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ABSTRACT

Synchronization of a score to an audio-visual music per-
formance recording is usually done by solving an audio-
to-MIDI alignment problem. In this paper, we focus on the
possibility to represent both the score and the performance
using information about which instrument is active at a
given time stamp. More specifically, we investigate to what
extent instrument-wise “playing” (P) and “non-playing”
(NP) labels are informative in the synchronization process
and what role the visual channel can have for the extraction
of P/NP labels. After introducing the P/NP-based repre-
sentation of the music piece, both at the score and perfor-
mance level, we define an efficient way of computing the
distance between the two representations, which serves as
input for the synchronization step based on dynamic time
warping. In parallel with assessing the effectiveness of the
proposed representation, we also study its robustness when
missing and/or erroneous labels occur. Our experimental
results show that P/NP-based music piece representation is
informative for performance-to-score synchronization and
may benefit the existing audio-only approaches.

1. INTRODUCTION AND RELATED WORK

Synchronizing an audio recording to a symbolic repre-
sentation of the performed musical score is beneficial to
many tasks and applications in the domains of music anal-
ysis, indexing and retrieval, like audio source separation
[4, 9], automatic accompaniment [2], sheet music-audio
identification [6] and music transcription [13]. As stated
in [7], “sheet music and audio recordings represent and
describe music on different semantic levels” thus making
them complementary for the functionalities they serve.
The need for effective and efficient solutions for audio-
score synchronization is especially present for genres like
symphonic classical music, for which the task remains
challenging due to the typically long duration of the pieces
and a high number of instruments involved [1]. The ex-
isting solutions usually turn this synchronization problem
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Figure 1: An illustration of the representation of a symphonic
music piece using the matrix of playing/non-playing labels.

into an audio-to-audio alignment one [11], where the score
is rendered in audio form using its MIDI representation.

In this paper, we investigate whether sequences of play-
ing (P) and non-playing (NP) labels, extracted per instru-
ment continuously over time, can alternatively be used to
synchronize a recording of a music performance to a MIDI
file. At a given time stamp, the P (NP) label is assigned to
an instrument if it is (not) being played. If such labels are
available, a representation of the music piece as illustrated
in Figure 1 can be obtained: a matrix encoding the P/NP
“state” for different instruments occurring in the piece at
subsequent time stamps. Investigating the potential of this
representation for synchronization purposes, we will ad-
dress the following research questions:

e RQI1: How robust is P/NP-based synchronization in
case of erroneous or missing labels?

e RQ2: How does synchronizing P/NP labels behave
at different time resolutions?

We are particularly interested in this representation, as
P/NP information for orchestra musicians will also be
present in the signal information of a recording. While
such information will be hard to obtain from the au-
dio channel, it can be obtained from the visual channel.
Thus, in case an audio-visual performance is available,
using P/NP information opens up possibilities for video-
to-score synchronization as a means to solve a score-to-
performance synchronization problem.

The rest of the paper is structured as follows. In
Section 2, we formulate the performance-to-score syn-
chronization problem in terms of features based on P/NP
labels. Then, we explain how the P/NP matrix is con-
structed to represent the score (Section 3) and we elaborate
on the possibilities for extracting the P/NP matrix to rep-
resent the analyzed performance (Section 4). In Section 5
we propose an efficient method for solving the synchro-
nization problem. The experimental setup is described
in Section 6 and in Section 7 we report the results of our
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Figure 2: Example of a Mpnp matrix with missing labels.

experimental assessment of the proposed synchronization
methodology and provide answers to our research ques-
tions. The discussion in Section 8 concludes the paper.

2. PROBLEM DEFINITION

Given an audio-visual recording of a performance and a
symbolic representation of the performed scores, we ad-
dress the problem of synchronizing these two resources by
exploiting information about the instruments which are ac-
tive over time.

Let L {=1,0,1} be a set encoding the three la-
bels non-playing (NP), missing (X) and playing (P). Let
Mpxp = {m;;} be a matrix of N1 x Nt elements where
Ni is the number of instruments and Nt is the number
of time points at which the P/NP state is observed. The
value of m;; € L represents the state of the i-th instru-
ment observed at the j-th time point (1 < ¢ < Ny and
1 < j < Nt). An example of Mpyp is given in Figure 2.

We now assume that the matrices Mpyp and My p are
given and represent the P/NP information respectively ex-
tracted by the audio-visual recording and the sheet music.
The two matrices have the same number of rows and each
row is associated to each instrumental part. The number of
columns, i.e. observations over time, is in general different.
The synchronization problem can be then formulated as
the problem of finding a time map foyne : {1... N2V} —
{1... NS} linking the observation time points of the two
resources.

3. SCORE P/NP REPRESENTATION

For a given piece, we generate one P/NP matrix Mgyp
for the score relying on the corresponding MIDI file as the
information source.

We start generating the representation of the score by
parsing the data of each available track in the given MIDI
file. Typically, one track per instrument is added and is
used as a symbolic representation of the instrumental part’s
score. More precisely, when there is more than one track
for the same instrument (e.g. Violin 1, Violin 2 - which
are two different instrumental parts), we keep both tracks
as separate. In the second step, we use a sliding window
that moves along the MIDI file and derive a P/NP label per
track and window position. A track receives a P label if
there is at least one note played within the window. We
work with the window in order to comply with the fact
that a played note has a beginning and end and therefore
lasts for an interval of time. In this sense, a played note
is registered when there is an overlap between the sliding
window and the play interval of that note.
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The length of the window is selected such that short
rests within a musical phrase do not lead to misleading
P-NP-P switches. We namely consider a musician in the
“play” mode if she is within the “active” sequence of the
piece with respect to her instrumental part’s score, in-
dependently whether at some time stamps no notes are
played. In our experiments, we use a window length of
4 seconds which has been determined by empirical evalu-
ation, and a step-size of 1 second. This process generates
one label per track every second.

In order to generalize the parameter setting for window
length and offset, we also related them to the internal MIDI
file time unit. For this purpose, we set a reference value for
the tempo. Once the value is assigned, the sliding window
parameters are converted from seconds to beats. The eas-
iest choice is adopting a fixed value of tempo for every
performance. Alternatively, when an audio-visual record-
ing is available, the reference tempo can be estimated as
the number of beats in the MIDI file divided by the length
of the recording expressed in minutes. A detailed investi-
gation of different choices of the tempo is reported in [6].

4. PERFORMANCE P/NP REPRESENTATION

While an automated method could be thought of to extract
the P/NP matrix MANp from a given audio-visual record-
ing, developing such a method is beyond the scope of this
paper. Instead, our core focus is assessing the potential of
such a matrix for synchronization purposes, taking into ac-
count the fact that labels obtained from real-world data can
be noisy or even missing. We therefore deploy two strate-
gies which mimic the automated extraction of the MAYp
matrices. We generate them: (i) artificially, by producing
(noisy) variations of the P/NP matrices derived from MIDI
files (Section 4.1), and (ii) more realistically, by deriving
the labels directly from the visual channel of a recording
in a semi-automatic way (Section 4.2).

4.1 Generating synthetic P/NP matrices

The first strategy produces synthetic P/NP matrices by an-
alyzing MIDI files as follows. Similarly to the process of
generating a P/NP matrix for the score, we apply a slid-
ing window to the MIDI file and extract labels per instru-
mental track at each window position. This time, however,
time is randomly warped, i.e. the sliding window moves
over time with non-constant velocity. More specifically,
we generate random time-warping functions by randomly
changing slope every 3 minutes and by adding a certain
amount of random noise in order to avoid perfect piecewise
linear functions. In a real audio-visual recording analysis
pipeline, we expect that erroneous and missing P/NP labels
will occur. Missing labels may occur if musicians cannot
be detected, e.g. because of occlusion or leaving the cam-
era’s angle of view in case of camera movement. In order
to simulate such sources of noise, we modify the gener-
ated P/NP tracks by randomly flipping and/or deleting pre-
determined amounts of labels at random positions of the
P/NP matrices.
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Figure 3: Example of P/NP labels extracted from the visual channel (red dots) and compared to labels extracted by the score (blue line).

4.2 Obtaining P/NP matrices from a video recording

The second strategy more closely mimics the actual video
analysis process and involves a simple, but effective
method that we introduce for this purpose. In this method,
we build on the fact that video recordings of a symphonic
music piece are typically characterized by regular close-up
shots of different musicians. From the key frames rep-
resenting these shots, as illustrated by the examples in
Figure 4, it can be inferred whether they are using their
instrument at that time stamp or not, for instance by inves-
tigating their body pose [14].

Figure 4: Examples of body poses indicatihg playing/non-

playing state of a musician.

In the first step, a key frame is extracted every second
in order to produce one label per second, as in the case of
the scores. Faces are detected via off-the-shelf face detec-
tors and upper-body images are extracted by extending the
bounding box’s areas of face detector outputs. We clus-
ter the obtained images using low-level global features en-
coding color, shape and texture information. Clustering
is done using k-means with the goal to isolate images of
different musicians. In order to obtain high precision, we
choose a large value for k. As a result, we obtain clus-
ters mostly containing images of the same musician, but
also multiple clusters for the same musician. Noisy clus-
ters (those not dominated by a single musician) are dis-
carded, while the remaining are labeled by linking them to
the correspondent track of the MIDI file (according to the
musician’s instrument and position in the orchestra, i.e. the
instrumental part). In order to label the upper-body images
as P/NP, we generate sub-clusters using the same features
as those extracted in the previous (clustering) step. Us-
ing once again k-means, but now with k£ equal to 3 (one
cluster meant for P labels, one for NP and one extra label
for possible outliers), we build sub-clusters which we label
as either playing (P), non-playing (NP) or undefined (X).
Once the labels for every musician are obtained, they are
aggregated by instrumental part (e.g. the labels from all the
Violin 2 players are combined by majority voting). An ex-
ample of a P/NP subsequence extracted by visual analysis
is given in Figure 3.
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5. SYNCHRONIZATION METHODOLOGY

In this section, we describe the synchronization strat-
egy used in our experiments. The general idea is to
compare configurations of P/NP labels for every pair of
performance-score time points and produce a distance ma-
trix. The latter can then serve as input into a synchroniza-
tion algorithm, for which we adopt the well-known dy-
namic time warping (DTW) principle. This implies we will
not be able to handle undefined amounts of repeats of parts
of the score. However, this is a general issue for DTW also
holding for existing synchronization approaches, which we
consider out of the scope of this paper.

In order to find the time map between performance and
score, we need to solve the problem of finding time links
between the given M{aYp and My p matrices. To this end,
we use a state-of-the-art DTW algorithm [12].

5.1 Computing the distance matrix

Ten Holt et. al. [12] compute the distance matrix through
the following steps: (i) both dimensions of the matrices
are normalized to have zero mean and unit variance, (ii)
optionally a Gaussian filter is applied, and (iii) pairs of
vectors are compared using the city block distance. In our
case, we take advantage of the fact that our matrices con-
tain values belonging to the finite set of 3 different integers,
namely the set L introduced in Section 2. This enables us
to propose an alternative, just as effective, but more effi-
cient method to compute the distance matrix.

Let m?Y and mj be two column vectors respec-
tively belonging to MAY,p and M3y p. To measure how
(dis-)similar those two vectors are, we define a correlation
score sy, as follows:

N1
_ AV Sy _ AV S
sjk—corr(mj ,my) = g m Mgy
i=1

From such definition, it follows that a pair of observed
matching labels add a positive unitary contribution. If the
observed labels do not match, the added contribution is
unitary and negative. Finally, if one or both labels are not
observed (i.e. at least one of them is X), the contribution is
0. Hence, it also holds — /N1 < s, < +N7. The maximum
is reached only if the two vectors are equal. Correlation
scores can be efficiently computed as dot-product of the
given P/NP matrices, namely as (Mayp) " MSyp-

The distance matrix D = { d; k }» whose values are zero
when the compared vectors are equal, can now be com-
puted as d;, = Ny — sji. As aresult, D will have N2V
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Table 1: Comparing our distance matrix definition to Ten Holt et. al. [12]. By visual inspection, we observe comparable alignment
performances. However, the computation of our distance matrix is much faster.

rows and N columns. When the correlation is the highest,
namely equal to V1, the distance will be zero.

Our approach has two properties that make the com-
putation of D fast: D is computed via the dot product
and it contains integer values only (as opposed to stan-
dard methods based on real-valued distances). As shown
in Table 1, both the distance matrix proposed in [12] and
using our definition produce comparable results. Since our
method allows significantly faster computation (up to 40
times faster), we adopt it in our experiments.

5.2 Dynamic Time Warping

Once the distance matrix D is computed, the time map
between MpYp and M3Syp is determined by solving the
optimization problem: P* = arg minp cost(D, P) where
P = {(p¢ ~ pes1)} is a path through the items of D
having a cost defined by the function cost(D, P). More
specifically, p, = (i2'V,47) is a coordinate of an ele-
ment in D. The cost function is defined as cost(D, P) =

Iéljl di?",ii’ The aforementioned problem is efficiently
solved via dynamic programing using the well-known dy-
namic time warping (DTW) algorithm. Examples of P*
paths computed via DTW are shown in the figures of
Table 1.

Once P* is found, the time map fyyn. is computed
through the linear interpolation of the correspondences in
P*, i.e. the set of coordinates {p; = (i2*V,i%)}. This map
allows to define correspondences between the two matri-

ces, as shown in the example of Figure 5.
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Figure 5: Example of produced alignment between two fully-
observed Mpnp matrices.
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6. EXPERIMENTAL SETUP

In this section, we describe our experimental setup in-
cluding details about the dataset. In order to ensure the
reproducibility of the experiments, we release the code
and share the URLSs of the analyzed freely available MIDI
files ! .

We evaluate the performances of our method on a set
of 29 symphonic pieces composed by Beethoven, Mahler,
Mozart and Schubert. The dataset consists of 114 MIDI
files. Each MIDI file contains a number of tracks cor-
responding to different parts performed in a symphonic
piece. For instance, first and second violins are typically
encoded in two different parts (e.g. “Violin 1”” and “Violin
2”). In such a case, we keep both tracks separate since mu-
sicians in the visual channel can be labeled according to
the score which they perform (and not just by their instru-
ment). We ensured that the MIDI files contain tracks which
are mutually synchronized (i.e. MIDI files of type 1). The
number of instrumental parts, or MIDI tracks, ranges be-
tween 7 and 31 and is distributed as shown in Figure 7.

n38
530
20

0 7-9 10-12 13-15 16-18 19-21 22-24 25-27 28-30 31-33

# instruments

Figure 7: Distribution of the number of instrumental parts across
performances in the data set.

For each MIDI file, we perform the following steps.
First, we generate one Mpyp matrix using a fixed ref-
erence tempo of 100 BPM. The reason why we use the
same value for every piece is that we evaluate our method
on artificial warping paths, hence we do not need to
adapt the sliding window parameters to any actual perfor-
mance. Then we generate one random time-warping func-
tion which has two functions: (i) it is used as ground-truth
when evaluating the alignment performance, and (ii) it is
used to make one time-warped P/NP matrix MAYp. The
latter is used as template to build noisy copies of MaYp
and evaluate the robustness of our method. Each tem-
plate P/NP matrix is used to generate a set of noisy P/NP
matrices which are affected by different pre-determined
amounts of noise. We consider two sources of noise: mis-
taken and missing labels. For both sources, we generate

1 http://homepage.tudelft.nl/f8j6a/ISMIR2014baz.zip
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Figure 6: Average matching rates as a function of the percentage of mistaken and/or missing labels at different tolerance thresholds.

the following percentages of noisy labels: 0% (noiseless),
2%, 5%, 10%, 20%, 30%, 40% and 50%. For every pair
of noise percentages, e.g. 5% mistaken + 10% missing,
we create 5 different noisy versions of the original P/NP
matrix 2. Therefore, for each MIDI file, the final set of
matrices has the size 1 4+ (8 x 8 — 1) x 5 = 316. Overall,
we evaluate the temporal alignment of 316 x 114 = 36024
P/NP sequences.

For each pair of Mpnp matrices to be aligned, we com-
pute the matching rate by sampling fsyn. and measuring
the distance from the true alignment. A match occurs when
the distance between linked time points is below a thresh-
old. In our experiments, we evaluate the matching rate us-
ing three different threshold values: 1, 2 and 5 seconds.

Finally, we apply the video-based P/NP label extrac-
tion strategy described in Section 4.2 to a multiple cam-
era video recording of the 4th movement of Symphony
no. 3 op. 55 of Beethoven performed by the Royal Con-
certgebouw Orchestra (The Netherlands). For this perfor-
mance, in which 54 musicians play 19 instrumental parts,
we use the MIDI file and the correspondent performance-
score temporal alignment file which are shared by the au-
thors of [8]. The latter is used as ground truth when evalu-
ating the synchronization performance.

7. RESULTS

In this section, we present the obtained results and pro-
vide answers to the research questions posed in Section 1.
We start by presenting in Figure 6 the computed matching
rates in 3 distinct matrices, one for each threshold value.
Given a threshold, the overall matching rates are reported
in an 8 X 8 matrix since we separately compute the aver-
age matching rate for each pair of mistaken-missing noise
rates. Overall, we see two expected effects: (i) the average
matching rate decreases for larger amounts of noise, and
(ii) the performance increases with the increasing thresh-
old. What was not expected is the fact that the best perfor-
mance is not obtained in the noiseless case. For instance,
when the threshold is 5 seconds, we obtained an average
matching rate of 81.7% in the noiseless case and 85.0%
in the case of 0% mistaken and 10% missing labels. One
possible explanation is that 10% missing labels could give
more “freedom” to the DTW algorithm than the noiseless

2 We do not add extra copies for the pair (0%,0%), i.e. the template
matrix.

205

case. Such freedom may lead to a better global optimiza-
tion. In order to fully understand the reported outcome,
however, further investigation is needed, which we leave
for future work.

As for our first research question, we conclude that the
alignment through P/NP sequences is more robust to miss-
ing labels than to mistaken ones. We show this by the fact
that the performance for 0% mistaken and 50% missing la-
bels are higher than in the opposite case, namely for 50%
mistaken and 0% missing labels. In general the best perfor-
mance is obtained for up to 10% mistaken and 30% miss-
ing labels.

In the second research question we address the behav-
ior at different time resolutions. Since labels are sampled
every second, it is clear why acceptable matching rates are
only obtained at coarse resolution (namely for a threshold
of 5 seconds).

Finally, we comment on the results obtained when syn-
chronizing through the P/NP labels assigned via visual
analysis. The P/NP matrix, shown in Figure 8a, is affected
by noise as follows: there are 53.95% missing and 8.65%
mistaken labels.

(a) MF‘/}IEI/P and MENP

(b) DTW

Figure 8: Real data example: P/NP labels by analysis of video

We immediately notice the large amount of missing la-
bels. This is mainly caused by the inability to infer a P/NP
label at those time points when all the musicians of a cer-
tain instrumental part are not recorded. Additionally, some
of the image clusters generated as described in Section 4.2
are not pure and hence labeled as X.

The obtained synchronization performance at 1, 2 and 5
seconds of tolerance are respectively 18.74%, 34.49% and
60.70%. This is in line with the results obtained with syn-
thetic data whose performance at 10% of mistaken labels
and 50% of missing for the three different tolerances are
24.3%, 44.2% and 65.9%. Carrying out the second exper-
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iment was also useful to get insight about the distribution
of missing labels. By inspecting Figure 8a, we notice that
such a type of noise is not randomly distributed. Some
musicians are sparsely observed over time hence leading
to missing labels patterns which differ from uniform dis-
tributed random noise.

8. DISCUSSION

In this paper, we presented a novel method to synchro-
nize score information of a symphonic piece to a perfor-
mance of this piece. In doing this, we used a simple feature
(the act of playing or not) which trivially is encoded in the
score, and feasibly can be obtained from the visual channel
of an audio-visual recording of the performance. Unique
about our approach is that both for the score and the perfor-
mance, we start from measuring individual musician con-
tributions, and only then aggregate up to the full ensemble
level to perform synchronization. This makes a case for us-
ing the visual channel of an audio-visual recording. In the
audio channel, which so far has predominantly been con-
sidered for score-to-performance synchronization, even if
separate microphones are used per instrument, different in-
struments will never be fully isolated from each other in a
realistic playing setting. Furthermore, audio source sep-
aration for polyphonic orchestral music is far from being
solved. However, in the visual channel, different players
are separated by default, up to the point that a first clarinet
player can be distinguished from a second clarinet player,
and individual contributions can be measured for both.

Our method still works at a rough time resolution, and
lacks the temporal sub-second precision of typical audio-
score synchronization methods. However, it is compu-
tationally inexpensive, and thus can quickly provide a
rough synchronization, in which individual instrumental
part contributions are automatically marked over time.
Consequently, interesting follow-up approaches could be
devised, in which cross- or multi- modal approaches might
lead to stronger solutions, as already argued in [3, 10].

For the problem of score synchronization, a logical next
step is to combine our analysis with typical audio-score
synchronization approaches, or approaches generally re-
lying on multiple synchronization methods, such as [5],
to investigate whether a combination of methods improves
the precision and efficiency of the synchronization proce-
dure. Our added visual information layer can further be
useful for e.g. devising structural performance characteris-
tics, e.g. the occurrence of repeats. Our general synchro-
nization results will also be useful for source separation
procedures, since the obtained P/NP annotations indicate
active sound-producing sources over time. Furthermore,
results of our method can serve applications focusing on
studying and learning about musical performances. We can
easily output an activity map or multidimensional time-
scrolling bar, visualizing which orchestra parts are active
over time in a performance. Information about expected
musical activity across sections can also help directing the
focus of an audience member towards dedicated players or
the full ensemble.

Finally, it will be interesting to investigate points where
P/NP information in the visual and score channel clearly
disagree. For example, in Figure 3, some time after the
flutist starts playing, there is a moment where the score
indicates a non-playing interval, while the flutist keeps a
playing pose. We hypothesize that this indicates that, while
a (long) rest is notated, the musical discourse actually still
continues. While this also will need further investigation,
this opens up new possibilities for research in performance
analysis and musical phrasing, broadening the potential
impact of this work even further.
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