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ABSTRACT

In this paper, we present a comparative study of several

state-of-the-art F0 trackers applied to the context of query-

by-singing-humming (QBSH). This study has been carried

out using the well known, freely available, MIR-QBSH

dataset in different conditions of added pub-style noise and

smartphone-style distortion. For audio-to-MIDI melodic

matching, we have used two state-of-the-art systems and a

simple, easily reproducible baseline method. For the evalu-

ation, we measured the QBSH performance for 189 differ-

ent combinations of F0 tracker, noise/distortion conditions

and matcher. Additionally, the overall accuracy of the F0

transcriptions (as defined in MIREX) was also measured.

In the results, we found that F0 tracking overall accuracy

correlates with QBSH performance, but it does not totally

measure the suitability of a pitch vector for QBSH. In ad-

dition, we also found clear differences in robustness to F0

transcription errors between different matchers.

1. INTRODUCTION

Query-by-singing-humming (QBSH) is a music informa-

tion retrieval task where short hummed or sung audio clips

act as queries. Nowadays, several successful commercial

applications for QBSH have been released, such as Musi-

cRadar 1 or SoundHound 2 , and it is an active field of re-

search. Indeed, there is a task for QBSH in MIREX since

2006, and every year novel and relevant approaches can be

found.

Typically, QBSH approaches firstly extract the F0 con-

tour and/or a note-level transcription for a given vocal query,

and then a set of candidate melodies are retrieved from a

large database using a melodic matcher module. In the lit-

erature, many different approaches for matching in QBSH

can be found: statistical, note vs. note, frame vs. note,

frame vs. frame. Generally, state-of-the-art systems for

QBSH typically combines different approaches in order to

achieve more reliable results [3, 12].

1 www.doreso.com
2 www.soundhound.com
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However, even state-of-the-art systems for QBSH have

not a totally satisfactory performance in many real-world

cases [1], so there is still room for improvement. Nowa-

days, some challenges related to QBSH are [2]: reliable

pitch tracking in noisy environments, automatic song data-

base preparation (predominant melody extraction and tran-

scription), efficient search in very large music collections,

dealing with errors of intonation and rhythm in amateur

singers, etc.

In this paper, we analyse the performance of various

state-of-the-art F0 trackers for QBSH in different condi-

tions of background noise and smartphone-style distortion.

For this study, we have considered three different melodic

matchers: two state-of-the-art systems (one of which ob-

tained the best results in MIREX 2013), and a simple, eas-

ily reproducible baseline method based on frame-to-frame

matching using dynamic time warping (DTW). In Figure

1, we show a scheme of our study.
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Figure 1. Overall scheme of our study

This paper is organized as follows: Section 2 and Sec-

tion 3 present the studied algorithms for F0 tracking and

melodic matching, respectively. The evaluation strategy

is presented in Section 4. Section 5 presents the obtained

results and Section 6 draws some conclusions about the

present study.

2. F0 TRACKERS

In this section, we describe the F0 trackers considered in

our study, together with their specific set of parameters.

The literature reports a wide set of algorithms oriented to

either monophonic or polyphonic audio, so we have fo-

cused on well-known, commonly used algorithms (e.g. Yin

[4] or Praat-AC [8]), and some recently published algo-

rithms for F0 estimation (e.g. pYin [6] or MELODIA [15]).

Most of the algorithms analysed address F0 estimation in

monophonic audio, but we have also studied the perfor-

mance of MELODIA, which is a method for predominant

melody extraction in polyphonic audio, using monophonic

audio in noisy conditions. Regarding the used set of pa-

rameters, when possible, they have been adjusted by trial

and error using ten audio queries. The considered methods

for F0 tracking are the following ones:
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2.1 YIN

The Yin algorithm was developed by de Cheveigné and

Kawahara in 2002 [4]. It resembles the idea of the au-

tocorrelation method [5] but it uses the cumulative mean

normalized difference function, which peaks at the local

period with lower error rates than the traditional autocor-

relation function. In our study, we have used Matthias

Mauch’s VAMP plugin 3 in Sonic Annotator tool 4 .

Parameters used in YIN: step size = 80 samples (0.01

seconds), Block size = 512 samples, Yin threshold = 0.15.

2.2 pYIN

The pYin method has been published by Mauch in 2014

[6], and it basically adds a HMM-based F0 tracking stage

in order to find a “smooth” path through the fundamen-

tal frequency candidates obtained by Yin. Again, we have

used the original Matthias Mauch’s VAMP plugin 3 in Sonic

Annotator tool 4 .

Parameters used in PYIN: step size = 80 samples (0.01

seconds), Block size = 512 samples, Yin threshold distri-

bution = Beta (mean 0.15).

2.3 AC-DEFAULT and AC-ADJUSTED (Praat)

Praat is a well-known tool for speech analysis [7], which

includes several methods for F0 estimation. In our case,

we have chosen the algorithm created by P. Boersma in

1993 [8]. It is based on the autocorrelation method, but it

improves it by considering the effects of the window dur-

ing the analysis and by including a F0 tracking stage based

on dynamic programming. This method has 9 parameters

that can be adjusted to achieve a better performance for a

specific application. According to [9], this method signif-

icantly improves its performance when its parameters are

adapted to the input signal. Therefore, we have experi-

mented not only with the default set of parameters (AC-

DEFAULT), but also with an adjusted set of parameters in

order to limit octave jumps and false positives during the

voicing process (AC-ADJUSTED). In our case, we have

used the implementation included in the console Praat tool.

Parameters used in AC-DEFAULT: Time step = 0.01

seconds, Pitch floor = 75Hz, Max. number of candidates =

15, Very accurate = off, Silence threshold = 0.03, Voicing

threshold = 0.45, Octave cost = 0.01, Octave-jump cost =

0.35, Voiced / unvoiced cost = 0.15, Pitch ceiling = 600

Hz.

Parameters used in AC-ADJUSTED: Time step = 0.01

seconds, Pitch floor = 50Hz, Max. number of candidates =

15, Very accurate = off, Silence threshold = 0.03, Voicing

threshold = 0.45, Octave cost = 0.1, Octave-jump cost =

0.5, Voiced / unvoiced cost = 0.5, Pitch ceiling = 700 Hz.

2.4 AC-LEIWANG

In our study we have also included the exact F0 tracker

used in Lei Wang’s approach for QBSH [3], which ob-

tained the best results for most of the datasets in MIREX

2013. It is based on P. Boersma’s autocorrelation method

3 http://code.soundsoftware.ac.uk/projects/pyin
4 http://www.vamp-plugins.org/sonic-annotator/

[8], but it uses a finely tuned set of parameters and a post-

processing stage in order to mitigate spurious and octave

errors. This F0 tracker is used in the latest evolution of a

set of older methods [11, 12] also developed by Lei Wang

(an open source C++ implementation is available 5 ).

2.5 SWIPE’

The Swipe’ algorithm was published by A. Camacho in

2007 [10]. This algorithm estimates the pitch as the funda-

mental frequency of the sawtooth waveform whose spec-

trum best matches the spectrum of the input signal. The

algorithm proved to outperform other well-known F0 esti-

mation algorithms, and it is used in the F0 estimation stage

of some state-of-the-art query-by-humming systems [13].

In our study, we have used the original author’s Matlab

implementation 6 . The Matlab code does not provide a

voiced / unvoiced classification of frames, but it outputs

a strength vector S which has been used for it. Specifi-

cally, a frame is considered voiced if its strength is above

a threshold Sth, otherwise they are considered unvoiced.

Parameters used in SWIPE’: DT (hop-size) = 0.01 sec-

onds, pmin = 50 Hz, pmax = 700Hz, dlog2p = 1/48 (de-

fault), dERBs = 0.1 (default), woverlap = 0.5 (default),

voicing threshold Sth = 0.3.

2.6 MELODIA-MONO and MELODIA-POLY

MELODIA is a system for automatic melody extraction in

polyphonic music signals developed by Salamon in 2012

[15]. This system is based on the creation and character-

isation of pitch contours, which are time continuous se-

quences of pitch candidates grouped using auditory stream-

ing cues. Melodic and non-melodic contours are distin-

guished depending on the distributions of its characteris-

tics. The used implementation is MELODIA VAMP plu-

gin 7 in Sonic Annotator tool 4 . This plugin has two de-

fault sets of parameters, adapted to deal with monophonic

or polyphonic audio. We have experimented with both of

them, and therefore we have defined two methods: MELO-

DIA-MONO and MELODIA-POLY.

Parameters used in MELODIA-MONO: Program = Mono-

phonic, Min Frequency = 55Hz, Max Frequency = 700Hz,

Voicing Tolerance = 3,00, Monophonic Noise Filter = 0,00,

Audio block size = 372 (not configurable), Window incre-

ment = 23 (not configurable).

Parameters used in MELODIA-POLY: Program = Poly-

phonic, Min Frequency = 55Hz, Max Frequency = 700Hz,

Voicing Tolerance = 0,20, Monophonic Noise Filter = 0,00,

Audio block size = 372 (not configurable), Window incre-

ment = 23 (not configurable).

Note that the time-step in this case can not be directly

set to 0.01 seconds. Therefore, we have linearly interpo-

lated the pitch vector in order to scale it to a time-step of

0.01 seconds.

5 http://www.atic.uma.es/ismir2014qbsh/
6 http://www.cise.ufl.edu/ acamacho/publications/swipep.m
7 http://mtg.upf.edu/technologies/melodia
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3. AUDIO-TO-MIDI MELODIC MATCHERS

In this section, we describe the three considered methods

for audio-to-MIDI melodic matching: a simple baseline

(Section 3.1) and two state-of-the-art matchers (Sections

3.2 and 3.3).

3.1 Baseline approach

We have implemented a simple, freely available 5 base-

line approach based on dynamic time warping (DTW) for

melodic matching. Our method consists of four steps (a

scheme is shown in Figure 2):

(1) Model building: We extract one pitch vector Pk (in

MIDI number) for every target MIDI song k ∈ 1 . . .Nsongs

using a hop-size of 0.01 seconds. Then we replace un-

voiced frames (rests) in P
k by the pitch value of the pre-

vious note, except for the case of initial unvoiced frames,

which are directly removed (these processed pitch vectors

are labelled as P
∗k). Then, each pitch vector P∗k ∀k ∈

1 . . .Nsongs is truncated to generate 7 pitch vectors with

lengths [500, 600, 700, 800, 900, 1000, 1100] frames (cor-

responding to the first 5, 6, 7, 8, 9, 10 and 11 seconds

of the target MIDI song, which are reasonable durations

for an user query). We label these pitch vectors as P
∗k
5s ,

P
∗k
6s , . . .P∗k

11s. Finally, all these pitch vectors are resam-

pled (through linear interpolation) to a length of 50 points,

and then zero-mean normalized (for a common key trans-

position), leading to P
50∗k
Duration ∀Duration ∈ 5s . . . 11s and

∀k ∈ 1 . . .Nsongs. These vectors are then stored for later

usage. Note that this process must be done only once.

(2) Query pre-processing: The pitch vector P
Q of a

given .wav query is loaded (note that all pitch vectors are

computed with a hopsize equal to 0.01 seconds). Then, as

in step (1), unvoiced frames are replaced by the pitch value

of the previous note, except for the case of initial unvoiced

frames, which are directly removed. This processed vector

is then converted to MIDI numbers with 1 cent resolution,

and labelled as P
∗Q. Finally, P∗Q is resampled (using

linear interpolation) to a length L = 50 and zero-mean

normalized (for a common key transposition), leading to

P
50∗Q.

(3) DTW-based alignment: Now we find the optimal

alignment between P
50∗Q and all pitch vectors P

50∗k
Duration

∀Duration ∈ 5s . . .11s and ∀k ∈ 1 . . .Nsongs using dy-

namic time warping (DTW). In our case, each cost matrix

C
Duration,k is built using the squared difference:

CDuration,k(i, j) = (P 50∗Q(i)− P 50∗k
Duration(j))

2 (1)

Where k is the target song index, Duration represents the

truncation level (from 5s to 11s), and i, j are the time in-

dices of the query pitch vector P50∗Q and the target pitch

vector P
50∗k
Duration, respectively. The optimal path is now

found using Dan Ellis’ Matlab implementation for DTW

[16] (dpfast.m function), with the following allowed

steps and associated cost weights [∆i,∆j,W ]: [1, 1, 1],
[1, 0, 30], [0, 1, 30], [1, 2, 5], [2, 1, 5]. The allowed steps

and weights have been selected in order to penalize 0 or 90
angles in the optimal path (associated to unnatural align-

ments), and although they lead to acceptable results, they

may not be optimal.
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Figure 2. Scheme of the proposed baseline method for

audio-to-MIDI melody matching.

(4) Top-10 report: Once the P
50∗Q has been aligned

with all target pitch vectors (a total of 7 × Nsongs vectors,

since we use 7 different durations), the matched pitch vec-

tors are sorted according to their alignment total cost (this

value consists of the matrix D produced by dpfast.m

evaluated in the last position of the optimal path, Tcost =

D(p(end),q(end))). Finally, the 10 songs with mini-

mum cost are reported.

3.2 Music Radar’s approach

MusicRadar [3] is a state-of-the-art algorithm for melodic

matching, which participated in MIREX 2013 and obtained

the best accuracy in all datasets, except for the case of IOA-

CAS 8 . It is the latest evolution of a set of systems devel-

oped by Lei Wang since 2007 [11, 12]. The system takes

advantage of several matching methods to improve its ac-

curacy. First, Earth Mover’s Distance (EMD), which is

note-based and fast, is adopted to eliminate most unlikely

candidates. Then, Dynamic Time Warping (DTW), which

is frame-based and more accurate, is executed on these sur-

viving candidates. Finally, a weighted voting fusion strat-

egy is employed to find the optimal match. In our study,

we have used the exact melody matcher tested in MIREX

2013, provided by its original author.

3.3 NetEase’s approach

NetEase’s approach [13] is a state-of-the-art algorithm for

melodic matching, which participated in MIREX 2013 and

8 http://www.music-ir.org/mirex/wiki/2013:Query by -
Singing/Humming
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obtained the first position for IOACAS dataset 8 , as well

as relevant results in the rest of datasets. This algorithm

adopts a two-stage cascaded solution based on Locality

Sensitive Hashing (LSH) and accurate matching of frame-

level pitch sequence. Firstly, LSH is employed to quickly

filter out songs with low matching possibilities. In the sec-

ond stage, Dynamic Time Warping is applied to find the

N (set to 10) most matching songs from the candidate list.

Again, the original authors of NetEase’s approach (who

also authored some older works on query-by-humming [14])

collaborated in this study, so we have used the exact melody

matcher tested in MIREX 2013.

4. EVALUATION STRATEGY

In this section, we present the datasets used in our study

(Section 4.1), the way in which we have combined F0 track-

ers and melody matchers (Section 4.2) and the chosen eval-

uation measures (Section 4.3).

4.1 Datasets

We have used the public corpus MIR-QBSH 8 (used in

MIREX since 2005), which includes 4431 .wav queries

corresponding to 48 different MIDI songs. The audio que-

ries are 8 seconds length, and they are recorded in mono

8 bits, with a sample rate of 8kHz. In general, the au-

dio queries are monophonic with no background noise, al-

though some of them are slightly noisy and/or distorted.

This dataset also includes a manually corrected pitch vec-

tor for each .wav query. Although these annotations are

fairly reliable, they may not be totally correct, as stated in

MIR-QBSH documentation.

In addition, we have used the Audio Degradation Tool-

box [17] in order to recreate common environments where

a QBSH system could work. Specifically, we have com-

bined three levels of pub-style added background noise

(PubEnvironment1 sound) and smartphone-style dis-

tortion (smartPhoneRecording degradation), leading

to a total of seven evaluation datasets: (1) Original MIR-

QBSH corpus (2) 25 dB SNR (3) 25 dB SNR + smartphone

distortion (4) 15 dB SNR (5) 15 dB SNR + smartphone

distortion (6) 5 dB SNR (7) 5 dB SNR + smartphone dis-

tortion. Note that all these degradations have been checked

in order to ensure perceptually realistic environments.

Finally, in order to replicate MIREX conditions, we have

included 2000 extra MIDI songs (randomly taken from ES-

SEN collection 9 ) to the original collection of 48 MIDI

songs, leading to a songs collection of 2048 MIDI songs.

Note that, although these 2000 extra songs fit the style of

the original 48 songs, they do not correspond to any .wav

query of Jang’s dataset.

4.2 Combinations of F0 trackers and melody

matchers

For each of the 7 datasets, the 4431 .wav queries have

been transcribed using the 8 different F0 trackers men-

tioned in Section 2. Additionally, each dataset also in-

cludes the 4431 manually corrected pitch vectors of MIR-

QBSH as a reference, leading to a total of 7 datasets × (8

9 www.esac-data.org/

F0 trackers + 1 manual annotation) × 4431 queries = 63 ×

4431 queries = 279153 pitch vectors. Then, all these pitch

vectors have been used as input to the 3 different melody

matchers mentioned in Section 3, leading to 930510 lists

of top-10 matched songs. Finally, these results have been

used to compute a set of meaningful evaluation measures.

4.3 Evaluation measures

In this section, we present the evaluation measures used in

this study:

(1) Mean overall accuracy of F0 tracking (Accov):

For each pitch vector we have computed an evaluation mea-

sures defined in MIREX Audio Melody Extraction task:

overall accuracy (Accov) (a definition can be found in [15]).

The mean overall accuracy is then defined as Accov =
(1/N)

∑N

i=1
Accovi, where N is the total number of que-

ries considered and Accovi is the overall accuracy of the

pitch vector of the i:th query. We have selected this mea-

sure because it considers both voicing and pitch, which are

important aspects in QBSH. For this measure, our ground

truth consists of the manually corrected pitch vectors of

the .wav queries, which are included in the original MIR-

QBSH corpus.

(2) Mean Reciprocal Rank (MRR): This measure is

commonly used in MIREX Query By Singing Humming

task 8 , and it is defined as: MRR = (1/N)
∑N

i=1
r−1

i ,

where N is the total number of queries considered and ri
is the rank of the correct answer in the retrieved melodies

for i:th query.

5. RESULTS & DISCUSSION

In this section, we present the obtained results and some

relevant considerations about them.

5.1 Accov and MRR for each F0 tracker - Dataset -

Matcher

In Table 1, we show the Accov and the MRR obtained for

the whole dataset of 4431 .wav queries in each combina-

tion of F0 tracker-dataset-matcher (189 combinations in

total). Note that these results are directly comparable to

MIREX Query by Singing/Humming task 8 (Jang Dataset).

As expected, the manually corrected pitch vectors produce

the best MRR in most cases (the overall accuracy is 100%

because it has been taken as the ground truth for such mea-

sure). Note that, despite manual annotations are the same

in all datasets, NetEase and MusicRadar matchers do not

produce the exact same results in all cases. It is due to the

generation of the indexing model (used to reduced the time

search), which is not a totally deterministic process.

Regarding the relationship between Accov and MRR in

the rest of F0 trackers, we find a somehow contradictory

result: the best Accov does not always correspond with

the best MRR. This fact may be due to two different rea-

sons. On the one hand, the meaning of Accov may be dis-

torted due to annotation errors in the ground truth (as men-

tioned in Section 4.1), or to eventual intonation errors in

the dataset. However, the manual annotations produce the

best MRR, what suggests that the amount of these types
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F0 Clean 25dB SNR 25 dB SNR 15dB SNR 15 dB SNR 5dB SNR 5 dB SNR

tracker dataset + distortion + distortion + distortion

(A) 100 / 0.82 / 0.89 / 0.96 100 / 0.82 / 0.89 / 0.96 100 / 0.82 / 0.89 / 0.95 100 / 0.82 / 0.89 / 0.96 100 / 0.82 / 0.89 / 0.96 100 / 0.82 / 0.89 / 0.96 100 / 0.82 / 0.88 / 0.95

(B) 89 / 0.80 / 0.89 / 0.96 89 / 0.80 / 0.89 / 0.96 88 / 0.80 / 0.88 / 0.95 88 / 0.79 / 0.88 / 0.94 84 / 0.71 / 0.86 / 0.94 78 / 0.50 / 0.73 / 0.85 67 / 0.33 / 0.57 / 0.73

(C) 90 / 0.74 / 0.85 / 0.94 90 / 0.71 / 0.85 / 0.92 86 / 0.72 / 0.84 / 0.92 89 / 0.71 / 0.84 / 0.92 85 / 0.66 / 0.81 / 0.89 72 / 0.49 / 0.58 / 0.70 64 / 0.26 / 0.39 / 0.51

(D) 90 / 0.71 / 0.83 / 0.92 90 / 0.74 / 0.85 / 0.93 85 / 0.74 / 0.85 / 0.94 90 / 0.78 / 0.87 / 0.94 85 / 0.77 / 0.87 / 0.94 79 / 0.69 / 0.79 / 0.87 72 / 0.58 / 0.69 / 0.81

(E) 89 / 0.71 / 0.83 / 0.92 89 / 0.71 / 0.84 / 0.92 84 / 0.66 / 0.80 / 0.91 88 / 0.72 / 0.84 / 0.93 83 / 0.65 / 0.80 / 0.91 75 / 0.67 / 0.67 / 0.82 66 / 0.48 / 0.53 / 0.73

(F) 86 / 0.62 / 0.81 / 0.89 86 / 0.70 / 0.83 / 0.92 81 / 0.64 / 0.78 / 0.89 82 / 0.60 / 0.77 / 0.88 75 / 0.50 / 0.67 / 0.82 48 / 0.03 / 0.08 / 0.04 44 / 0.04 / 0.04 / 0.03

(G) 88 / 0.56 / 0.81 / 0.88 87 / 0.47 / 0.79 / 0.86 83 / 0.47 / 0.76 / 0.85 86 / 0.39 / 0.78 / 0.87 81 / 0.35 / 0.73 / 0.82 70 / 0.11 / 0.32 / 0.52 63 / 0.04 / 0.20 / 0.38

(H) 87 / 0.66 / 0.83 / 0.87 87 / 0.67 / 0.82 / 0.87 83 / 0.64 / 0.78 / 0.84 86 / 0.66 / 0.81 / 0.84 82 / 0.58 / 0.74 / 0.80 83 / 0.51 / 0.73 / 0.75 73 / 0.32 / 0.55 / 0.62

(I) 84 / 0.62 / 0.76 / 0.86 84 / 0.62 / 0.76 / 0.86 79 / 0.50 / 0.64 / 0.74 84 / 0.63 / 0.76 / 0.86 79 / 0.50 / 0.65 / 0.75 83 / 0.60 / 0.73 / 0.83 75 / 0.39 / 0.55 / 0.65

Table 1: F0 overall accuracy and MRR obtained for each case. F0 trackers: (A) MANUALLY CORRECTED (B) AC-

LEIWANG (C) AC-ADJUSTED (D) PYIN (E) SWIPE’ (F) YIN (G) AC-DEFAULT (H) MELODIA-MONO (I) MELODIA-

POLY. The format of each cell is: Accov(%) / MRR-baseline / MRR-NetEase / MRR-MusicRadar.

of errors are low. On the other hand, the measure Accov

itself may not be totally representative of the suitability of

a pitch vector for QBSH. Indeed, after analysing specific

cases, we observed that two pitch vectors with same F0

tracking accuracy (according to MIREX measures) may

not be equally suitable for query-by-humming. For in-

stance, we analysed the results produced by the baseline

matcher using two different pitch vectors (Figure 3) with

exactly the same evaluation measures in MIREX Audio

Melody Extraction task: vocing recall = 99.63%, voic-

ing false-alarm = 48.40%, raw pitch accuracy= 97.41%,

raw-chroma accuracy = 97.41% and overall accuracy =

82.91%. However, we found that pitch vector (a) matches

the right song with rank ri = 1 whereas pitch vector (b)

does not matches the right song at all (ri ≥ 11). The rea-

son is that MIREX evaluation measures do not take into

account the pitch values of false positives, but in fact they

are important for QBSH. Therefore, we conclude that the

high MRR achieved by some F0 trackers (AC-LEIWANG

when background noise is low, and PYIN for highly de-

graded signals), is not only due to the amount of errors

made by them, but also to the type of such errors.

Additionally, we observed that, in most cases, the que-

ries are matched either with rank ri = 1 or ri ≥ 11 (inter-

mediate cases such as rank ri = 2 or ri = 3 are less fre-

quent). Therefore, the variance of ranks is generally high,

their distribution is not Gaussian.

5.2 MRR vs. Accov for each matcher

In order to study the robustness of each melodic matcher to

F0 tracking errors, we have represented the MRR obtained

by each one for different ranges of Accov (Figure 4). For

this experiment, we have selected only the .wav queries

which produce the right answer in first rank for the three

matchers considered (baseline, Music Radar and NetEase)

when manually corrected pitch vectors are used (around a

70% of the dataset matches this condition). In this way, we

ensure that bad singing or a wrong manual annotation is

not affecting the variations of MRR in the plots. Note that,

in this case, the results are not directly comparable to the

ones computed in MIREX (in contrast to the results shown

in Section 5.1).
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Figure 3. According to MIREX measures, these two pitch

vectors (manually manipulated) are equally accurate; how-

ever, they are not equally suitable for QBSH.

Regarding the obtained results (shown in Figure 4), we

observe clear differences in the robustness to F0 estima-

tion errors between matchers, which is coherent with the

results presented in Table 1. The main difference is found

in the baseline matcher with respect to both NetEase and

Music Radar. Given that the baseline matcher only uses

DTW, whereas the other two matchers use a combination

of various searching methods (see Sections 3.2 and 3.3),

we hypothesise that such combination may improve their

robustness to F0 tracking errors. However, further research

is needed to really test this hypothesis.

6. CONCLUSIONS

In this paper, eight different state-of-the-art F0 trackers

were evaluated for the specific application of query-by-

humming-singing in different conditions of pub-style added

noise and smartphone-style distortion. This study was car-

ried out using three different matching methods: a simple,

freely available baseline (a detailed description has been

provided in Section 3.1) and two state-of-the-art match-

ers. In our results, we found that Boersma’s AC method

[8], with an appropriate adjustment and a smoothing stage
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Figure 4. MRR obtained for each range of Overall Accu-

racy (each range is marked with coloured background rect-

angles). We have considered only the .wav queries which,

using manually corrected F0 vectors, produce MRR = 1
in all matchers.

achieves the best results when the audio is not very de-

graded. In contrast, when the audio is highly degraded, the

best results are obtained with pYIN [6], even without fur-

ther smoothing. Considering that pYIN is a very recent,

open source approach, this result is promising in order to

improve the noise robustness of future QBSH systems. Ad-

ditionally, we found that F0 trackers perform differently on

QBSH depending on the type of F0 tracking errors made.

Due to this, MIREX measures do not fully represent the

suitability of a pitch vector for QBSH purposes, so the de-

velopment of novel evaluation measures in MIREX is en-

couraged to really measure the suitability of MIR systems

for specific applications. Finally, we observed clear differ-

ences between matchers regarding their robustness to F0

estimation errors. However, further research is needed for

a deeper insight into these differences.
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