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ABSTRACT

The multiple viewpoints representation is an event-based
representation of symbolic music data which offers a means
for the analysis and generation of notated music. Previ-
ous work using this representation has predominantly re-
lied on n-gram and variable order Markov models for mu-
sic sequence modelling. Recently the efficacy of a class
of distributed models, namely restricted Boltzmann ma-
chines, was demonstrated for this purpose. In this paper,
we demonstrate the use of two neural network models which
use fixed-length sequences of various viewpoint types as
input to predict the pitch of the next note in the sequence.
The predictive performance of each of these models is com-
parable to that of models previously evaluated on the same
task. We then combine the predictions of individual mod-
els using an entropy-weighted combination scheme to im-
prove the overall prediction performance, and compare this
with the predictions of a single equivalent model which
takes as input all the viewpoint types of each of the indi-
vidual models in the combination.

1. INTRODUCTION

We are interested in the computational modelling of melo-
dies available in symbolic music data formats such as MIDI
and KERN. For this purpose, we chose to work with a rep-
resentation of symbolic music first proposed in [9] in rela-
tion to multiple viewpoints for music prediction (which we
refer to here as the “multiple viewpoints representation”).
The multiple viewpoints representation is an event-based
representation extracted from symbolic music data where
a given piece of music is decomposed into parallel streams
of features, known as viewpoint types. Each viewpoint type
is either a directly observable musical dimension such as
pitch and note duration, or an abstract one derived from
them such as inter-onset interval or pitch contour. In or-
der to analyse musical structure using this representation,
one can train a machine learning model on sequences of
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viewpoint types and apply it to tasks such as music gener-
ation [6] and classification [3, 7]. This representation has
also been the focus of more recent work related to music
cognition [14,17]. The novelty of this approach is in its ex-
tension of previous work in language modelling to music
with an information theoretic backing which facilitates an
objective evaluation of models for music prediction. Ap-
proaches based on information theory have been of interest
in musicology to understand structure and meaning in mu-
sic in terms of its predictability [10, 11, 13].

In the original work on multiple viewpoints [9] and that
which followed [15, 21], Markov models were exclusively
employed for music modelling using this framework. While
this is a reasonable choice, Markov models are often faced
with a problem related to data sparsity known as the curse
of dimensionality [2]. This refers to the exponential rise in
the number of model parameters to be estimated with the
length of the modelled sequences. Models which employ
distributed architectures such as neural networks tend to
avoid this problem, as they do not require enumerating all
state transition probabilities, but rather the weights of the
network encode only those dependencies necessary to min-
imize prediction error. It was demonstrated more recently
in [4] how a distributed model — the restricted Boltzmann
machine, is a suitable alternative in this context. It was also
suggested in [8] that neural networks might be suitable al-
ternatives to n-gram models for music modelling with mul-
tiple viewpoints but no actual research in this direction has
ensued.

In this paper, we first present two neural networks for
modelling sequences of musical pitch. The first is a sim-
ple feed-forward neural network [20], and the second is
the musical extension of the Neural Probabilistic Language
Model [2] — a deeper feed-forward network with an added
weight-sharing layer between the input and hidden lay-
ers. The latter was originally proposed for learning dis-
tributed representations of words in language modelling.
Both models predict a probability distribution over the pos-
sible values of the next pitch given a fixed-length context
as input. Their predictive performance is comparable to or
better than previously evaluated melody prediction mod-
els in [4, 16]. The second network is further extended to
make use of additional viewpoint types extracted from the
context, as inputs for the same task of predicting musi-
cal pitch. We then combine the predictions of individual
models with different viewpoint types as their respective
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inputs using an entropy-weighted combination scheme to
improve the overall prediction performance, and compare
this with the predictions of a single model which takes as
input all the viewpoint types of each of the individual mod-
els in the combination.

We begin with an overview of the multiple viewpoints
representation in Section 2. This is followed by a descrip-
tion of the two neural networks which are used with this
representation, in Section 3. Section 4 presents an evalua-
tion of the predictive performance of the two models along
with a comparison to previous work. Finally, directions for
future research are outlined in Section 5.

2. MULTIPLE VIEWPOINT SYSTEMS

In order to explain music prediction with multiple view-
points, the analogy to natural language is used here. In
statistical language modelling, the goal is to build a model
that can estimate the joint probability distribution of subse-
quences of words occurring in a language L. A statistical
language model (SLM) can be represented by the condi-
tional probability of the next word wT given all the previ-
ous ones [w1, . . . , w(T−1)] (written here as w(T−1)

1 ), as

P (wT1 ) =
T∏
t=1

P (wt|w(t−1)
1 ) . (1)

The most commonly used SLMs are n-gram models,
which rely on the simplifying assumption that the proba-
bility of a word in a sequence depends only on the imme-
diately preceding (n− 1) words [12]. This is known as the
Markov assumption, and reduces (1) to

P (wT1 ) =
T∏
t=1

P (wt|w(t−1)
(t−n+1)) . (2)

Following this approach, musical styles can be inter-
preted as vast and complex languages [9]. In predicting
music, one is interested in learning the joint distribution
of musical event sequences sT1 in a musical language S.
Much in the same way as an SLM, a system for music pre-
diction models the conditional distribution p(st|s(t−1)1 ), or
under the Markov assumption p(st|s(t−1)(t−n+1)). For each
prediction, context information is obtained from the events
s
(t−1)
(t−n+1) immediately preceding st. Musical events have a

rich internal structure and can be expressed in terms of di-
rectly observable or derived musical features such as pitch,
note duration, inter-onset interval, or a combination of two
or more such features. The framework of multiple view-
point systems for music prediction [9] was proposed in or-
der to efficiently handle this rich internal structure of music
by exploiting information contained in these different mu-
sical feature sequences, while at the same time limiting the
dimensionality of the models using these features. In the
interest of brevity, we limit ourselves to an informal discus-
sion of multiple viewpoint systems for monophonic music
prediction and refer the reader to [9] for a more detailed
explanation.

A musical event s refers to the occurrence of a note in a
melody. A viewpoint type (or simply type) τ refers to any
of a set of musical features that describe an event. The do-
main of a type, denoted by [τ ] is the set of possible values
of that type. A basic type is a directly observable or given
feature such as pitch, note duration, key-signature or time-
signature. A derived type can be derived from any of the
basic types or other derived types. Two or more types can
be “linked” by taking the Cartesian product of their respec-
tive domains, thus creating a linked viewpoint type. A mul-
tiple viewpoints system (MVS) is a set of models, each of
which is trained on subsequences of one type, whose indi-
vidual predictions are combined in some way to influence
the prediction of the next event in a given event sequence.
Given a context s(t−1)(t−n+1) and an event st, each viewpoint τ

in an MVS must compute the probability pτ (st|s(t−1)(t−n+1)).
In order to input the viewpoint type sequences to the

neural network models, we first convert each input type
value into a binary one-hot encoding. When a context
event is missing or undefined, each element of the vector
is initialized to 1/|S|. When there is more than one input
type, one-hot vectors corresponding to all the input types
for a musical event are concatenated to obtain an input vec-
tor for that event. As we are dealing with models of fixed
context-length l, the final input feature vector input to the
model is a concatenation of l such vectors. In doing so, we
are effectively bypassing the need to compute a Cartesian
product to link viewpoint types before using them as input
to a single model which has been the practice when using
n-gram and variable order Markov models.

Each model in an MVS relies on a different source of in-
formation (its respective input types) to make a prediction
about the target viewpoint type. The accuracy of the pre-
diction depends on how informative these input types are
of the target type. It is possible to combine the information
provided by different input types for possibly better pre-
dictive performance. Here, we consider two ways of doing
this - implicitly in a single model which is trained using a
set of input types, and explicitly by combining the prob-
ability distributions of multiple models, each of which is
trained separately on a mutually exclusive subset of these
input types. While the former is only a special case of what
has been described so far, we provide an explanation of the
latter below in Section 2.1.

2.1 Combining Multiple Models

It was demonstrated in [9, 15] that an entropy-weighted
combination of the predictions of two or more n-gram or
variable order Markov models typically results in ensem-
bles with better predictive performance than any of the in-
dividual models. As it is the predicted distributions which
are combined, this approach is independent of the types of
models involved. Here, we briefly describe two approaches
for creating such ensembles. Let M be a set of models and
pm(s) be the probability assigned to symbol s ∈ [τtgt] by
model m, where [τtgt] is the domain of the target type.
The first approach involves taking a weighted arithmetic
mean of their respective predictions. This is the mixture-
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of-experts combination, and is defined as

p(s) =

∑
m∈M wmpm(s)∑

m∈M wm

where each of the weights wm depends on the entropy of
the distribution generated by the corresponding model m
in the combination such that greater entropy (and hence
uncertainty) is associated with a lower weight [5]. The
weights are given by the expression wm = Hrel(pm)−b,
where the relative entropy Hrel(pm) is

Hrel(pm) =

{
H(pm)/Hmax(pm), if Hmax([τtgt]) > 0

1, otherwise

The best value of the bias b is determined through cross-
validation. The quantities H and Hmax are respectively
the entropy of the prediction and the maximum entropy of
predictions over the symbol space [τtgt], and are defined as

H(p) = −
∑

s∈[τtgt]

p(s) log2 p(s) . (3)

Hmax(p) = log2 |S|.

where p(s ∈ [τtgt]) = p(χ = s) is the probability mass
function of a random variable χ distributed over the dis-
crete alphabet [τtgt] such that the individual probabilities
are independent and sum to 1.

The second combination method — product-of-experts,
is computed similarly as the weighted geometric mean of
the probability distributions. This is given by

p(s) =
1

R

( ∏
m∈M

pm(s)wm

) 1∑
m∈M wm

whereR is a normalisation constant which ensures that the
resulting distribution over S sums to unity. The weights
wm in this case are obtained in the same manner as for
the mixture-of-experts case. It was observed in a previous
application of these two combination methods to melody
modelling [15], that product-of-experts resulted in a greater
improvement in predictive performance.

3. FIXED-CONTEXT NEURAL NETWORKS

In this section, we provide a brief overview of the two
fixed-context neural network models which we employed
for the task of predicting the pitch of the next note in a
melody, given a viewpoint type context which leads up to
it. These are (1) a feed-forward neural network, and (2)
a neural probabilistic melody model. The key difference
between the two is the presence of an additional weight-
sharing layer in the latter which transforms the binary rep-
resentation of the viewpoint types into lower-dimensional
real-valued vectors before passing these on as inputs to a
feed-forward network (much like the former).

. . . y

. . . h

. . . . . . . . . x

W(0)

W(1)

(a) Feed-forward Neural Network
. . . y

. . . h

. . . . . . . . . v

. . . . . . . . . x

W(c) W(c)

W(0)

W(1)

(b) Neural Probabilistic Melody Model

Figure 1: The two models employed for multiple view-
point melodic prediction in this paper (biases ignored in
the illustration). A concatenation of the fixed-length input
type context is presented to each model in its visible layer
and the predictions are made in the output layer.

3.1 Feed-forward Neural Network

In its simplest form, a feed-forward neural network (Fig-
ure 1) consists of an input layer x ∈ Rn, a hidden layer
h ∈ Rm and an output layer y ∈ Rl. The input layer
is connected to the hidden layer by a weight-matrix W (0)

and likewise, the hidden layer to the output layer by a ma-
trix W (1). Each unit in the hidden layer typically applies
a non-linear function to the input it receives from the layer
below it. Similarly, each unit of the output layer applies a
function to the input it receives from the hidden layer im-
mediately preceding it. In a network with a single hidden
layer, this happens according to the following equations

u(0) = b(0) +W (0)x (4)

h = f (0)(u) (5)

u(1) = b(1) +W (1)h (6)

y = f (1)(v) (7)

where b(0) and b(1) are the hidden and output layer biases,
f (0) and f (1) are functions applied to the input received
by each node in the hidden and output layers respectively.
Thus, for a given input x, the output y is calculated as

y = f (1)(b(1) +W (1) · f (0)(b(0) +W (0)x)) (8)

In the present case, f (0) is the logistic sigmoid func-
tion and f (1) is the softmax function. The network can
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be trained in a supervised manner using the backpropaga-
tion algorithm [20]. This algorithm applies the chain rule
of differentiation to propagate the error between the target
output and the output of the model backwards into the net-
work, and use these derivatives to appropriately update the
model parameters (the network weights and biases).

3.2 Neural Probabilistic Melody Model

Next we consider the neural probabilistic melody model
(NPMM), which was originally introduced in [2] as a lan-
guage model for word sequences. It consists of a feed-
forward network such as the one described in Section 3.1,
with an additional embedding layer below it (Figure 1).
This model takes as input a concatenation of binary view-
point type vectors (cf. Section 3) which represent a fixed-
length context. The first layer of the network maps each
of these sparse binary vectors to lower-dimensional dense
real-valued vectors which make up the input layer of what
is essentially a feed-forward network above it. This map-
ping is determined by a shared weight matrix W (c) which
is learned from data, and is given by

v =W (c)x. (9)

The hidden layer in the case of the NPMM consists of
hyperbolic-tangent activation units. The output layer con-
tains softmax units. The model is trained with backprop-
agation using gradient descent as in the case of a standard
feed-forward neural network.

4. EVALUATION

The first goal of this paper is to demonstrate the suitabil-
ity of fixed-context neural networks for multiple viewpoint
melodic prediction. To this end, we compare the two mod-
els described in Section 3 with variable-order Markov mod-
els (VOMMs) and restricted Boltzmann machines (RBMs).
It was observed that the predictive performance of each of
the neural network models is either comparable to or bet-
ter than that of the best VOMMs of both bounded and un-
bounded order [16], while slightly worse than the RBM
of [4] (Figure 2). Second, we wish to compare the predic-
tions of a single neural network which uses multiple input
types with that of an ensemble of networks with smaller
input dimensions, each of which uses a subset of the input
types of the former, and combined with the entropy-based
weighting scheme described in 2.1. We found that, while
the addition of viewpoint types does improve the predic-
tive performance in both cases, that of the single network
is slightly worse than the ensemble (Figure 3). Moreover,
the extent of this improvement diminishes with an increase
in context length.

4.1 Dataset

Evaluation was carried out on a corpus of monophonic
MIDI melodies that cover a range of musical styles. It
consists of 4 datasets - Bach chorale melodies, and folk
melodies from Canada, China and Germany, with a total
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Figure 2: Comparison between the predictive perfor-
mances of the best bounded and unbounded variable-order
Markov models (VOMM(b) and VOMM(u) respectively),
the best restricted Boltzmann machine (RBM), the feed-
forward neural network (FNN) and the neural probabilistic
melody model (NPMM) averaged over the datasets.

of 37, 229 musical events. These were also used to eval-
uate RBMs and variable order Markov models for music
prediction in [4, 16]. To facilitate a direct comparison, the
melodies are not transposed to a default key.

4.2 Evaluation Measure

In order to evaluate the proposed prediction models, we
turn to a previous study of Markov models for music pre-
diction in [16]. There, cross entropy was used to measure
the information content of the models. This is a quantity
related to entropy (3). The value of entropy, with reference
to a prediction model, is a measure of the uncertainty of its
predictions. A higher value reflects greater uncertainty. In
practice, one rarely knows the true probability distribution
of the stochastic process and uses a model to approximate
the probabilities in (3). An estimate of the goodness of
this approximation can be measured using cross entropy
(Hc) which represents the divergence between the entropy
calculated from the estimated probabilities and the source
model. This quantity can be computed over all the subse-
quences of length n in the test data Dtest, as

Hc(pmod,Dtest) =
−
∑
sn1∈Dtest

log2 pmod(sn|s
(n−1)
1 )

|Dtest|
(10)

where pmod is the probability assigned by the model to the
last pitch in the subsequence given its preceding context.
Cross-entropy approaches the true entropy as the number
of test samples (|Dtest|) increases.

4.3 Model Selection

Different neural network configurations were evaluated by
a grid search over the learning rate η = {0.05, 0.1}, the
number of hidden units nhid = {25, 50, 100, 200, 400},
number of embedding units nemb = {10, 20} (only for
the NPMM), and weight decay wdecay = {0.0000, 0.0001,
0.0005}. Each model was trained using mini-batch gradi-
ent descent up to a maximum of 1000 epochs with a batch
size of 100 samples. Early-stopping [19] and weight-decay
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were also incorporated to counter overfitting. The momen-
tum parameter µ, was set to 0.5 during the first five epochs
and then increased to 0.9 for the rest of the training. Each
model was evaluated with 10-fold cross-validation, with
folds identical to those used in [4, 16] for the sake of com-
parison.

4.4 Model Comparison

We carried out a comparison between the predictive perfor-
mance of the two neural network models presented here,
and models previously evaluated on the same datasets [4,
16]. It is to be noted that, since neither of our models is
updated online during prediction, the comparison with the
variable order Markov models of [16] is limited to their
best performing Long-Term Models. These are of order
bound 2 and unbounded order (labelled there as C*I). It is
evident from Figure 2 that both the neural network models
are able to take advantage of information in longer contexts
than the bounded order n-gram models. This is also a fea-
ture of the RBM, whose best case of context-length 5 out-
performs the rest of the models in the plot. The slight de-
terioration in the performance of the feed-forward network
for longer contexts is possibly due to poor optimization
of its parameters. This is considering the fact that weight-
decay and early-stopping were implemented in the training
algorithm to prevent overfitting. While it was not possible
to incorporate further steps for better parameter optimiza-
tion in this paper, the results are still illustrative of the net-
works’ suitability at the given task and the improvement in
performance with context consistent with each other and
with that of the RBMs. Possible optimizations have been
left as future work, and will be discussed in Section 5.

4.5 Model Combination

In order to evaluate the combination of viewpoint types, we
selected one type which is related to the “what” in music
— scale-degree (intfref ), and another which is related to
the “when” — inter-onset interval (ioi), from the several
possible choices that exist. Furthermore, this experiment
was performed using the NPMM and only on the Chinese
folk melody dataset for the purpose of illustration, with
the assumption that a similar trend would be observed with
the other model and datasets. As our target viewpoint type
i.e. the one being predicted, is musical pitch (seqpitch),
the first model has the input types seqpitch and intfref
and the second one seqpitch and ioi. The additional view-
points are incorporated as explained in Section 2. The pre-
dictions of these two models are combined explicitly using
the mixture- and product-of-experts schemes. On the other
hand, the implicit combination of these two is a single
model whose input types are seqpitch, intfref and ioi.
Figure 3 compares the predictions of the pitch-only version
of the NPMM and the three models using the additional in-
put types. It can be seen that each of these three models has
a better predictive performance than its pitch-only coun-
terpart, thus confirming the relevance of the added view-
point types to musical pitch prediction. Both the mixture-
and product-of-experts combination schemes (seqpitch ×
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Figure 3: Comparison between the predictive perfor-
mances, on the Chinese folk melody dataset, of the pitch-
only NPMM, its extension which uses the intfref and ioi
types as additional input, and ensembles each of which
combines two models of input types (a) seqpitch and intfref
(b) seqpitch and ioi using the mixture (+m) and product
(+p) combination schemes.

(intfref +m ioi) and seqpitch × (intfref +p ioi) re-
spectively in the plot) result in very similar predictive per-
formance, with the latter working only slightly better for
shorter context-lengths of 1, 2 and 3. Moreover, both these
explicit combinations of viewpoint types perform better
than the single implicit combination of types (seqpitch ×
intfref × ioi in the plot). One will, however, notice
that the cross entropy of the predictions slightly worsens at
longer context-lengths, and that the discrepancy between
the implicit and explicit combinations gradually increases
in these cases. As mentioned earlier, we attribute this to
the optimization of the network parameters, which is to be
dealt with in future work.

5. CONCLUSIONS & FUTURE WORK

The two neural network models for melodic prediction pre-
sented here have been found to have a predictive perfor-
mance comparable to or better than previously evaluated
VOMMs, but slightly worse than that of RBMs. Predic-
tive performance can be further improved by the addition
of viewpoint types to the same model, or by combining
multiple models using an entropy-weighted combination
scheme. In our experiments, the latter tended to be better.

One open issue that remains is the parameter optimiza-
tion in the two networks presented here. It was observed
that, particularly when the input layer of a network is large
and the dataset relatively small, the predictive performance
does not improve as expected with context-length and the
addition of viewpoint types. We note here that the re-
sults presented have been generated with models imple-
mented in-house 1 for use with the Python machine learn-
ing library scikit-learn [18], and were thus limited in the
various initialization and optimization strategies used in
their learning algorithms. We also suspect this to be the
reason for the limited success of the NPMM which ex-
hibited relatively more promising results in its language

1 Code available upon request.
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modelling application in [2]. Many more measures to im-
prove generalization and overall prediction accuracy (such
as dropout, different weights initialization strategies and
layer-wise pre-training) have been suggested in [1]. Incor-
porating these measures (or using an existing neural net-
work library which does) can further improve the results.

Apart from this, there are three other aspects which are
of immediate interest to us. The first is the incorporation
of a short-term element in the prediction model which up-
dates its parameters as data is presented to it, and has been
shown to result in improved prediction performance and
human-like predictions [15]. Secondly, while the num-
ber of parameters of the fixed-context models presented
here increases linearly with the context-length (assuming
a fixed number of hidden units), we are at present experi-
menting with recurrent networks where this problem does
not arise due to their recurrent connections. And finally,
the extension of the said models to polyphonic multiple
viewpoints representations is also an open issue at the mo-
ment which we hope to address in the future.
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