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ABSTRACT

This paper presents a model for predicting expressive
accentuation in piano performances with neural networks.
Using Restricted Boltzmann Machines (RBMs), features
are learned from performance data, after which these fea-
tures are used to predict performed loudness. During
feature learning, data describing more than 6000 musical
pieces is used; when training for prediction, two datasets
are used, both recorded on a Bösendorfer piano (accurately
measuring note on- and offset times and velocity values),
but describing different compositions performed by differ-
ent pianists. The resulting model is tested by predicting
note velocity for unseen performances. Our approach dif-
fers from earlier work in a number of ways: (1) an ad-
ditional input representation based on a local history of
velocity values is used, (2) the RBMs are trained to re-
sult in a network with sparse activations, (3) network con-
nectivity is increased by adding skip-connections, and (4)
more data is used for training. These modifications result
in a network performing better than the state-of-the-art on
the same data and more descriptive features, which can be
used for rendering performances, or for gaining insight into
which aspects of a musical piece influence its performance.

1. INTRODUCTION

Music is not performed exactly the way it is described in
score: a performance in which notes occur on a regular
temporal grid and all notes are played equally loud is often
considered dull. Depending on the instrument, perform-
ers have different parameters they use for modulating ex-
pression in their music [14]: time (timing, tempo), pitch,
loudness and timbre. For some of these parameters com-
posers add annotations to musical score describing how
they should be varied, but for a large part performers are
expected render the score according to tacit knowledge,
and personal judgment. This allows performers to imbue
on a performance their personal style, but this is not to say
that music performance is arbitrary—it is often clear which
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interpretations are (not) musically appropriate.
This article describes a number of modifications to the

method for modeling expressive dynamics proposed by
Grachten & Krebs [7], and is based on the MSc thesis
work described in [17]. We show that, with an additional
input representation and a different set-up of the machine
learning approach, we achieve a statistically significant im-
provement on the prediction accuracy achieved in [7], with
more descriptive features. Our achieved performance is
also comparable with the work in [8]. In the following sec-
tions we first summarize previous work in this area, fol-
lowed by an overview of the used machine learning archi-
tecture. We then describe the experiments, the results and
the relevance of the findings.

2. PREVIOUS WORK

Two important aspects of music that affect the way it is to
be performed are the musical structure, and the emotion
that the performance should convey [13]. The last decades
different methods for analyzing the structural properties of
a piece of music have been proposed (e.g. [12, 15]), where
the analysis tends to stress the relationship between struc-
ture on a local level (elements of pitch and rhythm) and
their effect on the melodic expectancy of a listener. Emo-
tional charge conveyed by a piece is more abstract and vari-
able: trained musicians can play the same piece conveying
different emotions, and in fact these emotions can be iden-
tified by listeners [5].

Because musical structure can be studied through in-
spection of the musical score, computational models of
musical expression tend to focus on this. A number of
different computational models of expression have been
developed earlier, studying different expressive parame-
ters (e.g. [1, 4]). Many models are rule-based, where the
rules describing how expression should be applied are of-
ten hand-designed. Other models still focus on rules, but
automatically extract them from performance data (e.g. [11,
18]). A performance model can also be based on the score
annotations for the relevant parameter provided by the com-
poser, as in [8] which uses information on note pitch, loud-
ness annotations and other hand-crafted features.

Some recent studies model regularities in musical se-
quences using unsupervised techniques [2, 16], in the con-
text of musical sequence prediction. Grachten & Krebs [7]
apply unsupervised learning techniques to learn features
from a simple input representation based on a piano roll
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representation of the symbolic score, in the context of pre-
dicting musical expression. The resulting learned features
then describe common patterns occurring in the input data,
which can be related to concepts from music theory and
used for prediction of expressive dynamics. By using a
simple input representation and network, the model re-
mains relatively transparent with regard to its inner work-
ings. It is shown that Restricted Boltzmann Machines
(RBMs) learn the most effective model, and in this paper,
we build on that approach.

An RBM is a type of artificial neural network, particu-
larly suitable for unsupervised learning from binary input
data. During training it learns a set of features that can ef-
ficiently encode the input data. The features are used to
transform the input data non-linearly, which can be useful
for further (supervised) learning. For a detailed explana-
tion of RBMs the reader is referred to for example [9, 10].

3. ARCHITECTURE

Figure 1 illustrates the setup of the network we use. As
input the network sees the music data in two different
representations: the score-based note-centered represen-
tation first developed by [7] and the new loudness-based
velocity-history representation. The input data is trans-
formed through a series of hidden unit activations (RBM
feature activations) in L1, L2 and L3. These feature ac-
tivations are then used to estimate the output (normalized
velocity). As is typical with neural networks, the model
is blind to the meaningful ordering of the input nodes (we
could change the ordering without affecting the results).

The set-up is different from that in [7] in a number of
ways: (1) an additional input representation based on a lo-
cal history of velocity values is used, (2) the RBMs are
trained for sparse activations, (3) network connectivity is
increased with skip-connections (i.e. w1 and w2 in Figure
1 can be used simultaneously), and (4) more data is used
for training. The following sections cover these changes in
more detail. First, we describe the data available for devel-
oping the model. We then describe the way these data are
presented to our model as input and output, and finally the
process of training and evaluating our model.

3.1 Available data

Data from a number of sources is used for the exper-
iments in this paper. We have score data, which de-
scribes musical score in a piano-roll fashion, and we have
performance data, based on recordings from a computer-
controlled Bösendorfer piano. For the performance data,
accurate note on- and offsets are available as well as ve-
locity values, and these values have been linked to corre-
sponding score data. For all available performance data,
score data is also available, the converse does not hold.

A number of (MIDI) score datasets is used: the
JSB Chorales, 1 some MuseScore pieces, 2 the Mutopia

1 www.jsbchorales.net
2 www.musescore.org
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Figure 1: The used architecture. The rounded squares
correspond to in- and outputs, the circles to layers of hid-
den units trained as Restricted Boltzmann Machines. w1

through w3 are the weights used to predict vt based on the
hidden unit activations in hidden layers L1 through L3.
w1 through w3 are determined with a least-squares fit.

database, 3 the Nottingham database, 4 the Piano-midi
archive 5 and the Voluntocracy dataset 6 . These datasets
are used during unsupervised learning with the note-
centered representation only. The performance datasets
we use have been developed at the Austrian Research In-
stitute for AI (OFAI). One dataset contains performance
data of all Chopin’s piano music played by Nikita Maga-
loff [3] (∼ 300.000 notes in 155 pieces), the other contains
all Mozart piano sonatas, performed by Roland Batik [18]
(∼ 100.000 notes in 128 pieces). These datasets have been
used both for unsupervised and supervised learning.

3.2 Note-centered representation

Score data is input into the network in one form in the
note-centered representation, which is based on a piano-
roll representation. For every note in a musical score, an
input sample is generated with this note in the center, as
illustrated in Figure 2b. The horizontal axis corresponds
to score time and covers a span of 3 beats before the onset
of the central note to 3 beats after the onset. Each beat is
further divided into 8 equal units of time (effectively each
column in the input corresponds to a 32nd note), and longer
notes are wider. The vertical axis corresponds to relative
pitch compared to the central note, and covers a span of
−55 to +55 semi-tones. To allow the representation to dis-
tinguish between separate notes of the same pitch played
consecutively, and a single long note at that pitch, note du-
rations are represented as their score duration minus 32nd

note duration (this was also done in [7]).
This approach is the same as the duration coding ap-

proach used in [7] with two exceptions: they experimented
with time-spans of 1, 2 and 4 beats (with very small dif-

3 www.mutopiaproject.org
4 www.chezfred.org.uk/University/music/

database.htm
5 www.piano-midi.de
6 www.voluntocracy.org

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

48



(a)
(b)

(c)

Figure 2: A short piece of score, and resulting network input for the note indicated by the arrow: (a) shows the score,
where the annotations should be interpreted as performed loudness, not as annotated loudness directives, (b) shows the
note-centered representation and (c) the velocity-history representation.

ferences in results between the 2 and 4 beats experiments),
and used a pitch range of −87 to +87 semi-tones (so that
always the entire piano keyboard is covered). In practice,
the large pitch range is likely unnecessary and only in-
creases the length of the network input vector (note com-
binations with such intervals are very rare and do not no-
ticeably affect the learned features).

This choice of representation makes our system insen-
sitive to absolute pitch: if all input notes are transposed by
a few semi-tones in the same direction, the generated in-
put samples will be identical. This also allows the system
to learn about harmony based on relative pitch: for exam-
ple certain chords will typically be represented in the same
way regardless of their root tone. No additional informa-
tion on absolute note pitch was included, to keep the model
simple.

3.3 Velocity-history representation

When analyzing expressive parameters in existing perfor-
mances, it is interesting to not only take into account direct
harmonic and rhythmic structure around a note as is done
with the note-centered representation, but also effects in
continuity of musical phrases: for example, in many cases
note loudness increases or decreases gradually over a num-
ber of notes. The precise accentuation of a note is than
affected by the accentuation of preceding notes.

Our velocity-history representation is designed to en-
code this kind of information. Figure 2c illustrates this rep-
resentation. Conceptually, it is similar to the note-centered
representation, with a few differences: the vertical axis
now represents relative velocity (normalized with respect
to the mean µ and standard deviation σ of the velocity in
a piece, where the range from µ − 2σ to µ + 2σ is quan-
tized into 12 discrete values), and the horizontal axis cor-
responds to the time preceding the current note (ranging
from note onset −3 beats to note onset +0).

The velocity-history representation uses information
from an actual performance during prediction. In a sense,
the system is asked to predict the continuation of a musical
phrase: given that the last notes were played in a certain
way, how will the next note be played? When using this
representation, experiments with our model aim to explain

how a note is performed in an existing performance, rather
than predict it for a new piece of bare score (an actual per-
formance needs to be available).

3.4 Velocity normalization

Since we use semi-supervised learning, at some point we
need target values accompanying our input representations.
We have exactly one sample for each note, and we are
studying dynamics, so the logical parameter to base these
target values on is note velocity. However, the different
pieces described in our data have fairly diverse character-
istics when it comes to dynamics. Some pieces are per-
formed louder on average, or have stronger variations in
dynamics. In this study we have chosen to focus on lo-
cal effects within a single piece, and not so much on dif-
ferences between pieces. For this reason we normalize
our velocity target values so they have zero-mean and unit
standard-deviation within a piece (we use these values both
for supervised learning and for generating the velocity-
history representation). This is slightly different from the
normalization used in [7], where normalization was only
used to obtain zero-mean within a piece.

3.5 Training and evaluation

The process of developing and testing the network can be
separated into three phases: unsupervised learning, super-
vised learning and performance evaluation. We will now
describe these in more detail.

3.5.1 Unsupervised learning

During unsupervised learning, we train only hidden layers
L1 through L3. The layers are trained as RBMs on the full
set of score data in the note-centered and velocity-history
representations, where L1 and L3 are trained on the input
representations directly, and L2 is trained on the feature
activations in L1.

In the note-centered representation samples consist of
5280 binary input values. L1 is trained with 512 hidden
units (ensuring a significant bottleneck in the network),
and L2 contains fewer hidden units again: 200 units. In
the velocity-history representation samples consist of 288
input values, these are encoded in 120 hidden units in L3.
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We enforce sparse coding in the network, using the
method proposed in [6], which allows us to not only con-
trol the average activation of hidden units in the network,
but also the actual distribution of activations: we can force
the RBM to represent each sample as a number of highly
active features, improving inspectability.

3.5.2 Supervised learning

For supervised learning we use a simple approach: given
the transformation of an input sample by L1 to L3, we
fit the hidden unit activations in these layers to the corre-
sponding vt (normalized velocity) values using least-squares.
Exploratory experiments suggested that more advanced tech-
niques do not yield much better results. Thus, w1 through
w3 simply define a linear transformation from the features
activations to a prediction of the normalized velocity.

3.5.3 Performance evaluation

To evaluate the performance of our model we use a leave-
one-out approach: we cycle through all the pieces in the
performance data, where every time a particular piece is
left out during supervised learning, after which the trained
network is used to predict the expressive dynamics of the
left-out piece. The quality of the prediction is then quan-
tified using the R2 measure (coefficient of determination).
As mentioned before, the full set of data is used during
unsupervised learning – because the objective function op-
timized during this phase has no relation to the velocity
targets, we believe that this is an acceptable approach. As
the final score after cycling through the whole dataset in
this fashion, we use the weighted average R2, where the
number of notes in a piece is used as its weight.

4. EXPERIMENTS

In our experiments we vary two parameters: network con-
nectivity, and training/testing datasets. Other experiments
were also done but are not described in this paper, for these
the interested reader is referred to [17].

4.1 Network connectivity

Different parts of our model describe information con-
cerning different aspects of the input data. The note-
centered representation corresponds to rhythmic and har-
monic structure of the score surrounding a note, while the
velocity-history representation relates more closely to ex-
pressive phrases. This distinction continues through the
layers of feature activations. To get an impression of how
strongly the expressive variation in velocity data corre-
sponds to these different aspects, we experimented with
the different layers in isolation and together. We will re-
fer to the network configurations by the layers that were
used during training and prediction, i.e. L1,2 means both of
the layers on top of the note-centered representation were
used, and L3 was not. Another way to see this would be
that w3 is constrained to be a matrix of only 0’s.

no vel. inf. with vel. inf.
L1 L1,2 L2 L3 L1,2,3

M.→M. .202 .207 .191 .315 .470
B.→ B. .366 .376 .357 .236 .532
B.→M. .132 .126 .125 .286 .386
M.→ B. .291 .295 .283 .209 .457
All→M. .198 .203 .186 .313 .466
All→ B. .341 .350 .329 .222 .503

Table 1: R̄2 scores obtained on the test data. X → Y
indicates the model was trained on X and tested on Y ,
where M. is the Magaloff and B. the Batik dataset. Experi-
ments with velocity information (vel. inf.) use the velocity-
history representation as input. We use the underlined re-
sult for comparison with previous work ( [7] and [8]).

4.2 Training datasets

Experimenting with different sets of training data is inter-
esting for several reasons. One is that from a musicological
perspective, the structure of music of different styles can be
quite different. As an extreme example, a system trained
on Jazz music would not be expected to reliably predict
performances of piano music by Bach. Another reason is
that we can use combinations of datasets to test the valid-
ity of our model: if a model trained on music from one set
of recordings, still performs well on another set of record-
ings, this can give us some confidence that our model has
learned something about music in a general sense, and not
just about the particular dataset.

As mentioned before, we use two datasets: one describ-
ing performances of Chopin music and the other Mozart
music. In all cases, during testing we kept the datasets
separate. However, we varied the set of data used for train-
ing: we trained on the same dataset as used for testing,
we trained on one dataset and tested on the other, and we
tested a model trained on all data.

5. RESULTS

Table 1 lists the results obtained with our model. The
model is more successful explaining the variance in the
Batik (Mozart) data than in the Magaloff (Chopin) data –
one possible explanation for this is that Chopin’s music
(from the Romantic period) has much more extreme varia-
tions in expression than Mozart’s music (from the Classical
period). It seems reasonable that a performance with more
dynamic variation is harder to predict.

When comparing the different architectures, most in-
formation used by our model is encoded in L1 and L3.
L2 has less predictive value than L1, and the score only
improves by a little bit when these two layers are used to-
gether (suggesting there is a large amount of overlap in
the information they encode). L3, which is based on the
velocity-history representation (which was not used in [7])
clearly contains a lot of information.

Interestingly, L3 contains most relevant information for
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Figure 3: Some hand-selected features from L1 that are representative for the types of patterns learned from the note-
centered representation (see Figure 2b). Dark values correspond to negative weights, light values to positive weights.

the Magaloff data, and L1 for the Batik data. This could be
due to the difference between music from the Romantic pe-
riod and that from the Classical period: L1 contains more
information about harmony, whereas L3 contains more in-
formation about the expressive ‘flow’ of the piece.

Training on a single dataset has a positive effect on
the prediction scores. This is likely due to the fact that
the datasets are of a different nature in terms of musical
style, and if we would want to predict performance param-
eters for a Mozart piece, training on Chopin music will
not provide our model with the relevant ‘know-how’. This
is also illustrated by the cross-training experiments, where
we trained on one dataset and tested on the other: a drop in
performance of around 0.08 in all cases is observed. Still,
also a relatively large amount of the predictive capability
remains, providing some confidence that our model gener-
alizes over different datasets to some extent.

Because the velocity-history representation requires de-
tailed performance data for predictions, we use the results
from our L1,2 experiments when comparing our results to
earlier work which does not use performance data. In [7]
the best obtained R̄2 score on the Magaloff data is .139,
using a single dense RBM layer with 1000 hidden units
(similar to our L1 model). Our L1,2 model achieved an
R̄2 of .207 on the same dataset. To keep statistical test-
ing simple, we tested the statistical significance of the dif-
ference in unweighted average R2 of our model and the
model in [7] using a Wilcoxon signed rank test. We chose
the Wilcoxon test because the underlying distribution of
theR2 data is unknown. We found that the unweighted av-
erage R2 of .199 of our L1,2 model is significantly differ-
ent from the unweighted average R2 of .121 of the model
in [7] (W = 11111, p < 2.2 · 10−16). In [8], the maximal
obtained prediction accuracy on the Magaloff dataset is an
R̄2 of .188. This model uses information our models have
no access to, most importantly dynamic score annotations.
Nevertheless, with an R̄2 of .207 our L1L2 model again
seems more successful even though it does not take such
annotations into account. 7 When we do use performance

7 To perform the statistical test, detailed results from [7] were kindly
provided by the authors. For the work in [8] these results were unfor-
tunately unavailable, meaning we could not perform the same statistical
analysis with this result.

data, the difference becomes more pronounced: our L1,2,3

model obtains an R̄2 of .470 on the Magaloff data.
Something interesting to mention here is that in [17] we

also experimented with limiting training data to a particu-
lar genre (i.e. training only on Nocturnes). These exper-
iments suggested that the velocity-history representation
encodes some genre-specific information, however due to
space constraints we do not cover these results further here.

6. DISCUSSION

We discuss two properties of our model: the features that
were learned from the musical data, and the performance
achieved during prediction. Figure 3 illustrates a number
of hand-selected features that have been learned from the
note-centered representation, which were chosen to give an
impression of the variety of learned features. Compared
to the features learned by [7], there is a larger variety of
features, where features represent sharper patterns.

6.1 Learned features

Figure 3 illustrates some of the learned features. The dis-
played features were selected so as to give the reader an
impression of the diversity of the learned features . From a
musicological perspective, it is interesting to see that there
seem to be some remarkable patterns relating the features
to music theory. The features learned from the velocity-
history representation are harder to interpret musicologi-
cally, these are not further discussed in this paper.

Figure 3a shows clear horizontal banding, where inter-
estingly the bands are exactly 12 rows apart – this corre-
sponds to octaves. The feature in some locations displays a
strong contrast between pitches one semi-tone apart, which
is related to dissonance.

A common pattern is illustrated in Figure 3b, with a
dark (inhibitive) band above or below a lighter region. This
type of feature is also described by Grachten & Krebs [7],
who argue this can be regarded as an accompaniment ver-
sus melody detector: the illustrated feature is strongly in-
hibited by notes in a sample that are below the central note,
meaning that the feature activates more readily for bass
notes. The opposite type of feature, with inhibitive regions
above and excitatory regions below the central note (not
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shown here), is active with a high probability for melody
notes, where surrounding notes have lower pitch.

Another common pattern is the vertical banding illus-
trated by Figure 3c. There is some variation in the offset
of the vertical bands from the edges (their phase) and how
close they are together (their period). These features can
convey information on the pace in the current part of the
piece (predominantly short or long notes) and the temporal
position of the note with respect to the beat.

A few features also display diagonal banding as illus-
trated by Figure 3d, although these are relatively rare.
Still, we hypothesize that with these our model can deduce
whether the central note is in an ascending or descending
sequence.

A final common pattern is that in Figure 3e, with a sharp
white band corresponding to a note at a certain relative
pitch and time from the central note. It seems reasonable
to suggest that these can be related to particular melodic
steps – changes from one note to another with a particular
relative pitch and timing.

6.2 Model performance

The performance of our model is an improvement com-
pared to earlier work, particularly when the goal is to ex-
plain the structure of an existing performance rather than
predict a performance for a new piece of score – in the
former situation the velocity-history representation can be
used to good effect. Still, when considering a purely pre-
dictive context (using no velocity information), an R2 of
around 0.2 leaves room for improvement. There is of course
a practical limit in terms of what score can be obtained:
even the same pianist might not play a piece in exactly the
same way on different occasions, meaning that anR2 close
to 1.0 cannot be expected. A factor that limits our model is
that it considers score structure at a local level only – struc-
ture at larger timescales is not considered, nor are loudness
annotations, which of course also convey a lot of infor-
mation about how loudly a particular piece of score is to
be played. These omissions are opportunities for further
work: including these components could improve perfor-
mance further, for example loudness annotations could be
included similarly to what was done in [8].

7. CONCLUSIONS

We showed that neural networks trained on relatively raw
representations of musical score and musical performances
can be used to predict expressive dynamics in piano per-
formances. This was done before in [7], but we changed
the learning architecture (using sparse RBMs and skip-
connections), and developed a new input representation,
resulting in better predictions and clearer features. We
also showed that our model generalizes well to datasets on
which it was not trained.
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