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ABSTRACT 

Music lessons are a repetitive process of giving feedback 
on a student’s performance techniques. The manner in 
which performance skills are improved depends on the 
particular instrument, and therefore, it is important to 
consider the unique characteristics of the target instru-
ment. In this paper, we investigate the common mistakes 
of beginner flute players and propose a hierarchical ap-
proach to detect such mistakes. We first examine the 
structure and mechanism of the flute, and define several 
types of common mistakes that can be caused by incor-
rect assembly, poor blowing skills, or mis-fingering. We 
propose tailored algorithms for detecting each case by 
combining deterministic signal processing and deep 
learning, to quantify the quality of a flute sound. The sys-
tem is structured hierarchically, as mis-fingering detec-
tion requires the input sound to be correctly assembled 
and blown to discriminate minor sound difference. Exper-
imental results show that it is possible to identify differ-
ent mistakes in flute performance using our proposed al-
gorithms. 

1. INTRODUCTION 

The most important part of a music lesson is giving a stu-
dent feedback on his or her performance, posture, and 
playing skills so that the student can play the sound cor-
rectly. Music lesson methods vary depending on the in-
strument being learned; therefore, audio signal processing 
for music education should make extensive use of prior 
knowledge regarding playing style, common mistakes, 
unique characteristics, and constraints of the target in-
strument. However, most existing music signal analysis 
techniques use a general-purpose model, and relatively 
little attention is paid to an instrument-specific approach. 
A general-purpose model is advantageous because it can 
be applied to various types of instruments. However, this 
model lacks the capability to capture instrument-specific 
sound characteristics. There are always common mistakes 
that beginners make, but little is known about how to de-
tect these automatically. 

     The goal of this paper is to investigate common be-
ginner’s mistakes when playing a specific instrument—
the flute, in this case—and to analyze the spectral charac-
teristic of each case to give the student appropriate feed-
back on his or her performance. Because the sound of a 
musical instrument is affected by numerous factors, in 
our work, we first divide the factors that usually lead be-
ginners to play the wrong sound into three parts: incorrect 
flute assembly, blowing skill, and fingering. 
     The rest of the paper is organized as follows: We 
briefly present existing works related to our proposed 
idea. Then, we investigate possible mistakes in flute per-
formance by examining the structure and mechanism of 
the flute, and several types of common mistakes and the 
resulting sounds are explained. Next, we present an over-
all system structure to distinguish each mistake, along 
with a detail explanation of each proposed algorithm. We 
then present the experimental results to demonstrate the 
feasibility of the proposed system, followed by our con-
clusion and directions for future work. 

2. RELATED WORK 

The characteristics of musical instruments depend on 
their sound production mechanism. The characteristics of 
one instrument can greatly differ from those of others, 
and each instrument’s characteristics may not be cap-
tured equally well as another even when using the same 
computational model [2]. However, there has been min-
imal research regarding an instrument-specific model. 
Some examples of instrument-specific approaches in-
volve the use of a violin [8, 14-16], guitar [1], bells [9], 
and tabla [5]. For instance, the violin transcription sys-
tem in [8] makes use of characteristics such as highest 
and lowest pitch, possible play style (e.g., upper octave 
duophony), vibrato, and loudness. The training system in 
[14] uses a common envelope style of violin sound for 
note segmentation prior to real-time pitch detection, and 
[9] uses the acoustic characteristics of a church bell, as 
well as the rules of a bell charming performance, for 
transcription and estimating the number of bells. In addi-
tion, a chord transcription system designed for guitar in 
[1] outperforms the non-guitar-specific method.  
     As shown above, using prior knowledge of the char-
acteristics of a target instrument creates new possibilities 
in music signal processing, and can also improve the per-

 © First author, Second author, Third author. 
Licensed under a Creative Commons Attribution 4.0 International 
License (CC BY 4.0). Attribution: First author, Second author, Third 
author. “Paper Template For ISMIR 2014”, 15th International Society 
for Music Information Retrieval Conference, 2014. 

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

77



  
 

formance of the system. However, there are still many 
instruments to be studied, and the flute is one of them. 

3. COMMON MISTAKES OF A FLUTE PLAYER 

3.1 Assembling the Flute 

Like most woodwind instruments, the flute needs to be 
assembled before it is played. The flute consists of a head 
joint, body joint, and foot joint, as shown in Figure 1. The 
connecting part between the body and foot joint is very 
short, while the connecting part between the head joint 
and body joint is a few centimeters long. This intentional-
ly designed adjustable part is called the tuning slide, and 
it can be used for changing the total length of the flute to 
various sizes, which affects the overall pitch of the flute. 
For instance, if the head joint is placed very deep into the 
tuning slide of the body, the pitch will be increased for 
every note. By contrast, if the head joint is pulled out too 
far, the overall pitch will drop owing to the longer wave-
length.  

 
Figure 1. Flute consists of head joint, body joint, and 
foot joint (modified after [11]). 
 
     Another method of pitch tuning is adjusting the cork 
part of the head joint, as shown in Figure 2. This can be 
adjusted by a screw. Pushing the cork will raise the pitch 
of all notes. However, this is beyond the scope of this pa-
per, as this screw is normally not adjusted by flute per-
formers but by flute technicians. 
 

 
     Figure 2. Schematic of a flute head joint [13]. 

     Trained performers use this variable tuning slide for 
pitch tuning. The pitch of the flute is sensitive to the con-
ditions of the surrounding environment, such as humidity 
and temperature. However, novice flutists are not sensi-
tive to minor pitch shifting, and they may play the flute in 
the wrong overall pitch without recognizing it. 

3.2 Blowing Embouchure 

The flute generates sound by blowing a rapid air jet 
across the embouchure 1  hole, as shown in Figure 3. 
Hence, the quality of the generated sound is highly de-
pendent on the blowing skill of the performer. Blowing 
skill involves lip position and the thickness/stability of 
the air jet. Clear tone production is challenging for begin-
ners because the method of tone production for the flute 
                                                             
1 Mouthpiece of a musical instrument. 

is not supported by mechanical parts; rather, it depends 
only on the player’s blowing skill [4]. 

 
Figure 3. Airstream oscillation of the flute embouchure 
hole. The labels indicate the phase angles of the acoustic 
current at the hole [3]. 

     Tone quality and octave of the sound are related to 
blowing skill. The flute has a range of three octaves, 
starting from middle C (C4), with several less-used notes 
in octaves 3 and 7. The blowing pressure determines the 
octave of the sound, as shown in Figure 4. Greater blow-
ing pressure can be achieved by blowing a narrower and 
stronger air jet. To generate a stable and clean sound, it is 
important to keep this blowing pressure reasonably 
steady. Failure to do this will result in fluctuating sound 
and noise, which is highly unpleasant and typically the 
first hurdle for beginners to overcome in their training.  

   
Figure 4. Air jet blowing pressure has a roughly linear 
relationship to fundamental frequency. A, B, C, and D are 
different performers, and different shapes represent dif-
ferent dynamics [12]. 

3.3 Fingering 

Novice flutists frequently make mistakes in fingering ow-
ing to their lack of familiarity with the irregular fingering 
rules of the flute. High-octave fingering is comparatively 
more complex than low-octave fingering [4], which is the 
reason why flute lessons usually start with the lowest oc-
tave and move step-by-step to higher octaves. Hence, we 
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focus on octaves 4 and 5, which are the octaves that be-
ginner flute players initially study.  
     Most of the octave 5 fingerings are identical to those 
of octave 4, as shown in Figure 3. However, the fingering 
for C and D, as well as the sharps of these notes, require 
different fingerings than those of octave 4. These notes 
can be played with octave 4 fingering using a faster and 
sharper air jet, but this results in a slightly airy timbre, 
compared to the sound when the flute is correctly fin-
gered. As this airy timbre is not significantly noticeable, 
and most of the notes in octaves 4 and 5 share the same 
fingering, many beginners do not notice that they used 
octave 4 fingerings to play octave 5, unless the instructor 
spots it. 

 
Figure 5. Fingering of octave 4 and 5 flute notes. Note 
that C, D, and sharps of these require different fingering, 
unlike E, F, G, A, and B. 

     Another fingering-related problem is the proper posi-
tioning of the fingers. The open-hole flute requires that 
the flutist use his or her fingers to block the holes in the 
keys. Most professional flutists prefer the open-hole flute 
owing to its advantages in tone production and intonation 
adjustment [4]. However, this is not considered in our 
system because beginners who have trouble with block-
ing open-hole keys can avoid this problem by putting 
plastic plugs in the holes until they get used to playing 
the open-hole flute. 

4. PROPOSED SYSTEM & METRICS 

The overall system comprises several steps. In the first 
step, the system determines whether the flute is assem-
bled correctly using entire input audio. Next, once the 
flute sound is detected as coming from a correctly assem-
bled flute, the system measures if sound of the each note 
is a clear, correctly blown sound or an airy-timbered 
sound. Finally, the properly blown sound is identified as 
sound generated from either correct fingering or incorrect 
fingering. The system is hierarchically structured, be-
cause mis-fingering detection does not work well for 
fluctuated sound or head joint pushed/pulled sound as it 
requires discriminating minor sound difference. The input 
audio is resampled to 16 kHz first, and he system archi-
tecture is shown in Figure 6. 

4.1 Assembling Error Detection 

Some mistakes can cause modifications to the overall 
pitch, and some mistakes result in poor timbre. The as-
sembling error affects only the overall pitch of the gener-
ated sound. As mentioned in 3.1, the distance the head 

joint is pushed in or pulled out from the tuning slide of 
the body joint determines the overall pitch. To this end, a 
quantized chromagram from Harte and Sandler is used to 
detect the tuning center [6]. 

 
Figure 6. Flow diagram of the overall system. The bold 
box indicates where the system sends feedback to the us-
er. 

 
Figure 7. HPCP peaks histogram within a semitone for 
correctly (up) and loosely assembled (down) case. 
 
     To determine the tuning center, a spectrum of linear 
frequency spectra is Constant-Q transformed and 
summed across octaves to produce a harmonic pitch class 
profile (HPCP). A 36-bin quantized chromagram is used 
to determine the semitone center, and three bins were al-
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located for each semitone. By observing the distribution 
of peak positions across the width of a semitone, as 
shown in Figure 7, it is possible to determine the tuning 
center of the instrument. Because three bins are allocated 
for each semitone, the tuning center of a perfectly tuned 
sound would ideally be 1.5. Therefore, the system will 
consider the input sound to be correctly tuned when the 
tuning center value is approximately 1.5. If the detected 
tuning center is too low (less than 1), the system sends 
feedback to the user that the head joint is too loosely as-
sembled. Conversely, the system tells the user that the 
head joint is assembled more tightly than necessary when 
the tuning center is high (greater than 1). 

4.2 Fluctuated Sound Detection 

Incorrect lip position on the embouchure, along with an 
irregular stream of blown wind, results in a highly un-
pleasant and fluctuating tone. This sound contains many 
inharmonic partials in a spectrum, and it is clearly visible 
on a spectrogram. Performing binary masking on a spec-
trogram makes these inharmonic partials more obvious, 
as shown in the second row of Figure 8.  

 

 
Figure 8. Log spectrogram, binary masked spectrogram, 
and sum of bins for each frame for D, E, F, G, A, and B 
of octave 5. Up to 6 second is correctly blown sound and 
from 6 to 12 second is fluctuated sound. 

Binary masking is performed as follows: 
 

                                                                                                       (1) 
 

where X is the log spectrum, Xb is the binary masked 
spectrum, and θ is the threshold constant. Empirically, a 
value between -20 and -30 works well for θ, depends on 
recording environment. Note that these values are ob-
tained when natural log multiplied by 20 is used for the 
log spectrum. Using this binary masked spectrogram, the 
sum of the number of positive valued bins of each spec-
trum can be used as a measurement for determining how 
the sound fluctuates owing to poor blowing skill. This 
can be expressed as follows: 

                                                                                                            
                                                                                                       (2) 
 

where F is the amount of fluctuation. The third row of 
Figure 8 is F value obtained from (2) with 1 second me-
dian filtering, and it is possible to observe the value is 
much higher for fluctuated sound than correctly blown 
sound. 

4.3 Mis-fingering detection 

As mentioned in 3.3, for C5, C#5, D5, and D#5, using 
octave 4 fingering with a faster and sharper air jet still 
generates octave 5 pitches even without correct fingering, 
although the timbre is slightly airy. To detect this timbral 
difference, we decided to use both the Mel-frequency 
cepstral coefficient (MFCC)—a widely used, hand-
designed feature—and sparse filtering (SF) [10]—a deep-
layered, unsupervised feature learning method. SF works 
by optimizing the sparsity of feature distribution, and it 
works well on a range of data modalities without specific 
tuning. Both single- and double-layered sparse filtering 
were used with 200 units for each layer. The obtained 
feature was classified into two classes (correct/incorrect) 
using a random forest (RF) classifier, which exhibits bet-
ter performance than a support vector machine or back-
propagation neural network in a variety of cases [7]. The 
flow diagram for mis-fingering detection is shown below. 

 
Figure 9. Flow diagram for mis-fingering detection. 
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5. EXPERIMENT 

5.1 Objective & Procedure 

The goal of our experiment was to explore whether the 
proposed system and algorithms work well for detecting 
the mistakes of beginner flutists. Flute sound samples 
were obtained from two intermediates (who have played 
the flute for one to two years) and one expert (who holds 
an exam score of Grade 8 with a Distinction). Flutes used 
for the experiment were a B foot joint with open holes, 
and a silver head with nickel body and foot. The correct 
flute sound, fluctuating sound, head joint pulled, and 
head joint pushed sound were recorded for octaves be-
tween 4 and 5. The length of the collected audio was 30 
seconds for each semitone. The case of correct and incor-
rect fingering for C5, C#5, D5, and D#5 was recorded for 
10 minutes each to obtain sufficient training data. The 
input audio was recorded at 44.1 kHz mono and 
downsampled to 18 kHz. Tuning center was calculated 
from whole target audio as it is not time-varying charac-
teristics. Meanwhile, fluctuating and mis-fingering detec-
tion was performed framewise. Different window and 
hop size were used for each experiment, as each mistake 
detection algorithm requires different spectral resolution.  

5.2 Results 

The experimental results show that the system successful-
ly distinguishes each mistake. To find tuning center, a 74 
ms window and 18 ms hop size were used. As shown in 
Table 1, the tuning center of a correctly played sample is 
close to 1.5, which is the exact center. Also, tuning center 
values for the head joint when it is pushed and pulled fell 
into the expected range, which were (0–1) and (2–3), re-
spectively. 

Mistake cases 
Tuning center value (0 to 3) 

Player 1 Player 2 Player 3 

Correct 1.68 1.59 1.62 

Head joint pushed  2.55 2.49 2.43 

Head joint pulled 0.48 0.45 0.75 

Table 1. Tuning center values of correct, head joint 
pushed, and head joint pulled flute sound of three differ-
ent flutists. 

     Next, Figure 10 is a framewise distribution of fluctua-
tion measure (1) for correct and fluctuated flute sound. A 
64 ms window and 32 ms hop size were used, with θ val-
ue of -25dB. The median value of the correct flute sound 
is 50, and most of the values fall between 63 and 37. The 
fluctuating flute sound has a median value of 167, and 
most of the values fall between 150 and 178. This means 
that these cases are clearly distinguishable using the pro-
posed metric. 

     Finally, Table 2 shows the ten-fold cross-validation 
results of the proposed mis-fingering classification using 
single-layer SF, double-layer SF, and MFCC as a feature, 
and RF as a classifier. A 16 ms window and 10 ms hop 
size were used, and SF was used with 200 units per layer. 

 
Figure 10. Box plot of fluctuation measurements. The 
central marks indicate the median, and the edges are the 
first and third quartiles. 
 

Method Accuracy (%) 

Spectrogram + SF (single) 90.24 

Spectrogram + SF (double) 90.02 

MFCC 90.89 

MFCC + SF (single) 90.33 

MFCC + SF (double) 91.35 

Table 2. Mis-fingering classification ten-fold cross-
validation result using SF/ MFCC as a feature and RF as 
a classifier. 

The result shows that the combination of the MFCC and 
double-layered SF performs the best; however, all of the 
approaches perform reasonably well within a not very 
meaningful margin. The result indicates that the MFCC, a 
handcrafted feature, is still useful in separating the tim-
bral differences of the flute. Further, although SF is not 
designed for the purpose of timbre analysis, it works 
quite well without fine-tuning, as mentioned in [10]. In 
the experiment, single-layered SF worked better when the 
input is a spectrogram, but double-layered SF showed 
better performance when the input is MFCC. 

6. CONCLUSION & FUTURE WORK 

The objective of our work is to use audio signal analysis 
to give a student feedback on his or her flute performance 
to help fix mistakes, as a lesson teacher would do. To 
achieve this goal, we examined the mechanism and struc-
ture of the flute. We also investigated the common mis-
takes of beginner flute players. We determined several 
types of common mistakes and developed a hierarchical 
system to detect such cases by observing the tuning cen-
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ter, fluctuation metric, and a mis-fingering detection al-
gorithm. As a result, we have successfully identified 
common mistake cases from input audio, which can be 
used as feedback that would be provided by a lesson 
teacher-. Head-joint assembling errors were detected by 
determining the tuning center of the flute sound. Fluctuat-
ing sound caused by poor blowing skills was separated 
from the correct flute sound by measuring the amount of 
noisy harmonic contents. Finally, mis-fingering cases 
were detected by analyzing their timbre using MFCC and 
SF with an RF classifier. 
     There remain some problems to be tackled in this mis-
take detection algorithm for real-world user applications. 
First, the mis-fingering detection algorithm may be af-
fected by the material or maker of the flute because the 
algorithm detects very minor changes in timbre. In the 
experiment, only two types of flute (silver head with 
nickel body, and foot) were used. However, the flute can 
be made of various types of metal, such as silver, gold, 
and platinum. Moreover, various flute makers have their 
own timbral characteristics, which may influence the 
classification results. Second, the experiment was done 
on the frame level, but the user perceives the score based 
on the note level. Hence, the system should be used along 
with appropriate onset-offset detection to give more user-
friendly feedback. 
     We believe that this type of timbre-related and user-
behavior-oriented feedback is highly important for the 
next-generation music transcription systems, especially 
those used for educational purposes. Playing the instru-
ment with correct onset and pitch is not a very difficult 
part of being a good player, but making a beautiful timbre 
is what really takes time. This paper focuses only on the 
flute; however, our overall approach, including analyzing 
mistake cases and determining customized solutions, can 
be applied to various instruments in a similar way. 

7. ACKNOWLEDGEMENTS 

This research was supported by the MSIP (Ministry of 
Science, ICT & Future Planning), Korea, under the ITRC 
(Information Technology Research Center) support pro-
gram supervised by the NIPA (National IT Industry Pro-
motion Agency" (NIPA-2013-H0301-13-4005). 

8. REFERENCES 

[1] A. M. Barbancho, A. Klapuri, L. J. Tardon, and I.  
Barbancho: “Automatic Transcription of Guitar 
Chords and Fingering from Audio,” IEEE TASLP, 
20(3): 915–921, 2012. 

[2] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchoff, 
and A. Klapuri: “Automatic Music Transcription: 
Breaking the Glass Ceiling,” In ISMIR, 2012. 

[3] J. W. Coltman: “Sounding Mechanism of the Flute 
and Organ Pipe.” The Journal of the Acoustical So-
ciety of America 44, 1968. 

[4] C. Delaney, Teacher’s Guide for the Flute. Rev. 
11/98, Selmer, 1969. 

[5] O. Gillet and G. Richard: “Automatic Labelling of 
Tabla Signals,” In ISMIR, 2003. 

[6] C. Harte and M. Sandler: “Automatic Chord Identi-
fication using a Quantised Chromagram.” In Audio 
Engineering Society Convention 118. 2005. 

[7] M. Liu, M. Wang, J. Wang, and D. Li: “Comparison 
of Random Forest, Support Vector Machine and 
Back Propagation Neural Network for Electronic 
Tongue Data Classification: Application to the 
Recognition of Orange Beverage and Chinese Vine-
gar,” Elsevier Sensors and Actuators, pp. 970–980, 
Vol. 177, 2013. 

[8] A. Loscos, Y. Wang, and W. J. Boo: “Low Level 
Descriptors for Automatic Violin Transcription.” In 
ISMIR, 2006. 

[9] M. Marolt: “Automatic Transcription of Bell Chim-
ing Recordings.” In IEEE TASLP, 20(3): pp. 844–
853, 2012. 

[10] J. Ngiam, P. W. Koh, Z. Chen, S. Bhaskar and A. Y. 
Ng., “Sparse Filtering,” In NIPS, 2011. 

[11] H. Pinksterboer, Tipbook Flute and Piccolo: The 
Complete Guide, Hal Leonard, 2009. 

[12] T. D. Rossing, F. Richard Moore, and P. A. 
Wheeler: The Science of Sound. Vol. 2. Massachu-
setts. Addison-Wesley, 1990. 

[13] J. Smith, J. Wolfe, and M. Green: “Head Joint, 
Embouchure Hole and Filtering Effects on the Input 
Impedance of Flutes.” In Proc. of the Stockholm 
Music Acoustics Conference, pp. 295–298. 2003. 

[14] J. Wang, S. Wang, W. Chen, K. Chang, and H. 
Chen: “Real-Time Pitch Training System for Violin 
Learners,” Multimedia and Expo Workshops 
(ICMEW), IEEE, 2012. 

[15] R. S. Wilson: “First Steps Towards Violin Perfor-
mance Extraction using Genetic Programming,” In 
John R. Koza, editor, Genetic Algorithms and Ge-
netic programming, pp. 253–262, 2002. 

[16] J. Yin, Y. Wang, and D. Hsu: “Digital Violin Tutor: 
An Integrated System for Beginning Violin Learn-
ers,” ACM Multimedia, Hilton, Singapore, 2005. 

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

82




