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ABSTRACT 

Query by tapping (QBT) is a content
trieval method that can retrieve a song by taking the u
er’s tapping or clapping at the note onsets of the intended 
song in the database for comparison. This paper proposes 
a new query-by-tapping algorithm that aligns the IOI (i
ter-onset interval) vector of the query sequence with 
songs in the dataset by building an IOI ratio matrix, and 
then applies a dynamic programming (DP) method to 
compute the optimum path with minimum cost. Exper
ments on different datasets indicate that our algorithm 
outperforms other previous approaches in accuracy
10 and MRR), with a speedup factor of 3 in computation. 
With the advent of personal handheld devices, QBT pr
vides an interesting and innovative way for music retrie
al by shaking or tapping the devices, which is also di
cussed in the paper. 

1. INTRODUCTION

QBT is a mechanism for content-based music retrieval 
which extracts the note onset time from recordings of u
ers' input tapping or symbolic signals, which it then co
pares against a song database to retrieve the correct song. 
Unlike query-by-singing/humming (QBSH) [1, 2], 
takes the user's melody pitch for comparison, QBT only 
uses the note duration for comparison, with no pitch i
formation. This makes QBT more difficul
than QBSH, because the note onset in QBT contains less 
information than the musical pitch in QBSH, raising the 
likelihood of collision. For example, musical pieces with 
different melodies but similar rhythmic patterns may be 
characterized by the same onset sequence.

One may argue that QBT is not a popular way of m
sic retrieval. Some people may even think it is not useful. 
However, with the advent of personal handheld devices, 
we can think QBT as a novel way of human
interface. For instance, with the use of QBT, one may 
shake or click his/her mobile phones in order to retrieve a 
song. Moreover, one can even use a personal style of 
shaking or clicking as the password to unlock a phone. 
These innovative ways of human-machine interface ind
cate that QBT, though not the most popul
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other innovative applications [10].

QBT system algorithms are based on the estimation of 
the similarity between two onset sequences. For example, 
G. Eisenberg proposed a simple algorithm called "Direct 
Measure" to accomplish such comparis
Typke presented a variant of the earth mover's distance 
appropriate for searching rhythmic patterns [5]. Among 
these algorithms, the techniques of dynamic progra
ming (DP) have been widely used, such as R. Jang's D
namic Time Warping (DTW) [
algorithm [7, 8], and P. Hanna's adaptation of local 
alignment algorithm [9]. 

In this paper, we propose and test a new QBT alg
rithm. In Section 2, we discuss the general frameworks of 
QBT and existing QBT metho
proposed method. Experiments with different QBT tec
niques are described in Section 4. Finally, Section 5 co
cludes this paper. 

2. THE QBT SYSTEM

Fig. 1 illustrates the flowchart of our query
sys-tem. In general, there are 2 kinds of inputs to a QBT 
sys-tem: 
� Symbolic input: The onset time of the tapping event is 

provided symbolically with little or no amb
instance, the user may tap on a PC
iPad’s touch panel to give the onset time.

� Acoustic input: The onset time is extracted from 
acoustic input of the user’s tapping on a microphone. 
This input method requires additional onset 
to extract the onset time of the acoustic input. For e
ample, we can estimate the onset time by l
maximum-picking of the input audio’s intensity as in 
[5], or by detecting the transients of kurtosis variation 
as in [7]. 
The input onset sequence can be obtained as the inter 

onset interval (IOI) vector whose elements are the diffe
ence between two successive onset times. The note onset 
sequences extracted from the monophonic MIDIs (or the 
melody track of polyphonic MIDIs) in the song database 
are also converted into IOIs in advance. We can then a
ply a QBT algorithm to compare the query IOI vector to 
those in the database in order to retrieve the most similar 
song from the database. A QBT algorithm usually needs 
to perform IOI vector normalizatio
comparison. Normalization can take care of tempo devi
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retrieval, is itself interesting and could pave the way for 
other innovative applications [10]. 

QBT system algorithms are based on the estimation of 
the similarity between two onset sequences. For example, 
G. Eisenberg proposed a simple algorithm called "Direct 
Measure" to accomplish such comparisons [3, 4]. R. 
Typke presented a variant of the earth mover's distance 
appropriate for searching rhythmic patterns [5]. Among 
these algorithms, the techniques of dynamic program-
ming (DP) have been widely used, such as R. Jang's Dy-
namic Time Warping (DTW) [6], G. Peters's edit distance 
algorithm [7, 8], and P. Hanna's adaptation of local 

In this paper, we propose and test a new QBT algo-
rithm. In Section 2, we discuss the general frameworks of 
QBT and existing QBT methods. Section 3 describes the 

posed method. Experiments with different QBT tech-
niques are described in Section 4. Finally, Section 5 con-

THE QBT SYSTEM 

Fig. 1 illustrates the flowchart of our query-by-tapping 
tem. In general, there are 2 kinds of inputs to a QBT 

Symbolic input: The onset time of the tapping event is 
provided symbolically with little or no ambiguity. For 
instance, the user may tap on a PC’s keyboard or an 

s touch panel to give the onset time. 
Acoustic input: The onset time is extracted from 

s tapping on a microphone. 
This input method requires additional onset detection 
to extract the onset time of the acoustic input. For ex-
ample, we can estimate the onset time by local-

picking of the input audio’s intensity as in 
[5], or by detecting the transients of kurtosis variation 

ce can be obtained as the inter 
r whose elements are the differ-

ence between two successive onset times. The note onset 
sequences extracted from the monophonic MIDIs (or the 
melody track of polyphonic MIDIs) in the song database 

e also converted into IOIs in advance. We can then ap-
ply a QBT algorithm to compare the query IOI vector to 
those in the database in order to retrieve the most similar 
song from the database. A QBT algorithm usually needs 
to perform IOI vector normalization before similarity 
comparison. Normalization can take care of tempo devia-
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tion, which similarity comparison can handle possible 
insertion/deletion errors. Once normalization is per-
formed, we can apply similarity comparison to find the 
similarity between the IOI query vector and that of each 
database song. The system can then return a ranked list of 
all database songs according to their similarity to the 
query input. 

Normalization and the similarity comparison are de-
tailed in the following sections. 

2.1 Normalization of IOI Vectors 

In most cases, the tempo of the user's query input is dif-
ferent from those of the candidate songs in the database. 
To deal with this problem, we need to normalize the IOI 
vectors of the input query and the candidate songs. There 
are 2 common methods for normalization. The first one is 
to convert the summation of all IOI to a constant value 
[5]. 

 
(1)

where {qi, i=1~m}  is the input query IOI vector, and {r j, 
j=1~��} is a reference IOI vector from the song database. 
Note that the reference IOI vector of a song is truncated to 
a variety of lengths in order to match the query IOI. For 
instance, �� may be set to a value from m-2 to m+2 in or-
der to deal with possible insertions and deletions in the 
query input. Thus all these variant normalized versions of 
the IOI vectors for a song must be compared for similarity 
with the query IOI vector. The second method is to 
represent the normalized IOI vector as the ratio of the cur-
rent IOI element to its preceding element [7]. That is: 

 
(2)

where {si} is the original input query or reference IOI 
vector, and {�̃�}  is its normalized version. The advantage 
of this method is that computation-wise it is much simp-
ler than the first one.  However, this method is suscepti-
ble to the problem of magnified insertion and deletion 

errors of the original IOI vectors, if any. For example, an 
IOI vector is [1, 2, 1], then its normalized vector is [1, 2, 
0.5]. If this IOI vector is wrongly tapped as [1, 1, 1, 1] 
(i.e., with one insertion in the second IOI), the normalized 
will become [1, 1, 1, 1], which has a larger degree of dif-
ference from the groundtruth after normalization. This 
kind of amplified difference is harder to recover in the 
step of similarity comparison. 

2.2 Similarity Comparison 

A robust QBT system should be able to handle insertion 
and deletion errors since most of the common users are 
not likely to tap the correct note sequence of the intended 
song precisely. In particular, a common user is likely to 
lose one or several notes when the song has a fast tempo, 
which leads to deletion errors. On the other hand, though 
less likely, a user may have a wrong impression of the 
intended song and taps more notes instead, which lead to 
insertion errors. Several methods have been proposed to 
compare IOI vectors for QBT, including the earth mov-
er’s distance [4] and several DP-based methods [5], [6], 
[7] which can deal with two input vectors of different 
lengths. In general, the earth mover’s distance is faster 
than DP-based methods, but its retrieval accuracy is not 
as good [11]. Our goal is to obtain a good accuracy with a 
reasonable amount of computing time. Therefore, the 
proposed method is based on a highly efficient DP-based 
method for better accuracy. 

3. THE SHIFTED ALIGNMENT ALGORITHM 

This section presents the proposed method to QBT. The 
method can also be divided into two stages of IOI norma-
lization and similarity comparison. We shall describe 
these two steps and explain the advantages over the state-
of-art QBT methods. 

Normalization: In QBT, though the query IOI vector 
and its target song IOI vector are not necessarily of the 
same size, the ratio of their tempos should be close to a 
constant. In other words, the ratios of an IOI element of a 
query to the corresponding one of the target song should 
be close to a constant. To take advantage of this fact, we 
can shift the query IOI vector (relatively to the target 
song IOI vector) to construct an IOI ratio matrix in order 
to find the optimum mapping between IOI elements of 
these two sequences. An example is shown in Fig. 2(a), 
where the input query IOI vector is represented by {qi, 
i=1~m}, and the reference IOI vector from the song data-
base by {r j, j=1~n} . As displayed in the figure, the refer-
ence IOI vector is shown at the top and the shifted query 
IOI vectors are shown below. Each element of a shifted 
query IOI vector is mapped to that of the reference IOI 
vector in the same column. Take the first shifted query 
IOI vector as an example, its second element q2 is 
mapped to r1 of the reference IOI vector, q3 is mapped to 
r2, etc. For each matched element pair, we divide the 

∑

∑

=

=

=

=
n

k kjj

m

k kii

rrr

qqq
~

1

1

~

~





≥=
=

− 2 if ,/~
1~

1

1

isss

s

iii

 
 

Fig. 1. QBT system flowchart 
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query IOI by its mapping reference IOI to construct an 
IOI ratio matrix M according to the following formula: 
 

 
(3) 

where the size of the matrix M is min(m,n)*(  is + ie +1). 
is and ie are the left- and right-shift amount of the query 
IOI vector, respectively. Fig. 2(b) is the IOI ratio matrix 
of fig. 2(a). In this example, is and ie are 1 and 2, respec-
tively. Since the length of the query is usually shorter, m 
is generally much less than n. Besides, in practice, if the 
anchor position is the beginning of a song, then we can 
improve the computation efficiency by truncating a refer-
ence IOI vector to a length slightly longer (e.g., 5-
element longer) than the length of query IOI vector. 

Unlike the equation (1) which requires many different 
versions of normalized reference IOI vectors for similari-
ty comparison, the proposed approach requires only one-
time normalization to generate a single IOI ratio table for 
computing the similarity. So the proposed approach is 
guaranteed to more efficient. 

Similarity comparison: In order to handle insertions 
and deletions in a flexible yet robust manner, we propose 
a dynamic programming method to compute the similari-
ty between the query and the reference IOI vectors. The 
basic principle is to identify a path over the IOI ratio ma-
trix M where the elemental values along the path should 
be as close as possible to one another. In other words, the 
accumulated IOI ratio variation should be minimal along 
the optimal path. Fig. 3 illustrates two typical numeric 
examples that involve insertion and deletion in the optim-
al path. In fig. 3(a), query IOI vector and reference IOI 
vector have the same tempo, so their elements are pretty 
much the same except that there is an insertion in the 
query. That is, the fourth element of the reference IOI 

vector is equally split into 2 elements in the query. Fig. 
3(b) is the IOI ratio matrix derived from the fig. 3(a), 
with the optimal path surrounded by dashed lines. The 
horizontal direction within the optimal path represent 
one-to-one sequential mapping between the two vectors 
without insertion or deletion. The vertical direction with-
in the path indicates an insertion, where the 4th and 5th 
query IOI elements should be mapped to the 4th reference 
IOI element. On the other hand, Fig. 3(c) demonstrates an 
example of deletion where the query misses the 4th onset 
of the reference vector. Fig. 3(d) shows the corresponding 
IOI ratio matrix with the optimal path surrounded by 
dashed lines. The vertical shift of the path indicates a de-
letion where the 4th query IOI element should be mapped 
to the 4th and 5th reference IOI elements. 

If there is no insertion or deletion in the query, each 
element along the optimal path should have a value close 
to its preceding element. With insertion or deletion, then 
the optimal path exhibits some specific behavior. There-
fore our goal is to find the optimal path with minimal var-
iations between neighboring elements in the path, with 
special consideration for specific path behavior to ac-
commodate insertion and deletion. The variation between 
neighboring IOI ratio elements can be represented as the 
deviation between 1 and the ratio of one IOI ratio element 
to the preceding modified IOI ratio element, which takes 
into consideration the specific path behavior for accom-
modating insertion and deletion. The resulting recurrent 
equation for the optimum-value function 
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Fig. 2. Example of the normalization step of the shifted 
alignment algorithm: (a) Reference IOI vector and the 
shifted query IOI vectors. (b) IOI ratio matrix. 
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Fig. 3. Typical examples of the shifted alignment algo-
rithm: (a) is an example where the query IOI vector has 
an insertion; (b) is the corresponding IOI ratio matrix; (c) 
is another example where the query IOI vector has a dele-
tion; and (d) is the corresponding IOI ratio matrix. The 
path enclosed by dashed line in (b) and (d) represents the 
optimal DP path. 
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(4) 

where Hi,j is the modified IOI ratio element with values in 
the set {Mi,j,  Mi+1,j+M i,j,  Mi-1,j-1Mi,j/(Mi-1,j-1+M i,j)}. The 
actual value of Hi,j depends on the backtrack index in the 
above formula. Specifically, Hi,j will respectively be set 
to the first, second or third element in the set if Di,j takes 
its value from the first, second or third row of the above 
recurrent formula. The first row in the formula indicates 
one-by-one sequential mapping of the query and the ref-
erence IOI. The second row considers the case when the 
user commits an insertion error by taking one note as two, 
with the addition of a constant η1 as its penalty. The third 
row considers the case when the user commits a deletion 
error by taking two notes as one, with the addition of a 
constant η2 as its penalty. Fig. 4 illustrates these three 
conditions with three allowable local paths in the DP ma-
trix D. Note that equation (4) does not consider some 
special cases of n-to-1 insertion or 1-to-n deletion when n 
is greater than 2. We can easily modify the equation in 
order to take such considerations, but we choose not to do 
so since these special cases rarely occur. Moreover, we 
want to keep the formula simple for straightforward im-
plementation and better efficiency. 

The degree of similarity between two IOI vectors can 
thus be determined from the matrix D. The strategy com-
pares the elements in the corresponding positions of the 
last non-zeros element in each row of the matrix M. For 
example, if the DP matrix D is derived from the IOI ratio 
matrix M in Fig. 2(b), we need to compare the next-to-
last element of the first row with the last element of the 
other rows in D.  The optimal cost is the minimal value of 
these elements. The size of the DP matrix is 
min(m,n)*( is+i e+1), which is less than the size (m*n) of 
the DP algorithms in [6], [7], [9]. In addition, our algo-

rithm can be easily extended to the QBT system with 
“anywhere” anchor positions by setting the ie to the 
length of the reference IOI vector. 

4. PERFORMANCE EVALUATION 

To evaluate the proposed method, we design 3 experi-
ments and compare the performance with that of the 
state-of-art algorithm. The first experiment compares the 
recognition rate with algorithms in MIREX QBT task. 
The second experiment compares their computing speeds. 
The third experiment demonstrates the robustness of the 
proposed method using a larger dataset. These experi-
ments are described in the following sub-sections. 

4.1 MIREX QBT Evaluation Task 

We have submitted our algorithm to the 2012 MIREX 
QBT task [12], which involves two subtasks for symbolic 
and acoustic inputs, respectively. Because the onset de-
tection of acoustic input is not the focus of this paper, the 
following experiments only consider the case of queries 
with symbolic input. There are 2 datasets of symbolic in-
put, including Jang's dataset of 890 queries (with 
groundtruth onsets to be used as the symbolic input) and 
136 monophonic MIDIs, and Hsiao's dataset of 410 sym-
bolic queries and 143 monophonic MIDIs. The queries of 
both datasets are all tapped from the beginning of the tar-
get song. These datasets are published in 2009 and can be 
downloaded from the MIREX QBT webpage. The top-10 
hit rate and the mean reciprocal rank (MRR) are used as 
the performance indices of a submitted QBT method. Fig. 
5 shows the performance of 5 submitted algorithms, with 
(a) and (b) are respectively the results of Jang's and 
Hsiao’s datasets. Out of these five submissions, “HL” and 
“ML” do not have clear descriptions about their algo-
rithms in the MIREX abstracts. Therefore, these 2 algo-
rithms are not included in the experiments in section 4.2 
and 4.3. “HAFR” is the implementation of [9], which 
claimed that its results outperformed other submissions, 
including the methods of [5] and [6], in MIREX 2008. 
The algorithm “CJ” is an improved version of [6]. The 
submission of "SA" is the proposed algorithm in this pa-
per. 

As shown in fig. 5(a), our algorithm outperforms al-
most all the other submissions except for the MRR in 
Jang's dataset where our submission is ranked the second. 
In fact, the MRR of our algorithm is only 0.3% lower 
than that of "CJ". On the other hand, the top-10 hit rate of 
our submission is 0.3% higher than that of "CJ". So the 
performances of “CJ” and “SA” are very close in this da-
taset. From fig. 5(b), it is obvious that our algorithm 
simply outperforms all the other submission in both MRR 
and top-10 hit rate. As a whole, the proposed method ob-
tains good results in MIREX QBT contest. 
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4.2 Evaluation of Computation Efficiency 

In this experiment, we want to compare the efficiency of 
several QBT algorithms. We implemented three submis-
sions (including ours) to 2012 MIREX QBT tasks in C 
language. The “ML” and “HL” algorithms were not in-
cluded in this experiment due to the lack of clear descrip-
tions about their algorithms in the MIREX abstracts. The 
experiment was conducted on a PC with an AMD Athlon 
2.4GHz CPU and 1G RAM. Each algorithm was repeated 
10 times over Jang’s dataset to obtain the average compu-
ting time of a single query. The results are shown in Ta-
ble 1 which indicates that our algorithm is at least 3 times 
faster than the other two algorithms. This is due to the 
fact that our algorithm has an efficient way of normaliza-
tion for IOI vectors (as described in section 3), leading to 
a smaller table for DP optimal path finding. 
 

Algorithm Avg. time (ms) 

HAFR 421 
CJ 213 
SA 65 

Table 1. Speed comparison of QBT algorithms 
 

From these two experiments, we can claim that our al-
gorithm strike a good balance between the recognition 
rate and computation efficiency. 

4.3 Experiment with Larger Databases 

The MIREX QBT datasets are well organized for QBT 
research. However, both datasets contain song databases 
of slightly more than 100 songs. These small database 
sizes lead to high accuracy for all submissions in MIREX 
QBT task. Therefore, we designed another experiment to 
demonstrate how the performance varies with the dataset 

sizes. We collected 1000 MIDIs which are different from 
the MIDIs in the MIREX QBT datasets. And we enlarge 
the original databases by adding 250 noise MIDIs each 
time, and evaluate the performance in both MRR and top-
10 hit rate. 

Fig. 6 shows the experimental results. As the number 
of noise MIDIs increases, the recognition rate of each al-
gorithm gradually decreases. In Jang’s dataset of the fig. 
6(a), the top-10 hit rate of “SA” is the best among all al-
gorithms (left subplot). However, the MRR of “SA” and 
“CJ” are very close and the value of one is slightly higher 
than the other in different number of noise MIDIs (right 
subplot). In fig. 6(b), our algorithm notably outperforms 
the others in both top-10 hit rate (left subplot) and MRR 
(right subplot). It is interesting to note that the decay of 
the top-10 hit rate of “SA” is slower than the others in 
both datasets, especially in Jang’s dataset. This indicates 
that our algorithm has better resistance to these noise 
MIDIs in top-10 hit rate. In both datasets, “SA” still had 
>85% top-10 rate and >60% MRR. Therefore we can 
conclude that the proposed method is more robust in deal-
ing with a large song database. 

5. CONCLUSION 

In this paper, we have proposed a shifted-alignment algo-
rithm for QBT by constructing an IOI ratio matrix, in 
which each element is the ratio of relative IOI elements 
of the query and a reference song. The similarity compar-
ison is based on DP to deal with possible insertions and 
deletions of query IOI vectors. We evaluated the perfor-
mance of the proposed method with two datasets. The 
experimental results showed that our algorithm exhibited 

Algorithm Top 10 MRR 

HL 0.888 0.784 

ML 0.876 0.797 

HAFR 0.876 0.770 

CJ 0.908 0.840 

SA 0.911 0.837 
 

 
(a) Result 1: Jang’s dataset 

 

Algorithm Top 10 MRR 

HL 0.900 0.687 
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Fig. 6. Results of the performance versus database sizes. 
(a) is the performance of top-10 hit rate (left subplot) and 
MRR (right subplot) using Jang’s dataset. (b) is the per-
formance of top-10 hit rate (left subplot) and MRR (right 
subplot) using Hsiao’s dataset. 
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an overall better accuracy than other submissions to 2012 
MIREX query-by-taping task. Moreover, the computation 
time is at least 3 times faster than others. We also con-
ducted an experiment to demonstrate that our algorithm 
performs better and more robustly than other existing 
QBT algorithms in the case of large databases. In particu-
lar, our algorithm has a top-10 hit rate larger than 85% 
and MRR larger than 60% in both databases when the 
number of noise MIDIs is as high as 1000.  

Although the proposed method performs well in the 
experiments, the recognition rate still has room for further 
improvement, especially in the case of “anywhere” anc-
hor position, that is, the user is allowed to start tapping 
from anywhere in the middle of a song. From the experi-
mental results, we can observe that each algorithm has its 
strength and weakness in dealing with different queries 
and database songs. Therefore, one direction of our im-
mediate future work is to find an optimal way to combine 
these methods for better accuracy. 
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