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ABSTRACT

The VIS Framework for Music Analysis is amodular Python
library designed for “big data” queries in symbolic musical
data. Initially created as a tool for studying musical style
change in counterpoint, we have built on the music21 and
pandas libraries to provide the foundation for much more.

We describe the musicological needs that inspired the
creation and growth of the VIS Framework, along with a
survey of similar previous research. To demonstrate the
effectiveness of our analytic approach and software, we
present a sample query showing that the most commonly
repeated contrapuntal patterns vary between three related
style periods. We also emphasize our adaptation of typical
n-gram-based research in music, our implementation strat-
egy in VIS, and the flexibility of this approach for future
researchers.

1. INTRODUCTION
1.1 Counterpoint

“The evolution of Western music can be characterized in
terms of a dialectic between acceptable vertical sonori-
ties on the one hand. .. and acceptable melodic motions on
the other.” [12] A full understanding of polyphonic mu-
sic (with more than one voice or part) requires descrip-
tion in terms of this dialectic, which is called counterpoint.
‘Whereas music information retrieval research (such as [6])
typically describes polyphonic music only in terms of ver-
tical (simultaneous or harmonic) intervals, musicologists
interested in contrapuntal patterns also want to know the
horizontal (sequential or melodic) intervals in each voice
that connect the vertical intervals. Since counterpoint de-
scribes how pitches in independent voices are combined
in polyphonic music, a computerized approach to counter-
point analysis of symbolic music can provide a wealth of
information to musicologists, who have previously relied
primarily on prose descriptions of musical style. '
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Figure 1. Symbolic score annotated with vertical and hor-
izontal intervals. A common contrapuntal module appears
in the box.

Figure 1 shows the counterpoint between two voices in
a fragment of music. We annotated the vertical intervals
above the score, and the lower voice’s horizontal intervals
below. Note that we show intervals by diatonic step size,
counting number of lines and spaces between two notes,
rather than semitones. We describe this contrapuntal mod-
ule further in Section 2.1. By using intervals rather than
note names, we can generalize patterns across pitch levels,
so the same pattern may start on any pitch. For this article,
we ignore interval quality (e.g., major or minor third) by
using diatonic intervals (e.g., third), allowing generaliza-
tion across mode and key. We do use interval quality for
other queries—this is a choice available in VIS at runtime.

To allow computerized processing of contrapuntal pat-
terns, we encode the counterpoint between two voices with
alternating vertical and horizontal intervals. In Figure 1,
the first two beats are “3 +2 3.” We call these patterns in-
terval n-grams, where n is the number of vertical intervals.
Our n-gram notation system is easily intelligible to music
theorists and musicologists, and allows us to stay close to
musicology.

1.2 Research Questions

Until recently, musicologists’ ability to accurately describe
polyphonic textures was severely limited: any one person
can learn only a limited amount of music in a lifetime, and
the computer-based tools for describing or analyzing poly-
phonic music in detail are insufficiently precise for many
repertoires. Descriptions of musical style and style change
are often vague, derived from intuitive impressions and
personal knowledge of repertoire rather than quantifiable
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evidence. Our project attempts the opposite by quantita-
tively describing musical style change using counterpoint.

We chose counterpoint not only because musicologists
are already aware of its importance, but because it allows
us to consider structure in all polyphonic music, which in-
cludes the majority of surviving Western music created
after 1300. Our project’s initial goal is to find the most
frequently-repeated contrapuntal patterns for different pe-
riods, genres, and composers, to help form detailed, evid-
ence-based descriptions of style periods and style change
by knowing which features change over time and when. In
addition, statistical models will allow a fresh approach to
attribution problems (determining the composer of a piece
where it is not otherwise known), by enabling us to de-
scribe some of the factors that distinguish a composer’s
style.

1.3 The VIS Framework

Our project’s most important accomplishment is the VIS
Framework—the software we developed to answer the re-
search questions described above. (VIS stands for “verti-
cal interval successions,” which is a way to describe coun-
terpoint). Currently VIS’s primary function is to find con-
trapuntal patterns in symbolic music, recording them with
the notation described above in Figure 1 so they may be
counted. However, we designed the framework to allow a
much broader set of queries, and we intend to add sup-
port for additional musical dimensions (like meter and har-
mony) as well as more complicated statistical experiments
(like Markov-chain modeling).

We used the Counterpoint Web App, a Web-based user
interface for VIS’s counterpoint functionality, to run the
analyses presented in this article.? Such Web-based soft-
ware encourages musicologists to participate in data-driven
analysis even if they are otherwise unable to program. The
Web App’s visual design, the use of musicologist-friendly
terms and user workflows, and the ability to output analy-
sis results on musical scores are significant advantages. At
the same time, programmers are encouraged to download
and extend the VIS Framework using its well-documented
Python API. While our Framework provides a guide for
structuring analysis workflows, each analytic step benefits
from our integration of the music21 and pandas libraries.
Together, these allow analytic approaches more amenable
to musicians and statisticians, respectively.

2. BACKGROUND
2.1 Contrapuntal Modules

A contrapuntal module is a repeated contrapuntal pattern
made from a series of vertical (harmonic) and horizontal
(melodic) intervals—a repeated interval n-gram. [11] We
are primarily interested in the frequency and nature of two-
voice contrapuntal modules. VIS allows us to computerize
tedious score analysis previously done by hand, as when
Peter Schubert identified modules in Palestrina. [13] While

2 Visit counterpoint .elvisproject.ca.
3 Refer to pandas.pydata.organd mit .edu/music21.
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Figure 2. “Cadence” contrapuntal module from Figure 1,
with music21 offset values.

two-voice contrapuntal modules are the primary structural
element of much Renaissance music, we can find contra-
puntal modules in nearly all polyphonic music, so our soft-
ware and research strategies will be useful for a wide range
of music. [3]

Figure 2 shows a representation of the “7 1 6 -2 8” in-
terval 3-gram (a 3-gram because there are three vertical
intervals). Using a half-note rhythmic offset, the first verti-
cal interval is a seventh, the horizontal motion of the lower
part is a unison (1), there is a vertical sixth, the lower part
moves down by a second (-2), and the final vertical interval
is an octave. In modal counterpoint, this is a highly con-
ventionalized figure used to signal a cadence—a closing or
concluding gesture for a phrase or piece. This is the same
3-gram as in the box in Figure 1.

Importantly, our analysis method requires that voicing
information is encoded in our files. MIDI files where all
parts are given in the same channel cannot be analyzed use-
fully with our software.

2.2 Previous Uses of n-Grams in MIR

We have chosen to map musical patterns with n-grams
partly because of their previous use in natural language
processing. * Some previous uses of n-grams in music anal-
ysis, and computerized counterpoint analysis, are described
below.

J. Stephen Downie’s dissertation presents a method for
indexing melodic n-grams in a large set of folk melodies
that will be searched using “Query by Humming” (QBH).
[7] Downie’s system is optimized for what he calls “lookup,”
rather than “analysis,” and he admits that it lacks the de-
tail required by musicologists. Importantly, Downie only
indexes horizontal intervals: melody rather than counter-
point.

Another QBH lookup system, proposed by Shyamala
Doraisamy, adapts n-grams for polyphonic music. [5, 6]
While this system does account for polyphony, it does not
record horizontal intervals so it lacks the detailed contra-
puntal information we seek. Furthermore, Doraisamy’s in-
tervals are based on MIDI note numbers rather than the di-
atonic steps preferred by musicologists. Finally, the largest
interval allowed by Doraisamy’s tokenization strategy is 26

4 As in the Google refer to

books.google.com/ngrams.

Ngram Viewer,
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semitones—just over two octaves, and therefore narrower
than the normal distance between outer voices even in Re-
naissance polyphony. Considering the gradual expansion
of range in polyphonic music, to the extremes of the late
19th-century orchestra, the gradual appearance of large in-
tervals may be an important style indicator.

Meredith has proposed geometric transformation sys-
tems for encoding multi-dimensional musical information
in a computer-friendly way. [9, 10] We especially appreci-
ate the multi-dimensional emphasis and the mathematical
properties of these systems, and the software’s ability to
work even when voicing information is not available in the
symbolic file.

Finally, Jiirgensen has studied accidentals in a large fif-
teenth-century manuscript of organ intabulations with an
approach very similar to ours, but carried out using the
Humdrum Toolkit. [8] She locates cadences by identifying
a contrapuntal model and then records the use of acciden-
tals at the cadence. While she searches only for specific
contrapuntal modules, we identify all of the n-grams in a
test set in order to determine the most frequently recurring
contrapuntal patterns.

2.3 Multi-Dimensional n-Grams in VIS

Considering these previous uses of n-grams and counter-
point in MIR, we designed our software with the flexi-
bility to accommodate our requirements, as well as those
of future analysis strategies. By tokenizing n-grams with
strings that minimally transform the input, musicologists
can readily understand the information presented in an n-
gram. This strategy offers a further benefit to programmers,
who can easily create n-grams that include different musi-
cal dimensions without necessarily developing a new token
transformation system. Users may choose to implement
any tokenization strategy on top of our existing n-gram-
indexing module.

The example 3-gram shown in Figure 2 is tokenized in-
ternally as “7 1,” “6 -2,” “8 END.” Although there appear
to be 2n — 1 tokens, we consider a vertical interval and
its following horizontal interval as a combined unit—as
though it were a letter in an n-gram as used in computa-
tional linguistics. The simplicity afforded by using strings
as tokens, each of which may contain an arbitrary array of
musical information, has been advantageous.

Indeed, the difficulty of determining a musical analogue
to the letter, word, and phrase divisions used in computa-
tional linguistics may be one of the reasons that computer-
driven research has yet to gain much traction in mainstream
musicology. That music lacks an equivalent for space char-
acters poses an even greater problem in this regard: while
some music does use clear breaks between phrases, their
exact placement can often be disputed among experts. Mu-
sicologists also wish to account for the multiple simultane-
ous melody lines of polyphonic music, which has no equiv-
alent in natural language. These are the primary motivating
factors behind our multi-dimensional interval n-gram to-
kens that encode both vertical and horizontal intervals. As
our research continues, context models and multiple view-
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point systems, in the style of Conklin and Witten, will par-
tially obviate the questions of which n value to use, and of
how best to incorporate varied musical elements. [1]

The popularity of Python within scientific computing
communities allows us to benefit from any software that
accepts pandas data objects. The easy-to-learn, object-or-
iented API of music21, along with the relatively high
number of supported file formats, are also significant ad-
vantages. In the 1980s, a music analysis toolkit consisting
of a collection of awk scripts was sensible, but Humdrum’s
limitation to UNIX systems and a single symbolic file for-
mat pose undesirable limitations for a big data project.

3. EXPERIMENT
3.1 Data Sets

We present an experiment to quantitatively describe style
change in the Renaissance period, providing a partial an-
swer for our primary research question.® We assembled
test sets for three similar style periods, named after a rep-
resentative composer from the period: Ockeghem (1440-
85), Josquin (1485-1521), and Palestrina (1540-85). The
pieces in the test set were chosen to represent the style pe-
riod as accurately as our project’s database allowed. ® The
twenty-year gap between the later periods is a result of less
symbolic music being available from those decades. Each
set consists of a mixture of sacred and secular vocal music,
most with four parts, in a variety of genres, from a variety
of composers. Though we analyzed n-grams between two
and twenty-eight vertical intervals long, we report our re-
sults only for 3-grams because they are the shortest contra-
puntal unit that holds meaning. Note that we include results
from all possible two-part combinations, reflecting Renais-
sance contrapuntal thinking, where many-part textures are
composed from a series of two-part structures. [3, 13]

The Ockeghem test set consists of 50 files: 28 in the
MIDI format and 22 in **kern. For the composers, 8 pieces
were written by Busnoys, 32 by Ockeghem, and 10 are late
works by Dufay. The longest repeated n-gram was a 25-
gram.

The Josquin test set consists of 56 files: 18 MIDI, 23
**kern, 9 MusicXML, and 6 NoteWorthy Composer. For
the composers, 3 pieces were written by Agricola, 7 by
Brumel, 6 by Compre, 2 by Fvin, 12 by Isaac, 19 by Josquin,
3 by Mouton, 2 by Obrecht, and 2 by la Rue. The longest
repeated n-gram was a 28-gram.

Finally, the Palestrina test set consists of 53 files: 30
MIDI, 15 **kern, 6 MusicXML, and 2 NoteWorthy Com-
poser. For the composers, 15 pieces were written by Pales-
trina, 9 by Rore, 28 by Victoria, and 1 by Wert. The longest
repeated n-gram was a 26-gram.

3.2 Methodology

The VIS Framework uses a modular approach to query de-
sign, dividing analysis tasks into a series of well-defined

5 You may download test sets from

elvisproject.ca/ismir2014.
6 Visit database .elvisproject.ca.

our
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steps.  We intend the module break-down to be helpful for
musicologists who wish to reason about and design their
own queries. Thus, musicological concerns drove the cre-
ation of many of the analysis steps, such as the filtering
modules described below. The interval n-gram frequency
experiment in this article uses the following modules: Note-
RestIndexer, Intervallndexer, Horizontallntervallndexer,
FilterByOffsetIndexer, FilterByRepeatIndexer, NGramInd-
exer, ColumnAggregator, and finally the FrequencyExper-
imenter.8

The NoteRestIndexer finds note names and rests from
amusic2l Score. The Intervallndexer and Horizontal-
Intervallndexer calculate vertical and horizontal intervals,
respectively.

The FilterByOffsetIndexer uses a basic algorithm to fil-
ter weak-beat embellishing tones that otherwise obscure
structural counterpoint. We regularize observations to a giv-
en rhythmic offset time interval using the music21 offset,
measured in quarter lengths. Refer to Figure 2 as an exam-
ple, where vertical intervals are filtered with a 2.0 offset.
Events beginning on a multiple of that duration will be re-
tained (like the notes at 0.0, 2.0, and 4.0). Events lasting for
multiples of that duration will appear to be repeated (like
the note at 4.0, which is also recorded at 6.0). Events not
beginning on a multiple of the duration will be removed
(like the notes at 1.0 and 1.5) or shifted to the following
offset, if no new event occurs. For this study, we chose a
half-note (2.0) offset interval in accordance with Renais-
sance notation practices, but this can be changed in VIS at
runtime.

The FilterByRepeatIndexer removes events that are iden-
tical to the immediately preceding event. Because of its
placement in our workflow for this experiment, subsequent
vertical intervals will not be counted if they use the same
pitches. Our interval n-grams therefore necessarily involve
contrapuntal motion, which is required for proper pattern
recognition. Such repeated events arise in musical scores,
for example, when singers recite many words on the same
pitch. The FilterByOffsetIndexer may also create repeated
events, as at offset 6.0 in Figure 2. Users may choose not
to run this module.

In this article, our NGramiIndexer includes results from
all pairs of part combination. Users may exclude some com-
binations at runtime, choosing to limit their query to the
highest and lowest parts, for example. On receiving inter-
vals from the FilterByRepeatindexer, the NGramlndexer
uses the gliding window technique to capture all possible
overlapping interval n-grams. The indexer also accepts a
list of tokens that prevent an n-gram from being counted.
We use this feature to avoid counting contrapuntal pat-
terns that include rests. Finally, the NGramlndexer may
add grouping characters, surrounding “vertical” events in
brackets and “horizontal” events in parentheses to enhance
legibility of long n-grams. The 3-grams in this article are
short enough that grouping characters are unnecessary; on

7 This section refers to the 2. release series.

8 For more information about the VIS Framework’s analysis mod-
ules and overall architecture, please refer to our Python API at
vis.elvisproject.ca.
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the other hand, the legibility of the “[10] (+2) [9] (1) [8]
(+2) [7] (1) [6] (-2) [8]” 6-gram found 27 times in the Pal-
estrina test set greatly benefits from grouping characters.

The FrequencyExperimenter counts the number of oc-
currences of each n-gram. These results, still specific to
part combinations within pieces, are then combined with
the ColumnAggregator.

On receiving a spreadsheet of results from VIS, we cal-
culated the number of n-grams as the percentage total of
all n-grams in each of the test sets. For each set, we also
counted the total number of 3-grams observed (including
all repetitions of all 3-grams), the number of distinct 3-
gram types (whether repeated or not), and the number of
3-gram types that occur more than once; these are shown
below in Table 1.

3.3 Results

Due to the limited time span represented in this study, we
wish to suggest avenues for future exploration, rather than
offer conclusive findings. We present a visualization of the
experimental results in Figure 3, a hybrid between a Venn
diagram, word cloud (i.e., a 3-gram cloud), and a time-
line. The diagram includes interval 3-grams that consti-
tute greater than 0.2% of the 3-grams in at least one of
the test sets. When a 3-gram appears in an intersection of
style periods, that 3-gram constitutes greater than 0.2% of
the 3-grams in those sets. As in a world cloud, the font
size is scaled proportionately to a 3-gram’s frequency in
the test sets in which it is common. Most visually striking
is the confirmation of musicologists’ existing experiential
knowledge: certain contrapuntal patterns are common to
all three style periods, including the cadence module (*“7
1 6 -2 8”) and two other 3-grams that end with the “7 1
6” cadential suspension. These results make sense because
cadences are an essential feature of musical syntax.

Test Set Total Types  Repeated Types
Ockeghem 30,640 10,644 4,509 (42%)
Josquin 31,233 9,268 4,323 (47%)
Palestrina 33,339 10,773 5,023 (47%)

Table 1. Summary of 3-gram repetitions in our query.

In addition to the common cadential patterns noted above,
both Figure 3 and Table 1 show evidence of stylistic change
over time. Most notably, the Josquin and Palestrina test
sets show a higher level of repetition than the Ockeghem
set. The number of 3-grams included in Figure 3 is higher
in the Josquin test set (with seventeen 3-grams) than ei-
ther the Ockeghem or Palestrina sets (both with eleven 3-
grams). Yet Table 1 indicates the Josquin and Palestrina
sets both have a higher percentage of 3-gram types that
are repeated at least once (47% in both sets, compared to
42% in the Ockeghem set). These data suggest an increase
in repetition of contrapuntal modules from the Ockeghem
to the Josquin generations, which was retained in the Pa-
lestrina generation. Figure 3 only partially reinforces this
suggestion: while five 3-grams are unique to the Ockeghem
set, six are unique to the Josquin set, but only one is unique
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Figure 3. Frequency of contrapuntal modules is different
between temporally-adjacent style periods.

to the Palestrina set. Moreover, the “5 -2 6 -2 6” module,
unique to the Palestrina set, is the least common 3-gram in
Figure 3—how did contrapuntal repetition both decrease
in Palestrina’s generation and remain the same?

Previous research by Cumming and Schubert may help
us explain the data. In 2008, Cumming noted that exact
repetition became much more common in Josquin’s life-
time than in Ockeghem’s. [2] Schubert showed that com-
posers tended to repeat contrapuntal patterns in inversion
during Palestrina’s lifetime, so that the lower voice is moved
above the original upper voice. [13] Inversion changes a
contrapuntal pattern’s vertical intervals in a consistent way
that preserves, but switches, the horizontal intervals of the
two parts. For example, “7 1 6 -2 8” inverts at the octave
to “2 -2 3 +2 1.” While humans can recognize both forms
as two versions of the same pattern, VIS currently shows
only exact repetition; future enhancements will permit us
to equate the original and the inversion. This decision may
explain why our data show lower rates of repetition for the
Palestrina test set.

We find further evidence of stylistic change in Figure 3:
certain patterns that musicologists consider to be common
across all Renaissance music are in fact not equally com-
mon in our three test sets. For example, motion by parallel
thirds and tenths appears to be more common in certain
style periods than others, and in a way that does not yet
make sense. The Palestrina set shares ascending parallel
thirds (“3 +2 3 +2 3”) with the Ockeghem and descending
parallel thirds (“3 -2 3 -2 3”) with the Josquin set. Ascend-
ing parallel tenths (“10 +2 10 +2 10”) are more common
in the Ockeghem set, and descending parallel tenths (“10
-2 10 -2 10”) in the Josquin set. In particular, descending
parallel thirds are an order of magnitude less common in
the Ockeghem test set than the Josquin or Palestrina (con-
stituting 0.013%, 0.272%, and 0.225% of 3-grams in their
test set, respectively). Conventional musicological wisdom
suggests these 3-grams will be equally common in all three
test sets, and that parallel tenths will be more common than
parallel thirds in later style periods, as the range between
voices expands. Since the reasons for such a deviation are
not yet known, we require further investigation to study the
changing nature of contrapuntal repetition during the Re-
naissance period. Yet even with these preliminary findings
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it is clear that evidence-based research has much to offer
musicology.

4. FUTURE WORK

Our research will continue by extending VIS to add the
option of equivalence classes that can group, for example,
inversionally-related interval n-grams. We will also build
on previous work with melody- and harmony-focussed mul-
tiple viewpoint systems to create an all-voice contrapuntal
prediction model. [1, 14]

Our experiments will continue with larger test sets for
increased confidence in our findings, also adding style peri-
ods earlier than the Ockeghem and later than the Palestrina
sets, and subdividing our current style periods. This will
help us reassess boundaries between style periods, and ex-
actly what such a boundary entails. We will also compare
results of single pieces with test sets of various sizes.

Finally, we will implement additional multi-dimension-
al n-gram tokens, for example by adding the note name
of the lowest voice. This approach would encode Figure 2
as “7F 16 F -2 8 E” In Renaissance music, this type of
n-gram will clarify the relationships between contrapuntal
modules and a piece’s mode.

S. CONCLUSION

The VIS Framework for Music Analysis is a musicologist-
friendly Python library designed to analyze large amounts
of symbolic musical data. Thus far, our work has concen-
trated on counterpoint—successions of vertical intervals
and the horizontal intervals connecting them—which some
scholars view as composers’ primary concern throughout
the development of Western music. Our software uses multi-
dimensional n-grams to find and count the frequency of
repeated contrapuntal patterns, or modules. In particular,
by retaining all inputted dimensions and using strings as
tokens (rather than integers or characters), we simultane-
ously allow musicologists to quickly understand the con-
tent of an n-gram while also avoiding the challenge of
developing a new tokenization strategy for every musical
dimension added to the n-gram. We hope this flexibility
and ease-of-use encourages musicologists and non-expert
programmers, who would otherwise be discouraged from
computer-based music analysis, to experiment more freely.
The results of our query presented in this article, which
compares the most commonly-repeated contrapuntal mod-
ules in three Renaissance style periods, show the type of
insight possible from computerized music research. The
time-consuming effort required for previous work on con-
trapuntal modules is greatly reduced when analysts have
access to specialized computer software. We analyzed more
than 150 polyphonic compositions for interval n-grams be-
tween two and twenty-eight vertical intervals in length,
which would have taken months or years for a human.
Even with simple mathematical strategies like counting the
frequency of interval n-grams to know which are most com-
mon, we can confirm existing intuitive knowledge about
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the foundations of counterpoint while also suggesting av-
enues for future research on the nature of musical repeti-
tion.
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