such annotations to be assumed, such

datasets can be subject to confounding factors and misla-

bellings as shown by Sturm [16]. Schedl et al. also observe

that MIREX evaluations involve assessors’ own subjective

annotations as ground truth [15].

1.3 User-Centred Approaches

There remains a need for robust, standardised evaluations

featuring actual users of MIR systems, with growing calls

for a more user-centric approach. Schedl and Flexer made

the broad case for “putting the user in the center of music

information retrieval”, concerning not only user-centred

development but also the need for evaluative experiments

which control independent variables that may affect depen-

dent variables [14]. We note that there is, in particular, a

need for quantitative dependent variables for user-centred

evaluations. For limited tasks such as audio similarity or

genre classification, existing dependent variables may be

sufficient. If the field of MIR is to concern itself with the

development of complete music retrieval systems, their in-

terfaces, interaction techniques, and the needs of a variety

of users, then additional metrics are required. Within the

field of HCI it is typical to use qualitative methods such as

the think-aloud protocol [9] or Likert-scale questionnaires

such as the NASA Task Load Index (TLX) [10].

Given that the purpose of a Music Retrieval system is to

support the user’s retrieval of music, a dependent variable

to measure this ability is desirable. Such a measure cannot

be acquired independently of users – the definition of mu-

sical relevance is itself subjective. Users now have access

to ‘Big Music’ – online collections with millions of songs,

yet it is unclear how to evaluate their ability to retrieve this

music. The information-theoretic methodology introduced

in this work aims to quantify the exploration, diversity and

underlying mental models of users’ music retrieval.

Figure 1. Distribution of playlist lengths within the SPUD
dataset. The distribution peaks around a playlist length of

12 songs. There is a long tail of lengthy playlists.

2. THE SPUD DATASET

The SPUD dataset of 10, 000 playlists was produced by

scraping from Last.fm users who were active throughout

March and April, 2014. The tracks for each playlist are

also associated with a Spotify stream, with scraped meta-

data, such as artist, popularity, duration etc. The number

of unique tracks in the dataset is 271, 389 from 3351 users.

The distribution of playlist lengths is shown in Figure 1.

We augment the dataset with proprietary mood and genre

features produced by Syntonetic’s Moodagent. We do this

to provide high-level and intuitive features which can be

used as examples to illustrate the techniques being dis-

cussed. It is clear that many issues remain with genre and

mood classification [18] and the results in this work should

be interpreted with this in mind. Our aim in this work is

not to identify which features are best for music classifica-

tion but to contribute an approach for gaining an additional

perspective on music features. Another dataset of playlists

AOTM-2011 is published [13] however the authors only

give fragments of playlists where songs are also present

in the Million Song Dataset (MSD) [1]. The MSD provides

music features for a million songs but only a small frac-

tion of songs in AOTM-2011 were matched in MSD. Our

SPUD dataset is distinct in maintaining complete playlists

and having time-series data of songs listened to.

3. MEASURING MUSIC LISTENING BEHAVIOUR

When evaluating a music retrieval system, or performing

a user study, it would be useful to quantify the music-

listening behaviour of users. Studying this behaviour over

time would enable the identification of how different mu-

sic retrieval systems influence user behaviour. Quantifying

listening behaviour would also provide a dependent vari-

able for use in MIR evaluations. We introduce entropy

as one such quantitative measure, capturing how a user’s

music-listening relates to the music features of their songs.
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3.1 Entropy

For each song being played by a user, the value of a given

music feature can be taken as a random variable X . The

entropy H(X) of this variable indicates the uncertainty

about the value of that feature over multiple songs in a lis-

tening session. This entropy measure gives a scale from

a feature’s value never changing, through to every level of

the feature being equally likely. The more a user constrains

their music selection by a particular feature, e.g. mood or

album, then the lower the entropy is over those features.

The entropy for a feature is defined as:

H(X) = −
∑
x∈X

p (x) log2[p(x)] , (1)

where x is every possible level of the feature X and the dis-

tribution p (x) is estimated from the songs in the listening

session. The resulting entropy value is measured in bits,

though can be normalised by dividing by the maximum

entropy log2[|X|]. Estimating entropy in this way can be

done for any set of features, though requires that they are

discretised to an appropriate number of levels.

For example, if a music listening session is dominated

by songs of a particular tempo, the distribution over values

of a TEMPO feature would be very biased. The entropy

H(TEMPO) would thus be very low. Conversely, if users

used shuffle or listened to music irrespective of tempo, then

the entropy H(TEMPO) would tend towards the average

entropy of the whole collection.

3.2 Applying a Window Function

Many research questions regarding a user’s music listening

behaviour concern the change in that behaviour over time.

An evaluation of a music retrieval interface might hypothe-

sise that users will be empowered to explore a more diverse

range of music. Musicologists may be interested to study

how listening behaviour has changed over time and which

events precede such changes. It is thus of interest to ex-

tend Eqn (1) to define a measure of entropy which is also a

function of time:

H(X, t) = H(w(X, t)) , (2)

where w(X, t) is a window function taking n samples of X
around time t. In this paper we use a rectangular window

function with n = 20, assuming that most albums will

have fewer tracks than this. The entropy at any given point

is limited to the maximum possible H(X, t) = log2[n] i.e.

where each of the n points has a unique value.

An example of the change in entropy for a music feature

over time is shown in Figure 2. In this case H(ALBUM) is

shown as this will be 0 for album-based listening and at

maximum for exploratory or radio-like listening. It is im-

portant to note that while trends in mean entropy can be

identified, the entropy of music listening is itself quite a

noisy signal – it is unlikely that a user will maintain a sin-

gle music-listening behaviour over a large period of time.

Periods of album listening (low or zero entropy) can be

seen through the time-series, even after the overall trend is

towards shuffle or radio-like music listening.

Figure 2. Windowed entropy over albums shows a user’s

album-based music listening over time. Each point repre-

sents 20 track plays. The black line depicts mean entropy,

calculated using locally weighted regression [3] with 95%

CI of the mean shaded. A changepoint is detected around

Feb. 2010, as the user began using online radio (light blue)

3.3 Changepoints in Music Retrieval
Having produced a time-series analysis of music-listening

behaviour, we are now able to identify events which caused

changes in this behaviour. In order to identify change-

points in the listening history, we apply the ‘Pruned Exact

Linear Time’ (PELT) algorithm [11]. The time-series is

partitioned in a way that reduces a cost function of changes

in the mean and variance of the entropy. Changepoints can

be of use in user studies, for example in Figure 2, the user

explained in an interview that the detected changepoint oc-

curred when they switched to using online radio. There

is a brief return to album-based listening after the change-

point – users’ music retrieval behaviour can be a mixture of

different retrieval models. Changepoint detection can also

be a user-centred dependent variable in evaluating music

retrieval interfaces i.e. does listening behaviour change as

the interface changes? Further examples of user studies are

available with the SPUD dataset.

3.4 Identifying Listening Style
The style of music retrieval that the user is engaging in

can be inferred using the entropy measures. Where the

entropy for a given music feature is low, the user’s listening

behaviour can be characterised by that feature i.e. we can

be certain about that feature’s level. Alternately, where a

feature has high entropy, then the user is not ‘using’ that

feature in their retrieval. When a user opts to use shuffle-

based playback i.e. the random selection of tracks, there

is the unique case that entropy across all features will tend

towards the maximum. In many cases, feature entropies

have high covariance, e.g. songs on an album will have the

same artist and similar features. We did not include other

features in Figure 2 as the same pattern was apparent.
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4. SELECTING FEATURES FROM PLAYLISTS

Identifying which music features best describe a range of

playlists is not only useful for playlist recommendation,

but also provides an insight into how users organise and

think about music. Music recommendation and playlist

generation typically work on the basis of genre, mood and

popularity, and we investigate which of these features is

supported by actual user behaviour. As existing retrieval

systems are based upon these features, there is a poten-

tial ‘chicken-and-egg’ effect where the features which best

describe user playlists are those which users are currently

exposed to in existing retrieval interfaces.

4.1 Mutual Information

Information-theoretic measures can be used to identify to

what degree a feature shares information with class labels.

For a feature X and a class label Y , the mutual information

I(X;Y ) between these two can be given as:

I(X;Y ) = H(X)−H(X |Y ) , (3)

that is, the entropy of the feature H(X) minus the entropy

of that feature if the class is known H(X |Y ). By tak-

ing membership of playlists as a class label, we can deter-

mine how much we can know about a song’s features if we

know what playlist it is in. When using mutual information

to compare clusterings in this way, care must be taken to

account for random chance mutual information [19]. We

adapt this approach to focus on how much the feature en-

tropy is reduced, and normalise accordingly:

AMI(X;Y ) =
I(X;Y )− E[I(X;Y )]

H(X)− E[I(X;Y )]
, (4)

where AMI(X;Y ) is the adjusted mutual information and

E[I(X;Y )] is the expectation of the mutual information

i.e. due to random chance. The AMI gives a normalised

measure of how much of the feature’s entropy is explained

by the playlist. When AMI = 1, the feature level is known

exactly if the playlist is known, when AMI = 0, nothing

about the feature is known if the playlist is known.

4.2 Linking Features to Playlists

We analysed the AMI between the 10, 000 playlists in the

SPUD dataset and a variety of high level music features.

The ranking of some of these features is given in Figure 3.

Our aim is only to illustrate this approach, as any results

are only as reliable as the underlying features. With this in

mind, the features ROCK and ANGRY had the most uncer-

tainty explained by playlist membership. While the values

may seem small, they are calculated over many playlists,

which may combine moods, genres and other criteria. As

these features change most between playlists (rather than

within them), they are the most useful for characterising

the differences between playlists. The DURATION feature

ranked higher than expected, further investigation revealed

playlists that combined lengthy DJ mixes. It is perhaps

unsurprising that playlists were not well characterised by

whether they included WORLD music.

Figure 3. Features are ranked by their Adjusted Mutual

Information with playlist membership. Playlists are dis-

tinguished more by whether they contain ROCK or ANGRY

music than by whether they contain POPULAR or WORLD.

It is of interest that TEMPO was not one of the highest

ranked features, illustrating the style of insights available

when using this approach. Further investigation is required

to determine whether playlists are not based on tempo as

much as is often asumed or if this result is due to the pecu-

liarities of the proprietary perceptual tempo detection.

4.3 Feature Selection

Features can be selected using information-theoretic mea-

sures, with a rigorous treatment of the field given by Brown

et al. [2]. They define a unifying framework within which

to discuss methods for selecting a subset of features using

mutual information. This is done by defining a J criterion

for a feature:

J (fn) = I(fn;C | S) . (5)

This gives a measure of how much information the fea-

ture shares with playlists given some previously selected

features, and can be used as a greedy feature selection al-

gorithm. Intuitively, features should be selected that are

relevant to the classes but that are also not redundant with

regard to previously selected features. A range of estima-

tors for I(fn;C | S) are discussed in [2].

As a demonstration of the feature selection approach

we have described, we apply it to the features depicted in

Figure 3, selecting features to minimise redundancy. The

selected subset of features in rank order is: ROCK, DURA-

TION, POPULARITY, TENDER and JOY. It is notable that

ANGRY had an AMI that was almost the same as ROCK,

but it is redundant if ROCK is included. Unsurprisingly, the

second feature selected is from a different source than the

first – the duration information from Spotify adds to that

used to produce the Syntonetic mood and genre features.

Reducing redundancy in the selected features in this way

yields a very different ordering, though one that may give a

clearer insight into the factors behind playlist construction.
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5. DISCUSSION

While we reiterate that this work only uses a specific set of

music features and user base, we consider our results to be

encouraging. It is clear that the use of entropy can provide

a detailed time-series analysis of user behaviour and could

prove a valuable tool for MIR evaluation. Similarly, the use

of adjusted mutual information allows MIR researchers to

directly link work on acquiring music features to the ways

in which users interact with music. In this section we con-

sider how the information-theoretic techniques described

in this work can inform the field of MIR.

5.1 User-Centred Feature Selection

The feature selection shown in this paper is done directly

from the user data. In contrast, feature selection is usu-

ally performed using classifier wrappers with ground truth

class labels such as genre. The use of genre is based on the

assumption that it would support the way users currently

organise music and features are selected based on these

labels. This has lead to issues including classifiers being

trained on factors that are confounded with these labels

and that are not of relevance to genre or users [18]. Our

approach selects features independently of the choice of

classifier, in what is termed a ‘filter’ approach. The benefit

of doing this is that a wide range of features can be quickly

filtered at relatively little computational expense. While

the classifier ‘wrapper’ approach may achieve greater per-

formance, it is more computationally expensive and more

likely to suffer from overfitting.

The key benefit of filtering features based on user be-

haviour is that it provides a perspective on music features

that is free from assumptions about users and music ground

truth. This user-centred perspective provides a sanity-check

for music features and classification – if a feature does not

reflect the ways in which users organise their music, then

how useful is it for music retrieval?

5.2 When To Learn

The information-theoretic measures presented offer an im-

plicit relevance feedback for music retrieval. While we

have considered the entropy of features as reflecting user

behaviour, this behaviour is conditioned upon the existing

music retrieval interfaces being used. For example, after

issuing a query and receiving results, the user selects rel-

evant songs from those results. If the entropy of a feature

for those selected songs is small relative to the result set,

then this feature is implicitly relevant to the retrieval.

The identification of shuffle and explorative behaviour

provides some context for this implicit relevance feedback.

Music which is listened to in a seemingly random fashion

may represent an absent or disengaged user, adding noise

to attempts to weight recommender systems or build a user

profile. At the very least, where entropy is high across all

features, then those features do not reflect the user’s mental

model for their music retrieval. The detection of shuffle

or high-entropy listening states thus provides a useful data

hygiene measure when interpreting listening data.

5.3 Engagement

The entropy measures capture how much each feature is

being ‘controlled’ by the user when selecting their music.

We have shown that it spans a scale from a user choosing to

listen to something specific to the user yielding control to

radio or shuffle. Considering entropy over many features in

this way gives a high-dimensional vector representing the

user’s engagement with music. Different styles of music

retrieval occupy different points in this space, commonly

the two extremes of listening to a specific album or just

shuffling. There is an opportunity for music retrieval that

has the flexibility to support users engaging and applying

control over music features only insofar as they desire to.

An example of this would be a shuffle mode that allowed

users to bias it to varying degrees, or to some extent, the

feedback mechanism in recommender systems.

5.4 Open Source

The SPUD dataset is made available for download at:

http://www.dcs.gla.ac.uk/˜daniel/spud/
Example R scripts for importing data from SPUD and pro-

ducing the analyses and plots in this paper are included.

The code used to scrape this dataset is available under the

MIT open source license, and can be accessed at:

http://www.github.com/dcboland/
The MoodAgent features are commercially sensitive,

thus not included in the SPUD dataset. At present, indus-

try is far better placed to provide such large scale analyses

of music data than academia. Even with user data and the

required computational power, large-scale music analyses

require licensing arrangements with content providers, pre-

senting a serious challenge to academic MIR research. Our

adoption of commercially provided features has allowed us

to demonstrate our information-theoretic approach, and we

distribute the audio stream links, however it is unlikely that

many MIR researchers will have the resources to replicate

all of these large scale analyses. The CoSound 4 project

is an example of industry collaborating with academic re-

search and state bodies to navigate the complex issues of

music licensing and large-scale analysis.

6. CONCLUSION

This work introduces an information-theoretic approach to

the study of users’ music listening behaviour. The case is

made for a more user-focused yet quantitative approach to

evaluation in MIR. We described the use of entropy to pro-

duce time-series analyses of user behaviour, and showed

how changes in music-listening style can be detected. An

example is given where a user started using online radio,

having higher entropy in their listening. We introduced

the use of adjusted mutual information to establish which

music features are linked to playlist organisation. These

techniques provide a quantitative approach to user studies

and ground feature selection in user behaviour, contribut-

ing tools to support the user-centred future of MIR.

4 . http://www.cosound.dk/ Last accessed: 30/04/14
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ABSTRACT

In this paper, we analyse the evaluation strategies used

in previous works on automatic singing transcription, and

we present a novel, comprehensive and freely available

evaluation framework for automatic singing transcription.

This framework consists of a cross-annotated dataset and a

set of extended evaluation measures, which are integrated

in a Matlab toolbox. The presented evaluation measures

are based on standard MIREX note-tracking measures, but

they provide extra information about the type of errors ma-

de by the singing transcriber. Finally, a practical case of

use is presented, in which the evaluation framework has

been used to perform a comparison in detail of several

state-of-the-art singing transcribers.

1. INTRODUCTION

Singing transcription refers to the automatic conversion of

a recorded singing signal into a symbolic representation

(e.g. a MIDI file) by applying signal-processing meth-

ods [1]. One of its renowned applications is query-by-

humming [5], but other types of applications also are re-

lated to this task, like singing tutors [2], computer games

(e.g. Singstar 1 ), etc. In general, singing transcription is

considered a specific case of melody transcription (also

called note tracking), which is more general problem. How-

ever, singing transcription not only relates to melody tran-

scription but also to speech recognition, and still nowadays

it is a challenging problem even in the case of monophonic

signals without accompaniment [3].

In the literature, various approaches for singing tran-

scription can be found. A simple but commonly referenced

approach was proposed by McNab in 1996 [4], and it re-

lied on several handcrafted pitch-based and energy-based

segmentation methods. Later, in 2001 Haus et al. used

a similar approach with some rules to deal with intona-

tion issues [5], and in 2002, Clarisse et al. [6] contributed

with an auditory model, leading to later improved systems

1 http://www.singstar.com

c© Emilio Molina, Ana M. Barbancho, Lorenzo J. Tardón,

Isabel Barbancho.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Emilio Molina, Ana M. Barbancho,

Lorenzo J. Tardón, Isabel Barbancho. “Evaluation framework for auto-

matic singing transcription”, 15th International Society for Music Infor-

mation Retrieval Conference, 2014.

such as [7] (later included in MAMI project 2 and today in

SampleSumo products 3 ). Additionally, other more recent

approaches use hidden Markov models (HMM) to detect

note-events in singing voice [8, 9, 11]. One of the most

representative HMM-based singing transcribers was pub-

lished by Ryynänen in 2004 [9]. More recently, in 2013,

another probabilistic approach for singing transcription has

been proposed in [3], also leading to relevant results. Re-

garding the evaluation methodologies used in these works

(see Sections 2.1 and 3.1 for a review), there is not a stan-

dard methodology.

In this paper, we present a comprehensive evaluation

framework for singing transcription. This framework con-

sists of a cross-annotated dataset (Section 2) and a novel,

compact set of evaluation measures (Section 3), which re-

port information about the type of errors made by the sin-

ging transcriber. These measures have been integrated in

a freely available Matlab toolbox (see Section 3.3). Then,

we present a practical case in which the evaluation frame-

work has been used to perform a comparison in detail of

several state-of-the-art singing transcribers (Section 4). Fi-

nally, some relevant conclusions are presented in Section 5

2. DATASETS

In this section, we review the evaluation datasets used in

prior works on singing transcription , and we describe the

proposed evaluation dataset and our strategy for ground-

truth annotation.

2.1 Datasets used in prior works

In Table 1, we present the datasets used in some relevant

works on singing transcription. Note that none of the da-

tasets fully represents the possible contexts in which sin-

ging transcription might be applied, since they are either

too small (e.g. [5,6]), either very specific in style (e.g. [11]

for opera and [3] for flamenco), or either they use an anno-

tation strategy that may be subjective (e.g. [5, 6]), or only

valid for very good performances in rhythm and intonation

(e.g. [8, 9]). In addition, only the flamenco dataset used

in [3] is freely available.

2.2 Proposed dataset

In this section we describe the music collection, as well as

the annotation strategy used to build the ground-truth.

2 http://www.ipem.ugent.be/MAMI
3 http://www.samplesumo.com
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Author Year Dataset Audio Music Singing Ground-truth (GT) Tunning Freely
size quality style style annotation devs. anno- avai-

strategy tated in GT lable
McNab [4] 1996 NONE

Haus & 2001 20 short Low & mode- Popular and Syllables: Annotated by No No
Pollastri [5] melodies rated noise scales ’na-na’... one musician

Clarisse 2002 22 short Low & mode- Popular Singing with & Annotation by No No
et al. [6] melodies rated noise without lyrics one musician

Viitaniemi 2003 66 melodies High quality Folk songs Singing, Original score
et al. [8] (120 (studio & scales humming used as No No

Ryynänen 2004 minutes) conditions) & whistling ground-truth
et al. [9]
Mulder 2004 52 melo. Good & mode- Popular Syllables, Team No No
et al. [7] (1354 notes) rated noise songs singing & of

whistling musicologists
Kumar 2007 47 songs Good Indian Syllables: Manual annot. of No No

et al. [10] (2513 notes) music /la/ /da/ /na/ vowel onsets [REf]
Krige 2008 13842 High quality Opera Time align- No No

et al. [11] notes but strong lessons Syllables ment using
reverberation & scales Viterbi

Gómez & 2013 72 excerpts Good & Flamenco Lyrics & Musicians team Yes Yes
Bonada [3] (2803 notes) slightly noisy songs ornaments (cross-annotation)

Table 1. Review of the evaluation datasets used in prior works on singing transcription. Some details about the dataset are

not provided in some cases, so certain fields can not be expressed in the same units (e.g. dataset size).

2.2.1 Music collection

The proposed dataset consists of 38 melodies sung by adult

and child untrained singers, recorded in mono with a sam-

ple rate of 44100Hz and a resolution of 16 bits. Generally,

the recordings are not clean and some background noise is

present. The duration of the excerpts ranges from 15 to 86
seconds and the total duration of the whole dataset is 1154
seconds. This music collection can be broken down into

three categories, according to the type of singer:

• Children (our own recordings 4 ): 14 melodies of tra-

ditional children songs (557 seconds) sung by 8 dif-

ferent children (5-11 years old).

• Adult male: 13 pop melodies (315 seconds) sung

by 8 different adult male untrained singers. These

recordings were randomly chosen from the public

dataset MTG-QBH 5 [12].

• Adult female: 11 pop melodies (281 seconds) sung

by 5 different adult female untrained singers, also

taken from MTG-QBH dataset.

Note that in this collection the pitch and the loudness can

be unstable, and well performed vibratos are not frequent.

2.2.2 Ground-truth: annotation strategy

The described music collection has been manually anno-

tated to build the ground truth 4 . First, we have transcribed

the audio recordings with a baseline algorithm (Section

4.2), and then all the transcription errors have been cor-

rected by an expert musician with more than 10 years of

music training. Then, a second expert musician (with 7

years of music training) checked all the annotations until

both musicians agreed in their correctness. The transcrip-

tion errors were corrected by listening, at the same time, to

the synthesized transcription and the original audio. The

4 Available at http://www.atic.uma.es/ismir2014singing
5 http://mtg.upf.edu/download/datasets/mtg-qbh

musicians were given a set of instructions about the spe-

cific criteria to annotate the singing melody:

• Ornaments such as pitch bending at the beginning

of the notes or vibratos are not considered indepen-

dent notes. This criterion is based on Vocaloid’s 6

approach, where ornaments are not modelled with

extra notes.

• Portamento between two notes does not produce an

extra third note (again, this is the criteria used in

Vocaloid).

• The onsets are placed at the beginning of voiced seg-

ments and in each clear change of pitch or phoneme.

In the case of ’l’, ’m’, ’n’ voiced consonants + vowel

(e.g. ’la’), the onset is not placed at the beginning of

the consonant but at the beginning of the vowel.

• The pitch of each note is annotated with cents reso-

lution as perceived by the team of experts. Note that

we annotate the tuning deviation for each indepen-

dent note.

3. EVALUATION MEASURES

In this section, we describe the evaluation measures used

in prior works on automatic singing transcription, and we

present the proposed ones.

3.1 Evaluation measures used in prior works

In Table 2, we review the evaluation measures used in some

relevant works on singing transcription. In some cases,

only the note and/or frame error is provided as a compact,

representative measure [5, 9], whereas other approaches

provide extra information about the type of errors made

by the system using dynamic time warping (DTW) [6] or

Viterbi-based alignment [11]. In our case, we have taken

the most relevant aspects of these approaches and we added

some novel ideas in order to define a novel, compact and

comprehensive set of evaluations.

6 http://www.vocaloid.com
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Author Year Evaluation measures
McNab 1996 NONE

Haus &
Pollastri [5]

2001
Rate of note pitch errors (segmen-
tation errors are not considered)

Clarisse
et al. [6]

2002
DTW-based measurement of various
note errors, e.g. insertions deletions
and substitutions.

Viitaniemi
et al. [8]

2003
Frame-based errors. Do not report
information about type of errors
made.

Ryynänen
et al. [9]

2004
Note-based and frame-based errors.
Do not report information about
type of errors made.

Mulder
et al. [7]

2004
DTW-based measurement of various
note errors, e.g. insertions deletions
and substitutions.

Kumar
et al. [10]

2007
Onset detection errors (pitch and
durations are ignored).

Krige
et al. [11]

2008

Viterbi-based measurement
of deletions, insertions and
substitutions (typical evaluation in
speech recognition).

Gómez
& Bonada [3]

2013

MIREX measures for audio
melody extraction
and note-tracking. Do
not report information
about type of errors made.

Table 2. Evaluation measures used in prior works on sin-

ging transcription.

3.2 Proposed measures

In this section, we firstly present the notation and some

needed definitions that are used in the rest of sections, and

then we describe the evaluation measures used to quan-

tify the proportion of correctly transcribed notes. Finally,

we present a set of novel evaluation measures that inde-

pendently report the importance of each type of error. In

Figure 1 we show an example of the types of errors con-

sidered.
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Figure 1. Examples of the different proposed measures.

3.2.1 Notation

The i:th note of the ground-truth is noted as nGT
i , and the

j:th note of the transcription is noted as nTR
j . The total

number of notes in the ground-truth and the transcription

are NGT and NTR, respectively. Regarding the expressions

used in the for correct notes, we have used Precision, Re-

call and F-measure, which are defined as follow:

CXPrecision =
NGT

CX
NGT

(1)

CXRecall =
NTR

CX
NTR

(2)

CXF-measure = 2 · CXPrecision · CXRecall

CXPrecision + CXRecall

(3)

where CX makes reference to the specific category of cor-

rect note: Correct Onset & Pitch & Offset (X = COnPOff),

Correct Onset & Pitch (X = COnP) or Correct Onset (X
= COn). Finally, NGT

CX and NTR
CX are the total number of

matching CX conditions in the ground-truth and the tran-

scription, respectively.

Regarding the measures used for errors, we have com-

puted the Error Rate with respect to NGT, or with respect

to NTR, as follow:

XRateGT =
NGT

X
NGT

(4)

XRateTR =
NTR

X
NTR

(5)

Finally, in the case of segmentation errors (Section 3.2.5),

we also compute the mean number of notes tagged as X in

the transcription for each note tagged as X in the ground-

truth. This magnitude has been expressed as a ratio:

XRatio =
NTR

X
NGT

X
(6)

3.2.2 Definition of correct onset/pitch/offset

The definitions of correctly transcribed notes (given in Sec-

tion 3.2.3) consists of combinations of three independent

conditions: correct onset, correct pitch and correct off-

set. We have defined these conditions according to MIREX

(Multiple F0 estimation and tracking and Audio Onset De-
tection tasks), and so they are defined as follow:

• Correct Onset: If the note’s onset of a transcribed note

nTR
j is within a±50ms range of the onset of a ground-truth

note nGT
i , i.e.:

onset(nTR
j ) ∈ [onset(nGT

i )− 50ms, onset(nGT
i ) + 50ms] (7)

then we consider that nGT
i has a correct onset with respect

to nTR
j .

• Correct Pitch: If the note’s pitch of a transcribed note

nTR
j is within a ±0.5 semitones range of the pitch of a

ground-truth note nGT
i , i.e.:

pitch(nTR
j ) ∈ [pitch(nGT

i )− 0.5 st, pitch(nGT
i ) + 0.5 st] (8)

then we consider that nGT
i has a correct pitch with respect

to nTR
j .

• Correct Offset: If the offsets of the ground-truth note

nGT
i and the transcribed note nTR

j are within a range of

±20% of the duration of nGT
i or ±50 ms, whichever is

larger, i.e.:

offset(nTR
j ) ∈ [offset(nGT

i )− OffRan, offset(nGT
i ) + OffRan] (9)

where OffRan = max(50ms, duration(nGT
i )), then we con-

sider that nGT
i has a correct offset with respect to nTR

j .
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3.2.3 Correctly transcribed notes

The definition of “correct note” should be useful to mea-

sure the suitability of a given singing transcriber for a spe-

cific application. However, different applications may re-

quire a different definition of correct note. Therefore, we

have chosen three different definitions of correct note as

defined in MIREX:

• Correct onset, pitch and offset (COnPOff): This is

a standard correctness criteria, since it is used in MIREX

(Multiple F0 estimation and tracking task), and it is the

most restrictive one. The note nGT
i is assumed to be cor-

rectly transcribed into the note nTR
j if it has correct on-

set, correct pitch and correct offset (as defined in Section

3.2.2). In addition, one ground truth note nGT
i can only be

associated with one transcribed note nTR
j . In our evalua-

tion framework, we report Precision, Recall and F-measure

as defined in Section 3.2.1:

COnPOffPrecision, COnPOffRecall and COnPOffF-measure.

• Correct Onset, Pitch (COnP): This criteria is also used

in MIREX, but it is less restrictive since it just considers

onset and pitch, and ignores the offset value. Therefore,

in COnP criteria, a note nGT
i is assumed to be correctly

transcribed into the note nTR
j if it has correct onset and

correct pitch. In addition, one ground truth note nGT
i can

only be associated with one transcribed note nTR
j . In our

evaluation framework, we report Precision, Recall and F-

measure:

COnPPrecision, COnPRecall and COnPF-measure.

• Correct Onset (COn): Additionally, we have included the

evaluation criteria used in MIREX Audio Onset Detection
task. In this case, a note nGT

i is assumed to be correctly

transcribed into the note nTR
j if it has correct onset. In ad-

dition, one ground truth note nGT
i can only be associated

with one transcribed note nTR
j . In our evaluation frame-

work, we report Precision, Recall and F-measure:

COnPOffPrecision, COnPOffRecall and COnPOffF-measure.

3.2.4 Incorrect notes with one single error

In addition, we have included some novel evaluation mea-

sures to identify the notes that are close to be correctly tran-

scribed, but they fail in one single aspect. These measures

are useful to identify specific weaknesses of a given sin-

ging transcriber. The proposed categories are:

•Only-Bad-Onset (OBOn): A ground-truth note nGT
i is

labelled as OBOn if it has been transcribed into a note nTR
j

with correct pitch and offset, but wrong onset. In order to

detect them, firstly we find all ground-truth notes with cor-

rect pitch and offset, taking into account that one ground-

truth note can only be associated with one transcribed note.

Then, we remove all notes previously tagged as COnPOff

(Section 3.2.3). The reported measure is the rate of OBOn

notes in the ground-truth:
OBOnRateGT

• Only-Bad-Pitch (OBP): A ground-truth note nGT
i is la-

belled as OBP if it has been transcribed into a note nTR
j

with correct onset and offset, but wrong pitch. In order to

detect them, firstly we find all ground-truth notes with cor-

rect onset and offset, taking into account that one ground-

truth note can only be associated with one transcribed note.

Then, we remove all notes previously tagged as COnPOff

(Section 3.2.3). The reported measure is the rate of OBP

notes in the ground-truth:

OBPRateGT

• Only-Bad-Offset (OBOff): A ground-truth note nGT
i is

labelled as OBOn if it has been transcribed into a note nTR
j

with correct pitch and onset, but wrong offset. In order to

detect them, firstly we find all ground-truth notes with cor-

rect pitch and onset, taking into account that one ground-

truth note can only be associated with one transcribed note.

Then, we remove all notes previously tagged as COnPOff

(Section 3.2.3). The reported measure is the rate of OBOff

notes in the ground-truth:

OBOffRateGT

3.2.5 Incorrect notes with segmentation errors

Segmentation errors refer to the case in which sung notes

are incorrectly split or merged during the transcription. De-

pending on the final application, certain types of segmenta-

tion errors may not be important (e.g. frame-based systems

for query-by-humming are not affected by splits), but they

can lead to problems in many other situations. Therefore,

we have defined two evaluation measures which are infor-

mative about the segmentation errors made by the singing

transcriber.

• Split (S): A split note is a ground truth note nGT
i that

is incorrectly segmented into different consecutive notes

nTR
j1

, nTR
j2

· · · nTR
jn

. Two requirements are needed in a

split: (1) the set of transcribed notes nTR
j1

, nTR
j2

, . . . nTR
jn

must overlap at least the 40% of nGT
i in time (pitch is ig-

nored), and (2) nGT
i must overlap at least the 40% of every

note nTR
j1

, nTR
j2

, . . . nTR
jn

in time (again, pitch is ignored).

These requirements are needed to ensure a consistent rela-

tionship between ground truth and transcribed notes. The

specific reported measures are:

SRateGT and SRatio

Note that in this case SRatio > 1.

• Merged (M): A set of consecutive ground-truth notes

nGT
i1

, nGT
i2

, · · · nGT
in

are considered to be merged if they

all are transcribed into the same note nTR
j . This is the com-

plementary case of split. Again, two requirements must be

true to consider a group of merged notes: (1) the set of

ground truth notes nGT
i1

,nGT
i2

, . . . nGT
in

must overlap the

40% of nTR
j in time (pitch is ignored), and (2) nTR

j must

overlap the 40% of every note nGT
i1

,nGT
i2

, . . . nGT
in

in time

(again, pitch is ignored). The specific reported measures

are:

MRateGT and MRatio

Note that in this case MRatio < 1.
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3.2.6 Incorrect notes with voicing errors

Voicing errors happen when an unvoiced sound produces a

false transcribed note (spurious note), or when a sung note

is not transcribed at all (non-detected note). This situation

is commonly associated to a bad performance of the voic-

ing stage within the singing transcriber. We have defined

two categories:

• Spurious notes (PU): A spurious note is a transcribed

note nTR
j that does not overlap at all (neither in time nor in

pitch) any note in the ground truth. The associated reported

measure is:

PURateTR

• Non-detected notes (ND): A ground-truth note nGT
i is

non-detected if it does not overlap at all (neither in time

nor in pitch) any transcribed note. The associated reported

measure is:

NDRateGT

3.3 Proposed Matlab toolbox

The presented evaluation measures have been implemented

in a freely available Matlab toolbox 4 , which consists of a

set of functions and structures, as well as a graphical user

interface to visually analyse the performance of the evalu-

ated singing transcriber.

The main function of our toolbox is evaluation.m,
which receives the ground-truth and the transcription of an

audio clip as inputs, and it outputs the results of all the

evaluation measures. In addition, we have included a func-

tion called listnotes.m, which receives as inputs the

ground-truth, the transcription and the category X to be

listed, and it outputs a list (in a two-columns format: on-

set time-offset time) of all the notes in the ground-truth

tagged as X category. This information is useful to isolate

the problematic audio excerpts for further analysis.

Finally, we have implemented a graphical user inter-

face, where the ground-truth and the transcription of a given

audio clip can be compared using a piano-roll representa-

tion. This interface also allows the user to highlight notes

tagged as X (e.g. COnPOff, S, etc.).

4. PRACTICAL USE OF THE PROPOSED
TOOLBOX

In this section, we describe a practical case of use in which

the presented evaluation framework has been used to per-

form an improved comparative study of several state-of-

the-art singing transcribers (presented in Section 4.1). In

addition, a simple, easily reproducible baseline approach

has been included in this comparative study. Finally, we

show and discuss the obtained results.

4.1 Compared algorithms

We have compared three state-of-the-art algorithms for sin-

ging transcription:

Method (a): Gómez & Bonada (2013) [3]. It consists of

three main steps: tuning-frequency estimation, transcrip-

tion into short notes, and an iterative process involving note

consolidation and refinement of the tuning frequency. For

the experiment, we have used a binary provided by the au-

thors of the algorithm.

Method (b): Ryynänen (2008) [13]. We have used the

method for automatic transcription of melody, bass line

and chords in polyphonic music published by Ryynänen

in 2008 [13], although we only focus on melody transcrip-

tion. It is the last evolution of the original HMM-based

monophonic singing transcriber [9]. For the experiment,

we have used a binary provided by the authors of the algo-

rithm.

Method (c): Melotranscript 4 (based on Mulder 2004

[7]). It is the commercial version derived from the research

carried out by Mulder et al. [7]. It is based on an auditory

model. For the experiment, we have used the demo version

available in SampleSumo website 3 .

4.2 Baseline algorithm

According to [8], the simplest possible segmentation con-

sists of simply rounding a rough pitch estimate to the clos-

est MIDI note ni and taking all pitch changes as note bound-

aries. The proposed baseline method is based on such idea,

and it uses Yin [14] to extract the F0 and aperiodicity at

frame-level. A frame is classified as unvoiced if its ape-

riodicity is under < 0.4. Finally, all notes shorter than

100ms are discarded.

4.3 Results & discussion

In Figure 2 we show the results of our comparative analy-

sis. Regarding the F-measure of correct notes (COnPOff,

COnP and COn), methods (a) and (c) attains similar values,

whereas method (b) performs slightly worse. In addition,

it seems that method (a) is slightly superior to method (c)

for onset detection, but method (c) is superior when pitch

and offset values must be also estimated. In all cases, the

baseline is clearly worse than the rest of methods.

In addition, we observed that the rate of notes with in-

correct onset (OBOn) is equally high (20%) in all methods.

After analysing the specific recordings, we concluded that

onset detection within a range of ±50ms is very restrictive

in the case of singing voice with lyrics, since many onsets

are not clear even for an expert musician (as proved during

the ground-truth building). Moreover, we also observed

that all methods, and especially method (a), have problems

with pitch bendings at the beginning of the notes, since

they tend to split them.

Regarding the segmentation and voicing errors, we re-

alised that method (a) tends to split notes, whereas method

(b) tends to merge notes. This information, easily provided

by our evaluation framework, may be useful to improve

specific weaknesses of the algorithms during the develop-

ment stage. Finally, we also realised that method (b) is

worse than method (a) and (c) in terms of voicing.

To sum up, method (c) seems to be the best one in most

measures, mainly due to a better performance in segmenta-

tion and voicing. However, method (a) is very appropriate

for onset detection. Finally, although method (b) works

clearly better than the baseline, has a poor performance

due to errors in segmentation (mainly merged notes) and

voicing (mainly spurious).
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Figure 2. Comparison in detail of several state-of-the-art

singing transcription systems using the presented evalua-

tion framework.

5. CONCLUSIONS

In this paper, we have presented an evaluation framework

for singing transcription. It consists of a cross-annotated

dataset of 1154 seconds and a novel set of evaluation mea-

sures, able to report the type of errors made by the sys-

tem. Both the dataset, and a Matlab toolbox including the

presented evaluation measures, are freely available 4 . In

order to show the utility of the work presented in this pa-

per, we have performed an detailed comparative study of

three state-of-the-art singing transcribers plus a baseline

method, leading to relevant information about the perfor-

mance of each method. In the future, we plan to expand our

evaluation dataset in order to make it comparable to other

datasets 7 used in MIREX (e.g. MIR-1K or MIR-QBSH).

6. ACKNOWLEDGEMENTS

This work has been funded by the Ministerio de Economı́a
y Competitividad of the Spanish Government under Project
No. TIN2013-47276-C6-2-R and by the Junta de Andalucı́a
under Project No. P11-TIC-7154. The work has been done
at Universidad de Málaga. Campus de Excelencia Interna-
cional Andalucı́a Tech.

7. REFERENCES

[1] M. Ryynänen, “Singing transcription,” in Signal Pro-
cessing Methods for Music Transcription (A. Klapuri
and M. Davy, eds.), pp. 361–390, Springer Science +
Business Media LLC, 2006.

[2] E. Molina, I. Barbancho, E. Gómez, A. M. Barbancho,
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ABSTRACT

Music Information Retrieval is largely based on descriptors

computed from audio signals, and in many practical appli-

cations they are to be computed on music corpora contain-

ing audio files encoded in a variety of lossy formats. Such

encodings distort the original signal and therefore may af-

fect the computation of descriptors. This raises the ques-

tion of the robustness of these descriptors across various

audio encodings. We examine this assumption for the case

of MFCCs and chroma features. In particular, we analyze

their robustness to sampling rate, codec, bitrate, frame size

and music genre. Using two different audio analysis tools

over a diverse collection of music tracks, we compute sev-

eral statistics to quantify the robustness of the resulting de-

scriptors, and then estimate the practical effects for a sam-

ple task like genre classification.

1. INTRODUCTION

A significant amount of research in Music Information Re-

trieval (MIR) is based on descriptors computed from au-

dio signals. In many cases, research corpora contain mu-

sic files encoded in a lossless format. In some situations,

datasets are distributed without their original music corpus,

so researchers have to gather audio files themselves. In

many other cases, audio descriptors are distributed instead

of the audio files. In the end, MIR research is thus based on

corpora that very well may use different audio encodings,

all under the assumption that audio descriptors are robust

to these variations and the final MIR algorithms are not af-

fected. This possible lack of robustness poses serious ques-

tions regarding the reproducibility of MIR research and

its applicability. For instance, whether algorithms trained

with lossless audio files can generalize to lossy encodings;

or whether a minimum audio bitrate should be required in

datasets that distribute descriptors instead of audio files.

In this paper we examine the assumption of robust-

ness of music descriptors across different audio encod-

ings on the example of Mel-frequency cepstral coeffi-

cients (MFCCs) and chroma features. They are among

the most popular music descriptors used in MIR research,

as they respectively capture timbre and tonal information.

c© J.Urbano, D.Bogdanov, P.Herrera, E.Gómez and X.Serra.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: J. Urbano, D. Bogdanov, P. Herrera,

E. Gómez and X. Serra. “What is the Effect of Audio Quality on the Ro-

bustness of MFCCs and Chroma Features?”, 15th International Society

for Music Information Retrieval Conference, 2014.

Many MIR tasks such as classification, similarity, autotag-

ging, recommendation, cover identification and audio fin-

gerprinting, audio-to-score alignment, audio segmentation,

key and chord estimation, and instrument detection are at

least partially based on them. As they pervade the literature

on MIR, we analyzed the effect of audio encoding and sig-

nal analysis parameters on the robustness of MFCCs and

chroma. To this end, we run two different audio analysis

tools over a diverse collection of 400 music tracks. We then

compute several indicators that quantify the robustness and

stability of the resulting features and estimate the practical

implications for a general task like genre classification.

2. DESCRIPTORS

2.1 Mel-Frequency Cepstrum Coefficients

MFCCs are inherited from the speech domain [18], and

they have been extensively used to summarize the spectral

content of music signals within an analysis frame. MFCCs

are widely used in tasks like music similarity [1,12], music

classification [6] (in particular, genre), autotagging [13],

preference learning for music recommendation [19, 24],

cover identification and audio segmentation [17].

There is no standard algorithm to compute MFCCs, and

a number of variants have been proposed [8] and adapted

for MIR applications. MFCCs are commonly computed as

follows. The first step consists in windowing the input sig-

nal and computing its magnitude spectrum with the Fourier

transform. We then apply a filterbank with critical (mel)

band spacing of the filters and bandwidths. Energy val-

ues are obtained for the output of each filter, followed by

a logarithm transformation. We finally compute a discrete

cosine transform to the set of log-energy values to obtain

the final set of coefficients. The number of mel bands and

the frequency interval on which they are computed may

vary among implementations. The low order coefficients

account for the slowly changing spectral envelope, while

the higher order coefficients describe the fast variations of

the spectrum shape, including pitch information. The first

coefficient is typically discarded in MIR applications be-

cause it does not provide information about the spectral

shape; it reflects the overall energy in mel bands.

2.2 Chroma

Chroma features represent the spectral energy distribution

within an analysis frame, summarized into 12 semitones

across octaves in equal-tempered scale. Chroma captures

the pitch class distribution of an input signal, typically used
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for key and chord estimation [7, 9], music similarity and

cover identification [20], classification [6], segmentation

and summarization [5, 17], and synchronization [16].

Several approaches exist for chroma feature extraction,

including the following steps. The signal is first analyzed

with a high frequency resolution in order to obtain its fre-

quency domain representation. The main frequency com-

ponents (e.g. spectral peaks) are mapped onto pitch classes

according to an estimated tuning frequency. For most ap-

proaches, a frequency value partially contributes to a set

of “sub-harmonic” fundamental frequency (pitch) candi-

dates. The chroma vector is computed with a given inter-

val resolution (number of bins per octave) and is finally

post-processed to obtain the final chroma representation.

Timbre invariance is achieved by different transformations

such as spectral whitening [9] or cepstrum liftering [15].

3. EXPERIMENTAL DESIGN

3.1 Factors Affecting Robustness

We identified several factors that could have an effect on

the robustness of audio descriptors, from the perspective

of their audio encoding (codec, bitrate and sampling rate),

analysis parameters (frame/hop size and audio analysis

tool) and the musical characteristics of the songs (genre).

SRate. The sampling rate at which an audio signal is

encoded may affect robustness when using very high fre-

quency rates. We study standard 44100 and 22050 Hz.

Codec. Perceptual audio coders may also affect descrip-

tors because they introduce perturbations to the original

audio signal, in particular by reducing high-frequency con-

tent, blurring the attacks, and smoothing the spectral enve-

lope. In our experiments, we chose one lossless and two

lossy audio codecs: WAV, MP3 CBR and MP3 VBR.

BRate. Different audio codecs allow different bitrates

depending on the sampling rate, so we can not combine all

codecs with all bitrates. The following combinations are

permitted and used in our study:

• WAV: 1411 Kbps.

• MP3 CBR at 22050 Hz: 64, 96, 128 and 160 Kbps.

• MP3 CBR at 44100 Hz: 64, 96, 128, 160, 192, 256

and 320 Kbps.

• MP3 VBR: 6 (100-130 Kbps), 4 (140-185 Kbps), 2

(170-210 Kbps) and 0 (220-260 Kbps).

FSize. We considered a variety of frame sizes for spec-

tral analysis: 23.2, 46.4, 92.9, 185.8, 371.5 and 743.0 ms.

That is, we used frame sizes of 1024, 2048, 4096, 8192,

16384 and 32768 samples for signals with sampling rate of

44100 Hz, and the halved values (512, 1024, 2048, 4096,

8192 and 16384 samples) in the case of 22050 Hz.

Audio analysis tool. The specific software used to com-

pute descriptors may have an effect on their robustness due

to parameterizations (e.g. frequency ranges) and other im-

plementation details. We use two state-of-the-art and open

source tools publicly available online: Essentia 2.0.1 1 [2]

and QM Vamp Plugins 1.7 for Sonic Annotator 0.7 2 [3].

1 http://essentia.upf.edu
2 http://vamp-plugins.org/plugin-doc/

qm-vamp-plugins.html

Since our goal here is not to compare tools, we refer to

them simply as Lib1 and Lib2 throughout the paper.

Lib1 and Lib2 provide by default two different implemen-

tations of MFCCs, both of which compute cepstral coeffi-

cients on 40 mel bands, resembling the MFCC FB-40 im-

plementation [8, 22] but on different frequency intervals.

Lib1 covers a wider frequency range of 0-11000 Hz with

mel bin centers being equally spaced on the mel scale in

this range, while Lib2 covers a frequency range of 66-

6364 Hz. We compute the first 13 MFCCs in both systems

and discard the first coefficient. In the case of chroma,

Lib1 analyzes a frequency range of 40-5000 Hz based on

Fourier transform and estimates tuning frequency. Lib2

uses a Constant Q Transform and analyzes the frequency

range 65-2093 Hz assuming tuning frequency of 440 Hz,

but it does not account for harmonics of the detected peaks.

We compute 12-dimensional chroma features.

Genre. Robustness may depend as well on the music

genre of songs. For instance, as the most dramatic change

that perceptual coders introduce is that of filtering out high-

frequency spectral content, genres that make use of very

high-frequency sounds (e.g. cymbals and electronic tones)

should show a more detrimental effect than genres not in-

cluding them (e.g. country, blues and classical).

3.2 Data

We created an ad-hoc corpus of music for this study, con-

taining 400 different music tracks (30 seconds excerpts) by

395 different artists, uniformly covering 10 music genres

(blues, classical, country, disco/funk/soul, electronic, jazz,

rap/hip-hop, reggae, rock and rock’n’roll). All 400 tracks

are encoded from their original CD at a 44100 Hz sampling

rate using the lossless FLAC audio codec.

We converted all lossless tracks in our corpus into var-

ious audio formats in accordance with the factors iden-

tified above, taking into account all possible combina-

tions of sampling rate, codec and bitrate. Audio conver-

sion was done using the FFmpeg 0.8.3 3 converter, which

includes the LAME codec for MP3 joint stereo mode

(Lavf53.21.1 ). Afterwards, we analyzed the original loss-

less files and their lossy versions using both Lib1 and Lib2.

In the case of Lib1, both MFCCs and chroma features were

computed for all different frame sizes with the hop size

equal to half the frame size. MFCCs were computed simi-

larly in the case of Lib2, but chroma features only allow a

fixed frame size of 16384 samples (we selected a hop size

of 2048 samples). In all cases, we summarize the frame-

wise feature vectors with the mean of each coefficient.

3.3 Indicators of Robustness

We computed several indicators of the robustness of

MFCCs and chroma, each measuring the difference be-

tween the descriptors computed with the original lossless

audio clips and the descriptors computed with their lossy

versions. We blocked by tool, sampling rate and frame

size under the assumption that these factors are not mixed

in practice within the same application. For two arbitrary

3 http://www.ffmpeg.org
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vectors x and y (each containing n = 12 MFCC or chroma

values) from a lossless and a lossy version, we compute

five indicators to measure how different they are.

Relative error δ. It is computed as the average relative

difference across coefficients. This indicator can be eas-

ily interpreted as the percentage error between coefficients,

and it is of especial interest for tasks in which coefficients

are used as features to train some model.

δ(x, y) = 1
n

∑ |xi−yi|
max(|xi|,|yi|)

Euclidean distance ε. The Euclidean distance between

the two vectors, which is especially relevant for tasks that

compute distances between pairs of songs, such as in music

similarity or other tasks that use techniques like clustering.

Pearson’s r. The common parametric correlation coef-

ficient between the two vectors, ranging from -1 to 1.

Spearman’s ρ. A non-parametric correlation coeffi-

cient, equal to the Pearson’s r correlation after transform-

ing all coefficients to their corresponding ranks in x ∪ y.

Cosine similarity θ. The angle between both vectors. It

is is similar to ε, but it is normalized between 0 and 1.

We have 400 tracks×19 BRate:Codec×6 FSize=45600

datapoints for MFCCs with Lib1, MFCCs with Lib2, and

chroma with Lib1. For chroma with Lib2 there is just

one FSize, which yields 7600 datapoints. This adds up to

144400 datapoints for each indicators, 722000 overall.

3.4 Analysis

For simplicity, we followed a hierarchical analysis for each

combination of sampling rate, tool, feature and robust-

ness indicator. We are first interested in the mean of the

score distributions, which tells us the expected robustness
in each case (e.g. a low ε mean score suggests that the de-

scriptor is robust because it does not differ much between

the lossless and the lossy versions). But we are also inter-

ested in the stability of the descriptor, that is, the variance

of the distribution. For instance, a descriptor might be ro-

bust on average but not below 192 Kbps, or robust only

with a frame size of 2048.

To gain a deeper understanding of the variations in the

indicators, we fitted a random effects model to study the

effects of codec, bitrate and frame size [14]. The spe-

cific models included the FSize and Codec main effects,

and the bitrate was modeled as nested within the Codec
effect (BRate:Codec); all interactions among them were

also fitted. Finally, we included the Genre and Track main

effects to estimate the specific variability due to inherent

differences among the music pieces themselves. We did

not consider any Genre or Track interactions because they

can not be controlled in a real-world application, so their

effects are all confounded with the residual effect. Note

though that this residual does not account for any random

error (in fact, there is no random error in this model); it

accounts for high-order interactions associated with Genre
and Track that are irrelevant for our purposes. This re-

sults in a Resolution V design for the factors of interest

(main effects unconfounded with two- or three-factor in-

teractions) and a Resolution III design for musical factors

related to genre (main effects confounded with two-factor

interactions) [14]. We ran an ANOVA analysis on these

models to estimate variance components, which indicate

the contribution of each factor to the total variance, that is,

their impact on the robustness of the audio descriptors.

4. RESULTS

Table 1 shows the results for MFCCs. As shown by the

mean scores, the descriptors computed by Lib1 and Lib2

are similarly robust (note that ε scores are not directly com-

parable across tools because they are not normalized; ac-

tual MFCCs in Lib1 are orders of magnitude larger than

in Lib2). Both correlation coefficients r and ρ, as well as

cosine similarity θ, are extremely high, indicating that the

shape of the feature vectors is largely preserved. However,

the average error across coefficients is as high δ ≈ 6.1% at

22050 Hz and δ ≈ 6.7% at 44100 Hz.

When focusing on the stability of the descriptors, we

see that the implementation in Lib2 is generally more sta-

ble because the distributions have less variance, except for

δ and ρ at 22050 Hz. The decomposition in variance com-

ponents indicates that the choice of frame size is irrelevant

in general (low σ̂2
FSize scores), and that the largest part of

the variability depends on the particular characteristics of

the music pieces (very high σ̂2
Track+σ̂2

residual scores). For

Lib2 in particular, this means that controlling encodings

or analysis parameters does not increase robustness signif-

icantly when the sampling rate is 22050 Hz; it depends

almost exclusively on the specific music pieces. On the

other hand, the combination of codec and bitrate has a quite

large effect in Lib1. For instance, about 42% of the vari-

ability in Euclidean distances is due to the BRate:Codec
interaction effect. This means that an appropriate selection

of the codec and bitrate of the audio files leads to signifi-

cantly more robust descriptors. At 44100 Hz both tools are

clearly affected by the BRate:Codec effect as well, espe-

cially Lib1. Figure 1 compares the distributions of δ scores

for each tool. We can see that Lib1 has indeed large vari-

ance across groups, but small variance within groups, as

opposed to Lib2. The robustness of Lib1 seems to con-

verge to δ ≈ 3% at 256 Kbps, and the descriptors are

clearly more stable with larger bitrates (smaller within-

group variance). On the other hand, the average robustness

of Lib2 converges to δ ≈ 5% at 160-192 Kbps, and stabil-
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Figure 1. Distributions of δ scores for different combina-

tions of MP3 codec and bitrate at 44100 Hz, and for both

audio analysis tools. Blue crosses mark the sample means.

Outliers are rather uniformly distributed across genres.
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22050 Hz 44100 Hz
δ ε r ρ θ δ ε r ρ θ

L
ib

1

σ̂2
FSize 1.08 3.03 1.73 0 1.74 0.21 0.09 0.01 0 0

σ̂2
Codec 0 0 0 0 0 0 0 0 0 0

σ̂2
BRate:Codec 31.25 42.13 21.61 8.38 21.49 46.98 41.77 22.52 24.03 21.51

σ̂2
FSize×Codec 0 0 0 0 0 0 0.20 0.07 0.05 0.06

σ̂2
FSize×(BRate:Codec)

4.87 11.71 12.36 1.23 13.21 7.37 18.25 17.98 10.85 18.02

σ̂2
Genre 0.99 4.53 3.92 0.08 3.80 1.12 0.52 0.90 0.32 0.89

σ̂2
Track 19.76 5.84 6.46 11.59 5.73 10.12 3.91 2.65 5.23 2.59

σ̂2
residual 42.05 32.75 53.92 78.72 54.03 34.19 35.26 55.87 59.52 56.92

Grand mean 0.0591 1.6958 0.9999 0.9977 0.9999 0.0682 1.8820 0.9998 0.9939 0.9998
Total variance 0.0032 3.4641 1.8e-7 3.2e-5 1.5e-7 0.0081 11.44 1.6e-6 0.0005 1.4e-6

Standard deviation 0.0567 1.8612 0.0004 0.0056 0.0004 0.0897 3.3835 0.0013 0.0214 0.0012

L
ib

2

σ̂2
FSize 1.17 0.32 0.16 0.24 0.18 0.25 0 0 0 0

σ̂2
Codec 0 0 0 0 0 0 0 0 0 0

σ̂2
BRate:Codec 4.91 6.01 2.32 0.74 3.14 23.46 24.23 14.27 13.31 15.02

σ̂2
FSize×Codec 0 0 0 0 0 0 0 0 0 0

σ̂2
FSize×(BRate:Codec)

0.96 0.43 0.03 0.04 0.09 7.17 8.09 10.35 6.34 10.86

σ̂2
Genre 4.21 14.68 2.84 0.61 4.41 0.37 5.37 0.50 0 0.48

σ̂2
Track 52.34 61.05 32.07 66.10 41.26 27.33 14.10 6.55 13.32 5.53

σ̂2
residual 36.41 17.51 62.57 32.27 50.92 41.42 48.21 68.32 67.03 68.11

Grand mean 0.0622 0.0278 0.9999 0.9955 0.9999 0.0656 0.0342 0.9998 0.9947 0.9999
Total variance 0.0040 0.0015 8.9e-8 0.0002 3.5e-8 0.0055 0.0034 6.4e-7 0.0002 4.8e-7

Standard deviation 0.0631 0.0391 0.0003 0.0131 0.0002 0.0740 0.0587 0.0008 0.0150 0.0007

Table 1. Variance components in the distributions of robustness of MFCCs for Lib1 (top) and Lib2 (bottom). Each

component represents the percentage of total variance due to each effect (eg. σ̂2
FSize = 3.03 indicates that 3.03% of the

variability in the robustness indicator is due to differences across frame sizes; σ̂2
x = 0 when the effect is so extremely small

that the estimate is slightly below zero). All interactions with the Genre and Track main effects are confounded with the

residual effect. The last rows show the grand mean, total variance and standard deviation of the distributions.

ity remains virtually the same beyond 96 Kbps. These plots

confirm that the MFCC implementation in Lib1 is nearly

twice as robust and stable when the encoding is homoge-

neous in the corpus, while the implementation in Lib2 is

less robust but more stable with heterogeneous encodings.

The FSize effect is negligible, indicating that the choice

of frame size does not affect the robustness of MFCCs

in general. However, in several cases we can observe

large σ̂2
FSize×(BRate:Codec) scores, meaning that for some

codec-bitrate combinations it does matter. An in-depth

analysis shows that these differences only occur at 64 Kbps

though (small frame sizes are more robust); differences are

very small otherwise. Finally, the small σ̂2
Genre scores in-

dicate that robustness is similar across music genres.

A similar analysis was conducted to assess the robust-

ness and stability of chroma features. Even though the

correlation indicators are generally high as well, Table 2

shows that chroma vectors do not preserve the shape as

well as MFCCs do. When looking at individual coeffi-

cients, the relative errors are similarly δ ≈ 6% in Lib1, but

they are greatly reduced in Lib2, especially at 44100 Hz.

In fact, the chroma implementation in Lib2 is more robust

and stable according to all indicators 4 . For Lib1, virtually

all the variability in the distributions is due to the Track
and residual effects, meaning that chroma is similarly ro-

bust across encodings, analysis parameters and genre. For

Lib2, we can similarly observe that errors in the correla-

tion indicators depend almost entirely on the Track effect,

but δ and ε depend mostly on the codec-bitrate combina-

tion. This indicates that, despite chroma vectors preserve

4 Even though these distributions include all frame sizes in Lib1 but
only 16384 in Lib2, the FSize effect is negligible in Lib1, meaning that
these indicators are still comparable across implementations

their shape, the individual components vary significantly

across encodings; we observed that increasing the bitrate

leads to larger coefficients overall. This suggests that nor-

malizing the chroma coefficients could dramatically im-

prove the distributions of δ and ε. We tried the parameter

normalization=2 to have Lib2 normalize chroma vec-

tors to unit maximum. As expected, the effects of codec

and bitrate are removed after normalization, and most of

the variability is due to the Track effect. The correlation

indicators are practically unaltered after normalization.

5. ROBUSTNESS IN GENRE CLASSIFICATION

The previous section provided indicators of robustness that

can be easily understood. However, they can be hard to

interpret because in the end we are interested in the ro-

bustness of the various algorithms that make use of these

features; whether δ = 5% is large or not depends on how

MFCCs and chroma are used in practice. To investigate

this question we consider a music genre classification task.

For each sampling rate, codec, bitrate and tool we trained

one SVM model with radial basis kernel using MFCCs and

another using chroma. For MFCCs we used a standard

frame size of 2048, and for chroma we set 4096 in Lib1

and the fixed 16384 in Lib2. We did random sub-sampling

validation with 100 random trials for each model, using

320 tracks for training and the remaining 80 for testing.

We first investigate whether a particular choice of en-

coding is likely to classify better when fixed across train-

ing and test sets. Table 3 shows the results for a selec-

tion of encodings at 44100 Hz. Within the same tool and

descriptor, differences across encodings are quite small,

approximately 0.02. In particular, for MFCCs and Lib1

an ANOVA analysis suggests that differences are signifi-
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22050 Hz 44100 Hz
δ ε r ρ θ δ ε r ρ θ

L
ib

1

σ̂2
FSize 1.68 2.77 0.20 0.15 0.38 2.37 2.42 0.24 0.34 0.50

σ̂2
Genre 2.81 2.75 1.29 1.47 0.81 3.12 2.61 1.17 1.25 0.85

σ̂2
Track 20.69 19.27 17.75 18.52 16.63 22.28 20.78 18.81 19.92 18.64

σ̂2
residual 74.82 75.21 80.75 79.86 82.17 72.22 74.19 79.79 78.49 80.01

Grand Mean 0.0610 0.0545 0.9554 0.9366 0.9920 0.0588 0.0521 0.9549 0.9375 0.9922
Total variance 0.0046 0.0085 0.0276 0.0293 0.0014 0.0048 0.0082 0.0286 0.0298 0.0013

Standard deviation 0.0682 0.0924 0.1663 0.1713 0.0373 0.0695 0.0904 0.1691 0.1725 0.0355

L
ib

2

σ̂2
Codec 63.62 34.55 0 0 0 32.32 21.59 0 0 0

σ̂2
BRate:Codec 0.71 0.23 0 0 0 61.80 39.51 0.01 0.03 0.04

σ̂2
Genre 0.25 15.87 2.90 4.05 7.95 0.62 9.98 3.43 1.33 3.66

σ̂2
Track 19.29 32.77 96.71 92.75 91.80 3.27 13.79 94.24 93.04 77.00

σ̂2
residual 16.14 16.58 0.38 3.20 0.25 1.98 15.13 2.32 5.60 19.30

Grand mean 0.0346 0.0031 0.9915 0.9766 0.9998 2.6e-2 2.2e-3 0.9989 0.9928 1
Total variance 0.0004 5e-6 0.0002 0.0007 6.1e-8 4.6e-4 4.8e-6 3.7e-6 0.0001 1.8e-9

Standard deviation 0.0195 0.0022 0.0135 0.0270 0.0002 0.0213 0.0022 0.0019 0.0122 4.2e-5

Table 2. Variance components in the distributions of robustness of Chroma for Lib1 (top) and Lib2 (bottom), similar

to Table 1. The Codec main effect and all its interactions are not shown for Lib1 because all variance components are

estimated as 0. Note that the FSize main effect and all its interactions are omitted for Lib2 because it is fixed to 16384.

64 96 128 160 192 256 320 WAV

L
ib

1 MFCCs .383 .384 .401 .403 .395 .402 .394 .393
Chroma .275 .281 .288 .261 .278 .278 .284 .291

L
ib

2 MFCCs .335 .329 .332 .341 .336 .336 .344 .335
Chroma .320 .325 .320 .323 .325 .319 .320 .313

Table 3. Mean classification accuracy over 100 trials when

training and testing with the same encoding (MP3 CBR

and WAV only) at 44100 Hz.

cant, F (7, 693)=2.34, p=0.023; a multiple comparisons

analysis reveals that 64 Kbps is significantly worse than

the best (160 Kbps). In terms of chroma, differences are

again statistically significant, F (7, 693)=3.71, p<0.001;

160 Kbps is this time significantly worse that most of

the others. With Lib2 differences are not significant for

MFCCs, F (7, 693) = 1.07, p = 0.378. No difference is

found for chroma either, F (7, 693) = 0.67, p = 0.702.

Overall, despite some pairwise comparisons are signifi-

cantly different, there is no particular encoding that clearly

outperforms the others; the observed differences are prob-

ably just Type I errors. There is no clear correlation either

between bitrate and accuracy.

We then investigate whether a particular choice of en-

coding for training is likely to produce better results when

the target test set has a fixed encoding. For MFCCs

and Lib1 there is no significant difference in any but

one case (testing with 160 Kbps is worst when training

with 64 Kbps). For chroma there are a few cases where

160 Kbps is again significantly worse than others, but we

attribute these to Type I errors as well. Although not sig-

nificantly so, the best result is always obtained when the

training set has the same encoding as the target test set.

With Lib2 there is no significant difference for MFCCs or

chroma. Overall, we do not observe a correlation either be-

tween training and test encodings. Due to space constrains,

we do not discuss results for VBR or 22050 Hz, but the

same general conclusions can be drawn nonetheless.

6. DISCUSSION

Sigurdsson et al. [21] suggested that MFCCs are sensi-

tive to the spectral perturbations that result from low bi-

trate compression, mostly due to distortions at high fre-

quencies. They estimated squared Pearson’s correlation

between MFCCs computed on original lossless audio and

its MP3 derivatives, using 4 different MFCC implemen-

tations. All implementations were found to be robust at

bitrates of at least 128 Kbps, with r2 > 0.95, but a sig-

nificant loss in robustness was observed at 64 Kbps in

some of the implementations. The most robust MFCC im-

plementation had a highest frequency of 4600 Hz, while

the least robust implementation included frequencies up to

11025 Hz. Their music corpus contained only 46 songs

though, clearly limiting their results. In our experiments,

all encodings show r2>0.99. However, we note that Pear-

son’s r is very sensible to outliers with such small samples.

This is the case of the first MFCC coefficients, which are

orders of magnitude larger than the last coefficients. This

makes r extremely large simply because the first coeffi-

cients are remotely similar; most of the variability between

feature vectors is explained because of the first coefficient.

This is clear in our Table 1, where r ≈ 1 and variance is

nearly 0. To minimize this sensibility to outliers, we also

included the non-parametric Spearman’s ρ correlation co-

efficient as well as the cosine similarity. In our case, the

tool with the larger frequency range was shown to be more

robust under homogeneous encodings, while the shorter

range was more stable under heterogeneous conditions.

Hamawaki et al. [10] analyzed differences in the distri-

bution of MFCCs for different bitrates using a corpus of

2513 MP3 files of Japanese and Korean pop songs with bi-

trates between 96 and 192 Kbps. Following a music simi-

larity task, they compared differences in the top-10 ranked

results when using MFCCs derived from WAV audio, its

MP3 encoded versions, and the mixture of MFCCs from

different sources. They found that the correlation of the re-

sults deteriorates smoothly as the bitrate decreases, while

ranking on a set of MFCCs derived from different formats

revealed uncorrelated results. We similarly observed that

the differences between MFCCs of the original WAV files

and its MP3 versions decrease smoothly with bitrate.

Jensen et al. [12] measured the effect of audio encoding

on performance of an instrument classifier using MFCCs.
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They compared MFCCs computed from MP3 files at only

32-64 Kbps, observing a decrease in performance when

using a different encoder for training and test sets. In con-

trast, performance did not change significantly when using

the same encoder. For genre classification with MFCCs,

our results showed no differences in either case. We note

though that the bitrates we considered are much larger. Ue-

mura et al. [23] examined the effect of bitrate on chord

recognition using chroma features with an SVM classi-

fier. They observed no obvious correlation between en-

coding and estimation results; the best results were even

obtained with very low bitrates for some codecs. Our re-

sults on genre classification with chroma largely agree in

this case as well; the best results with Lib2 were also ob-

tained by low bitrates. Casey et al. [4] evaluated the effect

of lossy encodings on genre classification tasks using au-

dio spectrum projection features. They found a small but

statistically significant decrease in accuracy for bitrates of

32 and 96 Kbps. In our experiments, we do not observe

these differences, although the lowest bitrate we consider

is 64 Kbps. Jacobson et al. [11] also investigated the ro-

bustness of onset detection methods to lossy MP3 encod-

ing. They found statistically significant changes in accu-

racy only at bitrates lower than 32 Kbps.

Our results showed that MFCCs and chroma features, as

computed by Lib1 and Lib2, are generally robust and sta-

ble within reasonable limits. Some differences have been

noted between tools though, largely attributable to the dif-

ferent frequency ranges they employ. Nonetheless, it is

evident that certain combinations of codec and bitrate may

require a re-parameterization of some descriptors to im-

prove or even maintain robustness. In practice, these pa-

rameterizations affect the performance and applicability of

algorithms, so a balance between performance, robustness

and generalizability should be sought. These considera-

tions are of major importance when collecting audio files

for some dataset, as a minimum audio quality might be

needed for some descriptors.

7. CONCLUSIONS

In this paper we have studied the robustness of two com-

mon audio descriptors used in Music Information Re-

trieval, namely MFCCs and chroma, to different audio en-

codings and analysis parameters. Using a varied corpora

of music pieces and two different audio analysis tools we

have confirmed that MFFCs are robust to frame/hop sizes

and lossy encoding provided that a minimum bitrate of

approximately 160 Kbps is used. Chroma features were

shown to be even more robust, as the codec and bitrates

had virtually no effect on the computed descriptors. This

is somewhat expected given that chroma does not capture

information as fine-grained as MFCCs do, and that lossy

compression does not alter the perceived tonality. We did

find subtle differences between implementations of these

audio features, which call for further research on standard-

izing algorithms and parameterizations to maximize their

robustness while maintaining their effectiveness in the var-

ious tasks they are used in. The immediate line for future

work includes the analysis of other features and tools.
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ABSTRACT 

This paper presents a user study on music information 
needs and behaviors of university students in Hong Kong. 
A mix of quantitative and qualitative methods was used. 
A survey was completed by 101 participants and supple-
mental interviews were conducted in order to investigate 
users’ music information related activities. We found that 
university students in Hong Kong listened to music fre-
quently and mainly for the purposes of entertainment, 
singing and playing instruments, and stress reduction. 
This user group often searches for music with multiple 
methods, but common access points like genre and time 
period were rarely used. Sharing music with people in 
their online social networks such as Facebook and Weibo 
was a common activity. Furthermore, the popularity of 
smartphones prompted the need for streaming music and 
mobile music applications. We also examined users’ 
preferences on music services available in Hong Kong 
such as YouTube and KKBox, as well as the characteris-
tics liked and disliked by the users. The results not only 
offer insights into non-Western users’ music behaviors 
but also for designing online music services for young 
music listeners in Hong Kong. 

1. INTRODUCTION AND RELATED WORK 

Seeking music and music information is prevalent in our 
everyday life as music is an indispensable element for 
many people [1]. People in Hong Kong are not an excep-
tion. Hong Kong has the second highest penetration rate 
of broadband Internet access in Asia, following South 
Korea1. Consequently, Hong Kongers are increasingly 
using various online music information services to seek 
and listen to music, including iTunes, YouTube, Kugou, 
Sogou and Baidu2. However, our current understanding 
of their music information needs and behaviors are still 
lacking, as few studies explored user populations in Hong 
Kong, or in any non-Western cultures.  

Hong Kong is a unique location that merges the West-

ern and Eastern cultures. Before the handover to the Chi-
nese government in 1997, Hong Kong had been ruled by 
the British government for 100 years. This had resulted in 
a heavy influence of Western culture, although much of 
the Chinese cultural heritage has also been preserved well 
in Hong Kong. The cultural influences of Hong Kong to 
the neighboring regions in Asia were significant, espe-
cially in the pre-handover era. In fact, in the 80s and 
throughout the 90s, Cantopop (Cantonese popular music, 
sometimes referred to as HK-pop) was widely popular 
across many Asian countries, and produced many influ-
ential artists such as Leslie Cheung, Anita Mui, Andy 
Lau, and so on [2]. In the post-handover era, there has 
been an influx of cultural products from mainland China 
which is significantly affecting the popular culture of 
Hong Kong [8]. The cultural history and influences of 
Hong Kong, especially paired with the significance of 
Cantopop, makes it an interesting candidate to explore 
among many non-Western cultures.  

Of the populations in Hong Kong, we specifically 
wanted to investigate young adults on their music infor-
mation needs and behaviors. They represent a vibrant 
population who are not only heavily exposed to and fast 
adopters of new ideas, but also represent the future work-
force and consumers. University students in Hong Kong 
are mostly digital natives (i.e., grew up with access to 
computers and the Internet from an early age) with rich 
experience of seeking and listening to digital music. Ad-
ditionally the fact that they are influenced by both West-
ern and Eastern cultures, and exposed to both global and 
local music make them worthy of exploring as a particu-
lar group of music users.1   2

There have been a few related studies which investi-
gated music information users in Hong Kong. Lai and 
Chan [5] surveyed information needs of users in an aca-
demic music library setting. They found that the frequen-
cies of using score and multimedia were higher than us-
ing electronic journal databases, books, and online jour-
nals. Nettamo et al. [9] compared users in New York City 
and those in Hong Kong in using their mobile devices for 
music-related tasks. Their results showed that users’ envi-
                                                           
1 http://www.itu.int/ITU-D/ICTEYE/Reporting/Dynamic ReportWiz-
ard.aspx
2 http://hk.epochtimes.com/b5/11/10/20/145162.htm
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ronment and context greatly influenced their behaviors, 
and there were cultural differences in consuming and 
managing mobile music between the two user groups. 
Our study investigates everyday music information be-
haviors of university students in Hong Kong, and thus the 
scope is broader than these studies.

In addition to music information needs and behaviors, 
this study also examines the characteristics of popular 
music services adopted by university students in Hong 
Kong, in order to investigate their strengths and weak-
nesses. Recommendations for designing music services 
are proposed based on the results. This study will im-
prove our understanding on music information behaviors 
of the target population and contribute to the design of 
music services that can better serve target users. 

2. METHODS  

A mix of quantitative and qualitative methods was used 
in order to triangulate our results. We conducted a survey 
in order to collect general information about target users’ 
music information needs, seeking behaviors, and opinions 
on commonly used music services. Afterwards, follow-up 
face-to-face interviews of a smaller user group were con-
ducted to collect in-depth explanations on the themes and 
patterns discovered in the survey results. Prior to the for-
mal survey and interviews, pilot tests were carried out 
with a smaller group of university students to ensure that 
the questions were well-constructed and students were 
able to understand and answer them without major issues. 

2.1 Survey 
The survey was conducted as an online questionnaire. 
The questionnaire instrument was adapted from the one 
used in [6] and [7], with modifications to fit the multilin-
gual and multicultural environment. Seventeen questions 
about the use of popular music services were added to the 
questionnaire. The survey was implemented with Lime-
Survey, an open-source survey application, and consisted 
of five parts: demographic information, music preference, 
music seeking behaviors, music collection management, 
and opinions on preferred music services. Completing the 
survey took approximately 30 minutes, and each partici-
pant was offered a chance to enter his/her name for a raf-
fle to win one of the three supermarket gift coupons of 
HKD50, if they wished.  

The target population was students (both undergradu-
ate and graduate) from the eight universities sponsored by 
the government of Hong Kong Special Administrative 
Region. The sample was recruited using Facebook due to 
its popularity among university students in Hong Kong. 
Survey invitations were posted on Facebook, initially 
through the list of friends of the authors, and then further 
disseminated by chain-referrals.  

2.2 Interviews 
Semi-structured interviews were conducted after the sur-
vey data were collected and analyzed, in order to seek in-

depth explanations to support the survey findings. Face-
to-face interviews were carried out individually with five 
participants from three different universities. The inter-
views were conducted in Cantonese, the mother tongue of 
the interviewees, and were later transcribed and translated 
to English. Each interview lasted up to approximately 20 
minutes.  

3. SURVEY DATA ANALYSIS 

Of the 167 survey responses collected, 101 complete re-
sponses were analyzed in this study. All the survey par-
ticipants were university students in Hong Kong. Among 
them, 58.4% of were female and 41.6% of them were 
male. They were all born between 1988 and 1994, and 
most of them (88.1%) were born between 1989 and 1992. 
Therefore, they were in their early 20s when the survey 
was taken in 2013. Nearly all of them (98.0%) were un-
dergraduates majoring Science/Engineering (43.6%), So-
cial Sciences/Humanities (54.0%) and Other (2.0%). 

3.1 Music Preferences  
In order to find out participants’ preferred music genres, 
they were asked to select and rank up to five of their fa-
vorite music genres from a list of 25 genres covering 
most Western music genres. To ensure that the partici-
pants understand the different genres, titles and artist 
names of example songs representative of each genre 
were provided. The results are shown in Table 1 where 
each cell represents the number of times each genre was 
mentioned with the rank corresponding in the column. 
Pop was the most preferred genre among the participants, 
followed by R&B/Soul and Rock. We also aggregated the 
results by assigning reversely proportional weights to the 
ranks (1st: 5 points, and 5th: 1 point). The most popular 
music genres among the participants were Pop (311 pts), 
R&B/Soul (204 pts), Rock (109 pts), Gospel (88 pts) and 
Jazz (86 pts).  

 1st 2nd 3rd 4th 5th Total Total (%)
Pop 43 14 9 4 5 75 74.2% 

R&B 7 29 11 7 6 60 59.4% 
Rock 6 9 10 3 7 35 34.7% 

Gospel 9 6 2 4 5 26 25.7% 
Jazz 6 8 3 5 5 27 26.7% 

Table 1. Preferences on music genres  

Moreover, as both Chinese and English are official 
languages of Hong Kong, participants were also asked to 
rank their preferences on languages of lyrics. The five 
options were English, Cantonese, Mandarin, Japanese and 
Korean. The last three were included due to popularity of 
songs from nearby countries/regions in Hong Kong, in-
cluding mainland China and Taiwan (Mandarin), Japan 
(Japanese), and Korea (Korean). As shown in Table 2, 
English was in fact highly preferred, followed by Canton-
ese. Mandarin was mostly ranked at the second or third 
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place, while Korean and Japanese were ranked lower. We 
also aggregated the answers and found that the most pop-
ular languages in songs are English (394 points), Canton-
ese (296 points), and Mandarin (223 points).  

 1st 2nd 3rd 4th 5th Total Total (%)
English 46 27 16 3 2 94 93.1% 

Cantonese 31 20 15 7 2 75 74.3% 
Mandarin 13 23 20 2 2 60 59.4% 
Korean 6 15 6 16 14 57 56.4% 

Japanese 5 5 10 16 16 52 51.5% 

Table 2. Preferences on languages of song lyrics 

3.2 Music Seeking Behaviors 
When asked about the type of music information they 
have ever searched, most participants indicated prefer-
ences on audio: MP3s and music videos (98.0%), music 
recordings (e.g., CDs, vinyl records, tapes) (94.1%), and 
music multimedia in other formats (e.g., Blue-ray, DVD, 
VHS) (88.1%). Written forms of music information were 
sought by fewer respondents: books on music (73.2%), 
music magazines (69.3%), and academic music journals 
(63.4%). Approximately one out of three participants 
even responded that they have never sought music maga-
zines (30.7%) or academic music journals (36.6%).  

As for the frequency of search, 41.6% of respondents 
indicated that they sought MP3s and music videos at least 
a few times a week, compared to only 18.8% for music 
recordings (e.g., CDs, vinyl records, tapes) and 24.8% for 
music multimedia in other formats (e.g., Blue-ray, DVD).  

Moreover, 98.0% of participants responded that they 
had searched for music information on the Internet. 
Among them, almost all (99.0%) answered that they had 
downloaded free music online, and 95.0% responded that 
they had listened to streaming music or online radio. This 
clearly indicates that participants sought digital music 
more often through online channels than offline or physi-
cal materials. However, even though 77.8% of respond-
ents had visited online music store, only 69.7% of them 
had purchased any electronic music files or albums. Not 
surprisingly, participants preferred free music resources. 

Music was certainly a popular element of entertain-
ment in the lives of the participants. When asked why 
they sought music, all participants included entertainment 
in their answers. Also, a large proportion (83.0%) indi-
cated that they sought music for entertainment at least a 
few times a week. Furthermore, 97.0% of respondents 
search for music information for singing or playing a mu-
sical instrument for fun. This proportion is significantly 
higher than the results from the previous survey of uni-
versity population in the United States (32.8% for singing 
and 31.9% for playing a musical instrument) [6]. In addi-
tion, 78.2% of our respondents do this at least two or 
three times a month. We conjecture that this is most like-
ly due to the popularity of karaoke in Hong Kong. 

Known-item search was the most common type of music 
information seeking; nearly all respondents (95.1%) 
sought music information for the identifica-
tion/verification of musical works, artist and lyrics, and 
about half of them do so at least a few times a week. Ob-
taining background information was also a strong reason; 
over 90% of the participants sought music to learn more 
about music artists (97.0%) as well as music (94.1%), and 
approximately half of them (53.5% and 40.6%, respec-
tively) sought this kind of music information at least two 
or three times a month.  

When asked which sources stimulated or influenced 
their music information needs, all 101 participants 
acknowledged online video clips (e.g. YouTube) and TV 
shows/movies. This suggests that the influence of other 
media using music is quite significant which echoes the 
finding that associative metadata in music seeking was 
important for the university population in the United 
States [6]. Also over 70% of the participants’ music 
needs were influenced by music heard in public places, 
advertisement/commercial, radio show, or family mem-
bers’/friends’ home.  

As for the metadata used in searching for music, per-
former was the most popular access point with 80.2% of 
positive responses, followed by the title of work(s) 
(65.3%) and some words of lyrics (62.4%). Other com-
mon types of metadata such as genre and time period 
were only used by a few respondents (33.7% and 29.7%, 
respectively). Particularly for genre, the proportion is sig-
nificantly lower than 62.7% as found in the prior survey 
of university population in the United States [6]. This is 
perhaps related to the exposure to different music genres 
in Hong Kong, and the phenomenon that Hong Kongers 
music listeners tend to emphasize an affinity with friends 
while Americans (New Yorkers) are more likely to use 
music to highlight their individual personalities [9]. 
Moreover, participants responded that they would also 
seek music based on other users’ opinions: 57.4% by rec-
ommendations from other people and 52.5% by populari-
ty. The proportion for popularity is also fairly larger than 
the 31% in [6]. This shows that the social aspect is a cru-
cial factor affecting participants’ music seeking behaviors. 

Of the different types of people, friends and family 
members (91.1%) and people on their social network 
websites (e.g. Facebook, Weibo) (89.1%) were the ones 
whom they most likely ask for help when searching for 
music. In addition, they turned to the Internet more fre-
quently than friends and family members. Thirty-nine 
percent of them sought help on social network websites at 
least a few times a week while only 23.8% turned to 
friends/family members at least a few times a week. 

On the other hand, when asked which physical places 
they go to in order to search for music or music infor-
mation, 82.18% said that they would find music in family 
members’ or friends’ home, which was higher than going 
to record stores (75.3%), libraries (70.3%), and academic 
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institutions (64.4%). Overall, these data show that users’ 
social networks, and especially online networks are im-
portant for their music searching process.  

3.3 Music Collection Management  
More participants were managing a digital collection 
(40.6%) than a physical one (25.7%). On average, each 
respondent estimated that he/she managed 900 pieces of 
digital music and 94 pieces of music in physical formats. 
This shows that managing digital music is more popular 
among participants, although the units that they typically 
associate with digital versus physical items might differ 
(e.g., digital file vs. physical album).  

 We also found that students tended to manage their 
music collections with simple methods. Over half of the 
respondents (50.0% for music in physical formats and 
56.1% for digital music) manage their music collection 
by artist name. Participants sometimes also organized 
their digital collections by album title (17.7%), but rarely 
by format type (3.9%) and never by record label. More 
participants indicated they did not organize their music at 
all for their physical music collection (19.2%) than their 
digital music collection (2.4%). When they did organize 
their physical music collection, they would use album ti-
tle (11.5%) and genre (11.5%). Overall, organizing the 
collection did not seem to be one of the users’ primary 
activities related to music information.  

3.4  Preferred Music Services  
Respondents gave a variety of responses regarding their 
most frequently visited music services: YouTube (51.5%), 
KKBox (26.7%), and iTunes (14.9%) were the most pop-
ular ones. KKBox is a large cloud-based music service 
provider founded in Taiwan, very popular in the region 
and sometimes referred to as “Asian Spotify.” YouTube, 
which provides free online streaming music video, was 
almost twice as popular as the second most favored music 
service, KKBox. The popularity of YouTube was also 
observed in Lee and Waterman’s survey of 520 music 
users in 2012 [7]. Their respondents ranked Pandora as 
the most preferred service, followed by YouTube as the 
second.  

The participants were also asked to evaluate their fa-
vorite music services. Specifically, they were asked to 
indicate their level of satisfaction using a 5-point Likert 
scale on 15 different aspects on search function, search 
results and system utility. Table 3 shows the percentage 
of positive (aggregation of “somewhat satisfied” and 
“very satisfied) and negative (aggregation of “somewhat 
unsatisfied” and “very unsatisfied”) ratings among users 
who chose each of the three services as their most fa-
vored one. 

For those who selected YouTube as their most fre-
quently used service, they indicated that they were espe-
cially satisfied with its keyword search function (74.5%), 
recommendation of keywords (70.6%), variety of availa-
ble music information (60.8%) and attractive interface 

(56.9%). Only a few respondents (9.8%) were unsatisfied 
with certain features of YouTube such as advanced 
search, relevance of search results, and navigation. It is 
surprising to see that five respondents rated YouTube 
negatively on the aspect of price. We suspect they might 
have associated this aspect with the price of purchasing 
digital music from certain music channels on YouTube, 
or the indirect cost of having to watch ads. However, we 
did not have the means to identify these respondents to 
verify the reasons behind their ratings.    

YouTube KKBox iTunes 
P N P N P N 

se
ar

ch
fu

nc
tio

n

keyword search 74.5 7.8 29.6 7.4 13.3 0.0 
advanced search 54.9 9.8 44.4 18.5 46.7 6.7 
content-based search 51.0 7.8 44.4 29.6 66.7 13.3
auto-correction 49.0 7.8 29.6 29.6 20.0 33.3
keywords suggestion 70.6 3.9 40.7 25.9 20.0 53.3

se
ar

ch
 

re
su

lts
 number of results 52.9 7.8 40.7 22.2 6.7 33.3

relevance 47.1 9.8 48.1 18.5 13.3 33.3
accuracy  49.0 7.8 44.4 18.5 33.3 26.7

ut
ili

ty
 

price of the service 39.2 9.8 25.9 25.9 33.3 20.0
accessibility 52.9 7.8 22.2 37.0 26.7 20.0
navigation 52.9 9.8 18.5 29.6 6.7 20.0
variety of available 
music information 

60.8 7.8 22.2 22.2 26.7 13.3

music recommendation 52.9 7.8 33.3 22.2 53.3 20.0
interface attractiveness 56.9 3.9 33.3 7.4 40.0 20.0
music sharing 47.1 3.9 40.7 7.4 40.0 20.0

Table 3 User ratings of three most preferred music 
services (“P”: positive; “N”: negative, in percentage)

The level of satisfaction for KKBox was lower than 
that of YouTube. Nearly half of the participants who use 
KKBox were satisfied with its relevance of results 
(48.1%), advanced search function (44.4%) and content-
based search function (44.4%). The aspects of KKBox 
that participants did not like included the lack of accessi-
bility (37.0%), content-based search function (29.6%), 
and auto-correction (29.6%). Interestingly, the content-
based search function in KKBox was controversial 
among the participants. Some participants liked it proba-
bly because it was a novel feature that few music services 
had; while others were not satisfied with it, perhaps due 
to fact that current performance of audio content-based 
technologies have yet to meet users’ expectation.  

Only 15 participants rated iTunes as their most fre-
quently used music service. Their opinions on iTunes 
were mixed. Its content-based search function and music 
recommendations were valued by 66.7% and 53.3% of 
the 15 participants, respectively. The data seem to sug-
gest that audio content-based technologies in iTunes per-
formed better than KKBox, but this must be verified with 
a larger sample in future work. On the other hand, over 
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half of the respondents gave negative response to the 
keyword suggestion function in iTunes. Moreover, the 
auto-correction, number of search results, and relevance 
of search results also received negative responses by one 
third of the respondents. These functions are related to 
the content of music collection in iTunes, and thus we 
suspect that the coverage of iTunes perhaps did not meet 
the expectations of young listeners in Hong Kong, as 
much as the other two services did.  

4. THEMES/TRENDS FROM INTERVIEWS 

4.1 Multiple Music Information Searching Strategies 
Interviewees searched for music using not only music 
services like YouTube or KKBox, but also general-
purpose search engines, such as Google and Yahoo!. 
Most often, a simple keyword search with the song title 
or artist name was conducted when locating music in 
these music services. However, more complicated 
searches such as those using lyrics and the name of com-
poser are not supported by most existing music services. 
In this case, search engines had to be used. For example, 
if the desired song title and artist name are unknown or 
inaccurate, interviewees would search for them on 
Google or Yahoo! with any information they know about 
the song. The search often directed them to the right piece 
of metadata which then allowed them to conduct a search 
in YouTube or other music services. As expected, this 
does not always lead to successful results; one participant 
said “when I did not know the song title or artist name, I 
tried singing the song to Google voice search, but the re-
sult was not satisfactory.”  

4.2 Use of Online Social Networks 
Online social network services are increasingly popular 
among people in Hong Kong. According to an online 
survey conducted with 387 Hong Kong residents in 
March 20113, the majority of the respondents visited Fa-
cebook (92%), read blogs (77%) and even wrote blog 
posts (52%). Social media provides a convenient way for 
people to connect with in Hong Kong where maintaining 
a work-life balance can be quite challenging.  

University students in Hong Kong are also avid social 
media users. They prefer communicating and sharing in-
formation with others using online social networks for the 
efficiency and flexibility. Naturally, it also serves as a 
convenient channel for sharing music recommendations 
and discussing music-related topics. Relying on others 
was considered an important way to search for music: 
“Normally, I will consider others’ opinions first. There 
are just way too many songs, so it helps find good music 
much more easily.”, “I love other people’s comments, es-
pecially when they have the same view as me!” 
                                                           
3 Hong Kong social media use higher than United States: 
http://travel.cnn.com/hong-kong/life/hong-kong-social-media-use-
higher-united-states-520745.

4.3 24/7 Online Music Listening 
Participants in this study preferred listening to or watch-
ing streaming music services rather than downloading 
music. Downloading an mp3 file of a song usually takes 
about a half minute with a broadband connection and 
slightly longer with a wireless connection. Interviewees 
commented that downloading just added an extra step 
which was inconvenient to them. 

Apart from the web, smart mobile devices are becom-
ing ubiquitous which is also affecting people’s mode of 
music listening. According to Mobilezine4, 87% of Hong 
Kongers aged between 15 and 64 own a smart device. 
According to Phneah [10], 55% of Hong Kong youths 
think that the use of smartphones dominates their lives as 
they are unable to stop using smartphones even in re-
strooms, and many sleep next to it. As expected, universi-
ty students in Hong Kong are accustomed to having 24/7 
access to streaming music on their smartphones.  

5. IMPLICATIONS FOR MUSIC SERVICES 

5.1 Advanced Search  
A simple keyword search may not be sufficient to ac-
commodate users who want to search for music with var-
ious metadata, not only with song titles, but also per-
former’s names, lyrics, and so on. For example, if a user 
wants to locate songs with the word “lotus” in the lyrics, 
they would simply use “lotus” as the search keyword. 
However, the search functions in various music services 
generally are not intelligent enough to understand the se-
mantic differences among the band named Lotus and the 
word “lotus” in lyrics, not to mention which role the band 
Lotus might have played (e.g., performer, composer, or 
both). As a result, users have to conduct preliminary 
searches in web search engines as an extra step when at-
tempting to locate the desired song. Many users will ap-
preciate having an advanced search function with specific 
fields in music services that allow them to conduct lyric 
search with “lotus” rather than a general keyword search.  

5.2 Mood Search 
Participants showed great interests in the feeling or emo-
tion in music, as they perceived the meaning of songs 
were mostly about particular emotions. Terms such as 
“positive”, “optimistic”, and “touching” were used to de-
scribe the meaning of music during the interviews. There-
fore, music services that can support searching by mood 
terms may be useful.  

Music emotion or mood has been recognized as an im-
portant access point for music [3]. A cross-cultural study 
by Hu and Lee [4] points out that listeners from different 
cultural backgrounds have different music mood judg-
ments and they tend to agree more with users from the 
                                                           
4 Hong Kong has the second highest smartphone penetration in the 
world: http://mobilezine.asia/2013/01/hong-kong-has-the-second-
highest-smartphone-penetration-in-the-world/.
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same cultural background than users from other cultures. 
This cultural difference must be taken into account when 
establishing mood metadata for music services.  

5.3 Connection with Social Media 
Social media play a significant role in sharing and dis-
cussing music among university students in Hong Kong. 
YouTube makes it easy for people to share videos in var-
ious online social communities such as Facebook, Twitter 
and Google Plus. Furthermore, users can view the shared 
YouTube videos directly on Facebook which makes it 
even more convenient. This is one of the key reasons our 
participants preferred YouTube. However, music services 
like iTunes have yet to adopt this strategy. For our study 
population, linking social network to music services 
would certainly enhance user experience and help pro-
mote music as well.  

5.4 Smartphone Application 
Many participants are listening to streaming music with 
their smartphones, and thus naturally, offering music apps 
for smart devices will be critical for music services. Both 
YouTube and iTunes offer smartphone apps. Moreover, 
instant messaging applications, such as WhatsApp, is 
found as the most common reason for using smartphones 
among Hong Kongers [10]. To further improve the user 
experience, music-related smartphone apps may consider 
incorporating online instant messaging capabilities.   

6. CONCLUSION 

Music is essential for many university students in Hong 
Kong. They listen to music frequently for the purpose of 
entertainment and relaxation, to help reduce stress in their 
extremely tense daily lives. Currently, there does not ex-
ist a single music service that can fulfill all or most of 
their music information needs, and thus they often use 
multiple tools for specific searches. Furthermore, sharing 
and acquiring music from friends and acquaintances was 
a key activity, mainly done on online social networks. 
Comparing our findings to those of previous studies re-
vealed some cultural differences between Hong Kongers 
and Americans, such as Hong Kongers relying more on 
popularity and significantly less on genres in music 
search.  

With the prevalence of smartphones, students are in-
creasingly becoming “demanding” as they get accus-
tomed to accessing music anytime and anywhere. Stream-
ing music and music apps for smartphones are becoming 
increasingly common. The most popular music service 
among university students in Hong Kong was YouTube 
due to its convenience, user-friendly interface, and requir-
ing no payment to use their service. In order to further 
improve the design of music services, we recommended 
providing an advanced search function, emotion/mood-
based search, social network connection, smartphone 
apps as well as access to high quality digital music which 
will help fulfill users’ needs. 
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ABSTRACT

This paper presents a lyrics retrieval system called Lyric-
sRadar that enables users to interactively browse song
lyrics by visualizing their topics. Since conventional lyrics
retrieval systems are based on simple word search, those
systems often fail to reflect user’s intention behind a query
when a word given as a query can be used in different con-
texts. For example, the word tears can appear not only in
sad songs (e.g., feel heartrending), but also in happy songs
(e.g., weep for joy). To overcome this limitation, we pro-
pose to automatically analyze and visualize topics of lyrics
by using a well-known text analysis method called latent
Dirichlet allocation (LDA). This enables LyricsRadar to
offer two types of topic visualization. One is the topic radar
chart that visualizes the relative weights of five latent top-
ics of each song on a pentagon-shaped chart. The other is
radar-like arrangement of all songs in a two-dimensional
space in which song lyrics having similar topics are ar-
ranged close to each other. The subjective experiments us-
ing 6,902 Japanese popular songs showed that our system
can appropriately navigate users to lyrics of interests.

1. INTRODUCTION

Some listeners regard lyrics as essential when listening to
popular music. It was, however, not easy for listeners to
find songs with their favorite lyrics on existing music in-
formation retrieval systems. They usually happen to find
songs with their favorite lyrics while listening to music.
The goal of this research is to assist listeners who think the
lyrics are important to encounter songs with unfamiliar but
interesting lyrics.

Although there were previous lyrics-based approaches
for music information retrieval, they have not provided an
interface that enables users to interactively browse lyrics
of many songs while seeing latent topics behind those
lyrics. We call these latent topics lyrics topics. Several

c© Shoto Sasaki, Kazuyoshi Yoshii, Tomoyasu Nakano,
Masataka Goto, Shigeo Morishima.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Shoto Sasaki, Kazuyoshi Yoshii,
Tomoyasu Nakano, Masataka Goto, Shigeo Morishima. LyricsRadar: A
Lyrics Retrieval System Based on Latent Topics of Lyrics, 15th Interna-
tional Society for Music Information Retrieval Conference, 2014.

Figure 1. Overview of topic modeling of LyricsRadar.

approaches analyzed the text of lyrics by using natural
language processing to classify lyrics according to emo-
tions, moods, and genres [2, 3, 11, 19]. Automatic topic
detection [6] and semantic analysis [1] of song lyrics have
also been proposed. Lyrics can be used to retrieve songs
[5] [10], visualize music archives [15], recommend songs
[14], and generate slideshows whose images are matched
with lyrics [16]. Some existing web services for lyrics re-
trieval are based on social tags, such as “love” and “gradu-
ation”. Those services are useful, but it is laborious to put
appropriate tags by hands and it is not easy to find a song
whose tags are also put to many other songs. Macrae et
al. showed that online lyrics are inaccurate and proposed a
ranking method that considers their accuracy [13]. Lyrics
are also helpful for music interfaces: LyricSynchronizer
[8] and VocaRefiner [18], for example, show the lyrics of
a song so that a user can click a word to change the cur-
rent playback position and the position for recording, re-
spectively. Latent topics behind lyrics, however, were not
exploited to find favorite lyrics.

We therefore propose a lyrics retrieval system, Lyric-
sRadar, that analyzes the lyrics topics by using a machine
learning technique called latent Dirichlet allocation (LDA)
and visualizes those topics to help users find their favorite
lyrics interactively (Fig.1). A single word could have dif-
ferent topics. For example, “diet” may at least have two

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

585



Figure 2. Example display of LyricsRadar.

lyrics topics. When it is used with words related to meal,
vegetables, and fat, its lyrics topic “food and health” could
be estimated by the LDA. On the other hand, when it is
used with words like government, law, and elections, “pol-
itics” could be estimated. Although the LDA can esti-
mate various lyrics topics, five typical topics common to all
lyrics in a given database were chosen. The lyrics of each
song are represented by the unique ratios of these five top-
ics, which are displayed as pentagon-shaped chart called
as a topic radar chart. This chart makes it easy to guess
the meaning of lyrics before listening to its song. Further-
more, users can directly change the shape of this chart as a
query to retrieve lyrics having a similar shape.

In LyricsRadar, all the lyrics are embedded in a two-
dimensional space, mapped automatically based on the ra-
tios of the five lyrics topics. The position of lyrics is such
that lyrics in close proximity have similar ratios. Users
can navigate in this plane by mouse operation and discover
some lyrics which are located very close to their favorite
lyrics.

2. FUNCTIONALITY OF LYRICSRADAR

LyricsRadar enables to bring a graphical user interface as-
sisting users to navigate in a two dimensional space in-
tuitively and interactively to come across the target song.
This space is generated automatically by analysis of the
topics which appear in common with the lyrics of many
musical pieces in database using LDA. Also a latent mean-
ing of lyrics is visualized by the topic radar chart based
on the combination of topics ratios. Lyrics that are similar
to a user’s preference (target) can be intuitively discovered
by clicking of the topic radar chart or lyrics representing

by dots. So this approach cannot be achieved at all by the
conventional method which directly searches for a song by
the keywords or phrases appearing in lyrics. Since linguis-
tic expressions of the topic are not necessary, user can find
a target song intuitively even when user does not have any
knowledge about lyrics.

2.1 Visualization based on the topic of lyrics

LyricsRadar has the following two visualization functions:
(1) the topic radar chart; and (2) a mapping to the two-
dimensional plane. Figure 2 shows an example display
of our interface. The topic radar chart shown in upper-
left corner of Figure 2 is a pentagon-shape chart which
expresses the ratio of five topics of lyrics. Each colored
dot displayed in two dimensional plane shown in Figure
2 means the relative location of lyrics in a database. We
call these colored dot representations of lyrics lyrics dot.
User can see lyrics, its title and artist name, and the topic
ratio by clicking the lyrics dot placed on the 2D space, this
supports to discover lyrics interactively. While the lyrics
mapping assists user to understand the lyrics topic by the
relative location in the map, the topic radar chart helps to
get the lyrics image intuitively by the shape of chart. We
explain each of these in the following subsections.

2.1.1 Topic radar chart

The values of the lyrics topic are computed and visualized
as the topic radar chart which is pentagon style. Each ver-
tex of the pentagon corresponds to a distinct topic, and pre-
dominant words of each topic (e.g., “heart”, “world”, and
“life” for the topic 3) are also displayed at the five corner
of pentagon shown in Figure 2. The predominant words
help user to guess the meaning of each topic. The center
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Figure 3. An example display of lyrics by a selected artist.

of the topic radar chart indicates 0 value of a ratio of the
lyrics topic in the same manner as the common radar chart.
Since the sum of the five components is a constant value, if
the ratio of a topic stands out, it will clearly be seen by the
user. It is easy to grasp the topic of selected lyrics visually
and to make an intuitive comparison between lyrics.

Furthermore, the number of topics in this interface is
set to five to strike a balance between the operability of
interface and the variety of topics1 .

2.1.2 Plane-mapped lyrics

The lyrics of musical pieces are mapped onto a two-
dimensional plane, in which musical pieces with almost
the same topic ratio can get closer to each other. Each mu-
sical piece is expressed by colored dot whose RGB com-
ponents are corresponding to 3D compressed axis for five
topics’ values. This space can be scalable so that the local
or global structure of each musical piece can be observed.
The distribution of lyrics about a specific topic can be rec-
ognized by the color of the lyrics. The dimension com-
pression in mapping and coloring used t-SNE [9]. When
a user mouseovers a point in the space, it is colored pink
and meta-information about the title, artist, the topic radar
chart appears simultaneously.

By repeating mouseover, lyrics and names of its artist
and songwriter are updated continuously. Using this ap-
proach, other lyrics with the similar topics to the input
lyrics can be discovered. The lyrics map can be moved
and zoomed by dragging the mouse or using a specific key-
board operation. Furthermore, it is possible to visualize the
lyrics map specialized to artist and songwriter, which are

1 If the number of topics was increased, a more subdivided and exact-
ing semantic content could have been represented; however, the operation
for a user will be getting more complicated.

Figure 4. Mapping of 487 English artists.

associated with lyrics as metadata. When an artist name
is chosen, as shown in the right side of Figure 3, the point
of the artist’s lyrics will be getting yellow; similarly, when
a songwriter is chosen, the point of the songwriter’s lyrics
will be changed to orange. While this is somewhat equiv-
alent to lyrics retrieval using the artist or songwriter as a
query, it is our innovative point in the sense that a user can
intuitively grasp how artists and songwriters are distributed
based on the ratio of the given topic. Although music re-
trieval by artist is very popular in a conventional system, a
retrieval by songwriter is not focused well yet. However,
in the meaning of lyrics retrieval, it is easier for search by
songwriter to discover songs with one’s favorite lyrics be-
cause a songwriter has his own lyrics vocabulary.

Moreover, we can make a topic analysis depending on
a specific artist in our system. Intuitively similar artists are
also located and colored closer in a topic chart depending
on topic ratios. The artist is colored based on a topic ratio
in the same way as that of the lyrics. In Figure 4, the size
of a circle is proportional to the number of musical pieces
each artist has. In this way, other artists similar to one’s
favorite artist can be easily discovered.

2.2 Lyrics retrieval using topic of lyrics

In LyricsRadar, in addition to the ability to traverse and ex-
plore a map to find lyrics, we also propose a system to di-
rectly enter a topic ratio as an intuitive expression of one’s
latent feeling. More specifically, we consider the topic
radar chart as an input interface and provide a means by
which a user can give topic ratios for five elements directly
to search for lyrics very close to one’s latent image. This
interface can satisfy the search query in which a user would
like to search for lyrics that contain more of the same top-
ics using the representative words of each topic. Figure
5 shows an example in which one of the five topics is in-
creased by mouse drag, then the balance of five topics ratio
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Figure 5. An example of the direct manipulation of the topic ratio on the topic radar chart. Each topic ratio can be increased
by dragging the mouse.

has changed because the sum of five components is equal
to 1.0. A user can repeat these processes by updating topics
ratios or navigating the point in a space interactively until
finding interesting lyrics. As with the above subsections,
we have substantiated our claims for a more intuitive and
exploratory lyrics retrieval system.

3. IMPLEMENTATION OF LYRICSRADAR

LyricsRadar used LDA [4] for the topic analysis of lyrics.
LDA is a typical topic modeling method by machine learn-
ing. Since LDA assigns each word which constitutes lyrics
to a different topic independently, the lyrics include a va-
riety of topics according to the variation of words in the
lyrics. In our system, K typical topics which constitute
many lyrics in database are estimated and a ratio to each
topic is calculated for lyrics with unsupervised learning.
As a result, appearance probability of each word in every
topic can be calculated. The typical representative word to
each topic can be decided at the same time.

3.1 LDA for lyrics

The observed data that we consider for LDA are D inde-
pendent lyrics X = {X1, ...,XD}. The lyrics Xd con-
sist of Nd word series Xd = {xd,1, ...,xd,Nd

}. The size
of all vocabulary that appear in the lyrics is V , xd,n is
a V -dimensional “1-of-K“ vector (a vector with one el-
ement containing 1 and all other elements containing 0).
The latent variable (i.e., the topics series) of the observed
lyrics Xd is Zd = {zd,1, ..., zd,Nd

}. The number of top-
ics is K, so zd,n indicates a K-dimensional 1-of-K vec-
tor. Hereafter, all latent variables of lyrics D are indicated
Z = {Z1, ...,ZD}. Figure 6 shows a graphical represen-
tation of the LDA model used in this paper. The full joint
distribution is given by

p(X,Z,π,φ) = p(X|Z,φ)p(Z|π)p(π)p(φ) (1)

where π indicates the mixing weights of the multiple top-
ics of lyrics (D of the K-dimensional vector) and φ in-
dicates the unigram probability of each topic (K of the
V -dimensional vector). The first two terms are likelihood

Figure 6. Graphical representation of the latent Dirichlet
allocation (LDA).

functions, whereas the other two terms are prior distribu-
tions. The likelihood functions themselves are defined as

p(X|Z,φ) =
D∏

d=1

Nd∏
n=1

V∏
v=1

(
K∏

k=1

φ
zd,n,k

k,v

)xd,n,v

(2)

p(Z|π) =
D∏

d=1

Nd∏
n=1

K∏
k=1

π
zd,n,k

d,k (3)

We then introduce conjugate priors as

p(π) =
D∏

d=1

Dir(πd|α(0)) =
D∏

d=1

C(α(0))
K∏

k=1

πα(0)−1
d,k

(4)

p(φ) =
K∏

k=1

Dir(φk|β(0)) =
K∏

k=1

C(β(0))
V∏

v=1

φ
β(0)

v −1
k,v

(5)
where p(π) and p(φ) are products of Dirichlet distribu-
tions, α(0) and β(0) are hyperparameters, and C(α(0)) and
C(β(0)) are normalization factors calculated as follows:

C(x) =
Γ(x̂)

Γ(x1) · · ·Γ(xI)
, x̂ =

I∑
i=1

xi (6)

Also note that π is the topic mixture ratio of lyrics used
as the topic radar chart by normalization. The appearance
probability φ of the vocabulary in each topic was used to
evaluate the high-representative word that is strongly cor-
related with each topic of the topic radar chart.
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3.2 Training of LDA

The lyrics database contains 6902 Japanese popular songs
(J-POP) and 5351 English popular songs. Each of these
songs includes more than 100 words. J-POP songs are se-
lected from our own database and English songs are from
Music Lyrics Database v.1.2.72 . J-POP database has 1847
artists and 2285 songwriters and English database has 398
artists. For the topic analysis per artist, 2484 J-POP artists
and 487 English artists whose all songs include at least
100 words are selected. 26229 words in J-POP and 35634
words in English which appear more than ten times in all
lyrics is used for the value V which is the size of vocabu-
lary in lyrics. In J-POP lyrics, MeCab [17] was used for
the morphological analysis of J-POP lyrics. The noun,
verb, and adjective components were extracted and then
the original and the inflected form were counted as one
word. In English lyrics, we use stopwords using Full-Text
Stopwords in MySQL3 to remove commonly-used words.
However, words which appeared often in many lyrics were
inconvenient to analyze topics. To lower the importance
of such words in the topic analysis, they were weighted by
inverse document frequency (idf).

In the training the LDA, the number of topics (K) is set
to 5. All initial values of hyperparameters α(0) and β(0)

were set to 1.

4. EVALUATION EXPERIMENTS

To verify the validity of the topic analysis results (as re-
lated to the topic radar chart and mapping of lyrics) in
LyricsRadar, we conducted a subjective evaluation experi-
ment. There were 17 subjects (all Japanese speakers) with
ages from 21 to 32. We used the results of LDA for the
lyrics of the 6902 J-POP songs described in Section 3.2.

4.1 Evaluation of topic analysis

Our evaluation here attempted to verify that the topic ra-
tio determined by the topic analysis of LDA could appro-
priately represent latent meaning of lyrics. Furthermore,
when the lyrics of a song are selected, relative location to
other lyrics of the same artist or songwriter in the space is
investigated.

4.1.1 Experimental method

In our experiment, the lyrics of a song are selected at ran-
dom in the space as basis lyrics and also target lyrics of
four songs are selected to be compared according to the
following conditions.

(1) The lyrics closest to the basis lyrics on lyrics map

(2) The lyrics closest to the basis lyrics with same song-
writer

(3) The lyrics closest to the basis lyrics with same artist
2 “Music Lyrics Database v.1.2.7,” http://www.odditysoftware.

com/page-datasales1.htm.
3 “Full-Text Stopwords in MySQL,” http://dev.mysql.com/doc/

refman/5.5/en/fulltext-stopwords.html.

Figure 7. Results of our evaluation experiment to evalu-
ate topic analysis; the score of (1) was the closest to 1.0,
showing our approach to be effective.

(4) The lyrics selected at random

Each subject evaluated the similarity of the impression
received from the two lyrics using a five-step scale (1: clos-
est, 2: somehow close, 3: neutral, 4: somehow far, and 5:
most far), comparing the basis lyrics and one of the target
lyrics after seeing the basis lyrics. Presentation order to
subjects was random. Furthermore, each subject described
the reason of evaluation score.

4.1.2 Experimental results

The average score of the five-step evaluation results for the
four target lyrics by all subjects is shown in the Figure 7.
As expected, lyrics closest to the basis lyrics on the lyrics
map were evaluated as the closest in terms of the impres-
sion of the basis lyrics, because the score of (1) was closest
to 1.0. Results of target lyrics (2) and (3) were both close to
3.0. The lyrics closest to the basis lyrics of the same song-
writer or artist as the selected lyrics were mostly judged as
“3: neutral.” Finally, the lyrics selected at random (4) were
appropriately judged to be far.

As the subjects’ comments about the reason of de-
cision, we obtained such responses as a sense of the
season, positive-negative, love, relationship, color, light-
dark, subjective-objective, and tension. Responses differed
greatly from one subject to the next. For example, some
felt the impression only by the similarity of a sense of the
season of lyrics. Trial usage of LyricsRadar has shown that
it is a useful tool for users.

4.2 Evaluation of the number of topics

The perplexity used for the quality assessment of a lan-
guage model was computed for each number of topics. The
more the model is complicated, the higher the perplexity
becomes. Therefore, we can estimate that the performance
of language model is good when the value of perplexity is
low. We calculated perplexity as

perplexity(X) = exp

(
−
∑D

d=1 log p(Xd)∑D
d=1 Nd

)
(7)

In case the number of topics (K) is five, the perplexity is
1150 which is even high.
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Figure 8. Perplexity for the number of topics.

On the other hand, because Miller showed that the num-
ber of objects human can hold in his working memory is
7± 2 [7], the number of topics should be 1 to 5 in order to
obtain information naturally. So we decided to show five
topics in the topic radar chart.

Figure 8 shows calculation results of perplexity for each
topic number. Blue points represent perplexity for LDA
applied to lyrics and red points represent perplexity for
LDA applied to each artist. Orange bar indicates the range
of human capacity for processing information. Since there
exists a tradeoff between the number of topics and oper-
ability, we found that five is appropriate number of topics.

5. CONCLUSIONS

In this paper, we propose LyricsRadar, an interface to as-
sist a user to come across favorite lyrics interactively. Con-
ventionally lyrics were retrieved by titles, artist names, or
keywords. Our main contribution is to visualize lyrics in
the latent meaning level based on a topic model by LDA.
By seeing the pentagon-style shape of Topic Radar Chart, a
user can intuitively recognize the meaning of given lyrics.
The user can also directly manipulate this shape to discover
target lyrics even when the user does not know any key-
word or any query. Also the topic ratio of focused lyrics
can be mapped to a point in the two dimensional space
which visualizes the relative location to all the lyrics in
our lyrics database and enables the user to navigate similar
lyrics by controlling the point directly.

For future work, user adaptation is inevitable task be-
cause every user has an individual preference, as well as
improvements to topic analysis by using hierarchical topic
analysis [12]. Furthermore, to realize the retrieval interface
corresponding to a minor topic of lyrics, a future challenge
is to consider the visualization method that can reflect more
numbers of topics by keeping an easy-to-use interactivity.
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ABSTRACT

The continued growth of MIR is motivating more com-

plex annotation data, consisting of richer information, mul-

tiple annotations for a given task, and multiple tasks for

a given music signal. In this work, we propose JAMS, a

JSON-based music annotation format capable of address-

ing the evolving research requirements of the community,

based on the three core principles of simplicity, structure

and sustainability. It is designed to support existing data

while encouraging the transition to more consistent, com-

prehensive, well-documented annotations that are poised

to be at the crux of future MIR research. Finally, we pro-

vide a formal schema, software tools, and popular datasets

in the proposed format to lower barriers to entry, and dis-

cuss how now is a crucial time to make a concerted effort

toward sustainable annotation standards.

1. INTRODUCTION

Music annotations —the collection of observations made

by one or more agents about an acoustic music signal—

are an integral component of content-based Music Infor-

mation Retrieval (MIR) methodology, and are necessary

for designing, evaluating, and comparing computational

systems. For clarity, we define the scope of an annota-

tion as corresponding to time scales at or below the level

of a complete song, such as semantic descriptors (tags) or

time-aligned chords labels. Traditionally, the community

has relied on plain text and custom conventions to serialize

this data to a file for the purposes of storage and dissem-

ination, collectively referred to as “lab-files”. Despite a

lack of formal standards, lab-files have been, and continue

to be, the preferred file format for a variety of MIR tasks,

such as beat or onset estimation, chord estimation, or seg-

mentation.
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Meanwhile, the interests and requirements of the com-

munity are continually evolving, thus testing the practical

limitations of lab-files. By our count, there are three un-

folding research trends that are demanding more of a given

annotation format:

• Comprehensive annotation data: Rich annotations,

like the Billboard dataset [2], require new, content-

specific conventions, increasing the complexity of

the software necessary to decode it and the burden

on the researcher to use it; such annotations can be

so complex, in fact, it becomes necessary to docu-

ment how to understand and parse the format [5].

• Multiple annotations for a given task: The expe-

rience of music can be highly subjective, at which

point the notion of “ground truth” becomes tenu-

ous. Recent work in automatic chord estimation [8]

shows that multiple reference annotations should be

embraced, as they can provide important insight into

system evaluation, as well as into the task itself.

• Multiple concepts for a given signal: Although sys-

tems are classically developed to accomplish a sin-

gle task, there is ongoing discussion toward inte-

grating information across various musical concepts

[12]. This has already yielded measurable benefits

for the joint estimation of chords and downbeats [9]

or chords and segments [6], where leveraging mul-

tiple information sources for the same input signal

can lead to improved performance.

It has long been acknowledged that lab-files cannot be used

to these ends, and various formats and technologies have

been previously proposed to alleviate these issues, such

as RDF [3], HDF5 [1], or XML [7]. However, none of

these formats have been widely embraced by the commu-

nity. We contend that the weak adoption of any alternative

format is due to the combination of several factors. For ex-

ample, new tools can be difficult, if not impossible, to in-

tegrate into a research workflow because of compatibility

issues with a preferred development platform or program-

ming environment. Additionally, it is a common criticism

that the syntax or data model of these alternative formats

is non-obvious, verbose, or otherwise confusing. This is

especially problematic when researchers must handle for-
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mat conversions. Taken together, the apparent benefits to

conversion are outweighed by the tangible costs.

In this paper, we propose a JSON Annotated Music Spec-

ification (JAMS) to meet the changing needs of the MIR

community, based on three core design tenets: simplicity,

structure, and sustainability. This is achieved by combin-

ing the advantages of lab-files with lessons learned from

previously proposed formats. The resulting JAMS files

are human-readable, easy to drop into existing workflows,

and provide solutions to the research trends outlined previ-

ously. We further address classical barriers to adoption by

providing tools for easy use with Python and MATLAB,

and by offering an array of popular datasets as JAMS files

online. The remainder of this paper is organized as fol-

lows: Section 2 identifies three valuable components of an

annotation format by considering prior technologies; Sec-

tion 3 formally introduces JAMS, detailing how it meets

these design criteria and describing the proposed speci-

fication by example; Section 4 addresses practical issues

and concerns in an informal FAQ-style, touching on usage

tools, provided datasets, and some practical shortcomings;

and lastly, we close with a discussion of next steps and

perspectives for the future in Section 5.

2. CORE DESIGN PRINCIPLES

In order to craft an annotation format that might serve the

community into the foreseeable future, it is worthwhile to

consolidate the lessons learned from both the relative suc-

cess of lab-files and the challenges faced by alternative for-

mats into a set of principles that might guide our design.

With this in mind, we offer that usability, and thus the like-

lihood of adoption, is a function of three criteria:

2.1 Simplicity

The value of simplicity is demonstrated by lab-files in two

specific ways. First, the contents are represented in a for-

mat that is intuitive, such that the document model clearly

matches the data structure and is human-readable, i.e. uses

a lightweight syntax. This is a particular criticism of RDF

and XML, which can be verbose compared to plain text.

Second, lab-files are conceptually easy to incorporate into

research workflows. The choice of an alternative file for-

mat can be a significant hurdle if it is not widely supported,

as is the case with RDF, or the data model of the document

does not match the data model of the programming lan-

guage, as with XML.

2.2 Structure

It is important to recognize that lab-files developed as a

way to serialize tabular data (i.e. arrays) in a language-

independent manner. Though lab-files excel at this par-

ticular use case, they lack the structure required to en-

code complex data such as hierarchies or mix different data

types, such as scalars, strings, multidimensional arrays,

etc. This is a known limitation, and the community has

devised a variety of ad hoc strategies to cope with it: folder

trees and naming conventions, such as “{X}/{Y}/{Z}.lab”,

where X, Y, and Z correspond to “artist”, “album”, and

“title”, respectively 1 ; parsing rules, such as “lines begin-

ning with ‘#’ are to be ignored as comments”; auxiliary

websites or articles, decoupled from the annotations them-

selves, to provide critical information such as syntax, con-

ventions, or methodology. Alternative representations are

able to manage more complex data via standardized markup

and named entities, such as fields in the case of RDF or

JSON, or IDs, attributes and tags for XML.

2.3 Sustainability

Recently in MIR, a more concerted effort has been made

toward sustainable research methods, which we see posi-

tively impacting annotations in two ways. First, there is

considerable value to encoding methodology and metadata

directly in an annotation, as doing so makes it easier to

both support and maintain the annotation while also en-

abling direct analyses of this additional information. Ad-

ditionally, it is unnecessary for the MIR community to de-

velop every tool and utility ourselves; we should instead

leverage well-supported technologies from larger commu-

nities when possible.

3. INTRODUCING JAMS

So far, we have identified several goals for a music anno-

tation format: a data structure that matches the document

model; a lightweight markup syntax; support for multiple

annotations, multiple tasks, and rich metadata; easy work-

flow integration; cross-language compliance; and the use

of pre-existing technologies for stability. To find our an-

swer, we need only to look to the web development com-

munity, who have already identified a technology that meets

these requirements. JavaScript Object Notation (JSON) 2

has emerged as the serialization format of the Internet, now

finding native support in almost every modern program-

ming language. Notably, it was designed to be maximally

efficient and human readable, and is capable of represent-

ing complex data structures with little overhead.

JSON is, however, only a syntax, and it is necessary

to define formal standards outlining how it should be used

for a given purpose. To this end, we define a specifica-

tion on top of JSON (JAMS), tailored to the needs of MIR

researchers.

3.1 A Walk-through Example

Perhaps the clearest way to introduce the JAMS specifi-

cation is by example. Figure 1 provides the contents of a

hypothetical JAMS file, consisting of nearly valid 3 JSON

syntax and color-coded by concept. JSON syntax will be

familiar to those with a background in C-style languages,

as it uses square brackets (“[ ]”) to denote arrays (alterna-

tively, lists or vectors), and curly brackets (“{ }”) to denote

1 http://www.isophonics.net/content/
reference-annotations

2 http://www.json.org/
3 The sole exception is the use of ellipses (“...”) as continuation charac-

ters, indicating that more information could be included.
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                                                      ,

{'tag':

 'beat':                                        

 'chord':                                        

 'melody':                                        
                                                  ,

                                                      ,

                                                     ,

                                                    ,

 'file_metadata':                                        

 'sandbox':                       }{'foo': "bar", ... }

                 , ...]                                         

                                                           ,

[                                        {'data':                                             

                                                        ,

                                            ,

 'annotation_metadata':       

 'sandbox':          }

                                 ,

  , ...]

[                                 {'value': "good for running", 
 'confidence': 0.871,
 'secondary_value': "use-case"} 'secondary_value': "use-case"}

{'corpus': "User-Generated Tags",

                                                  ,

 'version': "0.0.1",

 'annotation_rules': "Annotators were provided ...",

 'annotation_tools': "Sonic Visualizer, ...",

 'validation': "Data were checked by ...",

 'data_source': "Manual Annotation",

 'curator':                                   

 'annotator':

{'unique_id': "61a4418c841",

 'skill_level': "novice",

 'principal_instrument': "voice",

 'primary_role': "composer", ... }

{"name": "Jane Doe", "email": "j.doe@xyz.edu"}

{ ... }

{'data': ... }                                          

                 , ...]                                         

                                                 ,

[                                        {'data':                                             

 'annotation_metadata':         ,

                                              ,

 'sandbox':         }       { ... }

{ ... }

                                ,

                 , ...]

[                                 {'time':                        ,

 'label':                       }

{'value': 0.237, ... }

{'value': "1", ... }

{'time': ... }

{'data': ... }                                          

                 , ...]                                         

                                                 ,

[                                        {'data':                                             

 'annotation_metadata':         ,

                                              ,

 'sandbox':         }       { ... }

{ ... }

                                   ,

                 , ...]

[                                 {'start':                       ,

 'label':                       }

 'end':                      ,

{'value': 0.237, ... }

{'value': "1", ... }

{'value': "Eb", ... }

{'time': ... }

{'data': ... }                                          

                 , ...]                                         

                                        ,

                                                    ,

[                                        {'data':                                             

                                                ,

 'annotation_metadata':         ,

                                                ,

 'sandbox':       { ... }

{ ... }

                                    ,

                                             ,

                  , ...]

[                                 {'value': [ 205.340, 204.836, 205.561, ... ],

 'confidence': [ 0.966, 0.884, 0.896, ... ],

 'label':                           }

 'time': [ 10.160, 10.538, 10.712, ... ],

{'value': "vocals", ... }

{'value': ... }

{'data': ... }                                          

                                           ,

{'version': "0.0.1",                             

 'identifiers':                           

 'artist': "The Beatles",                          
 'title': "With a Little Help from My Friends",
 'release': "Sgt. Pepper's Lonely Hearts Club Band",
 'duration': 159.11 }

{'echonest_song_id': "SOVBDYA13D4615308E",                                    
 'youtube_id': "jBDF04fQKtQ”, ... }

{'value': "rock", ... }

E

   F 

G

H      

I

J

K 

L

   

D
     C  

BA

M
}

Figure 1. Diagram illustrating the structure of the JAMS

specification.

objects (alternatively, dictionaries, structs, or hash maps).

Defining some further conventions for the purpose of illus-

tration, we use single quotes to indicate field names, italics

when referring to concepts, and consistent colors for the

same data structures. Using this diagram, we will now step

through the hierarchy, referring back to relevant compo-

nents as concepts are introduced.

3.1.1 The JAMS Object

A JAMS file consists of one top-level object, indicated

by the outermost bounding box. This is the primary con-

tainer for all information corresponding to a music sig-

nal, consisting of several task-array pairs, an object for

file metadata, and an object for sandbox. A task-

array is a list of annotations corresponding to a given task

name, and may contain zero, one, or many annotations for

that task. The format of each array is specific to the kind

of annotations it will contain; we will address this in more

detail in Section 3.1.2.

The file metadata object (K) is a dictionary con-

taining basic information about the music signal, or file,

that was annotated. In addition to the fields given in the di-

agram, we also include an unconstrained identifiers
object (L), for storing unique identifiers in various names-

paces, such as the EchoNest or YouTube. Note that we

purposely do not store information about the recording’s

audio encoding, as a JAMS file is format-agnostic. In other

words, we assume that any sample rate or perceptual codec

conversions will have no effect on the annotation, within a

practical tolerance.

Lastly, the JAMS object also contains a sandbox, an

unconstrained object to be used as needed. In this way, the

specification carves out such space for any unforeseen or

otherwise relevant data; however, as the name implies, no

guarantee is made as to the existence or consistency of this

information. We do this in the hope that the specification

will not be unnecessarily restrictive, and that commonly

“sandboxed” information might become part of the speci-

fication in the future.

3.1.2 Annotations

An annotation (B) consists of all the information that is

provided by a single annotator about a single task for a

single music signal. Independent of the task, an annotation

comprises three sub-components: an array of objects for

data (C), an annotation metadata object (E), and

an annotation-level sandbox. For clarity, a task-array (A)

may contain multiple annotations (B).

Importantly, a data array contains the primary anno-

tation information, such as its chord sequence, beat loca-

tions, etc., and is the information that would normally be

stored in a lab-file. Though all data containers are func-

tionally equivalent, each may consist of only one object

type, specific to the given task. Considering the different

types of musical attributes annotated for MIR research, we

divide them into four fundamental categories:

1. Attributes that exist as a single observation for the

entire music signal, e.g. tags.
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2. Attributes that consist of sparse events occurring at

specific times, e.g. beats or onsets.

3. Attributes that span a certain time range, such as

chords or sections.

4. Attributes that comprise a dense time series, such

as discrete-time fundamental frequency values for

melody extraction.

These four types form the most atomic data structures, and

will be revisited in greater detail in Section 3.1.3. The im-

portant takeaway here, however, is that data arrays are not

allowed to mix fundamental types.

Following [10], an annotation metadata object

is defined to encode information about what has been an-

notated, who created the annotations, with what tools, etc.

Specifically, corpus provides the name of the dataset to

which the annotation belongs; version tracks the version of

this particular annotation; annotation rules describes the

protocol followed during the annotation process; annota-
tion tools describes the tools used to create the annota-

tion; validation specifies to what extent the annotation was

verified and is reliable; data source details how the anno-

tation was obtained, such as manual annotations, online

aggregation, game with a purpose, etc.; curator (F) is it-

self an object with two subfields, name and email, for the

contact person responsible for the annotation; and annota-
tor (G) is another unconstrained object, which is intended

to capture information about the source of the annotation.

While complete metadata are strongly encouraged in prac-

tice, currently only version and curator are mandatory in

the specification.

3.1.3 Datatypes

Having progressed through the JAMS hierarchy, we now

introduce the four atomic data structures, out of which an

annotation can be constructed: observation, event, range
and time series. For clarity, the data array (A) of a tag
annotation is a list of observation objects; the data array of

a beat annotation is a list of event objects; the data array

of a chord annotation is a list of range objects; and the

data array of a melody annotation is a list of time series
objects. The current space of supported tasks is provided

in Table 1.

Of the four types, an observation (D) is the most atomic,

and used to construct the other three. It is an object that

has one primary field, value, and two optional fields,

confidence and secondary value. The value and

secondary value fields may take any simple primi-

tive, such as a string, numerical value, or boolean, whereas

the confidence field stores a numerical confidence es-

timate for the observation. A secondary value field is pro-

vided for flexibility in the event that an observation re-

quires an additional level of specificity, as is the case in

hierarchical segmentation [11].

An event (H) is useful for representing musical attributes

that occur at sparse moments in time, such as beats or on-

sets. It is a container that holds two observations, time
and label. Referring to the first beat annotation in the

observation event range time series
tag beat chord melody

genre onset segment pitch
mood key pattern

note
source

Table 1. Currently supported tasks and types in JAMS.

diagram, the value of time is a scalar quantity (0.237),

whereas the value of label is a string (‘1’), indicating

metrical position.

A range (I) is useful for representing musical attributes

that span an interval of time, such as chords or song seg-

ments (e.g. intro, verse, chorus). It is an object that consists

of three observations: start, end, and label.

The time series (J) atomic type is useful for represent-

ing musical attributes that are continuous in nature, such

as fundamental frequency over time. It is an object com-

posed of four elements: value, time, confidence
and label. The first three fields are arrays of numerical

values, while label is an observation.

3.2 The JAMS Schema

The description in the previous sections provides a high-

level understanding of the proposed specification, but the

only way to describe it without ambiguity is through for-

mal representation. To accomplish this, we provide a JSON

schema 4 , a specification itself written in JSON that uses

a set of reserved keywords to define valid data structures.

In addition to the expected contents of the JSON file, the

schema can specify which fields are required, which are

optional, and the type of each field (e.g. numeric, string,

boolean, array or object). A JSON schema is concise, pre-

cise, and human readable.

Having defined a proper JSON schema, an added bene-

fit of JAMS is that a validator can verify whether or not a

piece of JSON complies with a given schema. In this way,

researchers working with JAMS files can easily and confi-

dently test the integrity of a dataset. There are a number of

JSON schema validator implementations freely available

online in a variety of languages, including Python, Java, C,

JavaScript, Perl, and more. The JAMS schema is included

in the public software repository (cf. Section 4), which also

provides a static URL to facilitate directly accessing the

schema from the web within a workflow.

4. JAMS IN PRACTICE

While we contend that the use and continued development

of JAMS holds great potential for the many reasons out-

lined previously, we acknowledge that specifications and

standards are myriad, and it can be difficult to ascertain

the benefits or shortcomings of one’s options. In the in-

terest of encouraging adoption and the larger discussion of

4 http://json-schema.org/
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standards in the field, we would like to address practical

concerns directly.

4.1 How is this any different than X?

The biggest advantage of JAMS is found in its capacity

to consistently represent rich information with no addi-

tional effort from the parser and minimal markup over-

head. Compared to XML or RDF, JSON parsers are ex-

tremely fast, which has contributed in no small part to its

widespread adoption. These efficiency gains are coupled

with the fact that JAMS makes it easier to manage large

data collections by keeping all annotations for a given song

in the same place.

4.2 What kinds of things can I do with JAMS that I
can’t already do with Y?

JAMS can enable much richer evaluation by including mul-

tiple, possibly conflicting, reference annotations and di-

rectly embedding information about an annotation’s ori-

gin. A perfect example of this is found in the Rock Corpus

Dataset [4], consisting of annotations by two expert musi-

cians: one, a guitarist, and the other, a pianist. Sources of

disagreement in the transcriptions often stem from differ-

ences of opinion resulting from familiarity with their prin-

cipal instrument, where the voicing of a chord that makes

sense on piano is impossible for a guitarist, and vice versa.

Similarly, it is also easier to develop versatile MIR systems

that combine information across tasks, as that information

is naturally kept together.

Another notable benefit of JAMS is that it can serve as

a data representation for algorithm outputs for a variety of

tasks. For example, JAMS could simplify MIREX submis-

sions by keeping all machine predictions for a given team

together as a single submission, streamlining evaluations,

where the annotation sandbox and annotator metadata can

be used to keep track of algorithm parameterizations. This

enables the comparison of many references against many

algorithmic outputs, potentially leading to a deeper insight

into a system’s performance.

4.3 So how would this interface with my workflow?

Thanks to the widespread adoption of JSON, the vast ma-

jority of languages already offer native JSON support. In

most cases, this means it is possible to go from a JSON

file to a programmatic data structure in your language of

choice in a single line of code using tools you didn’t have

to write. To make this experience even simpler, we ad-

ditionally provide two software libraries, for Python and

MATLAB. In both instances, a lightweight software wrap-

per is provided to enable a seamless experience with JAMS,

allowing IDEs and interpreters to make use of autocom-

plete and syntax checking. Notably, this allows us to pro-

vide convenience functionality for creating, populating, and

saving JAMS objects, for which examples and sample code

are provided with the software library 5 .

5 https://github.com/urinieto/jams

4.4 What datasets are already JAMS-compliant?

To further lower the barrier to entry and simplify the pro-

cess of integrating JAMS into a pre-existing workflow, we

have collected some of the more popular datasets in the

community and converted them to the JAMS format, linked

via the public repository. The following is a partial list of

converted datasets: Isophonics (beat, chord, key, segment);

Billboard (chord); SALAMI (segment, pattern); RockCor-

pus (chord, key); tmc323 (chords); Cal500 (tag); Cal10k

(tag); ADC04 (melody); and MIREX05 (melody).

4.5 Okay, but my data is in a different format – now
what?

We realize that it is impractical to convert every dataset

to JAMS, and provide a collection of Python scripts that

can be used to convert lab-files to JAMS. In lieu of direct

interfaces, alternative formats can first be converted to lab-

files and translated to JAMS thusly.

4.6 My MIR task doesn’t really fit with JAMS.

That’s not a question, but it is a valid point and one worth

discussing. While this first iteration of JAMS was designed

to be maximally useful across a variety of tasks, there are

two broad reasons why JAMS might not work for a given

dataset or task. One, a JAMS annotation only considers

information at the temporal granularity of a single audio

file and smaller, independently of all other audio files in

the world. Therefore, extrinsic relationships, such as cover

songs or music similarity, won’t directly map to the speci-

fication because the concept is out of scope.

The other, more interesting, scenario is that a given use

case requires functionality we didn’t plan for and, as a

result, JAMS doesn’t yet support. To be perfectly clear,

the proposed specification is exactly that –a proposal– and

one under active development. Born out of an internal

need, this initial release focuses on tasks with which the

authors are familiar, and we realize the difficulty in solving

a global problem in a single iteration. As will be discussed

in greater detail in the final section, the next phase on our

roadmap is to solicit feedback and input from the commu-

nity at large to assess and improve upon the specification.

If you run into an issue, we would love to hear about your

experience.

4.7 This sounds promising, but nothing’s perfect.
There must be shortcomings.

Indeed, there are two practical limits that should be men-

tioned. Firstly, JAMS is not designed for features or signal

level statistics. That said, JSON is still a fantastic, cross-

language syntax for serializing data, and may further serve

a given workflow. As for practical concerns, it is a known

issue that parsing large JSON objects can be slow in MAT-

LAB. We’ve worked to make this no worse than reading

current lab-files, but speed and efficiency are not touted

benefits of MATLAB. This may become a bigger issue as

JAMS files become more complete over time, but we are
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actively exploring various engineering solutions to address

this concern.

5. DISCUSSION AND FUTURE PERSPECTIVES

In this paper, we have proposed a JSON format for mu-

sic annotations to address the evolving needs of the MIR

community by keeping multiple annotations for multiple

tasks alongside rich metadata in the same file. We do so in

the hopes that the community can begin to easily leverage

this depth of information, and take advantage of ubiqui-

tous serialization technology (JSON) in a consistent man-

ner across MIR. The format is designed to be intuitive and

easy to integrate into existing workflows, and we provide

software libraries and pre-converted datasets to lower bar-

riers to entry.

Beyond practical considerations, JAMS has potential to

transform the way researchers approach and use music an-

notations. One of the more pressing issues facing the com-

munity at present is that of dataset curation and access. It is

our hope that by associating multiple annotations for multi-

ple tasks to an audio signal with retraceable metadata, such

as identifiers or URLs, it might be easier to create freely

available datasets with better coverage across tasks. Anno-

tation tools could serve music content found freely on the

Internet and upload this information to a common repos-

itory, ideally becoming something like a Freebase 6 for

MIR. Furthermore, JAMS provides a mechanism to han-

dle multiple concurrent perspectives, rather than forcing

the notion of an objective truth.

Finally, we recognize that any specification proposal

is incomplete without an honest discussion of feasibility

and adoption. The fact remains that JAMS arose from the

combination of needs within our group and an observation

of wider applicability. We have endeavored to make the

specification maximally useful with minimal overhead, but

appreciate that community standards require iteration and

feedback. This current version is not intended to be the

definitive answer, but rather a starting point from which

the community can work toward a solution as a collective.

Other professional communities, such as the IEEE, con-

vene to discuss standards, and perhaps a similar process

could become part of the ISMIR tradition as we continue

to embrace the pursuit of reproducible research practices.
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ABSTRACT 

In recent years, MIR research has continued to focus 
more and more on user feedback, human subjects data, 
and other forms of personal information. Concurrently, 
the European Union has adopted new, stringent regula-
tions to take effect in the coming years regarding how 
such information can be collected, stored and manipulat-
ed, with equally strict penalties for being found in viola-
tion of the law. 

Here, we provide a summary of these changes, consid-
er how they relate to our data sources and research prac-
tices, and identify promising methodologies that may 
serve researchers well, both in order to be in compliance 
with the law and conduct more subject-friendly research. 
We additionally provide a case study of how such chang-
es might affect a recent human subjects project on the 
topic of style, and conclude with a few recommendations 
for the near future. 

This paper is not intended to be legal advice: our per-
sonal legal interpretations are strictly mentioned for illus-
tration purpose, and reader should seek proper legal 
counsel. 

1. INTRODUCTION 

The International Society for Music Information 
Retrieval addresses a wide range of scientific, technical 
and social challenges, dealing with processing, searching, 
organizing and accessing music-related data and digital 
sounds through many aspects, considering real scale use-
cases and designing innovative applications, exceeding its 
academic-only initiatory aims.

Some recent Music Information Retrieval tools and 
algorithms aim to attribute authorship and to characterize
the structure of style, to reproduce the user’s style and to 
manipulate one’s style as a content [8], [1]. They deal for 
instance with active listening, authoring or personalised 
reflexive feedback. These tools will allow identification 
of users in the big data: authors, listeners, performers.  

As the emerging MIR scientific community leads to 
industrial applications of interest to the international 
business (start-up, Majors, content providers, platforms) 
and to experimentations involving many users in living 

labs (for MIR teaching, for multicultural emotion com-
parisons, or for MIR user requirement purposes) the iden-
tification of legal issues becomes essential or strategic. 

Legal issues related to copyright and Intellectual Prop-
erty have already been identified and expressed into Digi-
tal Rights Management by the MIR community [2], [7],
when those related to security, business models and right 
to access have been expressed by Information Access [4],
[11]. Privacy is another important legal issue. To address 
it properly one needs first to classify the personal data 
and processes. A naive classification appears when you 
quickly look at the kind of personal data MIR deals with:  
� User’s comments, evaluation, annotation and music 

recommendations are obvious personal data as long as 
they are published under their name or pseudo;  

� Addresses allowing identification of a device or an in-
strument and Media Access Control addresses are 
linked to personal data; 

� Any information allowing identification of a natural 
person, as some MIR processes do, shall be qualified 
as personal data and processing of personal data. 
But the legal professionals do not unanimously ap-

prove this classification. For instance the Court of Appeal 
in Paris judged in two decisions (2007/04/27 and 
2007/05/15) that the Internet Protocol address is not a 
personal data. 

2. WHAT ARE PROCESSES OF PERSONAL 
DATA AND HOW THEY ARE REGULATED 

A careful consideration of the applicable law of personal 
data is necessary to elaborate a proper classification of 
MIR personal data processes taking the different interna-
tional regulations into account. 

2.1 Europe vs. United States: two legal approaches 

Europe regulates data protection through one of the high-
est State Regulations in the world [3], [9] when the Unit-
ed States lets contractors organize data protection through 
agreements supported by consideration and entered into 
voluntarily by the parties. These two approaches are 
deeply divergent. United States lets companies specify 
their own rules with their consumers while Europe en-
forces a unique regulated framework on all companies 
providing services to European citizens. For instance any 
company in the United States can define how long they 
keep the personal data, when the regulations in Europe 
would specify a maximum length of time the personal 
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data is to be stored. And this applies to any company of-
fering the same service. 

A prohibition is at the heart of the European Commis-
sion’s Directive on Data Protection (95/46/CE – The Di-
rective) [3]. The transfer of personal data to non-
European Union countries that do not meet the European 
Union adequacy standard for privacy protection is strictly 
forbidden [3, article 25]1. The divergent legal approaches 
and this prohibition alone would outlaw the proposal by 
American companies of many of their IT services to Eu-
ropean citizens. In response the U.S. Department of 
Commerce and the European Commission developed the 
Safe Harbor Framework (SHF) [6], [14]. Any non-
European organization is free to self-certify with the SHF 
and join. 

A new Proposal for a Regulation on the protection of 
individuals with regard to the processing of personal data 
was adopted the 12 March 2014 by the European Parlia-
ment [9]. The Directive allows adjustments from one Eu-
ropean country to another and therefore diversity of im-
plementation in Europe when the regulation is directly
enforceable and should therefore be implemented directly 
and in the same way in all countries of the European Un-
ion. This regulation should apply in 2016. This regulation 
enhances data protection and sanctions to anyone who 
does not comply with the obligations laid down in the 
Regulation. For instance [9, article 79] the supervisory 
authority will impose, as a possible sanction, a fine of up 
to one hundred million Euros or up to 5% of the annual 
worldwide turnover in case of an enterprise. 

2.2 Data protection applies to any information con-
cerning an identifiable natural person 

Until French law applied the 95/46/CE European Di-
rective, personal data was only defined considering sets 
of data containing the name of a natural person. This def-
inition has been extended; the 95/46/CE European Di-
rective (ED) defines ‘personal data’ [3, article 2] as: “any 
information relating to an identified or identifiable natu-
ral person (‘data subject’); an identifiable person is one 
who can be identified, directly or indirectly, in particular 
by reference to an identification number or to one or 
more factors specific to his physical, physiological, men-
tal, economic, cultural or social identity”.

For instance the identification of an author through the 
structure of his style as depending on his mental, cultural 
or social identity is a process that must comply with the 
European data privacy principles. 

2.3 Safe Harbor is the Framework ISMIR affiliates 
need not to pay a fine up to hundreds million Euros 

1 Argentina, Australia, Canada, State of Israel, New Zealand, United 
States – Transfer of Air Passenger Name Record (PNR) Data, United 
States – Safe Harbor, Eastern Republic of Uruguay are, to date, the only 
non-European third countries ensuring an adequate level of protection: 
http://ec.europa.eu/justice/data-protection/document/international-
transfers/adequacy/index_en.htm

Complying with Safe Harbor is the easiest way for an or-
ganization using MIR processing to fulfill the high level 
European standard about personal data, to operate 
worldwide and to avoid prosecution regarding personal 
data. As explained below any non-European organization 
may enter the US – EU SHF’s requirement and publicly 
declare that they do so. In that case the organization must 
develop a data privacy policy that conforms to the seven 
Safe Harbor Principles (SHP) [14].

First of all organizations must identify personal data 
and personal data processes. Then they apply the SHP to 
these data and processes. By joining the SHF, organiza-
tions must implement procedures and modify their own 
information system whether paper or electronic. 

Organizations must notify (P1) individuals about the 
purposes for which they collect and use information 
about them, to whom the information can be disclosed 
and the choices and means offered for limiting its disclo-
sure. Organizations must explain how they can be con-
tacted with any complaints. Individuals should have the 
choice (P2) (opt out) whether their personal information 
is disclosed or not to a third party. In case of sensitive in-
formation explicit choice (opt in) must be given. A trans-
fer to a third party (P3) is only possible if the individual 
made a choice and if the third party subscribed to the 
SHP or was subject to any adequacy finding regarding to 
the ED. Individuals must have access (P4) to personal 
information about them and be able to correct, amend or 
delete this information. Organizations must take reasona-
ble precautions (P5) to prevent loss, misuse, disclosure, 
alteration or destruction of the personal information. Per-
sonal information collected must be relevant (P6: data 
integrity) for the purpose for which it is to be used. Sanc-
tions (P7 enforcement) ensure compliance by the organi-
zation. There must be a procedure for verifying the im-
plementation of the SHP and the obligation to remedy 
problems arising out of a failure to comply with the SHP.

3. CLASSIFICATION FOR MIR
PERSONAL DATA PROCESSING 

Considering the legal definition of personal data we can 
now propose a less naive classification of MIR processes 
and data into three sets: (i) nominative data, (ii) data lead-
ing to an easy identification of a natural person and (iii) 
data leading indirectly to the identification of a natural 
person through a complex process. 

3.1 Nominative data and data leading easily to the 
identification of a natural person 

The first set of processes deals with all the situations giv-
ing the name of a natural person directly. The second set 
deals with the cases of a direct or an indirect identifica-
tion easily done for instance through devices.

In these two sets we find that the most obvious set of 
data concerns the “Personal Music Libraries” and “rec-
ommendations”. Looking at the topics that characterize 
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ISMIR papers from year 2000 to 2013, we find more than 
30 papers and posters dealing with those topics as their 
main topic. Can one recommend music to a user or ana-
lyze their personal library without tackling privacy? 

3.2 Data leading to the identification of a natural per-
son through a complex process 

The third set of personal data deals with cases when a 
natural person is indirectly identifiable using a complex 
process, like some of the MIR processes. 

Can one work on “Classification” or “Learning”, pro-
ducing 130 publications (accepted contributions at ISMIR 
from year 2000 to year 2013) without considering users
throughout their tastes or style? The processes used under 
these headings belong for the most part to this third set. 
Looking directly at the data without any sophisticated 
tool does not allow any identification of the natural per-
son. On the contrary, using some MIR algorithms or ma-
chine learning can lead to indirect identifications [12].

Most of the time these non-linear methods use inputs 
to build new data which are outputs or data stored inside 
the algorithm, like weights for instance in a neural net. 

3.3 The legal criteria of the costs and the amount of 
time required for identification 

This third set of personal data is not as homogeneous as it 
seems to be at first glance. Can we compare sets of data 
that lead to an identification of a natural person through a 
complex process? 

The European Proposal for a Regulation specifies the 
concept of “identifiability”. It tries to define legal criteria 
to decide if an identifiable set of data is or is not personal 
data. It considers the identification process [9, recital 23] 
as a relative one depending on the means used for that 
identification: “To determine whether a person is identi-
fiable, account should be taken of all the means reasona-
bly likely to be used either by the controller or by any 
other person to identify or single out the individual di-
rectly or indirectly. To ascertain whether means are rea-
sonably likely to be used to identify the individual, ac-
count should be taken of all objective factors, such as the 
costs of and the amount of time required for identifica-
tion, taking into consideration both available technology 
at the time of the processing and technological develop-
ment.”

But under what criteria should we, as MIR practition-
ers, specify when a set of data allows an easy identifica-
tion and belongs to the second set or, on the contrary, is 
too complex or reaches a too uncertain identification so 
that we would not legally say that these are personal da-
ta? To answer these questions, we must be able to com-
pare MIR processes with new criteria.

4. MANAGING THE TWO FIRST SETS 

On an example chosen to be problematic (but increasing-
ly common in the industry), we show how to manage per-

sonal data in case of a simple direct or indirect identifica-
tion process.

4.1 Trends in terms of use and innovative technology 

Databases of personal data are no more clearly identified. 
We can view the situation as combining five aspects, 
which lead to new scientific problems concerning MIR 
personal data processing. 

Data Sources Explosion. The number of databases for 
retrieving information is growing dramatically. Applica-
tions are also data sources. Spotify for instance provides a 
live flow of music consumption information from mil-
lions of users. Data from billions of sensors will soon be 
added. This profusion of data does not mean quality. Ac-
cessible does not mean legal or acceptable for a user. 
Those considerations are essential to build reliable and 
sustainable systems. 

Crossing & Reconciling Data. Data sources are no 
longer isolated islands. Once the user can be identified 
(cookie, email, customer id), it is possible to match, ag-
gregate and remix data that was previously isolated. 

Time Dimension. The web has a good memory that 
humans are generally not familiar with. Data can be pub-
lic one day and be considered as very private 3 years lat-
er. Many users forget they posted a picture after a student 
party. And the picture has the misfortune to crop up again 
when you apply for a job. And it is not only a question of 
human memory: Minute traces collected one day can be 
exploited later and provide real information. 

Permanent Changes. The general instability of the 
data sources, technical formats and flows, applications 
and use is another strong characteristic of the situation. 
The impact on personal data is very likely. If the architec-
ture of the systems changes a lot and frequently, the so-
cial norms also change. Users today publicly share infor-
mation that they would have considered totally private a 
few years earlier. And the opposite could be the case. 

User Understandability and Control. Because of the 
complexity of changing systems and complex interactions 
users will less and less control over their information. 
This lack of control is caused by the characteristics of the 
systems and by the mistakes and the misunderstandings 
of human users. The affair of the private Facebook mes-
sages appearing suddenly on timeline (Sept. 2012) is sig-
nificant. Facebook indicates that there was no bug. Those 
messages were old wall posts that are now more visible 
with the new interface. This is a combination of bad user 
understanding and fast moving systems. 

4.2 The case of an Apache Hadoop File System 
(AHFS) on which some machine learning is applied 

Everyone produces data and personal data without being 
always aware that they provide data revealing their iden-
tification. When a user tags / rates musical items [13], he 
gives personal information. If a music recommender ex-
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ploits this user data without integrating privacy concepts, 
he faces legal issues and strong discontent from the users. 

The data volume has increased faster than “Moore’s 
law”: This is what is meant by “Big Data”. New data is 
generally unstructured and traditional database systems 
such as Relational Database Management Systems cannot 
handle the volume of data produced by users & machines 
& sensors. This challenge was the main drive for Google 
to define a new technology: the Apache Hadoop File Sys-
tem (AHFS). Within this framework, data and computa-
tional activities are distributed on a very large number of 
servers. Data is not loaded for computation, nor the re-
sults stored. Here, the algorithm is close to the data. This 
situation leads to the epistemological problem of separa-
bility into the field of MIR personal data processing: are 
all MIR algorithms (and for instance the authorship at-
tribution algorithms) separable into data and processes? 
An answer to this question is required for any algorithm 
to be able to identify the set of personal data it deals with. 

Now, let us consider a machine learning classifi-
er/recommender trained on user data. In this sense, the 
algorithm is inseparable from the data it uses to function. 
And, if the machine is internalizing identifiable infor-
mation from a set of users in a certain state (let say EU),
it is then in violation to share the resulting function in a
non-adequate country (let say Brazil) the EU if it was 
trained in, say, the US. 

4.3 Analyzing the multinational AHFS case 

Regarding to the European regulation rules [3, art. 25], 
you may not transfer personal data collected in Europe to 
a non-adequate State (see list of adequate countries 
above). If you build a multinational AHFS system, you 
may collect data in Europe and in US depending on the 
way you localized the AHFS servers. The European data 
may not be transferred to Brazil. Even the classifier 
would not legally be used in Brazil as long as it internal-
izes some identifiable European personal information. 

In practice one should then localize the AHFS files 
and machine-learning processes to make sure no identifi-
able data will be transferred from one country with a spe-
cific regulation to another with another regulation about 
personal data. We call these systems “heterarchical” due 
to the blended situation of a hierarchical system (the 
global AHFS management) and the need of a heterogene-
ous local regulation. 

To manage properly the global AHFS system we need 
a first analysis of the system dispatching the different 
files on the right legal places. Privacy by Design (PbD) is 
a useful methodology to do so.

4.4 Foundations Principals of Privacy by Design 

PbD was first developed by Ontario’s Information and 
Privacy Commissioner, Dr. Ann Cavoukian, in the 1990s, 
at the very birth of the future big data phenomenon. This 

solution has gained widespread international recognition, 
and was recently recognized as a global privacy standard. 

According to its Canadian inventor1, is PbD based on 
seven Foundation Principles (FP): PbD “is an approach 
to protect privacy by embedding it into the design specifi-
cations of technologies, business practices, and physical 
infrastructures. That means building in privacy up front –
right into the design specifications and architecture of 
new systems and processes. PbD is predicated on the 
idea that, at the outset, technology is inherently neutral. 
As much as it can be used to chip away at privacy, it can 
also be enlisted to protect privacy. The same is true of 
processes and physical infrastructure”:
� Proactive not Reactive (FP1): the PbD approach is 

based on proactive measures anticipating and 
preventing privacy invasive events before they occur;  

� Privacy as the Default Setting (FP2): the default rules 
seek to deliver the maximum degree of privacy; 

� Privacy embedded into Design (FP3): Privacy is 
embedded into the architecture of IT systems and 
business practices; 

� Full Functionality – Positive Sum, not Zero-Sum 
(FP4): PbD seeks to accommodate all legitimate 
interests and objectives (security, etc.) in a “win-win” 
manner; 

� End-to-End Security – Full Lifecycle Protection (FP5): 
security measures are essential to privacy, from start to 
finish; 

� Visibility and Transparency — Keep it Open (FP6): 
PbD is subject to independent verification. Its 
component parts and operations remain visible and 
transparent, to users and providers alike; 

� Respect for User Privacy — Keep it User-Centric 
(FP7): PbD requires architects and operators to keep 
the interests of the individual uppermost. 
At the time of digital data exchange through networks, 

PbD is a key-concept in legacy [10]. In Europe, where 
this domain has been directly inspired by the Canadian 
experience, the EU2 affirms: “PbD means that privacy 
and data protection are embedded throughout the entire 
life cycle of technologies, from the early design stage to 
their deployment, use and ultimate disposal”.

4.5 Prospects for a MIR Privacy by Design 

PbD is a reference for designing systems and processing 
involving personal data, enforced by the new European 
proposal for a Regulation [9, art. 23]. It becomes a meth-
od for these designs whereby it includes signal analysis 
methods and may interest MIR developers. 

This proposal leads to new questions, such as the fol-
lowing: Is PbD a universal methodological solution about 
personal data for all MIR projects? Most of ISMIR con-
tributions are still research oriented which doesn’t mean 

1 http://www.ipc.on.ca/images/Resources/7foundationalprinciples.pdf
2 “Safeguarding Privacy in a Connected World – A European Data Pro-
tection Framework for the 21st Century” COM (2012) 9 final.
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that they fulfill the two specific exceptions [9, art. 83]1.
To say more about that intersection, we need to survey 
the ISMIR scientific production, throughout the main 
FPs. FP6 (transparency) and FP7 (user-centric) are usual-
ly respected among the MIR community as source code 
and processing are often (i) delivered under GNU like 
licensing allowing audit and traceability (ii) user-friendly. 
However, as long as PbD is not embedded, FP3 cannot be 
fulfilled and accordingly FP2 (default setting), FP5 (end-
to-end), FP4 (full functionality) and FP1 (proactive) can-
not be fulfilled even. Without any PbD embedded into 
Design, there are no default settings (FP2), you cannot 
follow an end-to-end approach (FP5), you cannot define 
full functionality regarding to personal data (FP4) nor be 
proactive. Principle of pro-activity (FP1) is the key. Ful-
filling FP1 you define the default settings (FP2), be fully 
functional (FP4) and define an end-to-end process (FP5). 

In brief is PbD useful to MIR developers even if it is 
not the definitive martingale! 

5. EXPLORING THE THIRD SET 

“Identifiability” is the potentiality of a set of data to lead 
to the identification of its source. A set of data should be 
qualified as being personal data if the cost and the 
amount of time required for identification are reasonable. 
These new criteria are a step forward since the qualifica-
tion is not an absolute one anymore and depends specifi-
cally on the state of the art. 

5.1 Available technology and technological develop-
ment to take into account at this present moment 

Changes in Information Technology lead to a shift in the 
approach of data management: from computational to da-
ta exploration. The main question is “What to look for?” 
Many companies build new tools to “make the data 
speak”. This is the case considering the trend of personal-
ized marketing. Engineers using big data build systems 
that produce new personal dataflow. 

Is it possible to stabilize these changes through stand-
ardization of metadata? Is it possible to develop a stand-
ardization of metadata which could ease the classification 
of MIR processing of personal data into identifying and 
non-identifying processes. 

Many of the MIR methods are stochastic, probabilistic 
or designed to cost and more generally non-deterministic. 
On the contrary the European legal criteria [9, recital 23] 
(see above § 3.3) to decide whether a data is personal or 
not (the third set) seem to be much to deterministic to fit 
the effective new practices about machine learning on 
personal data. 

1 (i) these processing cannot be fulfilled otherwise and (ii) data permit-
ting the identification are kept separately from the other information, or 
when the bodies conducting these data respect three conditions: (i) con-
sent of the data subject, (ii) publication of personal data is necessary and 
(iii) data are made public

This situation leads to a new scientific problem: Is 
there an absolute criterion about the identifiability of per-
sonal data extracted from a set of data with a MIR pro-
cess? What characterizes a maximal subset from the big 
data that could not ever be computed by any Turing ma-
chine to identify a natural person with any algorithm? 

5.2 What about the foundational separation in com-
puter science between data and process? 

Computer science is based on a strict separation between 
data and process (dual as these two categories are inter-
changeable at any time; data can be activated as a process 
and a process can be treated as a data).

We may wonder about the possibility of maintaining 
the data/process separation paradigm if i) the data stick to 
the process and ii) the legal regulation leads to a location 
of the data in the legal system in which those data were 
produced. 

6. CONCLUSION 

6.1 When some process lead to direct or indirect per-
sonal data identification 

Methodological Recommendations. MIR researchers 
could first audit their algorithm and data, and check if 
they are able to identify a natural person (two first sets of 
our classification). If so they could use the SHF which 
could already be an industrial challenge for instance re-
garding Cyber Security (P5). Using the PbD methodology 
certainly leads to operational solutions in these situations. 

6.2 When some process may lead to indirect personal 
data identification through some complex process 

In many circumstances, the MIR community develops 
new personal data on the fly, using the whole available 
range of data analysis and data building algorithm. Then 
researchers could apply the PbD methodology, to insure 
that no personal data is lost during the system design. 

Here PbD is not a universal solution because the time 
when data (on the one hand) and processing (on the other 
hand) were functionally independent, formally and se-
mantically separated, has ended. Nowadays, MIR re-
searchers currently use algorithms that support effective 
decision, supervised or not, without introducing ‘pure’ 
data or ‘pure’ processing, but building up acceptable so-
lutions together with machine learning [5] or heuristic 
knowledge that cannot be reduced to data or processing: 
The third set of personal data may appear, and raise theo-
retical scientific problems. 

Political Opportunities. The MIR community has a 
political role to play in the data privacy domain, by ex-
plaining to lawyers —joining expert groups in the US, 
UE or elsewhere— what we are doing and how we over-
lap with the tradition in style description, turning it into a 
computed style genetic, which radically questions the 
analysis of data privacy traditions, cultures and tools. 
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Future Scientific Works. In addition to methodologi-
cal and political ones, we face purely scientific challeng-
es, which constitute our research program for future 
works. Under what criteria should we, as MIR practition-
ers, specify when a set of data allows an easy identifica-
tion and belongs to the second set or on the contrary is 
too complex or allows a too uncertain identification so 
that we would say that these are not personal data? What 
characterizes a maximal subset from the big data that 
could not ever be computed by any Turing machine to 
identify a natural person with any algorithm?
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ABSTRACT

In this paper we present a new beat tracking algorithm

which extends an existing state-of-the-art system with a

multi-model approach to represent different music styles.

The system uses multiple recurrent neural networks, which

are specialised on certain musical styles, to estimate possi-

ble beat positions. It chooses the model with the most ap-

propriate beat activation function for the input signal and

jointly models the tempo and phase of the beats from this

activation function with a dynamic Bayesian network. We

test our system on three big datasets of various styles and

report performance gains of up to 27% over existing state-

of-the-art methods. Under certain conditions the system is

able to match even human tapping performance.

1. INTRODUCTION AND RELATED WORK

The automatic inference of the metrical structure in mu-

sic is a fundamental problem in the music information re-

trieval field. In this line, beat tracking deals with finding

the most salient level of this metrical grid, the beat. The

beat consists of a sequence of regular time instants which

usually invokes human reactions like foot tapping. During

the last years, beat tracking algorithms have considerably

improved in performance. But still they are far from being

considered on par with human beat tracking abilities – es-

pecially for music styles which do not have simple metrical

and rhythmic structures.

Most methods for beat tracking extract some features

from the audio signal as a first step. As features, com-

monly low-level features such as amplitude envelopes [20]

or spectral features [2], mid-level features like onsets ei-

ther in discretised [8,12] or continuous form [6,10,16,18],

chord changes [12,18] or combinations thereof with higher

level features such as rhythmic patterns [17] or metrical

relations [11] are used. The feature extraction is usually

followed by a stage that determines periodicities within

the extracted features sequences. Autocorrelation [2,9,12]

and comb filters [6, 20] are commonly used techniques for
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this task. Most systems then determine the most predom-

inant tempo from these periodicities and subsequently de-

termine the beat times using multiple agents approaches

[8,12], dynamic programming [6,10], hidden Markov mod-
els (HMM) [7,16,18], or recurrent neural networks (RNN)
[2]. Other systems operate directly on the input features

and jointly determine the tempo and phase of the beats us-

ing dynamic Bayesian networks (DBN) [3, 14, 17, 21].

One of the most common problems of beat tracking

systems are “octave errors”, meaning that a system de-

tects beats at double or half the rate of the ground truth

tempo. For human tappers this generally does not consti-

tute a problem, as can be seen when comparing beat track-

ing results at different metrical levels [6]. Hainsworth and

Macleod stated that beat tracking systems will have to be

style specific in the future in order to improve the state-of-

the-art [14]. This is consistent with the finding of Krebs et

al. [17] who showed on a dataset of Ballroom music that

the beat tracking performance can be improved by incor-

porating style-specific knowledge, especially by resolving

the octave error. While approaches have been proposed

which combined multiple existing features for beat track-

ing [22], no one has so far combined several models spe-

cialised on different musical styles to improve the overall

performance.

In this paper, we propose a multi-model approach to

fuse information of different models that have been spe-

cialised on heterogeneous music styles. The model is based

on the recurrent neural network (RNN) beat tracking sys-

tem proposed in [2] and can be easily adapted to any mu-

sic style without further parameter tweaking, only by pro-

viding a corresponding beat-annotated dataset. Further,

we propose an additional dynamic Bayesian network stage

based on the work of Whiteley et al. [21] which jointly in-

fers the tempo and the beat phase from the beat activations

of the RNN stage.

2. PROPOSED METHOD

The new beat tracking algorithm is based on the state-of-

the-art approach presented by Böck and Schedl in [2]. We

extend their system to be able to better deal with heteroge-

neous music styles and combine it with a dynamic Bayesian

network similar to the ones presented in [21] and [17].

The basic structure is depicted in Figure 1 and consists

of the following elements: first the audio signal is pre-

processed and fed into multiple neural network beat track-
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ing modules. Each of the modules is trained on different

audio material and outputs a different beat activation func-

tion when activated with a musical signal. These functions

are then fed into a module which chooses the most appro-

priate model and passes its activation function to a dynamic
Bayesian network to infer the actual beat positions.

Model 2

Model N

Model 
Switcher

Signal Beats

Model 1

Pre-
processing

•
•
•

Reference 
Network

Dynamic 
Bayesian 
Network

Figure 1. Overview of the new multi-model beat tracking

system.

Theoretically, a single network large enough should be

able to model all the different music styles simultaneously,

but unfortunately this optimal solution is hardly achiev-

able. The main reason for this is the difficulty to choose an

absolutely balanced training set with an evenly distributed

set of beats over all the different dimensions relevant for

detecting beats. These include rhythmic patterns [17, 20],

harmonic aspects and many other features. To overcome

this limitation, we split the available training data into mul-

tiple parts. Each part should represent a more homoge-

neous subset than the whole set so that the networks are

able to specialise on the dominant aspects of this subset.

It seems reasonable to assume that humans do some-

thing similar when tracking beats [4]. Depending on the

style of the music, the rhythmic patterns present, the in-

strumentation, the timbre, they apply their musical knowl-

edge to chose one of their “learned” models and then de-

cide which musical events are beats or not. Our approach

mimics this behaviour by learning multiple distinct mod-

els.

2.1 Signal pre-processing

All neural networks share the same signal pre-processing

step, which is very similar to the work in [2]. As inputs

to the different neural networks, the logarithmically fil-

tered and scaled spectrograms of three parallel Short Time
Fourier Transforms (STFT) obtained for different window

lengths and their positive first order differences are used.

The system works with a constant frame rate fr of 100

frames per second. Window lengths of 23.2ms, 46.4ms

and 92.9ms are used and the resulting spectrogram bins

of the discrete Fourier transforms are filtered with over-

lapping triangular filters to have a frequency resolution of

three bands per octave. To put all resulting magnitude val-

ues into a positive range we add 1 before taking the loga-

rithm.

2.2 Multiple parallel neural networks

At the core of the new approach, multiple neural networks

are used to determine possible beat locations in the audio

signal. As outlined previously, these networks are trained

on material with different music styles to be able to better

detect the beats in heterogeneous music styles.

As networks we chose the same recurrent neural net-
work (RNN) topology as in [2] with three bidirectional hid-

den layers with 25 long short-term memory (LSTM) units

per layer. For training of the networks, standard gradient

descent with error backpropagation and a learning rate of

1e−4 is used. We initialise the network weights with a

Gaussian distribution with mean 0 and standard deviation

of 0.1. We use early stopping with a disjoint validation set

to stop training if no improvement over 20 epochs can be

observed.

One reference network is trained on the complete dataset

until the stopping criterion is reached for the first time. We

use this point during the training phase to diverge the spe-

cialised models from the reference network.

Afterwards, all networks are fine-tuned with a reduced

learning rate of 1e−5 on either the complete set or the indi-

vidual subsets (cf. Section 3.1) with the above mentioned

stopping criterion. Given N subsets, N + 1 models are

generated.

The output functions of the network models represent

the beat probability at each time frame. Instead of tracking

the beats with an autocorrelation function as described in

the original work, the beat activation functions of the dif-

ferent models are fed into the next model-selection stage.

2.3 Model selection

The purpose of this stage is to select a model which outputs

a better beat activation function than the reference model

when activated with a signal. Compared to the reference

model, the specialised models produce better predictions

on input data which is similar to that used for fine-tuning,

but worse predictions on signals dissimilar to the training

data. This behaviour can be seen in Figure 2, where the

specialised model produces higher beat activation values

at the beat locations and lower values elsewhere.

Table 1 illustrates the impact on the Ballroom subset,

where the relative gain of the best specialised model com-

pared to the reference model (+1.7%) is lower than the

penalties of the other models (−2.3% to −6.3%). The

fact that the performance degradation of the unsuitable spe-

cialised models is greater than the gain of the most suitable

model allows us to use a very simple but effective method

to choose the best model.

To select the best performing model, all network out-

puts of the fine-tuned networks are compared with the out-

put of the reference network (which was trained on the

whole training set) and the one yielding the lowest mean
squared difference is selected as the final one and its out-

put is fed into the final beat tracking stage.
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Figure 2. Example beat activations for a 4 seconds ball-

room snippet. Red is the reference network’s activations,

black the selected model and blue a discarded one. Green

dashed vertical lines denote the annotated beat positions.

F-measure Cemgil AMLc AMLt

SMC * 0.834 0.807 0.664 0.767

Hainsworth * 0.867 0.839 0.694 0.793

Ballroom * 0.904 0.872 0.777 0.853

Reference 0.887 0.855 0.748 0.831

Multi-model 0.897 0.866 0.759 0.841

Table 1. Performance of differently specialised mod-

els (marked with asterisks, fine-tuned on the SMC,

Hainsworth and Ballroom subsets) on the Ballroom subset

compared to the reference model and the network selected

by the multi-model selection stage.

2.4 Dynamic Bayesian network

Independent of whether only one or multiple neural net-

works are used, the approach of Böck and Schedl [2] has

a fundamental shortcoming: the final peak-picking stage

does not try to find a global optimum when selecting the

final locations of the beats. It rather determines the dom-

inant tempo of the piece (or a segment of certain length)

and then aligns the beat positions according to this tempo

by simply choosing the best start position and then pro-

gressively locating the beats at positions with the highest

activation function values in a certain region around the

pre-determined position. To allow a greater responsiveness

to tempo changes, this chosen region must not be too small.

However, this also introduces a weakness to the algorithm,

because the tracking stage can easily get distracted by a

few misaligned beats and needs some time to recover from

this fault. The activation function depicted in Figure 2 has

two of these spurious detections around frames 100 and

200.

To circumvent this problem, we feed the output of the

chosen neural network model into a dynamic Bayesian net-
work (DBN) which jointly infers tempo and phase of a beat

sequence. Another advantage of this new method is that

we are able to model both beat and non-beat states, which

was shown to perform superior to the case where only beat

states are modelled [7].

The DBN we use is closely related to the one proposed

in [21], adapted to our specific needs. Instead of mod-

elling whole bars, we only model one beat period which re-

duces the size of the search space. Additionally we do not

model rhythmic patterns explicitly and leave this higher

level analysis to the neural networks. This finally leads to

a DBN which consists of two hidden variables, the tempo

ω and the position φ inside a beat period. In order to in-

fer the hidden variables from an audio signal, we have to

specify three entities: A transition model which describes

the transitions between the hidden variables, an observa-
tion model which takes the beat activations from the neural

network and transforms them into probabilities suitable for

the DBN, and the initial distribution which encodes prior

knowledge about the hidden variables. For computational

ease we discretise the tempo-beat space to be able to use

standard hidden Markov model (HMM) [19] algorithms

for inference.

2.4.1 Transition model

The beat period is discretised into Φ = 640 equidistant

cells and φ ∈ {1, ...,Φ}. We refer to the unit of the variable

φ (position inside a beat period) as pib. φk at audio frame

k is then computed by

φk = (φk−1 + ωk−1 − 1) mod Φ+ 1. (1)

The tempo space is discretised into Ω = 23 equidistant

cells, which cover the tempo range up to 215 beats per

minute (BPM). The unit of the tempo variable ω is pib per
audio frame. As we want to restrict ω to integer values (to

stay within the φ grid at transitions), we need a high reso-

lution of φ in order to get a high resolution of ω. Based on

experiments with the training set, we set the tempo space

to ω ∈ {6, ...,Ω}, where ω = 6 is equivalent to a minimum

tempo of 6 × 60 × fr/Φ ≈ 56 BPM. As in [21] we only

allow for three tempo transitions at time frame k: It stays

constant, it accelerates, or it decelerates.

ωk =

⎧⎨⎩
ωk−1, P (ωk|ωk−1) = 1− pω
ωk−1 + 1, P (ωk|ωk−1) =

pω

2
ωk−1 − 1, P (ωk|ωk−1) =

pω

2

(2)

Transitions to tempi outside of the allowed range are not

allowed by setting the corresponding transition probabili-

ties to zero. The probability of a tempo change pω was set

to 0.002.

2.4.2 Observation model

Since the beat activation function a produced by the neural

network is limited to the range [0, 1] and shows high val-

ues at beat positions and low values at non-beat positions,

we use the activation function directly as state-conditional

observation distributions (similar to [7]). We define the ob-

servation likelihood as

P (ak|φk) =

{
ak, 1 ≤ φk ≤ Φ

λ
1−ak

λ−1 , otherwise.
(3)

λ ∈ [ Φ
Φ−1 ,Φ] is a parameter that controls the proportion of

the beat interval which is considered as beat and non-beat

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

605



location. Smaller values of λ (a higher proportion of beat

locations and a smaller proportion of non-beat locations)

are especially important for higher tempi, as the DBN vis-

its only a few position states of a beat interval and could

possibly miss the beginning of a beat. On the other hand,

higher values of λ (a smaller proportion of beat locations)

lead to less accurate beat tracking, as the activations are

blurred in the state domain of the DBN. On our training

set we achieved the best results with the value λ = 16.

2.4.3 Initial state distribution

The initial state distribution is normally used to incorporate

any prior knowledge about the hidden states, such as tempo

distributions. In this paper, we use a uniform distribution

over all states, for simplicity and ease of generalisation.

2.4.4 Inference

We are interested in the sequence of hidden variables φ1:K

and ω1:K , that maximise the posterior probability of the

hidden variables given the observations (activations a1:K).

Combining the discrete states of φ and ω into one state

vector xk = [φk, ωk], we can compute the maximum a-

posteriori state sequence x∗
1:K by

x∗
1:K = argmax

x1:K

p(x1:K |a1:K). (4)

Equation 4 can be computed efficiently using the well-

known Viterbi algorithm [19]. Finally the set of beat times

B are determined by the set of time frames k which were

assigned to a beat position (B = {k : φk < φk−1}). In our

experiments we found that the beat detection becomes less

accurate if the part of the beat interval which is considered

as beat-state is too large (i.e. smaller values of λ). There-

fore we determine the final beat times by looking for the

highest beat activation value inside the beat-state window

W = {k : φk ≤ Φ
λ }.

3. EVALUATION

For the development and evaluation of the algorithm we

used some well-known datasets. This allows for highest

comparability with previously published results of state-

of-the-art algorithms.

3.1 Datasets

As training material for our system, the datasets introduced

in [13–15] are used. They are called Ballroom, Hainsworth
and SMC respectively. To show the ability of our new al-

gorithm to adapt to various music styles, a very simple ap-

proach of splitting the complete dataset into multiple sub-

sets according to the original source was chosen. Although

far from optimal – both the SMC and Hainsworth datasets

contain heterogeneous music styles – we still consider this

a valid choice, since any “better” splitting would allow

the system to adapt even further to heterogeneous styles

and in turn lead to better results. At least the three sets

have a somehow different focus regarding the music styles

present.

3.2 Performance measures

In line with almost all other publications on the topic of

beat tracking, we report the following scores:

F-measure : counts the number of true positive (correctly

located beats within a tolerance window of ±70 ms), false

positive and negative detections;

P-score : measures the tracking accuracy by the correla-

tion of the detections and the annotations, considering

deviations within 20% of the annotated beat interval as

correct;

Cemgil : places a Gaussian function with a standard de-

viation of 40 ms around the annotations and then mea-

sures the tracking accuracy by summing up the scores of

the detected beats on this function normalising it by the

overall length of the annotations or detections, whichever

is greater;

CMLc & CMLt : measure the longest continuously seg-

ment (CMLc) or all correctly tracked beats (CMLt) at the

correct metrical level. A beat is considered correct if it is

reported within a 17.5% tempo and phase tolerance, and

the same applies for the previously detected beat;

AMLc & AMLt : like CMLc & CMLt, but additionally

allow offbeat and double/half as well as triple/third tempo

variations of the annotated beats;

D & Dg : the information gain (D) and global information

gain (Dg) are phase agnostic measures comparing the an-

notations with the detections (and vice-versa) building a

error histogram and then calculating the Kullback-Leibler

divergence w.r.t. a uniform histogram.

A more detailed description of the evaluation methods can

be found in [5]. However, since we only investigate of-

fline algorithms, we do not skip the first five seconds for

evaluation.

3.3 Results & Discussion

Table 2 lists the performance results of the reference imple-

mentation, Böck’s BeatTracker.2013, and the various ex-

tensions proposed in this paper for all datasets. All results

are obtained with 8-fold cross validation with previously

defined splittings, ensuring that no pieces are used both for

training or parameter tuning and testing purposes. Addi-

tionally, we compare our new approach to published stat-

of-the-art results on the Hainsworth and Ballroom datasets.

3.3.1 Multi-model extension

As can be seen, the use of the multi-model extension al-

most always improves the results over the implementation

it is based on, especially on the SMC set. The gain in per-

formance on the Ballroom set was expected, since Krebs et

al. already showed that modelling rhythmic patterns helps

to increase the overall detection accuracy [17]. Although

we did not split the set according to the individual rhythmic

patterns, the overall style of ballroom music can be con-

sidered unique enough to be distinct from the other music
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F-measure P-score Cemgil CMLc CMLt AMLc AMLt D Dg

Ballroom
BeatTracker.2013 [1, 2] 0.887 0.863 0.855 0.719 0.795 0.748 0.831 3.404 2.596

— Multi-Model 0.897 0.875 0.866 0.740 0.814 0.759 0.841 3.480 2.674
— DBN 0.903 0.876 0.838 0.792 0.825 0.873 0.915 3.427 2.275

— Multi-Model + DBN 0.910 0.881 0.845 0.800 0.830 0.885 0.924 3.469 2.352

Krebs et al. [17] 0.855 0.839 0.772 0.745 0.786 0.818 0.865 2.499 1.681

Zapata et al. [22] † 0.767 0.735 0.672 0.586 0.607 0.824 0.860 2.750 1.187

Hainsworth
BeatTracker.2013 [1, 2] 0.832 0.843 0.712 0.618 0.756 0.655 0.807 2.167 1.468

— Multi-Model 0.832 0.847 0.716 0.617 0.761 0.652 0.809 2.171 1.490
— DBN 0.843 0.867 0.711 0.696 0.808 0.759 0.883 2.251 1.481

— Multi-Model + DBN 0.840 0.865 0.707 0.696 0.803 0.760 0.881 2.268 1.466

Zapata et al. [22] † 0.710 0.732 0.589 0.569 0.642 0.709 0.824 2.057 0.880

Davies et al. [6] - - - 0.548 0.612 0.681 0.789 - -

Peeters & Papadopoulos [18] - - - 0.547 0.628 0.703 0.831 - -

Degara et al. [7] - - - 0.561 0.629 0.719 0.815 - -

Human tapper [6] ‡ - - - 0.528 0.812 0.575 0.874 - -

SMC
BeatTracker.2013 [1, 2] 0.497 0.598 0.402 0.238 0.360 0.279 0.436 1.263 0.416

— Multi-Model 0.514 0.617 0.415 0.257 0.389 0.296 0.467 1.324 0.467

— DBN 0.516 0.622 0.404 0.294 0.415 0.378 0.550 1.426 0.504

— Multi-Model + DBN 0.529 0.630 0.415 0.296 0.428 0.383 0.567 1.460 0.531
Zapata et al. [22] † 0.369 0.460 0.285 0.115 0.158 0.239 0.397 0.879 0.126

Table 2. Performance of the proposed algorithm on the Ballroom [13], Hainsworth [14] and SMC [15] datasets. Beat-
Tracker is the reference implementation our Multi-Model and dynamic Bayesian network (DBN) extensions are built on.

The results marked with † are obtained with Essentia’s implementation of the multi-feature beat tracker. 1 ‡ denotes causal

(i.e. online) processing, all listed algorithms use non-causal analysis (i.e. offline processing) with the best results in bold.

styles present in the other sets and the salient features can

be exploited successfully by the multi-model approach.

3.3.2 Dynamic Bayesian network extension

As already indicated in the original paper [2] (and described

earlier in Section 2.4), the original BeatTracker can be eas-

ily distracted by some misaligned beats and then needs

some time to recover from any failure. The newly adapted

dynamic Bayesian network beat tracking stage does not

suffer from this shortcoming by searching for the glob-

ally best beat locations. The use of the DBN boosts the

performance on all datasets for almost all evaluation mea-

sures. Interestingly, the Cemgil accuracy is degraded by

using the DBN stage. This might be explained by the fact

that the discretisation grid of the beat period beat posi-

tions becomes too coarse for low tempi (cf. Section 2.4.4)

and therefore yields inaccurate beat detections, which es-

pecially affect the Cemgil accuracy. This is one of the is-

sues that needs to be resolved in the future, especially for

lower tempi where the penalty is the highest.

3.3.3 Comparison with other methods

Our new system set side by side with other state-of-the-art

algorithms draws a clear picture. It outperforms all of them

considerably – independently of the dataset and evaluation

measure chosen. Especially the high performance boosts

of the CMLc and CMLt scores on the Hainworth dataset

highlight the ability to track the beats at the correct metri-

cal level significantly more often than any other method.

Davies et al. [6] also list performance results of a hu-

man tapper on the same dataset. However it must be noted

that these were obtained by online real-time tapping, hence

they cannot be compared directly to the system presented.

However, the system of Davies et al. can also be switched

to causal mode (and thus being comparable to a human

tapper). In this mode it achieved performance reduced by

approximately 10% [6]. Adding the same amount to the

reported tapping results of 0.528 CMLc and 0.575 AMlc

suggests that our system is capable of performing as good

as humans when continuous tapping is required.

On the Ballroom set we achieve higher results than the

particularly specialised system of Krebs et al. [17]. Since

our DBN approach is a simplified variant of their model, it

can be assumed that the relatively low scores of the Cemgil

accuracy and the information gain are due to the same rea-

son – the coarse discretisation of the beat or bar states.

Nonetheless, comparing the continuity scores (which have

higher tolerance thresholds) we can still report an average

increase in performance of more than 5%.

4. CONCLUSIONS & OUTLOOK

In this paper we have presented a new beat tracking system

which is able to improve over existing algorithms by incor-

porating multiple models which were trained on different

music styles and combining it with a dynamic Bayesian

1 http://essentia.upf.edu, v2.0.1
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network for the final inference of the beats. The combina-

tion of these two extensions yields a performance boost –

depending on the dataset and evaluation measures chosen

– of up to 27% relative, matching human tapping results

under certain conditions. It outperforms other state-of-the-

art algorithms in tracking the beats at the correct metrical

level by 20%.

We showed that the specialisation on a certain musical

style helps to improve the overall performance, although

the method for splitting the available data into sets of dif-

ferent styles and then selecting the most appropriate model

is rather simple. For the future we will investigate more ad-

vanced techniques for the selection of suitable data for the

creation of the specialised models, e.g. splitting the datasets

according to dance styles as performed by Krebs et al. [17]

or applying unsupervised clustering techniques. We also

expect better results from more advanced model selection

methods. One possible approach could be to feed the indi-

vidual model activations to the dynamic Bayesian network

and let it choose among them.

Finally, the Bayesian network could be tuned towards

using a finer beat positions grid and thus reporting the beats

at more appropriate times than just selecting the position

of the highest activation reported by the neural network

model.
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ABSTRACT

In recent years, methods to decompose an audio signal into

a harmonic and a percussive component have received a lot

of interest and are frequently applied as a processing step

in a variety of scenarios. One problem is that the com-

puted components are often not of purely harmonic or per-

cussive nature but also contain noise-like sounds that are

neither clearly harmonic nor percussive. Furthermore, de-

pending on the parameter settings, one often can observe

a leakage of harmonic sounds into the percussive compo-

nent and vice versa. In this paper we present two exten-

sions to a state-of-the-art harmonic-percussive separation

procedure to target these problems. First, we introduce a

separation factor parameter into the decomposition pro-

cess that allows for tightening separation results and for

enforcing the components to be clearly harmonic or per-

cussive. As second contribution, inspired by the classical

sines+transients+noise (STN) audio model, this novel con-

cept is exploited to add a third residual component to the

decomposition which captures the sounds that lie in be-
tween the clearly harmonic and percussive sounds of the

audio signal.

1. INTRODUCTION

The task of decomposing an audio signal into its harmonic

and its percussive component has received large interest in

recent years. This is mainly because for many applications

it is useful to consider just the harmonic or the percussive

portion of an input signal. Harmonic-percussive separa-

tion has been applied, for example, for audio remixing [9],

improving the quality of chroma features [14], tempo es-

timation [6], or time-scale modification [2, 4]. Several de-

composition algorithms have been proposed. In [3], the

percussive component is modeled by detecting portions in

the input signal which have a rather noisy phase behav-

ior. The harmonic component is then computed by the

difference of the original signal and the computed percus-

sive component. In [10], the crucial observation is that

c© Jonathan Driedger, Meinard Müller, and Sascha Disch.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Jonathan Driedger, Meinard Müller,

and Sascha Disch. “Extending Harmonic-Percussive Separation of Au-

dio Signals”, 15th International Society for Music Information Retrieval

Conference, 2014.

Figure 1. (a): Input audio signal x. (b): Spectrogram X .

(c): Spectrogram of the harmonic component Xh (left), the

residual component Xr (middle) and the percussive com-

ponent Xp (right). (d): Waveforms of the harmonic com-

ponent xh (left), the residual component xr (middle) and

the percussive component xp (right).

harmonic sounds have a horizontal structure in a spectro-

gram representation of the input signal, while percussive

sounds form vertical structures. By iteratively diffusing the

spectrogram once in horizontal and once in vertical direc-

tion, the harmonic and percussive elements are enhanced,

respectively. The two enhanced representations are then

compared, and entries in the original spectral representa-

tion are assigned to either the harmonic or the percussive

component according to the dominating enhanced spectro-

gram. Finally, the two components are transformed back to

the time-domain. Following the same idea, Fitzgerald [5]

replaces the diffusion step by a much simpler median filter-

ing strategy, which turns out to yield similar results while

having a much lower computational complexity.

A drawback of the aforementioned approaches is that

the computed decompositions are often not very tight in

the sense that the harmonic and percussive components

may still contain some non-harmonic and non-percussive

residues, respectively. This is mainly because of two rea-

sons. First, sounds that are neither of clearly harmonic nor

of clearly percussive nature such as applause, rain, or the

sound of a heavily distorted guitar are often more or less

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

611



randomly distributed among the two components. Second,

depending on the parameter setting, harmonic sounds of-

ten leak into the percussive component and the other way

around. Finding suitable parameters which yield satisfac-

tory results often involves a delicate trade-off between a

leakage in one or the other direction.

In this paper, we propose two extensions to [5] that

lead towards more flexible and refined decompositions.

First, we introduce the concept of a separation factor (Sec-

tion 2). This novel parameter allows for tightening decom-

position results by enforcing the harmonic and percussive

component to contain just the clearly harmonic and per-

cussive sounds of the input signal, respectively, and there-

fore to attenuate the aforementioned problems. Second,

we exploit this concept to add a third residual component

that captures all sounds in the input audio signal which

are neither clearly harmonic nor percussive (see Figure 1).

This kind of decomposition is inspired by the classical

sines+transients+noise (STN) audio model [8, 11] which

aims at resynthesizing a given audio signal in terms of

a parameterized set of sine waves, transient sounds, and

shaped white noise. While a first methodology to com-

pute such a decomposition follows rather straightforward

from the concept of a separation factor, we also propose a

more involved iterative decomposition procedure. Build-

ing on concepts proposed in [13], this procedure allows

for a more refined adjustment of the decomposition results

(Section 3.3). Finally, we evaluate our proposed proce-

dures based on objective evaluation measures as well as

subjective listening tests (Section 4). Note that this paper

has an accompanying website [1] where you can find all

audio examples discussed in this paper.

2. TIGHTENED HARMONIC-PERCUSSIVE
SEPARATION

The first steps of our proposed decomposition procedure

for tightening the harmonic and the percussive component

are the same as in [5], which we now summarize. Given

an input audio signal x, our goal is to compute a harmonic

component xh and a percussive component xp such that xh

and xp contain the clearly harmonic and percussive sounds

of x, respectively. To achieve this goal, first a spectrogram

X of the signal x is computed by applying a short-time

Fourier transform (STFT)

X(t, k) =
N−1∑
n=0

w(n) x(n+ tH) exp(−2πikn/N)

with t ∈ [0 : T−1] and k ∈ [0 : K], where T is the number

of frames, K = N/2 is the frequency index corresponding

to the Nyquist frequency, N is the frame size and length

of the discrete Fourier transform, w is a sine-window func-

tion and H is the hopsize (we usually set H = N/4). A

crucial observation is that looking at one frequency band in

the magnitude spectrogram Y = |X| (one row of Y ), har-

monic components stay rather constant, while percussive

structures show up as peaks. Contrary, in one frame (one

column of Y ), percussive components tend to be equally

distributed, while the harmonic components stand out. By

applying a median filter to Y once in horizontal and once

in vertical direction, we get a harmonically enhanced mag-

nitude spectrogram Ỹh and a magnitude spectrogram Ỹp

with enhanced percussive content

Ỹh(t, k) := median(Y (t− 
h, k), . . . , Y (t+ 
h, k))

Ỹp(t, k) := median(Y (t, k − 
p), . . . , Y (t, k + 
p))

for 
h, 
p ∈ N where 2
h + 1 and 2
p + 1 are the lengths

of the median filters, respectively.

Now, extending [5], we introduce an additional param-

eter β ∈ R, β ≥ 1, called the separation factor. We as-

sume an entry of the original spectrogram X(t, k) to be

part of the clearly harmonic or percussive component if

Ỹh(t, k)/Ỹp(t, k) > β or Ỹp(t, k)/Ỹh(t, k) ≥ β, respec-

tively. Intuitively, for a sound to be included in the har-

monic component it is required to stand out from the per-

cussive portion of the signal by at least a factor of β, and

vice versa for the percussive component. Using this prin-

ciple, we can define binary masks Mh and Mp

Mh(t, k) :=
(
Ỹh(t, k)/(Ỹp(t, k) + ε)

)
> β

Mp(t, k) :=
(
Ỹp(t, k)/(Ỹh(t, k) + ε)

)
≥ β

where ε is a small constant to avoid division by zero, and

the operators ≥ and > yield a binary result from {0, 1}.
Applying these masks to the original spectrogram X yields

the spectrograms for the harmonic and the percussive com-

ponent

Xh(t, k) := X(t, k) ·Mh(t, k)

Xp(t, k) := X(t, k) ·Mp(t, k) .

These spectrograms can then be brought back to the time-

domain by applying an “inverse” short-time Fourier trans-

form, see [7]. This yields the desired signals xh and xp.

Choosing a separation factor β > 1 tightens the separation

result of the procedure by preventing sounds which are nei-

ther clearly harmonic nor percussive to be included in the

components. In Figure 2a, for example, you see the spec-

trogram of a sound mixture of a violin (clearly harmonic),

castanets (clearly percussive), and applause (noise-like,

and neither harmonic nor percussive). The sound of the

violin manifests itself as clear horizontal structures, while

one clap of the castanets is visible as a clear vertical struc-

ture in the middle of the spectrogram. The sound of the

applause however does not form any kind of directed struc-

ture and is spread all over the spectrum. When decompos-

ing this audio signal with a separation factor of β=1, which

basically yields the procedure proposed in [5], the applause

is more or less equally distributed among the harmonic

and the percussive component, see Figure 2b. However,

when choosing β=3, only the clearly horizontal and ver-

tical structures are preserved in Xh and Xp, respectively,

and the applause is no longer contained in the two compo-

nents, see Figure 2c.
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Figure 2. (a): Original spectrogram X . (b): Spectrograms

Xh (left) and Xp (right) for β = 1. (c): Spectrograms Xh

(left) and Xp (right) for β = 3.

3. HARMONIC-PERCUSSIVE-RESIDUAL
SEPARATION

In Section 3.1 we show how harmonic-percussive sepa-

ration can be extended with a third residual component.

Afterwards, in Section 3.2, we show how the parameters

of the proposed procedure influence the decomposition re-

sults. Finally, in Section 3.3, we present an iterative de-

composition procedure which allows for a more flexible

adjustment of the decomposition results.

3.1 Basic Procedure and Related Work

The concept presented in Section 2 allows us to extend

the decomposition procedure with a third component xr,

called the residual component. It contains the portion of

the input signal x that is neither part of the harmonic com-

ponent xh nor the percussive components xp. To compute

xr, we define the binary mask

Mr(t, k) := 1−
(
Mh(t, k) +Mp(t, k)

)
,

apply it to X , and transform the resulting spectrogram Xr

back to the time-domain (note that the masks Mh and Mp

are disjoint). This decomposition into three components

is inspired by the STN audio model. Here, an audio sig-

nal is analyzed to yield parameters for sinusoidal, tran-

sient, and noise components which can then be used to ap-

proximately resynthesize the original signal [8, 11]. While

the main application of the STN model lies in the field of

low bitrate audio coding, the estimated parameters can also

be used to synthesize just the sinusoidal, the transient, or

the noise component of the approximated signal. The har-

monic, the percussive, and the residual component result-

ing from our proposed decomposition procedure are often

perceptually similar to the STN components. However, our

proposed procedure is conceptually different. STN mod-

eling aims for a parametrization of the given audio sig-

nal. While the estimated parameters constitute a compact

approximation of the input signal, this approximation and

Figure 3. Energy distribution between the harmonic, resid-

ual, and percussive components for different frame sizes N
and separation factors β. (a): Harmonic components. (b):
Residual components. (c): Percussive components.

the original signal are not necessarily equal. Our proposed

approach yields a decomposition of the signal. The three

components always add up to the original signal again. The

separation factor β hereby constitutes a flexible handle to

adjust the sound characteristics of the components.

3.2 Influence of the Parameters

The main parameters of our decomposition procedure are

the length of the median filters, the frame size N used

to compute the STFT, and the separation factor β. Intu-

itively, the length of the filters specify the minimal sizes

of horizontal and vertical structures which should be con-

sidered as harmonic and percussive sounds in the STFT

of x, respectively. Our experiments have shown that the

filter lengths actually do not influence the decomposition

too much as long as no extreme values are chosen, see

also [1]. The frame size N on the other hand pushes the

overall energy of the input signal towards one of the com-

ponents. For large frame sizes, the short percussive sounds

lose influence in the spectral representation and more en-

ergy is assigned to the harmonic component. This results in

a leakage of some percussive sounds to the harmonic com-

ponent. Vice versa, for small frame sizes the low frequency

resolution often leads to a blurring of horizontal structures,

and harmonic sounds tend to leak into the percussive com-

ponent. The separation factor β shows a different behavior

to the previous parameters. The larger its value, the clearer

becomes the harmonic and percussive nature of the com-

ponents xh and xp. Meanwhile, also the portion of the sig-

nal that is assigned to the residual component xr increases.

To illustrate this behavior, let us consider a first synthetic

example where we apply our proposed procedure to the

mixture of a violin (clearly harmonic), castanets (clearly

percussive), and applause (neither harmonic nor percus-

sive), all sampled at 22050 Hertz and having the same en-

ergy. In Figure 3, we visualized the relative energy dis-

tribution of the three components for varying frame sizes

N and separation factors β, while fixing the length of the

median filters to be always equivalent to 200 milliseconds

in horizontal direction and 500 Hertz in vertical direction,

see also [1]. Since the energy of all three signals is nor-

malized, potential leakage between the components is in-

dicated by components that have either more or less than a

third of the overall energy assigned. Considering Fitzger-

ald’s procedure [5] as a baseline (β=1), we can investigate
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its behavior by looking at the first columns of the matri-

ces in Figure 3. While the residual component has zero

energy in this setting, one can observe by listening that

the applause is more or less equally distributed between

the harmonic and the percussive component for medium

frame sizes. This is also reflected in Figure 3a/c by the

energy being split up roughly into equal portions. For

very large N , most of the signal’s energy moves towards

the harmonic component (value close to one in Figure 3a

for β=1, N=4096), while for very small N , the energy is

shifted towards the percussive component (value close to

one in Figure 3c for β=1, N=128). With increasing β,

one can observe how the energy gathered in the harmonic

and the percussive component flows towards the residual

component (decreasing values in Figure 3a/c and increas-

ing values in Figure 3b for increasing β). Listening to

the decomposition results shows that the harmonic and the

percussive component thereby become more and more ex-

treme in their respective characteristics. For medium frame

sizes, this allows us to find settings that lead to decompo-

sitions in which the harmonic component contains the vi-

olin, the percussive component contains the castanets, and

the residual contains the applause. This is reflected by Fig-

ure 3, where for N=1024 and β=2 the three sound compo-

nents all hold roughly one third of the overall energy. For

very large or very small frame sizes it is not possible to

get such a good decomposition. For example, considering

β=1 and N=4096, we already observed that the harmonic

component holds most of the signal’s energy and also con-

tains some of the percussive sounds. However, already for

small β > 1 these percussive sounds are shifted towards

the residual component (see the large amount of energy as-

signed to the residual in Figure 3b for β=1.5, N=4096).

Furthermore, also the energy from the percussive compo-

nent moves towards the residual. The large frame size

therefore results in a very clear harmonic component while

the residual holds both the percussive as well as all other

non-harmonic sounds, leaving the percussive component

virtually empty. For very small N the situation is exactly

the other way around. This observation can be exploited

to define a refined decomposition procedure which we dis-

cuss in the next section.

3.3 Iterative Procedure

In [13], Tachibana et al. described a method for the extrac-

tion of human singing voice from music recordings. In this

algorithm, the singing voice is estimated by iteratively ap-

plying the harmonic-percussive decomposition procedure

described in [9] first to the input signal and afterwards

again to one of the resulting components. This yields a de-

composition of the input signal into three components, one

of which containing the estimate of the singing voice. The

core idea of this algorithm is to perform the two harmonic-

percussive separations on spectrograms with two different

time-frequency resolutions. In particular, one of the spec-

trograms is based on a large frame size and the other on a

small frame size. Using this idea, we now extend our pro-

posed harmonic-percussive-residual separation procedure

Figure 4. Overview of the refined procedure. (a): Input

signal x. (b): First run of the decomposition procedure

using a large frame size Nh and a separation factor βh.

(c): Second run of the decomposition procedure using a

small frame size Np and a separation factor βp.

Figure 5. Energy distribution between the harmonic, resid-

ual, and percussive components for different separation

factors βh and βp. (a): Harmonic components. (b): Resid-

ual components. (c): Percussive components.

presented in Section 3.1. So far, although it is possible to

find a good combination of N and β such that both the

harmonic as well as the percussive component represent

the respective characteristics of the input signal well (see

Section 3.2), the computation of the two components is

still coupled. It is therefore not clear how to adjust the

content of the harmonic and the percussive component in-

dependently. Having made the observation that large N
lead to good harmonic but poor percussive/residual compo-

nents for β>1, while small N lead to good percussive com-

ponents but poor harmonic/residual components for β>1,

we build on the idea from Tachibana et al. [13] and com-

pute the decomposition in two iterations. Here, the goal is

to decouple the computation of the harmonic component

from the computation of the percussive component. First,

the harmonic component is extracted by applying our basic

procedure with a large frame size Nh and a separation fac-

tor βh>1, yielding xfirst
h , xfirst

r and xfirst
p . In a second run,
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Violin -3.10 -5.85 0.08 8.23 7.65 8.85 -3.10 -5.09 1.08 17.69 14.58 21.65 274.25 8.33 9.44 8.82 8.78 9.11

Castanets -2.93 3.58 2.86 8.29 9.14 9.28 -2.93 6.06 10.45 22.34 20.66 24.41 274.25 8.14 4.07 8.49 9.50 9.44

Applause -3.04 − -7.03 4.25 4.93 5.00 -3.04 − 14.69 8.41 12.80 9.04 274.25 − -6.85 6.95 5.93 7.69

Table 1. Objective evaluation measures. All values are given in dB.

the procedure is applied again to the sum xfirst
r +xfirst

p , this

time using a small frame size Np and a second separation

factor βp>1. This yields the components xsecond
h , xsecond

r

and xsecond
p . Finally, we define the output components of

the procedure to be

xh := xfirst
h , xr := xsecond

h + xsecond
r , xp := xsecond

p .

For an overview of the procedure see Figure 4. While fix-

ing the values of Nh and Np to a small and a large frame

size, respectively (in our experiments we chose Nh=4096
and Np=256), the separation factors βh and βp yield han-

dles that give simple and independent control over the har-

monic and percussive component. Figure 5, which is based

on the same audio example as Figure 3, shows the en-

ergy distribution among the three components for differ-

ent combinations of βh and βp, see also [1]. For the har-

monic components (Figure 5a) we see that the portion of

the signals energy contained in this component is indepen-

dent of βp and can be controlled purely by βh. This is

a natural consequence from the fact that in our proposed

procedure the harmonic component is always computed di-

rectly from the input signal x and βp does not influence its

computation at all. However, we can also observe that the

energy contained in the percussive component (Figure 5c)

is fairly independent of βh and can be controlled almost

solely by βp. Listening to the decomposition results con-

firms these observations. Our proposed iterative procedure

therefore allows to adjust the harmonic and the percussive

component almost independently what significantly sim-

plifies the process of finding an appropriate parameter set-

ting for a given input signal. Note that in principle it would

also be possible to choose βh=βp=1, resulting in an iter-

ative application of Fitzgerald’s method [5]. However, as

discussed in Section 3.2, Fitzgerald’s method suffers from

component leakage when using very large or small frame

sizes. Therefore, most of the input signal’s energy will be

assigned to the harmonic component in the first iteration

of the algorithm, while most of the remaining portion of

the signal is assigned to the percussive component in the

second iteration. This leads to a very weak, although not

empty, residual component.

4. EVALUATION

In a first experiment, we applied objective evaluation mea-

sures to our running example. Assuming that the violin,

the castanets, and the applause signal represent the charac-

teristics that we would like to capture in the harmonic, the

percussive, and the residual components, respectively, we

treated the decomposition task of this mixture as a source

separation problem. In an optimal decomposition the har-

monic component would contain the original violin sig-

nal, the percussive component the castanets signal, and the

residual component the applause. To evaluate the decom-

position quality, we computed the source to distortion ra-
tios (SDR), the source to interference ratios (SIR), and the

source to artifacts ratios (SAR) [15] for the decomposition

results of the following procedures.

As a baseline (BL), we simply considered the origi-

nal mixture as an estimate for all three sources. Further-

more, we applied the standard harmonic-percussive sep-

aration procedure by Fitzgerald [5] (HP) with the frame

size set to N=1024, the HP method applied iteratively

(HP-I) with Nh=4096 and Np=256, the proposed basic

harmonic-percussive-residual separation procedure (HPR)

as described in Section 3.1 with N=1024 and β=2, and

the proposed iterative harmonic-percussive-residual sepa-

ration procedure (HPR-I) as described in Section 3.3 with

Nh=4096, Np=256, and βh=βp=2. As a final method,

we also considered HPR-I with separation factor βh=3
and βp=2.5, which were optimized manually for the task at

hand (HPR-IO). The filter lengths in all procedures were

always fixed to be equivalent to 200 milliseconds in time

direction and 500 Hertz in frequency direction. Decompo-

sition results for all procedures can be found at [1].

The results are listed in Table 1. All values are given in

dB and higher values indicate better results. As expected,

BL yields rather low SDR and SIR values for all compo-

nents, while the SAR values are excellent since there are

no artifacts present in the original mixture. The method

HP yields low evaluation measures as well. However,

these values are to be taken with care since HP decom-

poses the input mixture in just a harmonic and a percus-

sive component. The applause is therefore not estimated

explicitly and, as also discussed in Section 2, randomly

distributed among the harmonic and percussive compo-

nent. It is therefore clear that especially the SIR values

are low in comparison to the other procedures since the

applause heavily interferes with the remaining two sources

in the computed components. When looking at HP-I, the

benefit of having a third component becomes clear. Al-

though here the residual component does not capture the

applause very well (SDR of −7.03 dB) this already suf-
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Item name Description

CastanetsViolinApplause Synthetic mixture of a violin, castanets and applause.

Heavy Recording of heavily distorted guitars, a bass and
drums.

Stepdad Excerpt from My Leather, My Fur, My Nails by the
band Stepdad.

Bongo Regular beat played on bongos.

Glockenspiel Monophonic melody played on a glockenspiel.

Winterreise Excerpt from “Gute Nacht” by Franz Schubert which is
part of the Winterreise song cycle. It is a duet of a male
singer and piano.

Table 2. List of audio excerpts.

fices to yield SDR and SIR values clearly above the base-

line for the estimates of the violin and the castanets. The

separation quality further improves when considering the

results of our proposed method HPR. Here the evaluation

yields high values for all measures and components. The

very high SIR values are particularly noticeable since they

indicate that the three sources are separated very clearly

with very little leakage between the components. This

confirms our claim that our proposed concept of a sepa-

ration factor allows for tightening decomposition results

as described in Section 2. The results of HPR-I are very

similar to the results for the basic procedure HPR. How-

ever, listening to the decomposition reveals that the har-

monic and the percussive component still contain some

slight residue sounds of the applause. Slightly increas-

ing the separation factors to βh=3 and βp=2.5 (HPR-IO)

eliminates these residues and further increases the evalua-

tion measures. This straight-forward adjustment is possi-

ble since the two separation factors βh and βp constitute

independent handles to adjust the content of the harmonic

and percussive component, what demonstrates the flexibil-

ity of our proposed procedure.

The above described experiment constitutes a first case

study for the objective evaluation of our proposed decom-

position procedures, based on an artificially mixed exam-

ple. To also evaluate these procedures on real-world audio

data, we additionally performed an informal subjective lis-

tening tests with several test participants. To this end, we

applied our procedures to the set of audio excerpts listed

in Table 2. Among the excerpts are complex sound mix-

tures as well as purely percussive and harmonic signals,

see also [1]. Raising the question whether the computed

harmonic and percussive components meet the expectation

of representing the clearly harmonic or percussive portions

of the audio excerpts, respectively, the performed listen-

ing test confirmed our hypothesis. It furthermore turned

out that βh=βp=2, Nh=4096 and Np=256 seems to be

a setting for our iterative procedure which robustly yields

good decomposition results, rather independent of the in-

put signal. Regarding the residual component, it was often

described to sound like a sound texture by the test partic-

ipants, which is a very interesting observation. Although

there is no clear definition of what a sound texture exactly

is, literature states “sound texture is like wallpaper: it can

have local structure and randomness, but the characteris-

tics of the fine structure must remain constant on the large

scale” [12]. In our opinion this is not a bad description of

what one can hear in residual components.
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ABSTRACT 

An auditory-perception inspired singing voice separation 
algorithm for monaural music recordings is proposed in 
this paper. Under the framework of computational audito-
ry scene analysis (CASA), the music recordings are first 
transformed into auditory spectrograms. After extracting 
the spectral-temporal modulation contents of the time-
frequency (T-F) units through a two-stage auditory model, 
we define modulation features pertaining to three catego-
ries in music audio signals: vocal, harmonic, and percus-
sive. The T-F units are then clustered into three categories 
and the singing voice is synthesized from T-F units in the 
vocal category via time-frequency masking. The algo-
rithm was tested using the MIR-1K dataset and demon-
strated comparable results to other unsupervised masking 
approaches. Meanwhile, the set of novel features gives a 
possible explanation on how the auditory cortex analyzes 
and identifies singing voice in music audio mixtures. 

1. INTRODUCTION 

Over the past decade, the task of singing voice separation 
has gained much attention due to improvements in digital 
audio technologies. In the research field of music infor-
mation retrieval (MIR), separated vocal signals or ac-
companying music signals can be of great use in many 
applications, such as singer identification, pitch extrac-
tion, and music genre classification. During the past few 
years, many algorithms have been proposed for this chal-
lenging task. These algorithms can be categorized into 
unsupervised and supervised approaches. 

The unsupervised approaches do not contain any 
training mechanism in the algorithms. For instance, 
Durrieu et al. used a source/filter signal model with non-
negative matrix factorization (NMF) to perform source 
separation [5] and Fitzgerald et al. used median filtering 
and factorization techniques to separate harmonic and 
percussive components in audio signals [7]. Some other 
unsupervised methods considered structural characteris-
tics of vocals and music accompaniments in several do-
mains for separation. For example, Pardo and Rafii pro-
posed REPET which views the accompaniments as re-
peating background signals and vocals as the varying in-
formation lying on top of them [16]. Tachibana et al. pro-

posed the separation technique, HPSS, to remove the 
harmonic and percussive instruments sequentially in a 
two-stage framework by considering the nature of fluctu-
ations of audio signals [19]. Huang et al. used RPCA to 
present accompaniments in low-rank subspace and vocal 
in sparse representation [8]. In addition, some unsuper-
vised CASA-based systems were proposed for singing 
voice separation by finding singing dominant regions on 
the spectrograms using pitch and harmonic information. 
For instance, Li and Wang proposed a CASA system ob-
taining binary masks using pitch-based inference [13]. 
Hsu and Jang extended the work and proposed a system 
for separating both voiced and unvoiced singing segments 
from the music mixtures [9]. Although training mecha-
nisms were seen in these two systems, they were only for 
detecting voiced and unvoiced segments, but not for sepa-
ration. 

In contrast, there were approaches based on super-
vised learning techniques. For example, Vembu et al. 
used vocal/non-vocal SVM and neural-network (NN) 
classifiers for vocal-nonvocal segmentation [20]. Ozerov 
et al. used a vocal/non-vocal classifier based on Bayesian 
modeling [15]. Another group of methods combined 
RPCA with training mechanisms. For instance, Yang’s 
low-rank representation method decomposed vocals and 
accompaniments using pre-trained low-rank matrices [22] 
and Sprechmann et al. proposed a real-time method using 
low-rank modeling with neural networks [17]. Although 
these supervised learning methods demonstrated very 
high performance, they usually offer a weaker conception 
of generality.  

Music instruments produce signals with various kinds 
of fluctuations such that they can be briefly categorized 
into two groups, percussive and harmonic. Signals pro-
duced by percussive instruments are more consistent 
along the spectral axis and by harmonic instruments are 
more consistent along the temporal axis with little or no 
fluctuations. These two categories occupy a large propor-
tion of a spectrogram with mainly vertical and horizontal 
lines. To extend this sense into a more general form, the 
fluctuations can be viewed as a sum of sinusoid modula-
tions along the spectral axis and the temporal axis. If a 
signal has nearly zero modulation along one of the two 
axes, its energy is smoothly distributed along that axis. 
Conversely, if a signal has a high frequency of modula-
tion along one axis, then its energy becomes scattered 
along that axis. Therefore, if one can decipher the modu-
lation status of a signal, one may be able to identify the 
instrument type of the signal. An algorithm utilizing mo- 
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Figure 1. Stages of the cochlear module, adopted from 
[2]. 

dulation information can be seen in [1], where Barker et
al. combined the modulation spectrogram (MS) with non-
negative tensor factorization (NTF) to perform speech 
separation from mixtures of speech and music. 

Although the above mentioned engineering approach-
es produce promising results, human’s tremendous ability 
in sound streams separation makes a biomimetic ap-
proach interesting to investigate. Based on neuro-
physiological evidences, it is suggested that neurons of 
the auditory cortex (A1) respond to both spectral modula-
tions and temporal modulations of the input sounds. Ac-
cordingly, a computational auditory model was proposed 
to model A1 neurons as spectro-temporal modulation fil-
ters [2]. This concept of spectro-temporal modulation de-
composition has inspired many approaches in various en-
gineering topics, such as using spectro-temporal modula-
tion features for speaker recognition [12], robust speech 
recognition [18], voice activity detection [10], and sound 
segregation [6].  

Since modulations are important for music signal cat-
egorization, this modulation-decomposition auditory 
model is used as a pre-processing stage for singing voice 
separation in this paper. Our proposed unsupervised algo-
rithm adapts this two-stage auditory model, which de-
codes the spectro-temporal modulations of a T-F unit, to 
extract modulation based features and performs singing 
voice separation under the CASA framework. This paper 
is organized as follows. A brief review of the auditory 
model is presented in Section 2. Section 3 describes the 
proposed method. Section 4 shows evaluation and results. 
Lastly, Section 5 draws the conclusion. 

2. SPECTRO-TEMPORAL AUDITORY MODEL 

A neuro-physiological auditory model is used to extract 
the modulation features. The model consists of an early 
cochlear (ear) module and a central auditory cortex (A1) 
module. 

2.1 Cochlear Module 

As shown in Figure 1, the input sound goes through 128 
overlapping asymmetric constant-Q band-pass filters 
(]^_` a b ) whose center frequencies are uniformly dist- 

ributed over 5.3 octaves with the 24 filters/octave fre-
quency resolution. These constant-Q filters mimic the 
frequency selectivity of the cochlea. Outputs of these fil-
ters are then transformed through a non-linear compres-
sion stage, a lateral inhibitory network (LIN), and a half-
wave rectifier cascaded with a low-pass filter. The non-
linear compression stage models the saturation caused by 
inner hair cells, the LIN models the spectral masking ef-
fect, and the following stage serves as an envelope ex-
tractor to model the temporal dynamic reduction along 
the auditory pathway to the midbrain. Outputs of the 
module from different stages are formulated below: 

�������������������c���d f� g ��$� hj k�$l m�                      (1) 

�������������������c7��d f� g �@noc���d f�A ho q���             (2) 
                                                                      ��������������������������c^��d f� g 
rs��ntc7��d f�d u���            (3) 

��������������������������cv��d f� g c^��d f� ho w��l y���                 (4) 

where  z��� is the input signal; �k�$l m� is the impulse re-
sponse of the cochlear filter with center frequency  m�; �hj
denotes convolution in time; ����� is the nonlinear com-
pression function; �no is the partial derivative of  � ; q���
is the membrane leakage low-pass filter; w��l y� g � Po~� ����� is the integration window with the time constant  y
to model current leakage of the midbrain; ���� is the step 
function. Detailed descriptions of the cochlear module 
can be found in [2].  

The output cv��d f�  of the module is the auditory 
spectrogram, which represents the neuron activities along 
time and log-frequency axis. In this work, we bypass the                      
non-linear compression stage by assuming input sounds 
are properly normalized without triggering the high-
volume saturation effect of the inner hair cells. 

2.2 Cortical Module 

The second module simulates the neural responses of the 
auditory cortex (A1). The auditory spectrogram �cv��d f�
is analyzed by cortical neurons which are modeled by 
two-dimensional filters tuned to different spectro-
temporal modulations. The rate parameter (in Hz) char-
acterizes the velocity of local spectro-temporal envelope  
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Figure 2. Rate-scale outputs of the cortical module to 
two T-F units of the auditory spectrogram of the 
'Ani_2_03.wav' vocal track in MIR-1K [9]. 

variation along the temporal axis. The scale parameter 
(in cycle/octave) characterizes the density of the local 
spectro-temporal envelope variation along the log-
frequency axis. Furthermore, the cortical neurons are 
found sensitive to the direction of the spectro-temporal 
envelope. It is characterized by the sign of the rate para- 
meter in this model, with negative for the upward direc-
tion and positive for the downward direction.   

From functional point of view, this module performs 
a spectro-temporal multi-resolution analysis on the input 
auditory spectrogram in various rate-scale combinations. 
Outputs of various cortical neurons to a single T-F unit of 
the spectrogram demonstrate the local spectro-temporal 
modulation contents of the unit in terms of the rate, scale 
and directionality parameters. 

Figure 2 shows rate-scale outputs of two T-F units in 
an auditory spectrogram of a vocal clip. The rate-scale 
output is referred to as the rate-scale plot in this paper. 
The rate and scale indices are ��P7�����and��G����, re-
spectively. The strong responses of the plots correspond to 
the variations of singing pitch envelopes resolved by the 
rate and scale parameters and the moving direction of the 
pitch. Detailed description of the cortical module is avail-
able in [3]. 

3. PROPOSED METHOD 

A schematic diagram of the proposed algorithm is shown 
in Figure 3. The following sections will discuss each part 
in details. 

3.1 Feature Extraction 

According to the spectral and temporal behaviors ob-
served on the auditory spectrogram, components of a 
musical piece are characterized into three categories,  

Figure 3. Block diagram of the proposed algorithm. 

harmonic, percussive and vocal. Harmonic components 
have steady energy distributions over time and have clear 
formant structures over frequency. Each percussive com-
ponent has impulsive energy concentrated in a short pe-
riod of time and has no obvious harmonic structure. Vo-
cal components possess harmonic structure and their en-
ergy is distributed along various time periods. Interpret-
ing the above statements from the rate-scale perspective, 
several general properties can be drawn. Harmonic com-
ponents can be usually regarded as having low rate and 
high scale modulations. It means that they have relative-
ly slow energy change along time and rapid energy 
change along the log-frequency axis due to the harmonic 
structures. In contrast, percussive components typically 
show quick energy change along time and energy spread-
ing along the whole log-frequency axis, such that they 
possess high rate and low scale modulations. Vocal 
components are often recognized as a mix version of the 
harmonic and percussive components with characteris-
tics sometimes considered more similar to harmonics. 
Different types of singing or vocal expression can result 
in various values of rate and scale. Figure 4 shows some 
examples of rate-scale plots of components from the 
three categories. 

Given an auditory spectrogram cb * ���� trans-
formed from an input music signal �z��� , the rate-scale 
plots of the T-F units are generated. As a pre-process, in 
order to prevent extracting trivial data from nearly inau-
dible T-F units of the auditory spectrogram, we leave out 
the T-F units that have energy less than 1% of the maxi-
mum energy of the whole auditory spectrogram. With the 
rest of the T-F units, we obtain the rate-scale plot of each 
unit and proceed to the feature extraction stage.  

For each rate-scale plot, the total energies of the nega-
tive and positive rate side are compared. The side with 
greater energy is determined as the dominant plot. From 
the dominant plot, we extract 11 features as shown in Ta-
ble 1. The features are selected by observing the rate-
scale plots with some intuitive assumptions of the physic-
al properties which distinguish between harmonic, per-
cussive and vocal. The first 10 features are obtained by 
computing the energy ratio of two different areas on the 
rate-scale plot. For example, as shown in Table 1, the first 
feature is the ratio of the total modulation energy of scale 
= 1 to the total modulation energy of scale = 0.25. The 
low scales, such as 0.25 and 0.5, capture the degree of the  
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Figure 4. (a) Rate-scale plot from the vocal track of 
‘Ani_4_07’ in MIR-1K. The modulation energy is mostly 
concentrated in the middle and high scales for a unit with 
a clear harmonic structure. (b) Rate-scale plots from the 
accompanying music track of ‘Ani_4_07’. The upper plot 
shows energy concentrating at low rates for a sustained 
unit. The lower plot shows energy concentrating at high 
rates for a transient unit.  

flatness of the formant structure while the high scales, 
such as 1, 2, 4 and 8, capture the harmonicity with differ-
ent frequency spacing between harmonics. Therefore, the 
first four features can be thought as descriptors which dis-
tinguish harmonic from percussive using spectral infor-
mation. The fifth to the seventh features capture temporal 
information which can distinguish sustained units from 
transient units. 

The feature values are saved as feature vectors and 
then grouped as a feature matrix �� * � ������for clustering, 
where � is the number of features and ��is the number of 
total valid units in the auditory spectrogram.

3.2 Unsupervised Clustering 

In the unsupervised clustering stage, a spectrogram is di-
vided into three parts and clustering is performed for each 
part. Based on hearing perception, the frequency resolu-
tion is higher at lower frequencies while the temporal 
resolution is higher at higher frequencies [14]. Due to the 
frequency resolution of the constant-Q cochlear fil-
ters/channels in the auditory model, the auditory spectro-
gram can only resolve about ten harmonics [11]. To han-
dle different resolutions, the spectrogram is separated into 
three sub-spectrograms with overlapped frequency ranges. 
The three sub-spectrograms consist of channel 1 to chan-
nel 60, channel 46 to channel 75, and channel 61 to chan-
nel 128, respectively, with overlaps of 15 channels. 

Table 1. Eleven extracted modulation energy features 

The clustering step is performed using the EM algo-
rithm to group data into three unlabelled clusters. The 
EM algorithm assigns a probability set to each T-F unit 
showing its likelihood of belonging to each cluster. Note 
that in spectrogram representations, the sound sources are 
superimposed on top of each other. It implies that one T-
F unit may contain energy from more than one source. 
Therefore, in this work, if one T-F unit has a probability 
set in which the second highest probability is higher than 
5%, that particular T-F unit will also be labelled to the 
second high probability cluster. It means one unit may 
eventually appear in more than one cluster. The parame-
ter 5% was empirically determined. Each of the three 
sub-spectrograms is clustered into three groups. Total of 
nine groups are generated and merged back into three 
whole spectrograms by comparing the correlations of the 
overlapped channels between different groups. Each of 
the three whole spectrograms represents the extracted 
harmonic, percussive, and vocal part of the music mixture. 
With no prior information about the labels of the three 
whole spectrograms, the effective mean rate-scale plot of 
each spectrogram is examined. The effective mean rate-
scale plot is the mean of rate-scale plots of the T-F units 
with energy higher than 20% of the maximum energy in 
that spectrogram. The total modulation energy of rate = 1, 
2 Hz and scale = 0.25, 2, 4 cycle/octave is calculated 
from the effective mean rate-scale plot and referred to as 
Ev, which is used as the criterion to select the vocal spec-
trogram. The one with the maximum Ev value is picked 
as the vocal spectrogram since Ev catches modulations 
related to the formant structure (scale = 0.25), the har-
monic structure (scale = 2 and 4) and the singing rate 
(rate = 1 and 2) of singing voices. 

The vocal spectrogram is then synthesized to an esti-
mated signal using the auditory model toolbox [24]. The 
nonlinear operation of the envelope extractor in the coch-
lear module makes perfect synthesis impossible, thus 
causing a general result of loss of higher frequencies of 
the signal. Detailed computations are shown in [2]. 

4. EVALUATION RESULTS 

The MIR-1K [9] is used as the evaluation dataset. It cont- 

Scale Rate 
1 : 0.25 all 
2 : 0.25 all 
4 : 0.25 all 
8 : 0.25 all 
(0.25, 2, 4) (1, 2) : (0.25, 0.5, 1, 2, 16, 32) 
(0.25, 2, 4) (0.25, 0.5) : (0.25, 0.5, 1, 2, 16, 32) 
(0.25, 2, 4) (16, 32) : (0.25, 0.5, 1, 2, 16, 32) 
(0.25, 0.5) : all all 
(1, 2) : all all 
(4, 8) : all all 
(0.25) all 
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Figure 5. GNSDR comparison at voice-to-music ratio of 
-5, 0, and 5 dB with existing methods.  

ains 1000 WAV files of karaoke clips sung by amateur 
singers. The length of each clip is around 4~13 seconds. 
The vocal and music accompaniment parts were recorded 
in the right and the left channels separately. In this exper-
iment, we mixed two channels in -5, 0, 5 dB SNR (signal 
to noise ratio, i.e., vocal to music accompaniment ratio) 
for test. To assess the quality of separation, the source-to- 
distortion ratio (SDR) [21] is used as the objective meas-
ure. The ratios are computed by the BSS Eval toolbox 
v3.0 [23]. Following [9], we compute the normalized 
SDR (NSDR) and the weighted average of NSDR, the 
global NSDR (GNSDR), with the weighting proportional 
to the length of each file. To have a fair comparison, we 
compare our method with other unsupervised methods, 
which extract vocal clips only through one major stage. 
The compared algorithms are listed below: 

I. Hsu: the approach proposed in [9] that performs 
unvoiced sound separation combined with the 
pitch-based inference method in [13]. 

II. R (REPET with soft masking): the approach pro-
posed in [16] that computes a repeating background 
structure and extract vocal with soft time-frequency 
masking. 

III. RPCA: a matrix decomposition method applying 
robust principal component analysis proposed by 
Huang et al. [8]. 

From Figure 5, we can observe that the proposed 
method has the highest performance tied with RPCA in 
the -5 dB SNR condition. In 0 and 5 dB SNR conditions, 
the performance of the proposed method is comparable to 
the performance of REPET.  

5. CONCLUSION 

In this paper, we propose a singing voice separation 
method utilizing the spectral-temporal modulations as 
clustering features. Based on the energy distributions on 
the rate-scale plots of T-F units, the vocal signal is ex-
tracted from the auditory spectrogram and the separation 
performance is evaluated using the MIR-1K dataset. Our 
proposed CASA-based masking method outperforms the 
CASA-based system in [9] and has comparable perfor-

mance to the masking-based REPET in all SNR condi-
tions. When compared with the subspace RPCA method, 
our proposed method has comparable performance only 
in the -5 dB SNR condition. These results demonstrate 
the effectiveness of the spectral-temporal modulation fea-
tures for analyzing music mixtures. As this proposed 
method only applies a simple EM algorithm for clustering, 
harmonic mismatches and artificial noises are yet to be 
discussed. 

The future work will be focused on applying more 
advanced classifiers for more accurate separations and 
adopting a two-stage mechanism like HPSS to discard 
percussive and harmonic components sequentially. The 
other potential work is to implement the proposed 
spectro-temporal modulation based method in the Fourier 
spectrogram domain [4] to mitigate synthesis errors in-
jected by the projection-based reconstruction process of 
the auditory model. 
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ABSTRACT
For monaural source separation two main approaches have
thus far been adopted. One approach involves applying
non-negative matrix factorization (NMF) to an observed
magnitude spectrogram, interpreted as a non-negative ma-
trix. The other approach is based on the concept of
computational auditory scene analysis (CASA). A CASA-
based approach called the “harmonic-temporal clustering
(HTC)” aims to cluster the time-frequency components
of an observed signal based on a constraint designed ac-
cording to the local time-frequency structure common in
many sound sources (such as harmonicity and the conti-
nuity of frequency and amplitude modulations). This pa-
per proposes a new approach for monaural source sepa-
ration called the “Harmonic-Temporal Factor Decompo-
sition (HTFD)” by introducing a spectrogram model that
combines the features of the models employed in the NMF
and HTC approaches. We further describe some ideas how
to design the prior distributions for the present model to
incorporate musically relevant information into the separa-
tion scheme.

1. INTRODUCTION
Monaural source separation is a process in which the sig-
nals of concurrent sources are estimated from a monaural
polyphonic signal and is one of fundamental objectives of-
fering a wide range of applications such as music informa-
tion retrieval, music transcription and audio editing.

While we can use spatial cues for blind source sepa-
ration with multichannel inputs, for monaural source sep-
aration we need other cues instead of the spatial cues.
For monaural source separation two main approaches have
thus far been adopted. One approach is based on the con-
cept of computational auditory scene analysis (e.g., [7]).
The auditory scene analysis process described by Breg-
man [1] involves grouping elements that are likely to have
originated from the same source into a perceptual struc-
ture called an auditory stream. In [8, 10], an attempt
has been made to imitate this process by clustering time-
frequency components based on a constraint designed ac-
cording to the auditory grouping cues (such as the har-
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monicity and the coherences and continuities of ampli-
tude and frequency modulations). This method is called
“harmonic-temporal clustering (HTC).”

The other approach involves applying non-negative ma-
trix factorization (NMF) to an observed magnitude spec-
trogram (time-frequency representation) interpreted as a
non-negative matrix [19]. The idea behind this approach
is that the spectrum at each frame is assumed to be repre-
sented as a weighted sum of a limited number of common
spectral templates. Since the spectral templates and the
mixing weights should both be non-negative, this implies
that an observed spectrogram is modeled as the product of
two non-negative matrices. Thus, factorizing an observed
spectrogram into the product of two non-negative matri-
ces allows us to estimate the unknown spectral templates
constituting the observed spectra and decompose the ob-
served spectra into components associated with the esti-
mated spectral templates.

The two approaches described above rely on different
clues for making separation possible. Roughly speaking,
the former approach focuses on the local time-frequency
structure of each source, while the latter approach fo-
cuses on a relatively global structure of music spectro-
grams (such a property that a music signal typically con-
sists of a limited number of recurring note events). Rather
than discussing which clues are more useful, we believe
that both of these clues can be useful for achieving a reli-
able monaural source separation algorithm. This belief has
led us to develop a new model and method for monaural
source separation that combine the features of both HTC
and NMF. We call the present method “harmonic-temporal
factor decomposition (HTFD).”

The present model is formulated as a probabilistic gen-
erative model in such a way that musically relevant infor-
mation can be flexibly incorporated into the prior distribu-
tions of the model parameters. Given the recent progress
of state-of-the-art methods for a variety of music informa-
tion retrieval (MIR)-related tasks such as audio key detec-
tion, audio chord detection, and audio beat tracking, in-
formation such as key, chord and beat extracted from the
given signal can potentially be utilized as reliable and use-
ful prior information for source separation. The inclusion
of auxiliary information in the separation scheme is re-
ferred to as informed source separation and is gaining in-
creasing momentum in recent years (see e.g., among oth-
ers, [5,15,18,20]). This paper further describes some ideas
how to design the prior distributions for the present model
to incorporate musically relevant information.

We henceforth denote the normal, Dirichlet and Poisson
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distributions by N , Dir and Pois, respectively.

2. SPECTROGRAM MODEL OF MUSIC SIGNAL
2.1 Wavelet transform of source signal model
As in [8], this section derives the continuous wavelet trans-
form of a source signal. Let us first consider as a signal
model for the sound of the kth pitch the analytic signal
representation of a pseudo-periodic signal given by

fk(u) =

N∑
n=1

ak,n(u)ej(nθk(u)+ϕk,n), (1)

where u denotes the time, nθk(u) + ϕk,n the instantaneous
phase of the n-th harmonic and ak,n(u) the instantaneous
amplitude. This signal model implicitly ensures not to vi-
olate the ‘harmonicity’ and ‘coherent frequency modula-
tion’ constraints of the auditory grouping cues. Now, let
the wavelet basis function be defined by

ψα,t(u) =
1√
2πα
ψ

(u − t
α

)
, (2)

where α is the scale parameter such that α > 0, t the shift
parameter and ψ(u) the mother wavelet with the center fre-
quency of 1 satisfying the admissibility condition. ψα,t(u)
can thus be used to measure the component of period α at
time t. The continuous wavelet transform of fk(u) is then
defined by

Wk(log 1
α
, t) =

∫ ∞

−∞

N∑
n=1

ak,n(u)ej(nθk(u)+ϕk,n)ψ∗α,t(u)du. (3)

Since the dominant part of ψ∗α,t(u) is typically localized
around time t, the result of the integral in Eq. (3) shall
depend only on the values of θk(u) and ak,n(u) near t. By
taking this into account, we replace θk(t) and ak,n(t) with
zero- and first-order approximations around time t:

ak,n(u)  ak,n(t), θk(u)  θk(t) + θ̇k(t)(u − t). (4)

Note that the variable θ̇k(u) corresponds to the instanta-
neous fundamental frequency (F0). By undertaking the
above approximations, applying the Parseval’s theorem,
and putting x = log(1/α) and Ωk(t) = log θ̇k(t), we can
further write Eq. (3) as

Wk(x, t) =
N∑

n=1

ak,n(t)Ψ∗(ne−x+Ωk(t))e j(nθk(t)+ϕk,n), (5)

where x denotes log-frequency andΨ the Fourier transform
of ψ. Since the function Ψ can be chosen arbitrarily, as
with [8], we employ the following unimodal real function
whose maximum is taken at ω = 1:

Ψ(ω) =

⎧⎪⎪⎨⎪⎪⎩e−
(logω)2

4σ2 (ω > 0)

0 (ω ≤ 0)
. (6)

Eq. (5) can then be written as

Wk(x, t) =
N∑

n=1

ak,n(t)e−
(x−Ωk (t)−log n)2

4σ2 e j(nθk(t)+ϕk,n). (7)

If we now assume that the time-frequency components are
sparsely distributed so that the partials rarely overlap each
other, |Wk(x, t)|2 is given approximately as

|Wk(x, t)|2 
N∑

n=1

|ak,n(t)|2e−
(x−Ωk (t)−log n)2

2σ2 . (8)

This assumption means that the power spectra of the par-
tials can approximately be considered additive. Note that
a cutting plane of the spectrogram model given by Eq. (8)

at time t is expressed as a harmonically-spaced Gaussian
mixture function. If we assume the additivity of power
spectra, the power spectrogram of a superposition of K
pitched sounds is given by the sum of Eq. (8) over k. It
should be noted that this model is identical to the one em-
ployed in the HTC approach [8].

Although we have defined the spectrogram model above
in continuous time and continuous log-frequency, we ac-
tually obtain observed spectrograms as a discrete time-
frequency representation through computer implementa-
tions. Thus, we henceforth use Yl,m := Y(xl, tm) to de-
note an observed spectrogram where xl (l = 1, . . . , L) and
tm (m = 1, . . . ,M) stand for the uniformly-quantized log-
frequency points and time points, respectively. We will
also use the notation Ωk,m and ak,n,m to indicate Ωk(tm) and
ak,n(tm).

2.2 Incorporating source-filter model
The generating processes of many sound sources in real
world can be explained fairly well by the source-filter the-
ory. In this section, we follow the idea described in [12] to
incorporate the source-filter model into the above model.
Let us assume that each signal fk(u) within a short-time
segment is an output of an all-pole system. That is, if
we use fk,m[i] to denote the discrete-time representation
of fk(u) within a short-time segment centered at time tm,
fk,m[i] can be described as

βk,m[0] fk,m[i] =
P∑

p=1

βk,m[p] fk,m[i − p] + εk,m[i], (9)

where i, εk,m[i], and βk,m[p] (p = 0, . . . , P) denote the
discrete-time index, an excitation signal, and the autore-
gressive (AR) coefficients, respectively. As we have al-
ready assumed in 2.1 that the F0 of fk,m[i] is eΩk,m , to make
the assumption consistent, the F0 of the excitation signal
εk,m[i] must also be eΩk,m . We thus define εk,m[i] as

εk,m[i] =
N∑

n=1

vk,n,me jneΩk,m iu0 , (10)

where u0 denotes the sampling period of the discrete-time
representation and vk,n,m denotes the complex amplitude of
the nth partial. By applying the discrete-time Fourier trans-
form (DTFT) to Eq. (9) and putting Bk,m(z) := βk,m[0] −
βk,m[1]z−1 · · · − βk,m[P]z−P, we obtain

Fk,m(ω) =

√
2π

Bk,m(e jω)

N∑
n=1

vk,n,mδ(ω − neΩk,m u0), (11)

where Fk,m denotes the DTFT of fk,m, ω the normalized an-
gular frequency, and δ the Dirac delta function. The inverse
DTFT of Eq. (11) gives us another expression of fk,m[i]:

fk,m[i] =
N∑

n=1

vk,n,m

Bk,m(e jneΩk,m u0 )
e jneΩk,m iu0 . (12)

By comparing Eq. (12) and the discrete-time representa-
tion of Eq. (1), we can associate the parameters of the
source filter model defined above with the parameters in-
troduced in 2.1 through the explicit relationship:

|ak,n,m| =
∣∣∣∣∣∣ vk,n,m

Bk,m(e jneΩk,m u0 )

∣∣∣∣∣∣ . (13)

2.3 Constraining model parameters
The key assumption behind the NMF model is that the
spectra of the sound of a particular pitch is expressed as

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

624



a multiplication of time-independent and time-dependent
factors. In order to extend the NMF model to a more rea-
sonable one, we consider it important to clarify which fac-
tors involved in the spectra should be assumed to be time-
dependent and which factors should not. For example, the
F0 must be assumed to vary in time during vibrato or porta-
mento. Of course, the scale of the spectrum should also be
assumed to be time-varying (as with the NMF model). On
the other hand, the timbre of an instrument can be consid-
ered relatively static throughout an entire piece of music.

We can reflect these assumptions in the present model in
the following way. For convenience of the following anal-
ysis, we factorize |ak,n,m| into the product of two variables,
wk,n,m and Uk,m

|ak,n,m| = wk,n,m
√

Uk,m. (14)

wk,n,m can be interpreted as the relative power of the nth
harmonic and Uk,m as the time-varying normalized ampli-
tude of the sound of the kth pitch such that

∑
k,m Uk,m = 1.

In the same way, let us put vk,n,m as

vk,n,m = w̃k,n,m
√

Uk,m. (15)

Since the all-pole spectrum 1/|Bk,m(e jω)|2 is related to the
timbre of the sound of the kth pitch, we want to constrain
it to be time-invariant. This can be done simply by elimi-
nating the subscript m. Eq. (13) can thus be rewritten as

wk,n,m =

∣∣∣∣∣∣ w̃k,n,m

Bk(e jneΩk,m u0 )

∣∣∣∣∣∣ . (16)

We can use Ωk,m as is, since it is already dependent on m.

To sum up, we obtain a spectrogram model Xl,m as

Xl,m =

K∑
k=1

Ck,l,m, Ck,l,m =

⎛⎜⎜⎜⎜⎜⎝
N∑

n=1

w2
k,n,me−

(xl−Ωk,m−log n)2

2σ2

⎞⎟⎟⎟⎟⎟⎠
︸�������������������������︷︷�������������������������︸

Hk,l,m

Uk,m,

(17)
where Ck,l,m stands for the spectrogram of the kth pitch. If
we denote the term inside the parenthesis by Hk,l,m, Xl,m
can be rewritten as Xl,m =

∑
k Hk,l,mUk,m and so the relation

to the NMF model may become much clearer.

2.4 Formulating probabilistic model

Since the assumptions and approximations we made so far
do not always hold exactly in reality, an observed spectro-
gram Yl,m may diverge from Xl,m even though the param-
eters are optimally determined. One way to simplify the
process by which this kind of deviation occurs would be to
assume a probability distribution of Yl,m with the expected
value of Xl,m. Here, we assume that Yl,m follows a Poisson
distribution with mean Xl,m

Yl,m ∼ Pois(Yl,m; Xl,m), (18)

where Pois(z; ξ) = ξze−ξ/Γ(z). This defines our likelihood
function

p(Y|θ) =
∏
l,m

Pois(Yl,m; Xl,m), (19)

where Y denotes the set consisting of Yl,m and Θ the entire
set consisting of the unknown model parameters. It should
be noted that the maximization of the Poisson likelihood
with respect to Xl,m amounts to optimally fitting Xl,m to Yl,m
by using the I-divergence as the fitting criterion.

Eq. (16) implicitly defines the conditional distribution
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Figure 1. Power spectrogram of a violin vibrato sound.

p(w|w̃,β,Ω) expressed by the Dirac delta function

p(w|w̃,β,Ω) =
∏
k,n,m

δ

(
wk,n,m −

∣∣∣∣∣∣ w̃k,n,m

Bk(e jneΩk,mu0 )

∣∣∣∣∣∣
)
. (20)

The conditional distribution p(w|β,Ω) can thus be obtained
by defining the distribution p(w̃) and marginalizing over
w̃. If we now assume that the complex amplitude w̃k,n,m
follows a circular complex normal distribution

w̃k,n,m ∼ NC(w̃k,n,m; 0, ν2), n = 1, . . . ,N, (21)

whereNC(z; 0, ξ2)=e−|z|2/ξ2/(πξ2), we can show, as in [12],
that wk,n,m follows a Rayleigh distribution:

wk,n,m ∼ Rayleigh(wk,n,m; ν/|Bk(e jneΩk,m u0 )|), (22)

where Rayleigh(z; ξ) = (z/ξ2)e−z2/(2ξ2). This defines the
conditional distribution p(w|β,Ω).

The F0 of stringed and wind instruments often varies
continuously over time with musical expressions such as
vibrato. For example, the F0 of a violin sound varies pe-
riodically around the note frequency during vibrato, as de-
picted in Fig. 1. Let us denote the standard log-F0 cor-
responding to the kth note by μk. To appropriately de-
scribe the variability of an F0 contour in both the global
and local time scales, we design a prior distribution for
Ωk := (Ωk,1,Ωk,2, . . . ,Ωk,M)T by employing the product-
of-experts (PoE) [6] concept using two probability distri-
butions. First, we design a distribution qg(Ωk) describ-
ing how likely Ωk,1, . . . ,Ωk,L stay near μk. Second, we
design another distribution ql(Ωk) describing how likely
Ωk,1, . . . ,Ωk,L are locally continuous along time. Here we
define qg(Ωk) and ql(Ωk) as

qg(Ωk) = N(Ωk; μk1M , υ
2
k IM), (23)

ql(Ωk) = N(Ωk; 0M , τ
2
k D−1), (24)

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

. . .
. . .
. . .
...

0 · · · 0 −1 2 −1
0 · · · 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

where IM denotes an M × M identity matrix, D an M × M
band matrix, 1M an M-dimensional all-one vector, and 0M
an M-dimensional all-zero vector, respectively. υk denotes
the standard deviation from mean μk, and τk the standard
deviation of the F0 jumps between adjacent frames. The
prior distribution of Ωk is then derived as

p(Ωk) ∝ qg(Ωk)αg ql(Ωk)αl (26)

where αg and αl are the hyperparameters that weigh the
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contributions of qg(Ωk) and ql(Ωk) to the prior distribution.

2.5 Relation to other models
It should be noted that the present model is related to other
models proposed previously.

If we do not assume a parametric model for Hk,l,m and
treat each Hk,l,m itself as the parameter, the spectrogram
model Xl,m can be seen as an NMF model with time-
varying basis spectra, as in [14]. In addition to this as-
sumption, if we assume that Hk,l,m is time-invariant (i.e.,
Hk,l,m = Hk,l), Xl,m reduces to the regular NMF model [19].
Furthermore, if we assume each basis spectrum to have
a harmonic structure, Xl,m becomes equivalent to the har-
monic NMF model [16, 21].

If we assume thatΩk,m is equal over time m, Xl,m reduces
to a model similar to the ones described in [17, 22]. Fur-
thermore, if we describe Uk,m using a parametric function
of m, Xl,m becomes equivalent to the HTC model [8, 10].

With a similar motivation, Hennequin et al. developed
an extension to the NMF model defined in the short-time
Fourier transform domain to allow the F0 of each basis
spectrum to be time-varying [4].

3. INCORPORATION OF AUXILIARY
INFORMATION

3.1 Use of musically relevant information
We consider using side-information obtained with the
state-of-the-art methods for MIR-related tasks including
key detection, chord detection and beat tracking to assist
source separation.

When multiple types of side-information are obtained
for a specific parameter, we can combine the use of the
mixture-of-experts and PoE [6] concepts according to the
“AND” and “OR” conditions we design. For example,
pitch occurrences typically depend on both the chord and
key of a piece of music. Thus, when the chord and key in-
formation are obtained, we may use the product-of-experts
concept to define a prior distribution for the parameters
governing the likeliness of the occurrences of the pitches.
In the next subsection, we describe specifically how to de-
sign the prior distributions.

3.2 Designing prior distributions
The likeliness of the pitch occurrences in popular and clas-
sical western music usually depend on the key or the chord
used in that piece. The likeliness of the pitch occurrences
can be described as a probability distribution over the rel-
ative energies of the sounds of the individual pitches.

Since the number of times each note is activated is usu-
ally limited, inducing sparsity to the temporal activation of
each note event would facilitate the source separation. The
likeliness of the number of times each note is activated can
be described as well as a probability distribution over the
temporal activations of the sound of each pitch.

To allow for designing such prior distributions, we de-
compose Uk,m as the product of two variables: the pitch-
wise relative energy Rk =

∑
m Uk,m (i.e.

∑
k Rk = 1), and

the pitch-wise normalized amplitude Ak,m = Uk,m/Rk (i.e.∑
m Ak,m = 1). Hence, we can write

Uk,m = RkAk,m. (27)

This decomposition allows us to incorporate different
kinds of prior information into our model by separately
defining prior distributions over R = (R1, . . . ,RK)T and

Ak = (Ak,1, . . . , Ak,M)T. Here we introduce Dirichlet dis-
tributions:

Ak ∼ Dir(Ak;γ(A)
k ), R ∼ Dir(R;γ(R)), (28)

where Dir(z; ξ) ∝ ∏
i zi
ξi , γ(A)

k := (γ(A)
k,1 , . . . , γ

(A)
k,M)T, and

γ(R) := (γ(R)
1
, . . . , γ(R)

K )T. For p(R), we set γ(R)
k at a reason-

ably high value if the kth pitch is contained in the scale and

vice versa. For p(Ak), we set γ(A)
k,m < 1 so that the Dirichlet

distribution becomes a sparsity inducing distribution.

4. PARAMETER ESTIMATION ALGORITHM

Given an observed power spectrogram Y := {Yl,m}l,m,
we would like to find the estimates of Θ :=
{Ω,w,β,V, R, A} that maximizes the posterior density
p(Θ|Y) ∝ p(Y|Θ)p(Θ). We therefore consider the prob-
lem of maximizing

L(Θ) := ln p(Y|Θ) + ln p(Θ), (29)

with respect to Θ where

ln p(Y|Θ)=
c

∑
l,m

(
Yl,m ln Xl,m − Xl,m

)
(30)

ln p(Θ) = ln p(w|β,Ω) +
∑

k

ln p(Ωk)

+ ln p(R) +
∑

k

ln p(Ak). (31)

=c denotes equality up to constant terms. Since the first
term of Eq. (30) involves summation over k and n, an-
alytically solving the current maximization problem is in-
tractable. However, we can develop a computationally effi-
cient algorithm for finding a locally optimal solution based
on the auxiliary function concept, by using a similar idea
described in [8, 12].

When applying an auxiliary function approach to a cer-
tain maximization problem, the first step is to define a
lower bound function for the objective function. As men-
tioned earlier, the difficulty with the current maximization
problem lies in the first term in Eq. (30) . By using the fact
that the logarithm function is a concave function, we can
invoke the Jensen’s inequality

Yl,m ln Xl,m ≥ Yl,m

∑
k,n

λk,n,l,m ln
w2

k,n,me−
(xl−Ωk,m−log n)2

2σ2 Uk,m

λk,n,l,m
,

(32)

to obtain a lower bound function, where λk,n,l,m is a positive
variable that sums to unity:

∑
k,n λk,n,l,m = 1. Equality of

(32) holds if and only if

λk,n,l,m =
w2

k,n,me−
(xl−Ωk,m−log n)2

2σ2 Uk,m

Xl,m
. (33)

Although one may notice that the second term in
Eq. (30) is nonlinear in Ωk,m, the summation of Xl,m
over l can be approximated fairly well using the integral∫ ∞
−∞ X(x, tm)dx, since

∑
l Xl,m is the sum of the values at the

sampled points X(x1, tm), . . . , X(xL, tm) with an equal inter-
val, say Δx. Hence,∑

l

Xl,m  1

Δx

∫ ∞

−∞
X(x, tm)dx

=
1

Δx

∑
k,n

w2
k,n,mUk,m

∫ ∞

−∞
e−

(x−Ωk,m−log n)2

2σ2 dx
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=

√
2πσ

Δx

∑
k

Uk,m

∑
n

w2
k,n,m. (34)

This approximation implies that the second term in Eq.
(30) depends little on Ωk,m.

An auxiliary function can thus be written as

L+(Θ, λ)=
c

∑
l,m

Yl,m

∑
k,n

λk,n,l,m ln
w2

k,n,me−
(xl−Ωk,m−ln n)2

2σ2 Uk,m

λk,n,l,m

−
√

2πσ

Δx

∑
m

∑
k

Uk,m

∑
n

w2
k,n,m + ln p(Θ). (35)

We can derive update equations for the model parameters,
using the above auxiliary function. By setting at zero the
partial derivative of L+(Θ, λ) with respect to each of the
model parameters, we obtain

w2
k,n,m ←

∑
l Yl,mλk,n,l,m + 1/2√

2πRkAk,mσ/Δx + ν2/(2|Bk(e jneΩk,m u0 )|2)
, (36)

Ωk ←
⎛⎜⎜⎜⎜⎜⎜⎝αl

τ2
D +
αg

υ2
k

IM +
∑
n,l

diag(pk,n,l)

⎞⎟⎟⎟⎟⎟⎟⎠
−1

×
⎛⎜⎜⎜⎜⎜⎜⎝μk
αg

υ2
k

1M +
∑
n,l

(xl − ln n)pk,n,l

⎞⎟⎟⎟⎟⎟⎟⎠ , (37)

Rk ∝
∑

l,m Yl,m
∑

n λk,n,l,m + γ
(R)
k − 1∑

m,n Ak,mw2
k,m,n

, (38)

Ak,m ∝
∑

l Yl,m
∑

n λk,n,l,m + γ
(A)
k,m − 1

Rk
∑

n w2
k,m,n

, (39)

pk,n,l :=
1

σ2

[
Yl,1λk,n,l,1,Yl,2λk,n,l,2, · · · , Yl,Mλk,n,l,M

]�
, (40)

where diag(p) converts a vector p into a diagonal matrix
with the elements of p on the main diagonal.

As for the update equations for the AR coefficients β,
we can invoke the method described in [23] with a slight
modification, since the terms in the auxiliary function that
depend on β has the similar form as the objective function
defined in [23]. It can be shown that L+ can be increased
by the following updates (the details are omitted owing to
space limitations):

hk ← Ĉk(βk)βk, βk ← C−1
k hk, (41)

where Ck and Ĉk(βk) are (P+1)× (P+1) Toeplitz matrices,
whose (p, q)-th elements are

Ck,p,q =
1

MN

∑
m,n

w2
k,m,n

2ν
cos[(p − q)neΩk,m u0],

Ĉk,p,q(βk) =
1

MN

∑
m,n

1

|Bk(e jneΩk,m u0 )|2 cos[(p − q)neΩk,m u0].

(42)

5. EXPERIMENTS
In the following preliminary experiments, we simplified
HTFD by omitting the source filter model and assuming
the time-invariance of wk,m,n.

5.1 F0 tracking of violin sound
To confirm whether HTFD can track the F0 contour of
a sound, we compared HTFD with NMF with the I-
divergence, by using a 16 kHz-sampled audio signal which
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Figure 2. Power spectrogram of a mixed audio signal of
three violin vibrato sounds (D�4, F4 and A�4).

were artificially made by mixing D�4, F4 and A�4 violin
vibrato sounds from the RWC instrument database [3]. In
this paper, the F0 of the pitch name A4 was set at 440
Hz. The power spectrogram of the mixed signal is shown
in Fig. 2. To convert the signal into a spectrogram, we
employed the fast approximate continuous wavelet trans-
form [9] with a 16 ms time-shift interval. {xl}l ranged 55
to 7040 Hz per 10 cent. The parameters of HTFD were

set at γ(A)
k = (1 − 3.96 × 10−6)1I , (τk, vk) = (0.83, 1.25)

for all k, (N,K, σ, αg, αs) = (8, 73, 0.02, 1, 1), and γ(R) =

(1−2.4×10−3)1K . {μk}k ranged A1 to A�7 with a chromatic
interval, i.e. μk = ln(55) + ln(2) × (k − 1)/12. The number
of NMF bases were set at three. The parameter updates of
both HTFD and NMF were stopped at 100 iterations.

While the estimates of spectrograms obtained with
NMF were flat and the vibrato spectra seemed to be aver-
aged (Fig. 3 (a)), those obtained with HTFD tracked the F0

contours of the vibrato sounds appropriately (Fig. 3 (b)),
and clear vibrato sounds were contained in the separated
audio signals by HTFD.

5.2 Separation using key information
We next examined whether the prior information of a
sound improve source separation accuracy. The key of the
sound used in 5.1, was assumed as D� major. The key in-
formation was incorporated in the estimation scheme by

setting γ(R)
k = 1 − 2.4 × 10−3 for the pitch indices that are

not contained in the D�major scale and γ(R)
k = 1−3.0×10−3

for the pitch indices contained in that scale. The other con-
ditions were the same as 5.1.

With HTFD without using the key information, the es-
timated activations of the pitch indices that were not con-
tained in the scale, in particular D4, were high as illus-
trated in Fig. 4 (a). In contrast, those estimated activations
with HTFD using the key information were suppressed as
shown in Fig. 4 (b). These results thus support strongly that
incorporating prior information improve the source separa-
tion accuracy.

5.3 Transposing from one key to another
Here we show some results of an experiment on automatic
key transposition [11] using HTFD. The aim of key trans-
position is to change the key of a musical piece to another
key. We separated the spectrogram of a polyphonic sound
into spectrograms of individual pitches using HFTD, trans-
posed the pitches of the subset of the separated compo-
nents, added all the spectrograms together to construct a
pitch-modified polyphonic spectrogram, and constructed a

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

627



Time [s]

Fr
eq

ue
nc

y 
[H

z]

0 2 4 6

311

554

988

Time [s]

Fr
eq

ue
nc

y 
[H

z]

0 2 4 6

311

554

988

Time [s]

Fr
eq

ue
nc

y 
[H

z]

0 2 4 6

311

554

988

(a) Estimates of spectrograms and F0 contours (orange lines) obtained with HTFD
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(b) Estimates of spectrograms obtained with NMF

Figure 3. Estimated spectrogram models by harmonic-temporal factor decomposi-
tion (HTFD) and non-negative matrix factorization (NMF). In left-to-right fashion,
the spectrogram models are for D�4, F4 and A�4.
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Figure 4. Temporal activations of
A3–A�4 estimated with HTFD using
and without using prior information
of the key. The red curves represent
the temporal activations of D4.

time-domain signal from the modified spectrogram using
the method described in [13]. For the key transposition,
we adopted a simple way: To transpose, for example, from
A major scale to A natural minor scale, we changed the
pitches of the separated spectrograms corresponding to C�,
F� and G� to C, F and G, respectively.

Some results are demonstrated in http://hil.t.
u-tokyo.ac.jp/˜nakamura/demo/HTFD.html.

6. CONCLUSION
This paper proposed a new approach for monaural source
separation called the “Harmonic-Temporal Factor Decom-
position (HTFD)” by introducing a spectrogram model that
combines the features of the models employed in the NMF
and HTC approaches. We further described some ideas
how to design the prior distributions for the present model
to incorporate musically relevant information into the sep-
aration scheme.
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ABSTRACT

Note onset detection is one of the most investigated tasks

in Music Information Retrieval (MIR) and various detec-

tion methods have been proposed in previous research. The

primary aim of this paper is to investigate different fusion

policies to combine existing onset detectors, thus achiev-

ing better results. Existing algorithms are fused using three

strategies, first by combining different algorithms, second,

by using the linear combination of detection functions, and

third, by using a late decision fusion approach. Large scale

evaluation was carried out on two published datasets and a

new percussion database composed of Chinese traditional

instrument samples. An exhaustive search through the pa-

rameter space was used enabling a systematic analysis of

the impact of each parameter, as well as reporting the most

generally applicable parameter settings for the onset de-

tectors and the fusion. We demonstrate improved results

attributed to both fusion and the optimised parameter set-

tings.

1. INTRODUCTION

The automatic detection of onset events is an essential part

in many music signal analysis schemes and has various ap-

plications in content-based music processing. Different ap-

proaches have been investigated for onset detection in re-

cent years [1,2]. As the main contribution of this paper, we

present new onset detectors using different fusion policies,

with improved detection rates relying on recent research in

the MIR community. We also investigate different config-

urations of onset detection and fusion parameters, aiming

to provide a reference for configuring onset detection sys-

tems.

The focus of ongoing onset detection work is typically

targeting Western musical instruments. Apart from using

two published datasets, a new database is incorporated into

our evaluation, collecting percussion ensembles of Jingju,

also denoted as Peking Opera or Beijing Opera, a major

c© Mi Tian, György Fazekas, Dawn A. A. Black, Mark San-

dler.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Mi Tian, György Fazekas, Dawn

A. A. Black, Mark Sandler. “Design and Evaluation of Onset Detectors

Using Different Fusion Policies”, 15th International Society for Music

Information Retrieval Conference, 2014.

genre of Chinese traditional music 1 . By including this

dataset, we aim at increasing the diversity of instrument

categories in the evaluation of onset detectors, as well as

extending the research to include non-Western music types.

The goal of this paper can be summarised as follows: i)
to evaluate fusion methods in comparison with the baseline

algorithms, as well as a state-of-the-art method 2 ; ii) to in-

vestigate which fusion policies and which pair-wise com-

binations of onset detectors yield the most improvement

over standard techniques; iii) to find the best performing

configurations by searching through the multi-dimensional

parameter space, hence identifying emerging patterns in

the performances of different parameter settings, showing

good results across different datasets; iv) to investigate the

performance difference in Western and non-Western per-

cussive instrument datasets.

In the next section, we present a review of related work.

Descriptions of the datasets used in this experiment are

given in Section 3. In Section 4, we introduce different fu-

sion strategies. Relevant post-processing and peak-picking

procedures, as well as the parameter search process will

be discussed in Section 5. Section 6 presents the results,

with a detailed analysis and discussion of the performance

of the fusion methods. Finally, the last section summarises

our findings and provides directions for future work.

2. RELATED WORK

Many onset detection algorithms and systems have been

proposed in recent years. Common approaches using en-

ergy or phase information derived from the input signal in-

clude the high frequency content (HFC) and complex do-

main (CD) methods. See [1,6] for detailed reviews and [9]

for further improvements. Pitch contours and harmonic-

ity information can also be indicators for onset events [7].

These methods shows some superiority over energy based

ones in case of soft onsets.

Onset detection systems using machine learning tech-

niques have also been gaining popularity in recent years 3 .

The winner of MIREX 2013 audio onset detection task

utilises convolutional neural networks to classify and dis-

tinguish onsets from non-onset events in the spectrogram

[13]. The data-driven nature of these methods makes the

1 http://en.wikipedia.org/wiki/Peking_opera
2 Machine learning-based methods are excluded from this study to

limit the scope of our work.
3 http://www.music-ir.org/mirex/wiki/2013:

Audio_Onset_Detection
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detection less dependent on onset types, though a computa-

tionally expensive training process is required. A promis-

ing approach for onset detection lies in the fusion of multi-

ple detection methods. Zhou et al. proposed a system inte-

grating two detection methods selected according to prop-

erties of the target onsets [17]. In [10], pitch, energy and

phase information are considered in parallel for the detec-

tion of pitched onsets. Another fusion strategy is to com-

bine peak score information to form new estimations of

the onset events [8]. Albeit fusion has been used in previ-

ous work, there is a lack of systematic evaluation of fusion

strategies and applications in the current literature. This

paper focusses on the assessment of different fusion poli-

cies, from feature-level and detection function-level fusion

to higher level decision fusion.

The success of an onset detection algorithm largely de-

pends on the signal processing methods used to extract

salient features from the audio that emphasise the features

characterising onset events as well as smoothing the noise

in the detection function. Various signal processing tech-

niques have been introduced in recent studies, such as vi-

brato suppression [3] and adaptive thresholding [1]. In

[14], adaptive whitening is presented where each STFT

bins magnitude is divided by the an average peak for that

bin accumulated over time. This paper also investigates

the performances of some commonly used signal process-

ing modules within onset detection systems.

3. DATASETS

In this study, we use two previously released evaluation

datasets and a newly created one. The first published dataset

comes from [1], containing 23 audio tracks with a total du-

ration of 190 seconds and having 1058 onsets. These are

classified into four groups: pitched non-percussive (PNP),

e.g. bowed strings, 93 onsets, pitched percussive (PP), e.g.

piano, 482 onsets 4 , non-pitched percussive (NPP), e.g.

drums, 212 onsets, and complex mixtures (CM), e.g. pop

singing music, 271 onsets. The second set comes from [2]

which is composed of 30 samples 5 of 10 second audio

tracks, containing 1559 onsets in total, covering also four

categories: PNP (233 onsets in total), PP (152 onsets), NPP

(115 onsets), CM (1059 onsets). The use of these datasets

enables us to test the algorithms on a range of different in-

struments and onset types, and provides for direct compar-

ison with published work. The combined dataset used in

the evaluation of our work is composed of these two sets.

The third dataset consists of recordings of the four ma-

jor percussion instruments in Jingju: bangu (clapper- drum),

daluo (gong-1), naobo (cymbals), and xiaoluo (gong-2).

The samples are manually mixed using individual record-

ings of these instruments with possibly simultaneous on-

sets to closely reproduce real world conditions. See [15]

for more details on the instrument types and the dataset.

This dataset includes 10 samples of 30-second excerpts

4 A 7-onset discrepancy(482 instead of 489) from the reference paper
is reported by the original author due to revisions of annotations.

5 Only a subset of this dataset presented in the original paper is re-
ceived from the author for the evaluation in this paper.

with 732 onsets. We also use NPP onsets from the first two

datasets to form the fourth one, providing a direct com-

parison with the Chinese NPP instruments. All stimuli are

mono signals sampled at 44.1kHz 6 and 16 bits per sample,

having 3349 onsets in total.

4. FUSION EXPERIMENT

The aim of information fusion is to merge information from

heterogeneous sources to reduce uncertainty of inferences

[11]. In our study, six spectral-based onset detection al-

gorithms are considered as baselines for fusion: high fre-

quency content (HFC), spectral difference (SD) complex

domain (CD), broadband energy rise (BER), phase devia-

tion (PD), outlined in [1], and SuperFlux (SF) from recent

work [4]. We also developed and included in the fusion a

method based on Linear Predictive Coding [12], where the

LPC coefficients are computed using the Levinson-Durbin

recursion, and the onset detection function is derived from

the LPC error signal.

Three fusion policies are used in our experiments: i)
feature-level fusion, ii) fusion using the linear combination

of detection functions and iii) decision fusion by selecting

and merging onset candidates. All pairwise combination

of the baseline algorithms are amenable for the latter two

fusion policies. However, not all algorithms can be mean-

ingfully combined using feature-level fusion. For example

CD can be considered as an existing combination of SD

and PD, therefore combining CD with either of these two

at a feature level is not sensible. In this study, 10 feature-

level fusion, 13 linear combination based fusion and 15

decision fusion based methods are tested. These are com-

pared to the 7 original methods, giving us 45 detectors in

total. In the following, we describe specific fusion policies.

We assume familiarity with onset detection principles and

restrain from describing these details, please see [1] for a

tutorial.

4.1 Feature-level Fusion

In feature-level fusion, multiple algorithms are combined

to compute fused features. For conciseness, we provide

only one example combining BER and SF, denoted BERSF,

utilising the vibrato suppression capability of SF [4] for de-

tecting soft onsets, as well as the good performance of BER

for detecting percussive onsets with sharp energy bursts

[1]. Here, we use the BER to mask the SF detection func-

tion as described by Equation (1). In essence, SF is used

directly when there is evidence for a sharp energy rise, oth-

erwise it is further smoothed using a median filter.

ODF (n) =

{
SF (n) if BER(n) > γ

λ(SF (n)) otherwise,
(1)

where γ is an experimentally defined threshold, λ is a weight-

ing constant set to 0.9 and SF (n) is the median filtered

detection function with a window size of 3 frames.

6 Some audio files were upsampled to obtain a uniform dataset.
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4.2 Linear Combination of Detection Functions

In this method, two time aligned detection functions are

used and their weighted linear combination is computed to

form a new detection function as shown in Equation 2:

ODF (n) = wODF1(n) + (1− w)ODF2(n), (2)

where ODF1 and ODF2 are two normalised detection func-

tions and w is a weighting coefficient (0 ≤ w ≤ 1).

4.3 Decision Fusion

This fusion method operates at a later stage and combines

prior decisions of two detectors. Post-processing and peak

picking are applied separately yielding two lists of onset

candidates. Onsets from the two lists occurring within a

fixed temporal tolerance window will be merged and ac-

cepted. Let TS1 and TS2 be the lists of onset locations

given by two different detectors, i and j be indexes of on-

sets in the candidate lists and δ the tolerance time window.

The final onset locations are generated using the fusion

strategy described by Algorithm 1.

Algorithm 1 Onset decision fusion

1: procedure DECISIONFUSION(TS1, TS2)
2: I, J ← 0 : len(TS1)− 1, 0 : len(TS2)− 1
3: TS ← empty list
4: for all i, j in product(I, J) do
5: if abs(TS1[i]− TS2[j]) < δ then
6: insert sorted: TS ← mean(TS1[i], TS2[j])

7: return TS

5. PEAK PICKING AND PARAMETER SEARCH

5.1 Smoothing and Thresholding

Post-processing is an optional stage to reduce noise that in-

terferes with the selection of maxima in the detection func-

tion. In this study, three post-processing blocks are used: i)
DC removal and normalisation, ii) zero-phase low-pass fil-

tering and iii) adaptive thresholding. In conventional nor-

malisation, data is scaled using a fixed constant. Here we

use a normalisation coefficient computed by weighting the

input exponentially. After removing constant offsets, the

detection function is normalised using the coefficient Al-
phaNorm calculated by Equation (3):

AlphaNorm =

(∑
n |ODF (n)|α
len(ODF )

) 1
α

(3)

A low-pass filter is applied to the detection function to

reduce noise. To avoid introducing delays, a zero phase fil-

ter is employed at this stage. Finally, adaptive thresholding

using a moving median filter is applied following Bello [1],

to avoid the common pitfalls of using a fixed threshold for

peak picking.

5.2 Peak Picking

5.2.1 Polynomial Fitting

The use of polynomial fitting allows for assessing the shape

and magnitude of peaks separately. Here we fit a second-

degree polynomial on the detection function around local

maxima using a least squares method, following the QM

Vamp Plugins 7 . The coefficients a and c of the quadratic

equation y = ax2 + bx+ c are used to detect both sharper

peaks, under the condition a > tha, and peaks with a

higher magnitude, when c > thc. The corresponding thresh-

olds are computed from a single sensitivity parameter called

threshold using tha = (100 − threshold)/1000 for the

quadratic term and thc = (100− threshold)/1500 for the

constant term. The linear term b can be ignored.

5.2.2 Backtracking

In case of many musical instruments, onsets have longer

transients without a sharp burst of energy rise. This may

cause energy based detection functions to exhibit peaks

after the perceived onset locations. Vos and Rasch con-

clude that onsets are perceived when the envelope reaches

a level of roughly 6-15 dB below the maximum level of

the tones [16]. Using this rationale, we trace the onset lo-

cations from the detected peak position back to a hypoth-

esised earlier “perceived” location. The backtracking pro-

cedure is based on measuring relative differences in the

detection function, as illustrated by Algorithm 2, where θ
is the threshold used as a stopping condition. We use the

implementation available in the QM Vamp Plugins.

Algorithm 2 Backtracking

Require: idx: index of a peak location in the ODF
1: procedure BACKTRACKING(idx,ODF, θ)
2: δ, γ ← 0
3: while idx > 1 do
4: δ ← ODF [idx]−ODF [idx− 1]
5: if δ < γ ∗ θ then
6: break
7: idx ← idx− 1
8: γ ← δ

9: return idx

5.3 Parameter Search

An exhaustive search is carried out to find the configu-

rations in the parameter space yielding the best detection

rates. The following parameters and settings, related to the

onset detection and fusion stages, are evaluated: i) adaptive

whitening (wht) on/off; ii) detection sensitivity (thresh-

old), ranging from 0.1 to 1.0 with an increment of 0.1; iii)
backtracking threshold (θ), ranging from 0.4 to 2.4 with 8

equal subdivisions (the upper bound is set to an empirical

value 2.4 in the experiment since the tracking will not go

beyond the previous valley); iv) linear combination coeffi-

cient (w), ranging from 0.0 to 1.0 with an increment of 0.1;

v) tolerance window length (δ) for decision fusion, rang-

ing from 0.01 to 0.05 (in second) having 8 subdivisions.

This gives a 5-dimensional space and all combinations of

all possible values described above are evaluated. This re-

sults in 180 configurations in case of standard detectors

and feature-level fusion, 1980 in case of linear fusion and

1620 for decision fusion. The configurations are described

7 http://www.vamp-plugins.org
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using the Vamp Plugin Ontology 8 and the resulting RDF

files are used by Sonic Annotator [5] to configure the de-

tectors. The test result will thus give us not only the overall

performance of each onset detector, but also uncover their

strengths and limitations across different datasets and pa-

rameter settings.

6. EVALUATION AND RESULTS

6.1 Analysis of Overall Performance

Figure 1 provides an overview of the results, showing the

F-measure for the top 12 detectors in our study 9 . Detec-

tors are ranked by the median showing the overall perfor-

mance increase due to fusion across the entire range of pa-

rameter settings. Due to space limitations, only a subset of

the results are reported in this paper. The complete result

set for all tested detectors under all configurations on dif-

ferent datasets is available online 10 , together with Vamp

plugins of all tested onset detectors. The names of the fu-

sion algorithms come from the abbreviations of the con-

stituent methods, while the numbers represent the fusion

policy: 0: feature-level fusion, 1: linear combination of
detection functions and 2: decision fusion.

CDSF-1 yields improved F-measure for the combined

dataset by 3.06% and 6.14% compared to the two origi-

nal methods SF and CD respectively. Smaller interquartile

ranges (IQRs) observed in case of CD, SD and HFC based

methods show they have less dependency on the configu-

ration. BERSF-2 and BERSF-1 vary the most in perfor-

mance, also reflected from their IQRs. In case of BERSF-

2, the best performance is obtained using the widest con-

sidered tolerance window (0.05s), with modest sensitivity

(40%). However, decreasing the tolerance window size has

an adverse effect on the performance, yielding one of the

lowest detection rates caused by the significant drop of re-

call. In case of BERSF-1, a big discrepancy between the

best and worst performing configurations can be observed.

This is partly because the highest sensitivity setting has a

negative effect on SF causing very low precision.

Table 1 shows the results ranked by F-measure, preci-

sion and recall with corresponding standard deviations for

the ten best detectors as well as all baseline methods. Stan-

dard deviations are computed over the results for all config-

urations in each dataset. SF is ranked in the best perform-

ing ten, thus it is excluded from the baseline. Nine out of

the top ten detectors are fusion methods. CDSF-1 performs

the best for all datasets (including CHN-NPP and WES-

NPP that are not listed in the table) while BERSF yields

the second best performance in the combined, WES-NPP

and JPB datasets. Corresponding parameter settings for the

combined dataset are given in Table 2.

Fusion policies may perform differently in the evalu-

ation. In case of feature-level fusion, we compared how

combined methods score relative to their constituents. The

8 http://www.omras2.org/VampOntology
9 Due to different post-processing stages, the results reported here may

diverge from previously published results.
10 http://isophonics.net/onset-fusion

Figure 1. F-meaure of all configurations for the top 12

detectors. (Min, first and third quartile and max value of

the data are represented by the bottom bar of the whiskers,

bottom and upper borders of the boxes and upper bar of the

whiskers respectively. Median is shown by the red line)

method threshold θ wht w δ (s)

CDSF-1 10.0 2.15 off 0.20 n/a

BERSF-1 10.0 2.40 off 0.30 n/a

BERSF-2 40.0 2.15 off n/a 0.05

BERSF-0 30.0 2.40 off n/a n/a

CDSF-2 50.0 2.40 off n/a 0.05

SF 20.0 2.40 off n/a n/a

CDBER-1 10.0 2.40 off 0.50 n/a

BERSD-1 10.0 2.40 off 0.60 n/a

HFCCD-1 20.0 1.15 off 0.50 n/a

CDBER-2 50.0 1.15 off n/a 0.05

mean 25.90 2.100 - 0.4200 0.05

std 15.01 0.4848 - 0.1470 0.00

median 20.0 2.15 - 0.50 0.05

mode 10.0 2.40 off 0.50 0.05

Table 2. Parameter settings for the ten best performing de-

tectors, threshold: overall detection sensitivity; θ: back-

tracking threshold; wht: adaptive whitening; w: linear

combination coefficient; δ: tolerance window size.

performances vary between datasets, with only HFCBER-

0 outperforming both HFC and BER on the combined and

SB datasets in terms of mean F-measure. However, five

perform better than their two constitutes on JPB, two on

CHN-NPP and five on WES-NPP dataset (these results are

published online). A more detailed analysis of these per-

formance differences constitutes future work.

When comparing linear fusion of detection functions

with decision fusion, the former performs better across all

datasets in all but one cases, the fusion of HFC and BER.

Even in this case, linear fusion yields close performance

in terms of mean F-measure. Interesting observations also

emerge for particular methods on certain datasets. The lin-

ear fusion based detectors involving LPC and PD (SDPD-

1 and LPCPD-1) show better performances in the case of

the CHN-NPP dataset compared to their performances on

other datasets as well those given by their constituent meth-

ods (please see table online). Further analysis, for instance,

by looking at statistical significance of these observations

is required to identify relevant instrument properties.

When comparing BERSF-2, CDSF-2 and CDBER-2 to

the other detectors in Table 1, notably higher standard de-

viations in recall and F-measure are shown, indicating this
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method F (combined) P (combined) R (combined) F (sb) P (sb) R (sb) F (jpb) P (jpb) R (jpb)
CDSF-1 0.8580 0.0613 0.9054 0.1195 0.8153 0.0609 0.8194 0.0598 0.8455 0.1165 0.7949 0.0681 0.9286 0.0649 0.9748 0.1241 0.8865 0.0525
BERSF-1 0.8559 0.0941 0.8857 0.1363 0.8280 0.0866 0.8126 0.0961 0.8191 0.1306 0.8062 0.0988 0.9283 0.0925 0.9718 0.1463 0.8885 0.0710

BERSF-2 0.8528 0.1684 0.8901 0.1411 0.8186 0.2028 0.8088 0.1677 0.8729 0.1470 0.7536 0.2055 0.9230 0.1724 0.9637 0.1310 0.8856 0.2011

BERSF-0 0.8451 0.0722 0.8638 0.1200 0.8272 0.0701 0.8025 0.0723 0.8185 0.1134 0.7870 0.0744 0.9175 0.0747 0.9712 0.1322 0.8694 0.0658

CDSF-2 0.8392 0.1537 0.8970 0.1129 0.7884 0.1855 0.7892 0.1758 0.8336 0.1251 0.7493 0.2014 0.9165 0.1344 0.9642 0.1001 0.8732 0.1690

SF 0.8274 0.0719 0.8313 0.1209 0.8234 0.0657 0.8126 0.0744 0.8191 0.1241 0.8063 0.0737 0.8488 0.0704 0.8290 0.1177 0.8694 0.0558

CDBER-1 0.8145 0.0809 0.8210 0.1276 0.8080 0.0792 0.7877 0.0829 0.7972 0.1295 0.7785 0.0893 0.8560 0.0793 0.8678 0.1253 0.8446 0.0667

BERSD-1 0.8073 0.0792 0.8163 0.1311 0.7986 0.0812 0.7843 0.0828 0.7985 0.1358 0.7707 0.0915 0.8420 0.0756 0.8310 0.1252 0.8532 0.0685

HFCCD-1 0.8032 0.0472 0.8512 0.1179 0.7603 0.0734 0.7802 0.0448 0.8387 0.1239 0.7293 0.0765 0.8416 0.0511 0.8376 0.1101 0.8456 0.0705

CDBER-2 0.7967 0.2231 0.8423 0.1404 0.7558 0.2398 0.7605 0.2279 0.8140 0.1607 0.7138 0.2384 0.8498 0.2291 0.8853 0.1273 0.8170 0.2494

CD 0.7966 0.0492 0.8509 0.1164 0.7489 0.0672 0.7692 0.0467 0.8361 0.1191 0.7123 0.0709 0.8320 0.0535 0.8692 0.1128 0.7979 0.0636

BER 0.7883 0.0942 0.7776 0.1184 0.7994 0.1001 0.7626 0.0974 0.7521 0.1166 0.7138 0.1119 0.8254 0.0920 0.7968 0.1226 0.8561 0.0851

SD 0.7795 0.0466 0.8354 0.1269 0.7305 0.0733 0.7604 0.0450 0.8311 0.1326 0.7009 0.0785 0.8210 0.0491 0.8202 0.1190 0.8217 0.0676

HFC 0.7712 0.0412 0.8011 0.1225 0.7436 0.0898 0.7411 0.0375 0.7818 0.1291 0.7044 0.0844 0.8159 0.0496 0.8082 0.1138 0.8236 0.1002

LPC 0.7496 0.0658 0.7671 0.1103 0.7330 0.1061 0.7243 0.0657 0.7494 0.1069 0.7009 0.1019 0.7913 0.0662 0.8041 0.1164 0.7788 0.1118

PD 0.6537 0.1084 0.5775 0.1008 0.7530 0.2235 0.6143 0.1093 0.5230 0.0688 0.7308 0.2302 0.7114 0.1115 0.6513 0.1536 0.7836 0.2158

Table 1. F-measure (F), Precision (P) and Recall (R) for dataset combined, SB, JPB for detectors under best performing

configurations from the parameter search, with corresponding standard deviations over different configurations.

statistic Combined SB JPB CHN-NPP WES-NPP
mean 0.7731 0.7438 0.8183 0.8527 0.8358

std 0.0587 0.0579 0.0628 0.1206 0.0641

median 0.7818 0.7595 0.8226 0.8956 0.8580

Table 3. Statistics for F-measure of the ten detectors with

their best performances from Table 1 for different datasets

fusion policy is more sensitive to the choice of parameters.

A possible improvement in this fusion policy would be to

make the size of the tolerance window dependent on the

magnitude of relevant peaks of the detection functions.

The results also vary across different datasets. Table 3

summarises F-measure statistics computed over the detec-

tors listed in Table 1 at their best setting for each datasets

used in this paper. In comparison with SB, the JPB dataset

exhibits higher F-measure. This dataset has larger diversity

in terms of the length of tracks and the level of complex-

ity, while the SB dataset mainly consists of complex mix-

ture (CM) onsets type. Both the Chinese and Western NPP

onset class provides noticeably higher detection rate com-

pared to the mix-typed datasets. Though the CHN-NPP set

shows the largest standard deviation, suggesting a greater

variation in performance between the different detectors

for these instruments. Apart from aiming at optimal over-

all detection results, it is also useful to consider when and

how a certain onset detector exhibits the best performance,

which constitutes future work.

6.2 Parameter Specifications

For general datasets a low detection sensitivity value is

favourable, which is supported by the fact that 30 out of

the 45 tested methods yield the best performances with a

sensitivity lower than 50% (see online). In 23 out of all

cases, the value of the backtracking threshold was the high-

est considered in our study (2.4) when the detectors yield

the best performances for the combined dataset, and it was

unanimously at a high value for all other datasets including

the percussive ones. This suggests that in many cases, the

perceived onset will be better characterised by the valley of

the detection function prior to the detected peak. Note that

Figure 2. Performances of CDSF-1 onset detector under

different w (labelled in each curve) and threshold (anno-

tated in the side box) settings

even at a higher threshold, the onset location would not be

traced back further than the valley preceding the peak de-

tected in our algorithm. An interesting direction for future

work would thus be, given this observation, to take into

account the properties of human perception.

Adaptive whitening had to be turned off for the majority

of detectors to provide good performance for all datasets.

This indicates that the method does not improve onset de-

tection performance in general, although it is available in

most onset detectors in the Vamp plugin library. The value

of the tolerance window was always 0.05s for best per-

formance in our study, suggesting that the temporal pre-

cision of the different detectors varies significantly, which

requires a fairly wide decision horizon for successful com-

bination.

Figure 2 shows how two parameters influence the per-

formance of the onset detector CDSF-1. The figure illus-

trates the true positive rate (i.e., correct detections rela-

tive to the number of target onsets) and false positive rate

(i.e., false detections relative to the number of detected on-

sets) and better performance is indicated by the curve shift-

ing upwards and leftwards. All parameters except the lin-
ear combination coefficient (w) and detection sensitivity
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(threshold) are fixed at their optimal values. We can ob-

serve that the value of the linear combination coefficient

is around 0.2 for best performance. This suggests that the

detector works the best when taking the majority of the

contribution from SF. With the threshold increasing from

10.0% to 60.0%, the true positive rate is increasing at the

cost of picking more false onsets, thus a lower sensitiv-

ity is preferred in this case. Poorest performance in case

of the linear fusion policy occurs in general when the lin-

ear combination coefficient overly favours one constituent

detector, or the sensitivity (threshold) is too high and the

backtracking threshold (θ) is at its lowest value.

7. CONCLUSION AND FUTURE WORK

In this work, we applied several fusion techniques to aid

the music onset detection task. Different fusion policies

were tested and compared to their constituent methods,

including the state-of-the-art SuperFlux method. A large

scale evaluation was performed on two published datasets

showing improvements as a result of fusion, without extra

computational cost, or the need for a large amount of train-

ing data as in the case of machine learning based methods.

A parameter search was used to find the optimal settings

for each detector to yield the best performance.

We found that some of the best performing configura-

tions do not match the default settings of some previously

published algorithms. This suggests that in some cases,

better performance can be achieved just by finding better

settings which work best overall for a given type of audio

even without changing the algorithms.

In future work, a possible improvement in case of late

decision fusion is to take the magnitude of the peaks into

account when combining detected onsets, essentially treat-

ing the value as an estimation confidence. We will investi-

gate the dependency of the selection of onset detectors on

the type and the quality of the input music signal. We also

intend to carry out more rigorous statistical analyses with

significance tests for the reported results. More parameters

could be included in the search to study their strengths as

well as how they influence each other under different con-

figurations. Another interesting direction is to incorporate

more Non-Western music types as detection target and de-

sign algorithms using instrument specific priors.
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ABSTRACT

The evaluation of audio beat tracking systems is normally

addressed in one of two ways. One approach is for human

listeners to judge performance by listening to beat times

mixed as clicks with music signals. The more common

alternative is to compare beat times against ground truth

annotations via one or more of the many objective evalu-

ation measures. However, despite a large body of work in

audio beat tracking, there is currently no consensus over

which evaluation measure(s) to use, meaning multiple ac-

curacy scores are typically reported. In this paper, we seek

to evaluate the evaluation measures by examining the re-

lationship between objective accuracy scores and human

judgements of beat tracking performance. First, we present

the raw correlation between objective scores and subjective

ratings, and show that evaluation measures which allow al-

ternative metrical levels appear more correlated than those

which do not. Second, we explore the effect of param-

eterisation of objective evaluation measures, and demon-

strate that correlation is maximised for smaller tolerance

windows than those currently used. Our analysis suggests

that true beat tracking performance is currently being over-

estimated via objective evaluation.

1. INTRODUCTION

Evaluation is a critical element of music information re-

trieval (MIR) [16]. Its primary use is a mechanism to de-

termine the individual and comparative performance of al-

gorithms for given MIR tasks towards improving them in

light of identified strengths and weaknesses. Each year

many different MIR systems are formally evaluated within

the MIREX initiative [6].

In the context of beat tracking, the concept and purpose

of evaluation can be addressed in several ways. For exam-

ple, to measure reaction time across changing tempi [2],

to identify challenging musical properties for beat track-

ers [9] or to drive the composition of new test datasets [10].

However, as with other MIR tasks, evaluation in beat track-

ing is most commonly used to estimate the performance of

one or more algorithms on a test dataset.

c© Mathew E. P. Davies, Sebastian Böck.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: Mathew E. P. Davies, Sebastian Böck.

“Evaluating the evaluation measures for beat tracking”, 15th International

Society for Music Information Retrieval Conference, 2014.

This measurement of performance can happen via sub-

jective listening test, where human judgements are used

to determine beat tracking performance [3], to discover:

how perceptually accurate the beat estimates are when
mixed with the input audio. Alternatively, objective eval-

uation measures can be used to compare beat times with

ground truth annotations [4], to determine: how consis-
tent the beat estimates are with the ground truth accord-
ing to some mathematical relationship. While undertak-

ing listening tests and annotating beat locations are both

extremely time-consuming tasks, the apparent advantage

of the objective approach is that once ground truth anno-

tations have been determined, they can easily be re-used

without the need for repeated listening experiments. How-

ever, the usefulness of any given objective accuracy score

(of which there are many [4]) is contingent on its ability

to reflect human judgement of beat tracking performance.

Furthermore, for the entire objective evaluation process to

be meaningful, we must rely on the inherent accuracy of

the ground truth annotations.

In this paper we work under the assumption that musi-

cally trained experts can provide meaningful ground truth

annotations and rather focus on the properties of the ob-

jective evaluation measures. The main question we seek to

address is: to what extent do existing objective accuracy
scores reflect subjective human judgement of beat track-
ing performance? In order to answer this question, even

in principle, we must first verify that human listeners can

make reliable judgements of beat tracking performance.

While very few studies exist, we can find supporting evi-

dence suggesting human judgements of beat tracking accu-

racy are highly repeatable [3] and that human listeners can

reliably disambiguate accurate from inaccurate beat click

sequences mixed with music signals [11].

The analysis we present involves the use of a test

database for which we have a set of estimated beat loca-

tions, annotated ground truth and human subjective judge-

ments of beat tracking performance. Access to all of these

components (via the results of existing research [12, 17])

allows us to examine the correlation between objective ac-

curacy scores, obtained by comparing the beat estimates to

the ground truth, with human listener judgements. To the

best of our knowledge this is the first study of this type for

musical beat tracking.

The remainder of this paper is structured as follows. In

Section 2 we summarise the objective beat tracking evalu-

ation measures used in this paper. In Section 3 we describe
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the comparison between subjective ratings and objective

scores of beat tracking accuracy. Finally, in Section 4 we

present discussion and areas for future work.

2. BEAT TRACKING EVALUATION MEASURES

In this section we present a brief summary each of the eval-

uation measures from [4]. While nine different approaches

were presented in [4], we reduce them to seven by only pre-

senting the underlying approaches for comparing a set of

beats with a set of annotations (i.e. ignoring alternate met-

rical interpretations). We consider the inclusion of differ-

ent metrical interpretations of the annotations to be a sepa-

rate process which can be applied to any of these evaluation

measures (as in [5, 8, 15]), rather than a specific property

of one particular approach. To this end, we choose three

evaluation conditions: Annotated – comparing beats to an-

notations, Annotated+Offbeat – including the “off-beat”

of the annotations for comparison against beats and An-
notated+Offbeat+D/H – including the off-beat and both

double and half the tempo of the annotations. This dou-

bling and halving has been commonly used in beat track-

ing evaluation to attempt to reflect the inherent ambiguity

in music over which metrical level to tap the beat [13]. The

set of seven basic evaluation measures are summarised be-

low:

F-measure : accuracy is determined through the propor-

tion of hits, false positives and false negatives for a given

annotated musical excerpt, where hits count as beat esti-

mates which fall within a pre-defined tolerance window

around individual ground truth annotations, false pos-
itives are extra beat estimates, and false negatives are

missed annotations. The default value for the tolerance

window is ±0.07s.

PScore : accuracy is measured as the normalised sum

of the cross-correlation between two impulse trains, one

corresponding to estimated beat locations, and the other

to ground truth annotations. The cross-correlation is

limited to the range covering 20% of the median inter-

annotation-interval (IAI).

Cemgil : a Gaussian error function is placed around each

ground truth annotation and accuracy is measured as the

sum of the “errors” of the closest beat to each annotation,

normalised by whichever is greater, the number of beats

or annotations. The standard deviation of this Gaussian

is set at 0.04s.

Goto : the annotation interval-normalised timing error is

measured between annotations and beat estimates, and

a binary measure of accuracy is determined based on

whether a region covering 25% of the annotations con-

tinuously meets three conditions – the maximum error is

less than ±17.5% of the IAI, and the mean and standard

deviation of the error are within ±10% of the IAI.

Continuity-based : a given beat is considered accurate if

it falls within a tolerance window placed around an anno-

tation and that the previous beat also falls within the pre-

ceding tolerance window. In addition, a separate thresh-

old requires that the estimated inter-beat-interval should

be close to the IAI. In practice both thresholds are set

at ±17.5% of the IAI. In [4], two basic conditions con-

sider the ratio of the longest continuously correct region

to the length of the excerpt (CMLc), and the total propor-

tion of correct regions (CMLt). In addition, the AMLc

and AMLt versions allow for additional interpretations of

the annotations to be considered accurate. As specified

above, we reduce these four to two principal accuracy

scores. To prevent any ambiguity, we rename these ac-

curacy scores Continuity-C (CMLc) and Continuity-T
(CMLt).

Information Gain : this method performs a two-way

comparison of estimated beat times to annotations and

vice-versa. In each case, a histogram of timing errors is

created and from this the Information Gain is calculated

as the Kullback-Leibler divergence from a uniform his-

togram. The default number of bins used in the histogram

is 40.

3. SUBJECTIVE VS. OBJECTIVE COMPARISON

3.1 Test Dataset

To facilitate the comparison of objective evaluation scores

and subjective ratings we require a test dataset of audio ex-

amples for which we have both annotated ground truth beat

locations and a set of human judgements of beat tracking

performance for a beat tracking algorithm. For this pur-

pose we use the test dataset from [17] which contains 48

audio excerpts (each 15s in duration). The excerpts were

selected from the MillionSongSubset [1] according to a

measurement of mutual agreement between a committee

of five state of the art beat tracking algorithms. They cover

a range from very low mutual agreement – shown to be

indicative of beat tracking difficulty, up to very high mu-

tual agreement – shown to be easier for beat tracking algo-

rithms [10].

In [17] a listening experiment was conducted where

a set of 22 participants listened to these audio examples

mixed with clicks corresponding to automatic beat esti-

mates and rated on a 1 to 5 scale how well they considered

the clicks represented the beats present in the music. For

each excerpt these beat times were the output of the beat

tracker which most agreed with the remainder of the five

committee members from [10]. Analysis of the subjective

ratings and measurements of mutual agreement revealed

low agreement to be indicative of poor subjective perfor-

mance.

In a later study, these audio excerpts were used as one

test set in a beat tapping experiment, where participants

tapped the beat using a custom piece of software [12]. In

order to compare the mutual agreement between tappers

with their global performance against the ground truth, a

musical expert annotated ground truth beat locations. The

tempi range from 62 BPM (beats per minute) up to 181

BPM and, with the exception of two excerpts, all are in 4/4

time. Of the remaining two excerpts, one is in 3/4 time and
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Figure 1. Subjective ratings vs. objective accuracy scores for different evaluation measures. The rows indicate different

evaluation conditions. (top row) Annotated, (middle row) Annotated+Offbeat, and (bottom row) Annotated+Offbeat+D/H.

For each scatter plot, the linear correlation coefficient is provided.

the other was deemed to have no beat at all, and therefore

no beats were annotated.

In the context of this paper, this set of ground truth beat

annotations provides the final element required to evaluate

the evaluation measures, since we now have: i) automati-

cally estimated beat locations, ii) subjective ratings corre-

sponding to these beats and iii) ground truth annotations

to which the estimated beat locations can be compared.

We use each of the seven evaluation measures described in

Section 2 to obtain the objective accuracy scores according

to the three versions of the annotations: Annotated, Anno-
tated+Offbeat and Annotated+Offbeat+D/H. Since all ex-

cerpts are short, and we are evaluating the output of an

offline beat tracking algorithm, we remove the startup con-

dition from [4] where beat times in the first five seconds

are ignored.

3.2 Results

3.2.1 Correlation Analysis

To investigate the relationship between the objective accu-

racy scores and subjective ratings, we present scatter plots

in Figure 1. The title of each individual scatter plot in-

cludes the linear correlation coefficient which we interpret

as an indicator of the validity of a given evaluation measure

in the context of this dataset.

The highest overall correlation (0.86) occurs for

Continuity-C when the offbeat and double/half conditions

are included. However, for all but Goto, the correlation is

greater than 0.80 once these additional evaluation criteria

are included. It is important to note only Continuity-C and

Continuity-T explicitly include these conditions in [4].

Since Goto provides a binary assessment of beat track-

ing performance, it is unlikely to be highly correlated with

the subjective ratings from [17] where participants were

explicitly required to use a five point scale rather than a

good/bad response concerning beat tracking performance.

Nevertheless, we retain it to maintain consistency with [4].

Comparing each individual measure across these eval-

uation conditions, reveals that Information Gain is least

affected by the inclusion of additional interpretations of

the annotations, and hence most robust to ambiguity over

metrical level. Referring to the F-measure and PScore
columns of Figure 1 we see that the “vertical” structure

close to accuracies of 0.66 and 0.5 respectively is mapped

across to 1 for the Annotated+Offbeat+D/H condition.

This pattern is also reflected for Goto, Continuity-C and

Continuity-T which also determine beat tracking accuracy

according to fixed tolerance windows, i.e. a beat falling

anywhere inside a tolerance window is perfectly accurate.

However, the fact that a fairly uniform range of subjective

ratings between 3 and 5 (i.e. “fair” to “excellent” [17]) ex-

ists for apparently perfect objective scores indicates a po-

tential mismatch and over-estimation of beat tracking ac-

curacy. While a better visual correlation appears to exist in

the scatter plots of Cemgil and Information Gain, this is

not reflected in the correlation values (at least not for the

Annotated+Offbeat+D/H condition). The use a Gaussian

instead of a “top-hat” style tolerance window for Cemgil
provides more information regarding the precise localisa-

tion of beats to annotations and hence does not have this

clustering at the maximum performance. The Informa-
tion Gain measure does not use tolerance windows at all,

instead it measures beat tracking accuracy in terms of the

temporal dependence between beats and annotations, and

thus shows a similar behaviour.

3.2.2 The Effect of Parameterisation

For the initial correlation analysis, we only considered

the default parameterisation of each evaluation measure as

specified in [4]. However, to only interpret the validity of

the evaluation measures in this way presupposes that they

have already been optimally parameterised. We now ex-

plore whether this is indeed the case, by calculating the ob-

jective accuracy scores (under each evaluation condition)

as a function of a threshold parameter for each measure.
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Figure 2. (top row) Beat tracking accuracy as a function of threshold (or number of bins for Information Gain) per evalua-

tion measure. (bottom row) Correlation between subjective ratings and accuracy scores as a function of threshold (or num-

ber of bins). In each plot the solid line indicates the Annotated condition, the dashed–dotted line shows Annotated+Offbeat
and the dashed line shows Annotated+Offbeat+D/H. For each evaluation measure, the default parameteristation from [4] is

shown by a dotted vertical line.

We then re-compute the subjective vs. objective correla-

tion. We adopt the following parameter ranges as follows:

F-measure : the size of the tolerance window increases

from ±0.001s to ±0.1s.

PScore : the width of the cross-correlation increases from

0.01 to 0.5 times the median IAI.

Cemgil : the standard deviation of the Gaussian error

function grows from 0.001s to 0.1s.

Goto : to allow a similar one-dimensional representation,

we make all three parameters identical and vary them

from ±0.005 to ±0.5 times the IAI.

Continuity-based : the size of the tolerance window in-

creases from ±0.005 to ±0.5 times the IAI.

Information Gain : we vary the number of bins in multi-

ples of 2 from 2 up to 100.

In the top row of Figure 2 the objective accuracy scores

as a function of different parameterisations are shown. The

plots in the bottom row show the corresponding correla-

tions with subjective ratings. In each plot the dotted verti-

cal line indicates the default parameters. From the top row

plots we can observe the expected trend that, as the size of

the tolerance window increases so the objective accuracy

scores increase. For the case of Information Gain the beat

error histograms become increasingly sparse due to having

more histogram bins than observations, hence the entropy

reduces and the information gain increases. In addition,

Information Gain does not have a maximum value of 1,

but instead, log2 of the number of histogram bins [4].

Looking at the effect of correlation with subjective rat-

ings in the bottom row of Figure 2, we see that for most

evaluation measures there is rapid increase in the correla-

tion as the tolerance windows grow from very small sizes

Default Max. Correlation

Parameters Parameters

F-measure 0.070s 0.049s

PScore 0.200 0.110

Cemgil 0.040s 0.051s

Goto 0.175 0.100

Continuity-C 0.175 0.095

Continuity-T 0.175 0.090

Information Gain 40 38

Table 1. Comparison of default parameters per eval-

uation measure with those which provide the maxi-

mum correlation with subjective ratings in the Anno-
tated+Offbeat+D/H condition.

after which the correlation soon reaches its maximum and

then reduces. Comparing these change points with the dot-

ted vertical lines (which show the default parameters) we

see that correlation is maximised for smaller (i.e. more re-

strictive) parameters than those currently used. By finding

the point of maximum correlation in each of the plots in

the bottom row of Figure 2 we can identify the parame-

ters which yield the highest correlation between objective

accuracy and subjective ratings. These are shown for the

Annotated+Offbeat+D/H evaluation condition in Table 1

for which the correlation is typically highest. Returning to

the plots in the top row of Figure 2 we can then read off the

corresponding objective accuracy with the default and then

maximum correlation parameters. These accuracy scores

are shown in Table 2.

From these Tables we see that it is only Cemgil whose

default parameterisation is lower than that which max-

imises the correlation. However this does not apply for

the Annotated only condition which is implemented in [4].

While there is a small difference for Information Gain, in-
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Annotated Annotated+Offbeat Annotated+Offbeat+D/H
Default Max Corr. Default Max Corr. Default Max Corr.

Params Params Params Params Params Params

F-measure 0.673 0.607 0.764 0.738 0.834 0.797

PScore 0.653 0.580 0.753 0.694 0.860 0.792

Cemgil 0.596 0.559 0.681 0.702 0.739 0.779

Goto 0.583 0.563 0.667 0.646 0.938 0.813

Continuity-C 0.518 0.488 0.605 0.570 0.802 0.732

Continuity-T 0.526 0.505 0.624 0.587 0.837 0.754

Information Gain 3.078 2.961 3.187 3.187 3.259 3.216

Table 2. Summary of objective beat tracking accuracy under the three evaluation conditions: Annotated, Anno-
tated+Offbeat and Annotated+Offbeat+D/H per evaluation measure. Accuracy is reported using the default parameter-

isation from [4] and also using the parameterisation which provides maximal correlation to the subjective ratings. For

Information Gain only performance is measured in bits.

spection of Figure 2 shows that it is unaffected by varying

the number of histogram bins in terms of the correlation.

In addition, the inclusion of the extra evaluation criteria

also leads to a negligible difference in reported accuracy.

Therefore Information Gain is most robust to parameter

sensitivity and metrical ambiguity. For the other evalua-

tion measures the inclusion of the Annotated+Offbeat and

the Annotated+Offbeat+D/H (in particular) leads to more

pronounced differences. The highest overall correlation

between objective accuracy scores and subjective ratings

(0.89) occurs for Continuity-T for a tolerance window of

±9% of the IAI rather than the default value of ±17.5%.

Referring again to Table 2 we see that this smaller tol-

erance window causes a drop in reported accuracy from

0.837 to 0.754. Indeed a similar drop in performance can

be observed for most evaluation measures.

4. DISCUSSION

Based on the analysis of objective accuracy scores and sub-

jective ratings on this dataset of 48 excerpts, we can infer

that: i) a higher correlation typically exists when the Anno-
tated+Offbeat and/or Annotated+Offbeat+D/H conditions

are included, and ii) for the majority of existing evaluation

measures, this correlation is maximised for a more restric-

tive parameterisation than the default parameters which are

currently used [4]. A strict following of the results pre-

sented here would promote either the use of Continuty-T
for the Annotated+Offbeat+D/H condition with a smaller

tolerance window, or Information Gain since it is most re-

silient to these variable evaluation conditions while main-

taining a high subjective vs. objective correlation.

If we are to extrapolate these results to all existing work

in the beat tracking literature this would imply that any pa-

pers reporting only performance for the Annotated condi-

tion using F-measure and PScore may not be as represen-

tative of subjective ratings (and hence true performance) as

they could be by incorporating additional evaluation con-

ditions. In addition, we could infer that most presented ac-

curacy scores (irrespective of evaluation measure or eval-

uation condition) are somewhat inflated due to the use of

artificially generous parameterisations. On this basis, we

might argue that the apparent glass ceiling of around 80%

for beat tracking [10] (using Continuity-T for the Anno-
tated+Offbeat+D/H condition) may in fact be closer to

75%, or perhaps lower still. In terms of external evidence

to support our findings, a perceptual study evaluating hu-

man tapping ability [7] used a tolerance window of ±10%

of the IAI, which is much closer to our “maximum corre-

lation” Continuity-T parameter of ±9% than the default

value of ±17.5% of the IAI.

Before making recommendations to the MIR commu-

nity with regard to how beat tracking evaluation should be

conducted in the future, we should first revisit the makeup

of the dataset to assess the scope from which we can draw

conclusions. All excerpts are just 15s in duration, and

therefore not only much shorter than complete songs, but

also significantly shorter than most annotated excerpts in

existing datasets (e.g. 40s in [10]). Therefore, based on

our results, we cannot yet claim that our subjective vs.

objective correlations will hold for evaluating longer ex-

cerpts. We can reasonably speculate that an evaluation

across overlapping 15s windows could provide some lo-

cal information about beat tracking performance for longer

pieces, however this is currently not how beat tracking

evaluation is addressed. Instead, a single score of accuracy

is normally reported regardless of excerpt length. With

the exception of [3] we are unaware of any other research

where subjective beat tracking performance has been mea-

sured across full songs.

Regarding the composition of our dataset, we should

also be aware that the excerpts were chosen in an unsuper-

vised data-driven manner. Since they were sampled from

a much larger collection of excerpts [1] we do not believe

there is any intrinsic bias in their distribution other than any

which might exist across the composition of the Million-

SongSubset itself. The downside of this unsupervised sam-

pling is that we do not have full control over exploring spe-

cific interesting beat tracking conditions such as off-beat

tapping, expressive timing, the effect of related metrical

levels and non-4/4 time-signatures. We can say that for the

few test examples where the evaluated beat tracker tapped

the off-beat (shown as zero accuracy points in the Anno-
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tated condition but non-zero for the Annotated+Offbeat
condition in Figure 1), were not rated as “bad”. Likewise,

there did not appear to be a strong preference over a single

metrical level. Interestingly, the ratings for the unannotat-
able excerpt were among the lowest across the dataset.

Overall, we consider this to be a useful pilot study

which we intend to follow up in future work with a more

targeted experiment across a much larger musical collec-

tion. In addition, we will also explore the potential for us-

ing bootstrapping measures from Text-IR [14] which have

also been used for the evaluation of evaluation measures.

Based on these outcomes, we hope to be in a position to

make stronger recommendations concerning how best to

conduct beat tracking evaluation, ideally towards a sin-

gle unambiguous measurement of beat tracking accuracy.

However, we should remain open to the possibility that dif-

ferent evaluation measures may be more appropriate than

others and that this could depend on several factors, includ-

ing: the goal of the evaluation; the types of beat tracking

systems evaluated; how the ground truth was annotated;

and the make up of the test dataset.

To summarise, we believe the main contribution of this

paper is to further raise the profile and importance of

evaluation in MIR, and to encourage researchers to more

strongly consider the properties of evaluation measures,

rather than merely reporting accuracy scores and assum-

ing them to be valid and correct. If we are to improve un-

derlying analysis methods through iterative evaluation and

refinement of algorithms, it is critical to optimise perfor-

mance according to meaningful evaluation methodologies

targeted towards specific scientific questions.

While the analysis presented here has only been applied

in the context of beat tracking, we believe there is scope

for similar subjective vs. objective comparisons in other

MIR topics such as chord recognition or structural segmen-

tation, where subjective assessments should be obtainable

via similar listening experiments to those used here.
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ABSTRACT 

Despite many improvements in the recognition of graph-
ical elements, even the best implementations of Optical 
Music Recognition (OMR) introduce inaccuracies in the 
resultant score. These errors, particularly rhythmic errors, 
are time consuming to fix. Most musical compositions 
repeat rhythms between parts and at various places 
throughout the score. Information about rhythmic self-
similarity, however, has not previously been used in 
OMR systems. 

This paper describes and implements methods for using 
the prior probabilities for rhythmic similarities in scores 
produced by a commercial OMR system to correct 
rhythmic errors which cause a contradiction between the 
notes of a measure and the underlying time signature. 
Comparing the OMR output and post-correction results to 
hand-encoded scores of 37 polyphonic pieces and move-
ments (mostly drawn from the classical repertory), the 
system reduces incorrect rhythms by an average of 19% 
(min: 2%, max: 36%).  

The paper includes a public release of an implementation 
of the model in music21 and also suggests future re-
finements and applications to pitch correction that could 
further improve the accuracy of OMR systems.  

1. INTRODUCTION 

Millions of paper copies of musical scores are found in 
libraries and archival collections and hundreds of thou-
sands of scores have already been scanned as PDFs in 
repositories such as IMSLP [5]. A scan of a score cannot, 
however, be searched or manipulated musically, so Opti-
cal Music Recognition (OMR) software is necessary to 
transform an image of a score into symbolic formats (see 
[7] for a recent synthesis of relevant work and extensive 
bibliography; only the most relevant citations from this 
work are included here). Projects such as Peachnote [10] 
show both the feasibility of recognizing large bodies of 
scores and also the limitations that errors introduce, par-

ticularly in searches such as chord progressions that rely 
on accurate recognition of multiple musical staves. 

Understandably, the bulk of OMR research has focused 
on improving the algorithms for recognizing graphical  
primitives and converting them to musical objects based 
on their relationships on the staves. Improving score ac-
curacy using musical knowledge (models of tonality, me-
ter, form) has largely been relegated to “future work” sec-
tions and when discussed has focused on localized struc-
tures such as beams and measures and requires access to 
the “guts” of a recognition engine (see Section 6.2.2 in 
[9]). Improvements to score accuracy based on the output 
of OMR systems using multiple OMR engines have been 
suggested [2] and when implemented yielded results that 
were more accurate than individual OMR engines, though 
the results were not statistically significant compared to 
the best commercial systems [1]. Improving the accuracy 
of an OMR score using musical knowledge and a single 
engine’s output alone remains an open field. 

This paper proposes using rhythmic repetition and simi-
larity within a score to create a model where measure-
level metrical errors can be fixed using correctly recog-
nized (or at least metrically consistent) measures found in 
other places in the same score, creating a self-healing 
method for post-OMR processing conditioned on proba-
bilities based on rhythmic similarity and statistics of 
symbolic misidentification.  

2. PRIOR PROBABILITIES OF DISTANCE 

Most Western musical scores, excepting those in certain 
post-common practice styles (e.g., Boulez, Cage), use 
and gain cohesion through a limited rhythmic vocabulary 
across measures. Rhythms are often repeated immediate-
ly or after a fixed distance (e.g., after a 2, 4, or 8 measure 
distance). In a multipart score, different instruments of-
ten employ the same rhythms in a measure or throughout 
a passage. From a parsed musical score, it is not difficult 
to construct a hash of the sequence of durations in each 
measure of each part (hereafter simply called “measure”; 
“measure stack” will refer to measures sounding together 
across all parts); if grace notes are handled separately, 
and interior voices are flattened (e.g., using the music21 
chordify method) then hash-key collisions will only 
occur in the rare cases where two graphically distinct 
symbols equate to the same length in quarter notes (such 
as a dotted-triplet eighth note and a normal eighth).  

 © Maura Church� Michael Scott Cuthbert. 
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Maura Church and Michael Scott 
Cuthbert. “Improving Rhythmic Transcriptions via Probability Models 
Applied Post-OMR”, 15th International Society for Music Information 
Retrieval Conference, 2014. 
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Within each part, the prior probability that a measure m0 
will have the same rhythm as the measure n bars later (or 
earlier) can be computed (the prior-based-on-distance, or 
PrD). Similarly, the prior probability that, within a 
measure stack, part p will have the same rhythm as part q 
can also be computed (the prior-based-on-part, or PrP).  

Figure 1 shows these two priors for the violin I and viola 
parts of the first movement of Mozart K525 (Eine kleine 
Nachtmusik). Individual parts have their own characteris-
tic shapes; for instance, the melodic violin I (top left), 
shows less rhythmic similarity overall than the viola 
(bot. left). This difference results from the greater rhyth-
mic variety of the violin I part compared to the viola 
part. Moments of large-scale repetition such as between 
the exposition and recapitulation, however, are easily 
visible as spikes in the PrD graph for violin I. (Possible 
refinements to the model taking into account localized 
similarities are given at the end of this paper.) The PrP 
graphs (right) show that both parts are more similar to 
the violoncello part than to any other part. However, the 
viola is more similar to the cello (and to violin II) that 
violin I is to any other part.  

  

  
Figure 1. Priors based on distance (l. in measure separa-
tion) and part (r.) for the violin I (top) and viola (bot.) 
parts in Mozart, K525. 

3. PRIOR PROBABILITIES OF CHANGE 

3.1 Individual Change Probabilities 

The probability that any given musical glyph will be read 
correctly or incorrectly is dependent on the quality of 
scan, the quality of original print, the OMR engine used, 
and the type of repertory. One possible generalization 
used in the literature [8] is to classify errors as class con-
fusion (e.g., rest for note, with probability of occurring c), 
omissions (e.g., of whole symbols or of dots, tuplet 
marks: probability o), additions (a), and general value 
confusion (e.g., quarter for eighth: v). Other errors, such 
as sharp for natural or tie for slur, do not affect rhythmic 
accuracy. Although accuracy would be improved by 

computing these values independently for each OMR sys-
tem and quality of scan, such work is beyond the scope of 
the current paper. Therefore, we use Rossant and Bloch’s 
recognition rates, adjusting them for the differences be-
tween working with individual symbols (such as dots and 
note stems) and symbolic objects (such as dotted-eighth 
and quarter notes). The values used in this model are 
thus: c = .003, o = .009, a = .004, v = .016.1 As will be-
come clear, more accurate measures would only improve 
the results given below. Subtracting these probabilities 
from 1.0, the rate of equality, e, is .968.  

3.2 Aggregate Change Distances 

The similarity of two measures can be calculated in a 
number of different ways, including the earth mover dis-
tance, the Hamming distance, and the minimum Le-
venshtein or edit distance. The nature of the change prob-
abilities obtained from Rossant and Bloch along with the 
inherent difficulties of finding the one-to-one corre-
spondence of input and output objects required for other 
methods, made Levenshtein distance the most feasible 
method. The probability that certain changes would occur 
in a given originally scanned measure (source, S) to trans-
form it into the OMR output measure (destination, D) is 
determined by finding, through an implementation of edit 
distance, values for i, j, k, l, and m (for number of class 
changes, omissions, additions, value changes, and un-
changed elements) that maximize: 

 pS, D = c i � o j � a k � v l � e m   (1) 

Equation (1), the prior-based-on-changes or PrC, can be 
used to derive a probability of rhythmic change due to 
OMR errors between any two arbitrary measures, but the 
model employed here concerns itself with measures with 
incorrect rhythms, or flagged measures. 

3.3 Flagged Measures 

Let FPi be the set of flagged measures for part Pi, that is, 
measures whose total durations do not correspond to the 
total duration implied by the currently active time signa-
ture, and F = {FP1, …, FPj} for a score with j parts. (Meas-
ure stacks where each measure number is in F can be re-
moved as probable pickup or otherwise intended incom-
plete measures, and long stretches of measures in F in all 
parts can be attributed to incorrectly identified time sig-
natures and reevaluated, though neither of these refine-
ments is used in this model). It is possible for rhythms 
within a measure to be incorrectly recognized without the 
entire measure being in F; though this problem only aris-
es in the rare case where two rhythmic errors cancel out 
each other (as in a dotted quarter read as a quarter with an 
eighth read as a quarter in the same measure). 

                                                             
1 Rossant and Bloch give probabilities of change given that an error has 
occurred. The numbers given here are renormalizations of those error 
rates after removing the prior probability that an error has taken place.  
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4. INTEGRATING THE PRIORS 

For each m � FPi, the measure n in part Pi with the high-
est likelihood of representing the prototype source rhythm 
before OMR errors were introduced is the source measure 
SD that maximizes the product of the prior-based-on-
distance, that is, the horizontal model, and the prior-
based-on-changes:  

SD = argmax(PrDn � PrCn) � n � F.  (2) 

(In the highly unlikely case of equal probabilities, a sin-
gle measure is chosen arbitrarily) Similarly, for each m in 
FP the measure t in the measure stack corresponding to m, 
with the highest likelihood of being the source rhythm for 
m, is the source measure SP that maximizes the product of 
the prior-based-on-part, that is, the vertical model, and 
the prior-based-on-changes: 

SP = argmax(PrPt  ��PrCt) � t � F.  (3) 

Since the two priors PrD and PrP have not been normal-
ized in any way, the best match from SD and SP can be 
obtained by simply taking the maximum of the two: 

 S = argmax(P(m)) � m in [SD, SP]  (4) 

Given the assumption that the time signature and barlines 
have accurately been obtained and that each measure 
originally contained notes and rests whose total durations 
matched the underlying meter, we do not need to be con-
cerned with whether S is a “better” solution for correcting 
m than the rhythms currently in m, since the probability 
of a flagged measure being correct is zero. Thus any solu-
tion has a higher likelihood of being correct than what 
was already there. (Real-world implementations, howev-
er, may wish to place a lower bound on P(S) to avoid 
substitutions that are below a minimum threshold to pre-
vent errors being added that would be harder to fix than 
the original.) 

5. EXAMPLE 

In this example from Mozart K525, mvmt. 1, measure 
stack 17, measures in both Violin I and Violin II have 
been flagged as containing rhythmic errors (marked in 
purple in Figure 2).  

Both the OMR software and our implementation of the 
method, described below, can identify the violin lines as 
containing rhythmic errors, but neither can know that an 
added dot in each part has caused the error. The vertical 
model (PrP * PrC) will look to the viola and cello parts 
for corrections to the violin parts. Violin II and viola 
share five rhythms (e5) and only one omission of a dot is 
required to transform the viola rhythm into violin II (o1), 
for a PrC of 0.0076. The prior on similarities between vi-
olin II and viola (PrP) is 0.57, so the complete probability 
of this transformation is 0.0043. The prior on similarities 
between violin II and cello is slightly higher, 0.64, but the 

prior based on changes is much smaller (4 � 10-9). Violin I 
is not considered as a source since its measure has also 
been flagged as incorrect. Therefore the viola’s measure 
is used for SP. 

A similar search is done for the other (unflagged) 
measures in the rest of the violin II part in order to find 
SD. In this case, the probability of SP exceeds that of SD, 
so the viola measure’s rhythm is, correctly, used for vio-
lin II.  

6. IMPLEMENTATION 

The model developed above was implemented using con-
version and score manipulation routines from the open-
source Python-based toolkit, music21 [4] and has been 
contributed back to the toolkit as the omr.correctors 
module in v.1.9 and above. Example 1 demonstrates a 
round-trip in MusicXML of a raw OMR score to a post-
processed score. 

from music21 import * 
s = converter.parse('/tmp/k525omrIn.xml') 
sc = omr.correctors.ScoreCorrector(s) 
s2 = sc.run() 
s2.write('xml', fp='/tmp/k525post.xml') 
Example 1. Python/music21 code for correcting OMR 
errors in Mozart K525, I. 

Figure 3, below, shows the types of errors that the model 
is able, and in some cases unable, to correct. 

7. RESULTS 

Nine scores of four-movement quartets by Mozart (5),1 
Haydn (1), and Beethoven (4) were used for the primary 
evaluation. (Mozart K525, mvmt. 1 was used as a test 
score for development and testing but not for evaluation.) 
Scanned scores came from out-of-copyright editions 
(mainly Breitkopf & Härtel) via IMSLP and were con-
verted to MusicXML using SmartScore X2 Pro 
(v.10.5.5). Ground truth encodings in MuseData and Mu-
sicXML formats came via the music21 corpus originally 
from the Stanford’s CCARH repertories [6] and Project 
Gutenberg.  

                                                             
1 Mozart K156 is a three-movement quartet, however, both the ground 
truth and the OMR versions include the abandoned first version of the 
Adagio as a fourth movement. 

   
Figure 2. Mozart, K525 I, in OMR (l.) and scanned (r.) 
versions. 
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The pre-processed OMR movement was aligned with the 
ground truth by finding the minimum edit distance be-
tween measure hashes. This step was necessary for the 
many cases where the OMR version contained a different 
number of measures than the ground truth. The number of 
differences between the two versions of the same move-
ment was recorded. A total of 29,728 measures with 
7,196 flagged measures were examined. Flag rates ranged 
from 0.6% to 79.2% with a weighed mean of 24.2% and 
median of 21.7%. 

The model was then run on each OMR movement and the 
number of differences with the ground truth was recorded 
again. (In order to make the outputted score useful for 
performers and researchers, we added a simple algorithm 
to preserve as much pitch information as possible from 
the original measure.) From 2.1% to 36.1% of flagged 
measures were successfully corrected, with a weighed 
mean of 18.8% and median of 18.0%: a substantial im-
provement over the original OMR output.  

Manually checking the pre- and post-processed OMR 
scores against the ground truth showed that the highest 
rates of differences came from scores where single-pitch 
repetitions (tremolos) were spelled out in one source and 
written in abbreviated form in another; such differences 
could be corrected for in future versions. There was no 
significant correlation between the percentage of 
measures originally flagged and the correction rate (r = 
.17, p > .31). 

The model was also run on two scores outside the classi-
cal string quartet repertory to test its further relevance. 
On a fourteenth-century vocal work (transcribed into 
modern notation), Gloria: Clemens Deus artifex and the 
first movement of Schubert’s “Unfinished” symphony, 
the results were similar to the previous findings (16.8% 
and 18.7% error reduction, respectively). 

The proportion of suggestions taken from the horizontal 
(PrD) and vertical models (PrP) depended significantly 
on the number of parts in the piece. In Mozart K525 quar-
tet, 72% of the suggestions came from the horizontal 
model while for the Schubert symphony (fourteen parts), 
only 39% came from the horizontal model.  

8. APPLICATIONS 

The model has broad applications for improving the accu-
racy of scores already converted via OMR, but it would 
have greater impact as an element of an improved user 
experience within existing software. Used to its full po-
tential, the model could help systems provide suggestions 
as users examine flagged measures. Even a small scale 
implementation could greatly improve the lengthy error-
correcting process that currently must take place before a 
score is useable. See Figure 4 for an example interface. 

 
Figure 4. A sample interface improvement using the 
model described. 

A similar model to the one proposed here could also be 
integrated into OMR software to offer suggestions for 
pitch corrections if the user selects a measure that was not 
flagged for rhythmic errors. Integration within OMR 
software would also potentially give the model access to 

 

 
 
 
 
 
Figure 3: Comparison of Mozart K525 I, mm. 
35–39 in the original scan (top), SmartScore 
OMR output (middle), and after post-OMR 
processing (bot.). Flags 1–3 were corrected 
successfully; Flags 4 and 5 result in metrically 
plausible but incorrect emendations. The mod-
el was able to preserve the correct pitches for 
Flags 2 (added quarter rest) and Flag 3 (added 
augmentation dot). Flag 1 (omitted eighth 
note) is considered correct in this evaluation, 
based solely on rhythm, even though the pitch 
of the reconstructed eighth note is not correct. 
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rejected interpretations for measures that may become 
more plausible when rhythmic similarity within a piece is 
taken into account.  

The model could be expanded to take into account spatial 
separation between glyphs as part of the probabilities. 
Simple extensions such as ignoring measures that are 
likely pickups or correcting wrong time signatures and 
missed barlines (resulting in double-length measures) 
have already been mentioned. Autocorrelation matrices, 
which would identify repeating sections such as recapitu-
lations and rondo returns, would improve the prior-based-
on-distance metric. Although the model runs quickly on 
small scores (in far less than the time to run OMR despite 
the implementation being written in an interpreted lan-
guage), on larger scores the O(len(F) � len(Part)) com-
plexity of the horizontal model could become a problem 
(though correction of the lengthy Schubert score took less 
than ten minutes on an i7 MacBook Air). Because the 
prior-based-on-distance tends to fall off quickly, examin-
ing only a fixed-sized window worth of measures around 
each flagged measure would offer substantial speed-ups. 

Longer scores and scores with more parts offered more 
possibilities for high-probability correcting measures. 
Thus we encourage the creators of OMR competitions 
and standard OMR test examples [3] to include entire 
scores taken from standard repertories in their evaluation 
sets.  

The potential of post-OMR processing based on musical 
knowledge is still largely untapped. Models of tonal be-
havior could identify transposing instruments and thus 
create better linkages between staves across systems that 
vary in the number of parts displayed. Misidentifications 
of time signatures, clefs, ties, and dynamics could also be 
reduced through comparison across parts and with similar 
sections in scores. While more powerful algorithms for 
graphical recognition will always be necessary, substan-
tial improvements can be made quickly with the selective 
deployment of musical knowledge.  
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ABSTRACT

Electroencephalography (EEG) recordings of rhythm percep-

tion might contain enough information to distinguish different

rhythm types/genres or even identify the rhythms themselves.

In this paper, we present first classification results using deep

learning techniques on EEG data recorded within a rhythm

perception study in Kigali, Rwanda. We tested 13 adults,

mean age 21, who performed three behavioral tasks using

rhythmic tone sequences derived from either East African

or Western music. For the EEG testing, 24 rhythms – half

East African and half Western with identical tempo and based

on a 2-bar 12/8 scheme – were each repeated for 32 sec-

onds. During presentation, the participants’ brain waves were

recorded via 14 EEG channels. We applied stacked denois-

ing autoencoders and convolutional neural networks on the

collected data to distinguish African and Western rhythms on

a group and individual participant level. Furthermore, we in-

vestigated how far these techniques can be used to recognize

the individual rhythms.

1. INTRODUCTION

Musical rhythm occurs in all human societies and is related to

many phenomena, such as the perception of a regular empha-

sis (i.e., beat), and the impulse to move one’s body. However,

the brain mechanisms underlying musical rhythm are not

fully understood. Moreover, musical rhythm is a universal

human phenomenon, but differs between human cultures, and

the influence of culture on the processing of rhythm in the

brain is uncharacterized.

In order to study the influence of culture on rhythm pro-

cessing, we recruited participants in East Africa and Canada

to test their ability to perceive and produce rhythms derived

from East African and Western music. Besides behavioral

tasks, which have already been discussed in [4], the East

African participants also underwent electroencephalography

(EEG) recording while listening to East African and Western

musical rhythms thus enabling us to study the neural mech-

anisms underlying rhythm perception. We were interested

in differences between neuronal entrainment to the periodic-

ities in East African versus Western rhythms for participants

from those respective cultures. Entrainment was defined as

c© Sebastian Stober, Daniel J. Cameron and Jessica A. Grahn.

Licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: Sebastian Stober, Daniel J. Cameron and Jessica

A. Grahn. “Classifying EEG Recordings of Rhythm Perception”, 15th

International Society for Music Information Retrieval Conference, 2014.

the magnitudes of steady state evoked potentials (SSEPs) at

frequencies related to the metrical structure of rhythms. A

similar approach has been used previously to study entrain-

ment to rhythms [17,18].

But it is also possible to look at the collected EEG data

from an information retrieval perspective by asking questions

like How well can we tell from the EEG whether a participant
listened to an East African or Western rhythm? or Can we
even say from a few seconds of EEG data which rhythm some-
body listened to? Note that answering such question does

not necessarily require an understanding of the underlying

processes. Hence, we have attempted to let a machine figure

out how best to represent and classify the EEG recordings

employing recently developed deep learning techniques. In

the following, we will review related work in Section 2, de-

scribe the data acquisition and pre-processing in Section 3

present our experimental findings in Section 4, and discuss

further steps in Section 5.

2. RELATED WORK

Previous research demonstrates that culture influences per-

ception of the metrical structure (the temporal structure of

strong and weak positions in rhythms) of musical rhythms

in infants [20] and in adults [16]. However, few studies have

investigated differences in brain responses underlying the cul-

tural influence on rhythm perception. One study found that

participants performed better on a recall task for culturally fa-

miliar compared to unfamiliar music, yet found no influence

of cultural familiarity on neural activations while listening to

the music while undergoing functional magnetic resonance

imaging (fMRI) [15].

Many studies have used EEG and magnoencephalogra-

phy (MEG) to investigate brain responses to auditory rhythms.

Oscillatory neural activity in the gamma (20-60 Hz) frequency

band is sensitive to accented tones in a rhythmic sequence and

anticipates isochronous tones [19]. Oscillations in the beta

(20-30 Hz) band increase in anticipation of strong tones in a

non-isochronous sequence [5,6,10]. Another approach has

measured the magnitude of SSEPs (reflecting neural oscilla-

tions entrained to the stimulus) while listening to rhythmic

sequences [17,18]. Here, enhancement of SSEPs was found

for frequencies related to the metrical structure of the rhythm

(e.g., the frequency of the beat).

In contrast to these studies investigating the oscillatory ac-

tivity in the brain, other studies have used EEG to investigate

event-related potentials (ERPs) in responses to tones occur-

ring in rhythmic sequences. This approach has been used to

show distinct sensitivity to perturbations of the rhythmic pat-
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tern vs. the metrical structure in rhythmic sequences [7], and

to suggest that similar responses persist even when attention

is diverted away from the rhythmic stimulus [12].

In the field of music information retrieval (MIR), retrieval

based on brain wave recordings is still a very young and un-

explored domain. So far, research has mainly focused on

emotion recognition from EEG recordings (e.g., [3,14]). For

rhythms, however, Vlek et al. [23] already showed that imag-

ined auditory accents can be recognized from EEG. They

asked ten subjects to listen to and later imagine three sim-

ple metric patterns of two, three and four beats on top of a

steady metronome click. Using logistic regression to clas-

sify accented versus unaccented beats, they obtained an av-

erage single-trial accuracy of 70% for perception and 61%

for imagery. These results are very encouraging to further

investigate the possibilities for retrieving information about

the perceived rhythm from EEG recordings.

In the field of deep learning, there has been a recent in-

crease of works involving music data. However, MIR is

still largely under-represented here. To our knowledge, no

prior work has been published yet on using deep learning

to analyze EEG recordings related to music perception and

cognition. However, there are some first attempts to process

EEG recordings with deep learning techniques.

Wulsin et al. [24] used deep belief nets (DBNs) to de-

tect anomalies related to epilepsy in EEG recordings of 11

subjects by classifying individual “channel-seconds”, i.e., one-

second chunks from a single EEG channel without further

information from other channels or about prior values. Their

classifier was first pre-trained layer by layer as an autoencoder

on unlabelled data, followed by a supervised fine-tuning with

backpropagation on a much smaller labeled data set. They

found that working on raw, unprocessed data (sampled at

256Hz) led to a classification accuracy comparable to hand-

crafted features.

Langkvist et al. [13] similarly employed DBNs combined

with a hidden Markov model (HMM) to classify different

sleep stages. Their data for 25 subjects comprises EEG as

well as recordings of eye movements and skeletal muscle ac-

tivity. Again, the data was segmented into one-second chunks.

Here, a DBN on raw data showed a classification accuracy

close to one using 28 hand-selected features.

3. DATA ACQUISITION & PRE-PROCESSING

3.1 Stimuli

African rhythm stimuli were derived from recordings of tra-

ditional East African music [1]. The author (DC) composed

the Western rhythmic stimuli. Rhythms were presented as

sequences of sine tones that were 100ms in duration with in-

tensity ramped up/down over the first/final 50ms and a pitch

of either 375 or 500 Hz. All rhythms had a temporal structure

of 12 equal units, in which each unit could contain a sound

or not. For each rhythmic stimulus, two individual rhythmic

sequences were overlaid – each at a different pitch. For each

cultural type of rhythm, there were 2 groups of 3 individual

rhythms for which rhythms could be overlaid with the others

in their group. Because an individual rhythm could be one

Table 1. Rhythmic sequences in groups of three that pairings

were based on. All ‘x’s denote onsets. Larger, bold ‘X’s

denote the beginning of a 12 unit cycle (downbeat).

Western Rhythms

1 X x x x x x x x X x x x x x x x

2 X x x x x x X x x x x x

3 X x x x x x x x x X x x x x x x x x

4 X x x x x x x X x x x x x x

5 X x x x x x x X x x x x x x

6 X x x x x x x x x X x x x x x x x x

East African Rhythms

1 X x x x x x x x x x X x x x x x x x x x

2 X x x x x x X x x x

3 X x x x X x x x

4 X x x x x x x x x X x x x x x x x x

5 X x x x x x x x X x x x x x x x

6 X x x x x x x X x x x x x x

of two pitches/sounds, this made for a total of 12 rhythmic

stimuli from each culture, each used for all tasks. Further-

more, rhythmic stimuli could be one of two tempi: having a

minimum inter-onset interval of 180 or 240ms.

3.2 Study Description

Sixteen East African participants were recruited in Kigali,

Rwanda (3 female, mean age: 23 years, mean musical train-

ing: 3.4 years, mean dance training: 2.5 years). Thirteen of

these participated in the EEG portion of the study as well as

the behavioral portion. All participants were over the age of

18, had normal hearing, and had spent the majority of their

lives in East Africa. They all gave informed consent prior to

participating and were compensated for their participation, as

per approval by the ethics boards at the Centre Hospitalier

Universitaire de Kigali and the University of Western Ontario.

After completion of the behavioral tasks, electrodes were

placed on the participant’s scalp. They were instructed to

sit with eyes closed and without moving for the duration of

the recording, and to maintain their attention on the auditory

stimuli. All rhythms were repeated for 32 seconds, presented

in counterbalanced blocks (all East African rhythms then all

Western rhythms, or vice versa), and with randomized order

within blocks. All 12 rhythms of each type were presented

– all at the same tempo (fast tempo for subjects 1–3 and 7–9,

and slow tempo for the others). Each rhythm was preceded

by 4 seconds of silence. EEG was recorded via a portable

Grass EEG system using 14 channels at a sampling rate of

400Hz and impedances were kept below 10kΩ.

3.3 Data Pre-Processing

EEG recordings are usually very noisy. They contain artifacts

caused by muscle activity such as eye blinking as well as pos-

sible drifts in the impedance of the individual electrodes over

the course of a recording. Furthermore, the recording equip-

ment is very sensitive and easily picks up interferences from

the surroundings. For instance, in this experiment, the power

supply dominated the frequency band around 50Hz. All these

issues have led to the common practice to invest a lot of effort
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into pre-processing EEG data, often even manually rejecting

single frames or channels. In contrast to this, we decided to

put only little manual work into cleaning the data and just re-

moved obviously bad channels, thus leaving the main work to

the deep learning techniques. After bad channel removal, 12

channels remained for subjects 1–5 and 13 for subjects 6–13.

We followed the common practice in machine learning to

partition the data into training, validation (or model selec-

tion) and test sets. To this end, we split each 32s-long trial

recording into three non-overlapping pieces. The first four

seconds were used for the validation dataset. The rationale

behind this was that we expected that the participants would

need a few seconds in the beginning of each trial to get used

to the new rhythm. Thus, the data would be less suited for

training but might still be good enough to estimate the model

accuracy on unseen data. The next 24 seconds were used for

training and the remaining four seconds for testing.

The data was finally converted into the input format re-

quired by the neural networks to be learned. 1 If the network

just took the raw EEG data, each waveform was normalized

to a maximum amplitude of 1 and then split into equally sized

frames matching the size of the network’s input layer. No win-

dowing function was applied and the frames overlapped by

75% of their length. If the network was designed to process

the frequency spectrum, the processing involved:

1. computing the short-time Fourier transform (STFT) with

given window length of 64 samples and 75% overlap,

2. computing the log amplitude,

3. scaling linearly to a maximum of 1 (per sequence),

4. (optionally) cutting of all frequency bins above the number

requested by the network,

5. splitting the data into frames matching the network’s input

dimensionality with a given hop size of 5 to control the

overlap.

Here, the number of retained frequency bins and the input

length were considered as hyper-parameters.

4. EXPERIMENTS & FINDINGS

All experiments were implemented using Theano [2] and

pylearn2 [8]. 2 The computations were run on a dedicated

12-core workstation with two Nvidia graphics cards – a Tesla

C2075 and a Quadro 2000.

As the first retrieval task, we focused on recognizing whe-

ther a participant had listened to an East African or Western

rhythm (Section 4.1). This binary classification task is most

likely much easier than the second task – trying to predict

one out of 24 rhythms (Section 4.2). Unfortunately, due to

the block design of the study, it was not possible to train a

classifier for the tempo. Trying to do so would yield a clas-

sifier that “cheated” by just recognizing the inter-individual

differences because every participant only listened to stimuli

of the same tempo.

1 Most of the processing was implemented through the librosa library
available at https://github.com/bmcfee/librosa/.

2 The code to run the experiments is publicly available as supplemen-
tary material of this paper at http://dx.doi.org/10.6084/m9.
figshare.1108287

As the classes were perfectly balanced for both tasks, we

chose the accuracy, i.e., the percentage of correctly classified

instances, as evaluation measure. Accuracy can be measured

on several levels. The network predicts a class label for

each input frame. Each frame is a segment from the time

sequence of a single EEG channel. Finally, for each trial,

several channels were recorded. Hence, it is natural to also

measure accuracy also at the sequence (i.e, channel) and trial

level. There are many ways to aggregate frame label predic-

tions into a prediction for a channel or a trial. We tested the

following three ways to compute a score for each class:

• plain: sum of all 0-or-1 outputs per class

• fuzzy: sum of all raw output activations per class

• probabilistic: sum of log output activations per class

While the latter approach which gathers the log likelihoods

from all frames worked best for a softmax output layer, it

usually performed worse than the fuzzy approach for the

DLSVM output layer with its hinge loss (see below). The

plain approach worked best when the frame accuracy was

close to the chance level for the binary classification task.

Hence, we chose the plain aggregation scheme whenever the

frame accuracy was below 52% on the validation set and

otherwise the fuzzy approach.

We expected significant inter-individual differences and

therefore made learning good individual models for the partic-

ipants our priority. We then tested configuration that worked

well for individuals on three groups – all participants as well

as one group for each tempo, containing 6 and 7 subjects

respectively.

4.1 Classification into African and Western Rhythms

4.1.1 Multi-Layer Perceptron with Pre-Trained Layers

Motivated by the existing deep learning approaches for EEG

data (cf. Section 2), we choose to pre-train a MLP as an

autoencoder for individual channel-seconds – or similar fixed-

length chunks – drawn from all subjects. In particular, we

trained a stacked denoising autoencoder (SDA) as proposed

in [22] where each individual input was set to 0 with a cor-
ruption probability of 0.2.

We tested several structural configurations, varying the

input sample rate (400Hz or down-sampled to 100Hz), the

number of layers, and the number of neurons in each layer.

The quality of the different models was measured as the

mean squared reconstruction error (MSRE). Table 2 gives

an overview of the reconstruction quality for selected con-

figurations. All SDAs were trained with tied weights, i.e.,

the weight matrix of each decoder layer equals the transpose

of the respective encoder layer’s weight matrix. Each layer

was trained with stochastic gradient descent (SGD) on mini-

batches of 100 examples for a maximum of 100 epochs with

an initial learning rate of 0.05 and exponential decay.

In order to turn a pre-trained SDA into a multilayer percep-

tron (MLP) for classification, we replaced the decoder part

of the SDA with a DLSVM layer as proposed in [21]. 3 This

special kind of output layer for classification uses the hinge

3 We used the experimental implementation for pylearn2 provided by Kyle
Kastner at https://github.com/kastnerkyle/pylearn2/
blob/svm_layer/pylearn2/models/mlp.py
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Table 2. MSRE and classification accuracy for selected SDA (top, A-F) and CNN (bottom, G-I) configurations.

neural network configuration MSRE MLP Classification Accuracy (for frames, channels and trials) in %

id (sample rate, input format, hidden layer sizes) train test indiv. subjects fast (1–3, 7–9) slow (4–6, 10–13) all (1–13)

A 100Hz, 100 samples, 50-25-10 (SDA for subject 2) 4.35 4.17 61.1 65.5 72.4 58.7 60.6 61.1 53.7 56.0 59.5 53.5 56.6 60.3

B 100Hz, 100 samples, 50-25-10 3.19 3.07 58.1 62.0 66.7 58.1 60.7 61.1 53.5 57.7 57.1 52.1 53.5 54.5

C 100Hz, 100 samples, 50-25 1.00 0.96 61.7 65.9 71.2 58.6 62.3 63.2 54.4 56.4 57.1 53.4 54.8 56.4

D 400Hz, 100 samples, 50-25-10 0.54 0.53 51.7 58.9 62.2 50.3 50.6 50.0 50.0 51.8 51.2 50.1 50.2 50.0

E 400Hz, 100 samples, 50-25 0.36 0.34 60.8 65.9 71.8 56.3 58.6 66.0 52.0 55.0 56.0 49.9 50.1 56.1

F 400Hz, 80 samples, 50-25-10 0.33 0.32 52.0 59.9 62.5 52.3 53.9 54.9 50.5 53.5 55.4 50.2 51.0 50.3

G 100Hz, 100 samples, 2 conv. layers 62.0 63.9 67.6 57.1 57.9 59.7 49.9 50.2 50.0 51.7 52.8 52.9

H 100Hz, 200 samples, 2 conv. layers 64.0 64.8 67.9 58.2 58.5 61.1 49.5 49.6 50.6 50.9 50.2 50.6

I 400Hz, 1s freq. spectrum (33 bins), 2 conv. layers 69.5 70.8 74.7 58.1 58.0 59.0 53.8 54.5 53.0 53.7 53.9 52.6

J 400Hz, 2s freq. spectrum (33 bins), 2 conv. layers 72.2 72.6 77.6 57.6 57.5 60.4 52.9 52.9 54.8 53.1 53.5 52.3

Figure 1. Boxplot of the frame-level accuracy for each indi-

vidual subject aggregated over all configurations. 5

loss as cost function and replaces the commonly applied soft-

max. We observed much smoother learning curves and a

slightly increased accuracy when using this cost function for

optimization together with rectification as non-linearity in

the hidden layers. For training, we used SGD with dropout

regularization [9] and momentum, a high initial learning rate

of 0.1 and exponential decay over each epoch. After train-

ing for 100 epochs on minibatches of size 100, we selected

the network that maximized the accuracy on the validation

dataset. We found that the dropout regularization worked

really well and largely avoided over-fitting to the training

data. In some cases, even a better performance on the test

data could be observed. The obtained mean accuracies for

the selected SDA configurations are also shown in Table 2

for MLPs trained for individual subjects as well as for the

three groups. As Figure 1 illustrates, there were significant

individual differences between the subjects. Whilst learning

good classifiers appeared to be easy for subject 9, it was much

harder for subjects 5 and 13. As expected, the performance

for the groups was inferior. Best results were obtained for

the “fast” group, which comprised only 6 subjects including

2 and 9 who were amongst the easiest to classify.

We found that two factors had a strong impact on the

MSRE: the amount of (lossy) compression through the au-

toencoder’s bottleneck and the amount of information the

5 Boxes show the 25th to 75th percentiles with a mark for the median
within, whiskers span to furthest values within the 1.5 interquartile range,
remaining outliers are shown as crossbars.

network processes at a time. Configurations A, B and D had

the highest compression ratio (10:1). C and E lacked the third

autoencoder layer and thus only compressed at 4:1 and with a

lower resulting MSRE. F had exactly twice the compression

ratio as C and E. While the difference in the MSRE was

remarkable between F and C, it was much less so between

F and E – and even compared to D. This could be explained

by the four times higher sample rate of D–F. Whilst A–E

processed the same amount of samples at a time, the input for

A–C contained much more information as they were looking

at 1s of the signal in contrast to only 250ms. Judging from the

MSRE, the longer time span appears to be harder to compress.

This makes sense as EEG usually contains most information

in the lower frequencies and higher sampling rates do not nec-

essarily mean more content. Furthermore, with growing size

of the input frames, the variety of observable signal patterns

increases and they become harder to approximate. Figure 2

illustrates the difference between two reconstructions of the

same 4s raw EEG input segment using configurations B and

D. In this specific example, the MSRE for B is ten times as

high compared to D and the loss of detail in the reconstruc-

tion is clearly visible. However, D can only see 250ms of the

signal at a time whereas B processes one channel-second.

Configuration A had the highest MSRE as it was only

trained on data from subject 2 but needed to process all other

subjects as well. Very surprisingly, the respective MLP pro-

duced much better predictions than B, which had identical

structure. It is not clear what caused this effect. One ex-

planation could be that the data from subject 2 was cleaner

than for other participants as it also led to one amongst the

best individual classification accuracies. 6 This could have

led to more suitable features learned by the SDA. In general,

the two-hidden-layer models worked better than the three-

hidden-layer ones. Possibly, the compression caused by the

third hidden layer was just too much. Apart from this, it

was hard to make out a clear “winner” between A, C and E.

There seemed to be a trade-off between the accuracy of the

reconstruction (by choosing a smaller window size and/or

higher sampling rate) and learning more suitable features

6 Most of the model/learning parameters were selected by training just
on subject 2.
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Figure 2. Input (blue) and its reconstruction (red) for the same 4s sequence from the test data. The background color indicates

the squared sample error. Top: Configuration B (100Hz) with MSRE 6.43. Bottom: Configuration D (400Hz) with MSRE 0.64.

(The bottom signals shows more higher-frequency information due to the four-times higher sampling rate.)

Table 3. Structural parameters of the CNN configurations.

input convolutional layer 1 convolutional layer 2

id dim. shape patterns pool stride shape patterns pool stride

G 100x1 15x1 10 7 1 70x1 10 7 1

H 200x1 25x1 10 7 1 151x1 10 7 1

I 22x33 1x33 20 5 1 9x1 10 5 1

J 47x33 1x33 20 5 1 9x1 10 5 1

for recognizing the rhythm type at a larger time scale. This

led us to try a different approach using convolutional neural

networks (CNNs) as, e.g., described in [11].

4.1.2 Convolutional Neural Network

We decided on a general layout consisting of two convolu-

tional layers where the first layer was supposed to pick up

beat-related patterns while the second would learn to recog-

nize higher-level structures. Again, a DLSVM layer was used

for the output and the rectifier non-linearity in the hidden

layers. The structural parameters are listed in Table 3. As

pooling operation, the maximum was applied. Configurations

G and H processed the same raw input as A–F whereas I and

J took the frequency spectrum as input (using all 33 bins).

All networks were trained for 20 epochs using SGD with a

momentum of 0.5 and an exponential decaying learning rate

initialized at 0.1.

The obtained accuracy values are listed in Table 2 (bottom).

Whilst G and H produced results comparable to A–F, the

spectrum-based CNNs, I and J, clearly outperformed all other

configurations for the individual subjects. For all but sub-

jects 5 and 11, they showed the highest frame-level accuracy

(c.f. Figure 1). For subjects 2, 9 and 12, the trial classification

accuracy was even higher than 90% (not shown).

4.1.3 Cross-Trial Classification

In order to rule out the possibility that the classifiers just

recognized the individual trials – and not the rhythms – by

coincidental idiosyncrasies and artifacts unrelated to rhythm

perception, we additionally conducted a cross-trial classifica-

tion experiment. Here, we only considered all subjects with

frame-level accuracies above 80% in the earlier experiments

– i.e., subjects 2, 9 and 12. We formed 144 rhythm pairs by

combining each East African with each Western rhythm from

the fast stimuli (for subjects 2 and 9) and the slow ones (for

subject 12) respectively. For each pair, we trained a classi-

fier with configuration J using all but the two rhythms of the

pair. 7 Due to the amount of computation required, we trained

only for 3 epochs each. With the learned classifiers, the mean

frame-level accuracy over all 144 rhythm pairs was 82.6%,

84.5% and 79.3% for subject 2, 9 and 12 respectively. These

value were only slightly below those shown in Figure 1, which

we considered very remarkable after only 3 training epochs.

4.2 Identifying Individual Rhythms

Recognizing the correct rhythm amongst 24 candidates was

a much harder task than the previous one – especially as all

candidates had the same meter and tempo. The chance level

for 24 evenly balanced classes was only 4.17%. We used

again configuration J as our best known solution so far and

trained an individual classifier for each subject. As Figure 3

shows, the accuracy on the 2s input frames was at least twice

the chance level. Considering that these results were obtained

without any parameter tuning, there is probably still much

room for improvements. Especially, similarities amongst the

stimuli should be considered as well.

5. CONCLUSIONS AND OUTLOOK

We obtained encouraging first results for classifying chunks of

1-2s recorded from a single EEG channel into East African or

Western rhythms using convolutional neural networks (CNNs)

and multilayer perceptrons (MLPs) pre-trained as stacked

denoising autoencoders (SDAs). As it turned out, some con-

figurations of the SDA (D and F) were especially suited to

recognize unwanted artifacts like spikes in the waveforms

through the reconstruction error. This could be elaborated in

the future to automatically discard bad segments during pre-

processing. Further, the classification accuracy for individual

rhythms was significantly above chance level and encourages

more research in this direction. As this has been an initial and

by no means exhaustive exploration of the model- and lean-

ing parameter space, there seems to be a lot more potential –

especially in CNNs processing the frequency spectrum – and

7 Deviating from the description given in Section 3.3, we used the first
4s of each recording for validation and the remaining 28s for training as the
test set consisted of full 32s from separate recordings in this special case.
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subject 1 2 3 4 5 6 7 8 9 10 11 12 13 mean

accuracy 15.8% 9.9% 12.0% 21.4% 10.3% 13.9% 16.2% 11.0% 11.0% 10.3% 9.2% 17.4% 8.3% 12.8%

precision @3 31.5% 29.9% 26.5% 48.2% 28.3% 27.4% 41.2% 27.8% 28.5% 33.2% 24.7% 39.9% 20.7% 31.4%

mean reciprocal rank 0.31 0.27 0.27 0.42 0.26 0.28 0.36 0.27 0.28 0.30 0.25 0.36 0.23 0.30

Figure 3. Confusion matrix for all subjects (left) and per-subject performance (right) for predicting the rhythm (24 classes).

we will continue to look for better designs than those consid-

ered here. We are also planning to create publicly available

data sets and benchmarks to attract more attention to these

challenging tasks from the machine learning and information

retrieval communities.

As expected, individual differences were very high. For

some participants, we were able to obtain accuracies above

90%, but for others, it was already hard to reach even 60%.

We hope that by studying the models learned by the classi-

fiers, we may shed some light on the underlying processes

and gain more understanding on why these differences occur

and where they originate. Also, our results still come with a

grain of salt: We were able to rule out side effects on a trial

level by successfully replicating accuracies across trials. But

due to the study’s block design, there remains still the chance

that unwanted external factors interfered with one of the two

blocks while being absent during the other one. Here, the

analysis of the learned models could help to strengthen our

confidence in the results.

The study is currently being repeated with North America

participants and we are curious to see whether we can repli-

cate our findings. Furthermore, we want to extend our focus

by also considering more complex and richer stimuli such

as audio recordings of rhythms with realistic instrumentation

instead of artificial sine tones.
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nificantly grown over the years is clear. The addition and 
retirement of the tasks reflect the shift in interests in the 
field. 

1999 Music retrieval workshop at SIGIR proposed a range of 
evaluation scenarios 

2000 First ISMIR held at Plymouth with participants holding 
brainstorming sessions 

2001 ISMIR at Indiana University; “Bloomington Manifes-
to” on evaluation published 

2002 Planning grant from the Andrew W. Mellon Foundation 
awarded 

2002 ISMIR at Paris hosted special evaluation workshop 
2003 SIGIR at Toronto held Workshop on the Evaluation of 

Music Information Retrieval Systems 
2003 Andrew W. Mellon Foundation and NSF funding 

awarded 
2004 Audio Description Contest  run at ISMIR Barcelona 
2005 First MIREX plenary session held at ISMIR London 
2008 NEMA project funded by the Andrew W. Mellon  

Foundation 
2009 SALAMI funded by the NSF, SSHRC and JISC 
2012 MIREX:NG project funded by the Andrew W. Mellon 

Foundation 
Table 1. Important Events in MIREX History 

 Datasets Individuals Countries Runs 
2005 10 82 19 86 
2006 13 50 14 92 
2007 12 73 15 122 
2008 18 84 19 169 
2009 26 138 15 289 
2010 31 152 21 331 
2011 32 156 16 296 
2012 35 109 20 302 
2013 37 116 29 310 

Table 2. Descriptive Statistics for MIREX 2005-2013 

Due to restrictive intellectual property issues surround-
ing music materials, the test data used in MIREX cannot 
be distributed to participants. This distinguishes the struc-
ture of MIREX from those of other major evaluation 
frameworks such as TREC. MIREX has been operated 
under an “algorithm-to-data” or “non-consumptive com-
putation” model: researchers submit their MIR algorithms 
to IMIRSEL which are then evaluated by IMIRSEL per-
sonnel and volunteers against the ground truth data host-
ed in IMIRSEL.  

Beyond the technical infrastructure, the communica-
tions infrastructure is also critical for MIREX as it is a 
community-driven endeavor. The MIREX wikis were set 
up for the community to collaboratively define the evalu-
ation tasks, metrics, and general rules in every spring, and 
to publish and archive results data for each task and asso-
ciated algorithms in every autumn. Besides being used by 
participants for preparing their mandatory presentations 
in the annual MIREX poster session in ISMIR, the 
MIREX results data also provide unique and valuable 
materials for publications in the field. In addition, the 
MIREX “EvalFest” mailing list is used for discussions 
about evaluation issues. To date, 531 people have sub-
scribed to EvalFest. IMIRSEL also creates task-specific 

mailing lists where researchers can have detailed discus-
sions about metrics, collections, and input/output formats.  

From its inception, MIREX has had a clear (and grow-
ing) impact on MIR research. Updating an earlier analysis 
of MIREX-related publications in [3], as of April 2014, 
314 MIREX extended abstracts and 1,070 publications 
based on MIREX trials and results can be found through 
Google Scholar (Table 4). These publications have re-
ceived a total of 18,239 citations (Table 5). We limited 
the analysis period to the seven years ending in 2011, as 
there is a considerable lag between the publication of a 
document and its appearance in Google Scholar (and then 
a similar lag before the paper can be cited). The growing 
number of Master’s and PhD dissertations building on 
MIREX results—and in many cases, participating in 
MIREX trials—is particularly significant; MIREX has 
clearly become a fundamental aspect of MIR research in-
frastructure. In addition to this impact on academic re-
search, 13 patents have explicitly referenced MIREX ex-
tended abstracts [4]. 

 ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11 
Tech. report 0 4 4 3 10 5 11 
Book chapter 0 2 1 2 8 9 20 
Dissertation 1 17 13 25 22 35 48 
Conference  12 46 68 88 127 144 137 
Journal article 1 15 27 21 29 50 65 
Total 14 84 113 139 196 243 281 

Table 4. Publication Types for MIREX-derived Papers 

To elicit further, less easily measured contributions of 
MIREX to the research community, interviews of 18 in-
fluential MIR researchers were conducted in the MIREX 
Next Generation project [10]. From these, four key con-
tributions were identified: 1) Benchmarking and evalua-
tion: MIREX was born from the recognition that the field 
could not progress unless MIR researchers could bench-
mark their work against each other’s; 2) Training and 
induction into MIR: Emerging researchers and graduate 
students gain hands-on experience with MIR research and 
development, and build a reputation with potential em-
ployers within both the music industry and academia; 3) 
Dissemination of new research: The annual MIREX tri-
als and subsequent MIREX session at ISMIR provide a 
natural focus for the research community, and allow re-
searchers to showcase their work to the MIR community 
at large; 4) Dissemination of data: MIREX has been an 
important venue for the community to access previous 
high-quality evaluation datasets created by MIREX team 
or donated by researchers.  

 MIREX  
extended abstracts 

MIREX-derived 
 publications 

Year No. citations mean med. No. citations mean med. 
2005 55 418 7.60 5 14 879 62.79 17.5 
2006 35 217 6.20 2 51 2656 31.62 13 
2007 32 403 12.60 4 113 1449 21.27 8 
2008 39 136 2.61 3 139 3560 26.61 8 
2009 48 144 3.00 0 196 2790 14.23 5 
2010 61 135 2.21 0 243 3093 12.73 6 
2011 44 63 1.43 1 281 2296 8.17 2 

Table 5. Overview of MIREX Citation Data, 2005-2011 
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TASK NAME 2005 2006 2007 2008 2009 2010 2011 2012 2013 
Audio Artist Identification 7  7 11      
Audio Beat Tracking  5  15(2) 22(2) 26(2) 24(2) 60(3) 54(3) 
Audio Chord Detection    11 18(2) 15 18 22(2) 36(3) 
Audio Classical Composer ID   7 8 30 27 16 15 14 
Audio Cover Song Identification  8 8  6(2) 6(2) 4(2)  2 
Audio Drum Detection 8         
Audio Genre Classification 15  7 26(2) 65(2) 48(2) 31(2) 31(2) 26(2) 
Audio Key Detection 7     5 8 6 3 
Audio Melody Extraction 10 10(2)  21(3) 12(6) 30(6) 60(6) 24(6) 24(6) 
Audio Mood Classification   9 13 33 36 17 20 23 
Audio Music Similarity  6 12  15 8 18 10 8 
Audio Onset Detection 9 13 17  12 18 8 10 11 
Audio Tag Classification    11 24(3) 26(2) 30(2) 18(2) 8(2) 
Audio Tempo Extraction 13 7    7 6 4 11 
Discovery of Repeated Themes & Sections         16 
Multiple Fundamental Frequency Estimation & Tracking   27(2) 28(2) 26(3) 23(3) 16(2) 16(2) 6(2) 
Query-by-Singing/Humming  23(2) 20(2) 16(2) 12(4) 20(4) 12(4) 24(4) 28(5) 
Query-by-Tapping    5 9(3) 6(3) 3(3) 6(3) 6(3) 
Real-time Audio to Score Alignment (a.k.a Score Following)   2  4  5 2 3 2 
Structural Segmentation     5 12(2) 12(2) 27(3) 26(3) 
Symbolic Genre Classification 5         
Symbolic Key Finding 5         
Symbolic Melodic Similarity 7 18(3) 8   13 11 6 6 
Total Number of Runs per Year 86 92 122 169 289 331 296 302 310 
Total Number of Runs (2005-2013) 1997 
Notes: 1) Superscript numbers represent the number of subtasks included. 2) Since 2009, the Audio Classical Composer ID task, Audio 

Genre Classification task, and Audio Mood Classification task have become subtasks of Train-Test Task. 

Table 3. MIREX Tasks and the Number of Runs 

3. CHALLENGES 

3.1 Sustainability of Current Administration Model 
The current model for administrating the evaluations is 
costly and unsustainable. Since its inception, all MIREX 
tasks have required manual execution of submitted algo-
rithms. As algorithms are written in different languages 
and require a range of executing environments, running 
one algorithm takes about 5 hours of focused attention on 
average, including but not limited to the time spent on 
communicating with participants, debugging algorithms, 
reconfiguring input/output interfaces and execution envi-
ronment, etc. More often than not, algorithms may have 
to be updated by participants and tested by IMIRSEL for 
multiple rounds before they can be executed correctly. 
Besides the algorithms, some tasks require ground truth 
data in every iteration of MIREX (e.g., similarity tasks, 
further discussed in Section 3.4), which takes a signifi-
cant amount of time to build. To meet all these demands, 
IMIRSEL has been relying on a small number of graduate 
students fully devoted to running MIREX in each fall. 
Nonetheless, participants sometimes still have to wait for 
a long time to receive evaluation results.   

To mitigate the problem, the Networked Environment 
for Music Analysis (NEMA) project was established to 
“construct a web-service framework that would make 
MIREX evaluation tasks, test collections, and automated 
evaluation scripts available to the community on a yearly 
basis” (p.113, the so-called “Do-It-Yourself” model) [6]. 
However, due to the large variety of execution environ-
ments of algorithms, the built framework has not been 
widely adopted in the MIR community, except for the 

automated evaluation package in the NEMA framework 
which has been used in recent iterations of MIREX to au-
tomate the evaluation of tasks such as Train-test and Au-
dio Tag Classification. This has greatly improved the ef-
ficiency of MIREX and productivity of IMIRSEL per-
sonnel, but such procedures still require manual input of 
raw results produced by the algorithms. The sustainability 
of MIREX calls for new technology and structures that 
can streamline the entire process of data/algorithm ingest, 
evaluation code generation/modification, and results post-
ing, so that the evaluations can not only be effective, but 
also efficient, robust, and scalable. 

3.2 Financial Sustainability Challenges 
The fact that MIREX has been providing significant val-
ue to the MIR community is clearly evident. However, 
IMIRSEL has effectively offered MIREX as a free ser-
vice to the community. This model is unsustainable; in 
January 2015, the current Mellon funding concludes, 
leaving MIREX with no financial support for the first 
time in its history. A back-of-the envelope calculation 
using the amount of grant funding ($3,100,000) divided 
by number of runs (1997) gives an estimate of the cost 
per run of $1,552. Cost estimates per participant (960 to-
tal) come in at $3,229. These rough numbers illustrate the 
general magnitude of the funding challenge MIREX is 
facing.   

3.3 Knowledge Management and Transfer 
Over the past decade, the leading task organizers of 
MIREX have left IMIRSEL, including Dr. Andreas Eh-
mann (now at Pandora.com) and Dr. Mert Bay—both in-
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strumental in creating MIREX processes and techniques. 
Considerable time and energy are being expended in re-
constructing past practices to help new IMIRSEL mem-
bers and new task organizers complete their assigned du-
ties. MIREX needs more effective mechanisms to man-
age corporate memory so as to successfully transfer 
knowledge to new lab members and external volunteers. 
Notwithstanding recent efforts to more thoroughly docu-
ment MIREX technologies and procedures, more work 
needs to be done to support hands-on training sessions for 
all who manage and run MIREX tasks.  

3.4 Ground Truth Data Shortage 
The lack of ground truth data is one of the primary obsta-
cles facing the field of MIR. There is a strong demand for 
large, high-quality ground truth datasets for various eval-
uation tasks. However, generating any kind of user data is 
expensive. Crowdsourcing has been suggested as a possi-
ble solution by a number of MIR researchers (e.g., 
[12][16]). Although previous studies have shown that the 
user evaluation results collected by crowdsourcing and 
from music experts in the conventional MIREX frame-
work are comparable, the issues of representativeness and 
noise in data still exist.  

In order to generate the ground truth data, human eval-
uators must listen to sample music pieces and manually 
input their responses. The task must be carried out by in-
dividuals who have had a baseline level of training, mak-
ing the data even more expensive to collect. Currently, 
most ground truth data is generated within academic in-
stitutions through the use of graduate and undergraduate 
student labor. Funding opportunities for generating 
ground truth data are limited, and the fact that audio data 
is often not transferrable between multiple researchers or 
labs due to copyright restrictions further complicates da-
taset creation. 

There are a variety of sources for ground truth data, 
some released by MIREX, and also by other researchers 
in an ad hoc fashion. However, academic scholars as well 
as researchers in industry have difficulty identifying and 
obtaining relevant datasets. Currently, there is no organi-
zation or lab that is taking the role of creating, maintain-
ing, and sharing ground truth data. In other IR domains, 
there are central organizations that fulfill at least part of 
this responsibility to support evaluations [10]. For exam-
ple, ground truth data in TREC is created and/or managed 
by National Institute of Standards and Technology 
(NIST) and is released after each evaluation [7]. In the 
field of speech recognition, the Linguistic Data Consorti-
um (LDC) creates ground truth datasets that can be pur-
chased for use by individual labs [10]. This cycle of re-
freshed data allows the research community to conduct 
high-quality evaluation. As this has not been the case for 
MIREX, the same ground truth data must sometimes be 
used for multiple years. 

3.5 Intellectual Property Issues 
Another major problem facing the MIREX community is 
the lack of usable music data upon which to build realis-
tic test collections, due to intellectual property issues sur-
rounding music materials. The datasets used in MIREX 

are very limited in terms of size, variety, recency, and 
novelty. Moreover, the fact that datasets cannot be dis-
tributed after being used in MIREX effectively prevents 
researchers from replicating the evaluation and bench-
marking their newly developed algorithms on their own. 
To tackle this issue that has plagued MIR research since 
day one, the MIR community needs to work together to 
explore possible solutions such as negotiating with copy-
right holders collectively, using creative audio and/or 
music in the public domain, and running algorithms 
against multiple datasets hosted in different labs. The lat-
ter approach has been attempted by projects such as 
NEMA. However, none of the possibilities is straightfor-
ward and this battle is likely to exist for many years to 
come. 

3.6 System vs. User-centered Evaluations 
MIREX has followed the conventional, Cranfield IR sys-
tem-centered evaluation paradigm [2]. Recently, this 
evaluation approach has been criticized by multiple re-
searchers for excluding users from the evaluation process. 
To name a few, Hu and Liu [9], Hu and Kando [8], Lee 
[11], Schedl and Flexer [15], and Lee and Cunningham 
[13] all argued that the goal of MIR systems is to help 
users meet their music information needs, and thus MIR 
evaluation must take users into account. For instance, a 
number of MIR researchers have questioned the validity 
of system-centered evaluation on tasks that involve hu-
man judgments such as the similarity tasks [12], [15], 
[16]. Music similarity may be interpreted differently for 
different people, yet the variance across users is simply 
ignored in the current evaluation protocol. As noted by 
Lee and Cunningham [13], a result of system-centered 
evaluation “may not be effectively translated to some-
thing meaningful or practical for real users (p. 517).” 
They suggested introducing tasks that “seems closer to 
what would be useful for real users” such as playlist gen-
eration, known-item search, or personal music collection 
management.  

Notwithstanding the importance of traditional system-
centered tasks, some suggestions have been made to 
MIREX to bridge the gap between system-centered and 
user-centered evaluation (e.g., incorporating user context 
in test queries, use terms familiar to users, combine mul-
tiple tasks in [11][9]), although they are yet to be reflect-
ed in the MIREX tasks. As the field matures, in order to 
move forward, it is vital to explore user-centered and re-
alistic evaluation tasks.  

4. FUTURE DIRECTIONS 

4.1 Developing a User Experience Task 
In keeping with our desire to expand MIREX beyond its 
current system-centered paradigm, we are conducting the 
first user-centered grand challenge evaluation task. The 
“Grand Challenge ‘14 User Experience” (GC14UX)1 task 
is unlike any previous MIREX task. The GC14UX is di-
rectly inspired by the grand challenge idea proposed in 
Downie, Crawford and Byrd [5], which noted the persis-

                                                           
1 http://www.music-ir.org/mirex/wiki/2014:GC14UX 
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tent absence of complete MIR systems presented at 
ISMIR that could be released to the public for music 
searching and discovery. Thus, the GC14UX has two un-
derpinning goals: 1) to inspire the development of com-
plete MIR systems to be shared at ISMIR; and 2) to pro-
mote the notion of user experience as a first-class re-
search objective in the MIR community.  

The choice of “Grand Challenge” to describe our first 
UX task was made, in part, to signify that MIREX will be 
entering into uncharted evaluation territory. By finally 
undertaking a user-centered evaluation task, the GC14UX 
will require the MIREX team (and the MIR community) 
to come up with new evaluation methods and criteria that 
will be made manifest in ways significantly different 
from our now standard MIREX operation procedures. We 
argue that the current state of the art in conventional 
MIREX tasks is sufficient to support an acceptable de-
gree of efficiency and effectiveness for most of the now 
classic MIREX system-centered tasks. It is now time to 
look towards the more holistic user experience: subjective 
explorations of hedonic aspects of use such as satisfac-
tion, enjoyment, and stimulation. To that end, the MIREX 
team is proposing several radical departures from MIREX 
tradition that promise to better support the focus on the 
user experience. The most radical changes include: 1) no 
submission of algorithms to IMIRSEL; and 2) distribu-
tion of audio data to participants.  

To ensure that the GC14UX does not become a sys-
tem-centered evaluation in disguise, the process is de-
signed to remain as agnostic as possible concerning the 
technological means by which participating systems cre-
ate and deliver their experiences to the users. This delib-
erate indifference suggests that the GC14UX has no need 
to run or evaluate the underlying system code that deliv-
ers the content to the users. Since the GC14UX will not 
be evaluating the system-code per se, it makes sense that 
the GC14UX does not follow MIREX’s usual practice of 
running code on behalf of the submitters. There are obvi-
ous benefits to this non-submission approach, including 
greatly reduced system requirements and significantly 
reduced MIREX staff time requirements for debugging 
and administration.  

Dropping the usual algorithm-to-data procedures does, 
obviously, beg the question about data sources for the 
systems to use. All the usual copyright reasons why mu-
sic distribution is problematic for MIREX still apply and 
therefore we need data sources that are amenable to dis-
tribution. For the first running of GC14UX, the test col-
lection will be drawn from Creative Commons music. We 
believe that a set in the magnitude range of 10,000 songs 
would strike a nice balance between being non-trivial in 
size and breadth while not posing too great of a data 
management burden for participants. A common dataset 
helps mitigate against the possible user experience bias 
induced by the differential presence (or absence) of popu-
lar or known music within the participating systems.  

The GC14UX task is all about how users perceive 
their experiences with the systems. We intend to capture 
the user perceptions in a minimally intrusive manner un-
der as-realistic-as-possible use scenarios. To this end, all 

participating systems are required to be constructed as 
websites accessible to users through normal web brows-
ers. For user evaluation, we also do not want to burden 
the users/evaluators with too many questions or required 
data inputs. Our main goal is to determine whether each 
system was able to provide a satisfying user experience 
([14], [17]). Thus, a question asking about the level of 
overall satisfaction is posed to each user for each system. 
An option for open-ended responses is provided so as to 
capture the expressions of the users in their own words.  

There are many potential challenges that could prevent 
GC14UX from being the progenitor of future MIREX 
UX evaluations. For example, the utility and possible 
side-effects of using Creative Commons music as the 
common dataset have yet to be ascertained. Also, the ef-
fectiveness of the current GC14UX user inputs will most 
likely spark lively debate among MIR researchers after 
our first round of data is collected. Notwithstanding these 
known problems, as well as the challenges currently un-
known, we are eager to see GC14UX proceed and inspire 
new evaluations. It is well past time that MIREX act to 
create a real user-centered evaluation stream. If we allow 
perfection to be the enemy of the good, MIREX might 
never be able to launch a vibrant UX evaluation thread.  

4.2 Funding Models 
In order to continue providing benefits to the MIR com-
munity, MIREX must explore a range of funding options. 
In order to reduce the dependencies and burdens placed 
upon any one funding source, it is necessary to seek mul-
tiple sources of income. Some of the current possibilities 
include: 
� Lab Memberships: MIREX is exploring the possibil-

ity of setting up a lab membership system for labs that 
are active in MIR. Member labs would be represented 
on MIREX’s governing committee, and would have 
access to the new datasets that MIREX creates. 

� Sponsorship: MIREX would also like set up a spon-
sorship program for leaders in industry. A sponsor-
ship program would give companies a chance to sup-
port and/or discover interesting new MIR work by 
emerging researchers. Identification of recruiting op-
portunities is a valuable benefit that industry currently 
derives from MIREX (Section 2). 

� Institutional Support: The University of Illinois has 
provided significant in-kind support for MIREX in the 
past. MIREX seeks to extend this partnership into the 
future. However, budget shortfalls at the State level 
are diminishing the prospects of ongoing University 
support. 

� Data Creation and Curation: The MIREX team 
completed a collaborative project developing ground 
truth genre and mood data for, and funded by, Korea 
Electronics Technology Institute (KETI) in 2013. The 
data created is being folded into the MIREX task 
pool. The success of the KETI project, combined with 
the precedent set by the LDC (Section 3.4), inspires 
future data creation actions. In a similar line, we are 
exploring the possibility of providing fee-based data 
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curation and management services to those who have 
data sets that require long-term preservation.  

While it will need to seek more support from its partic-
ipants, MIREX recognizes the need to balance this with 
openness and accessibility. MIREX aims to remain open 
to any researcher who wants to participate, with a healthy 
funding mix making this goal more likely to be achieved.  

4.3 Distributed Management Model: Task Captains 
MIREX is pursuing a more decentralized model in order 
to reduce the strain on IMIRSEL and to more actively 
involve the entire MIR community in task creation, or-
ganization and delivery. Under this model, multiple labs 
can run particular tasks while IMIRSEL functions as a 
central organizer and algorithm submission point. This 
model was piloted in 2012 with Query-by-
Singing/Humming (QBSH) and Audio Melody Extrac-
tion (AME) run by KETI. In MIREX 2013, Audio Beat 
Tracking (ABT), Audio Chord Estimation (ACE), Audio 
Key Detection (AKD), Audio Onset Detection (AOD), 
Audio Tempo Estimation (ATE), and Discovery of Re-
peated Themes & Sections (DRTS) were led by non-
IMIRSEL volunteer “Task Captains” who managed the 
tasks from start to finish. While shortcomings in MIREX 
documentation were evident, the Task Captain initiative 
was successful and will be developed further.  

5. CONCLUSIONS 

In this paper, we reflect on ten years of experience of 
MIREX. As the major community-based evaluation 
framework, MIREX has made unprecedented contribu-
tions to the MIR research field. However, MIREX also 
faces a number of significant challenges including finan-
cial sustainability, restrictions on data and intellectual 
property, and governance. Future directions of MIREX 
are proposed to meet these challenges. By moving to-
wards the evaluation of entire systems and emphasizing 
holistic user experience, MIREX will allow us to com-
pare and evaluate startups and experimental systems, as 
well as commercial MIR systems. We hope this paper 
will serve as a catalyst for the community to come to-
gether and seek answers to the question: what is the fu-
ture of MIREX? More importantly, we hope this paper 
will inspire MIR community members to actively engage 
in and contribute to the continuation of MIREX. MIREX 
has always been a community-driven endeavor; without 
the active leadership and involvement of MIR research-
ers, MIREX simply cannot exist.  
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