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ABSTRACT

Internet performance faces the challenge of network la-
tency. One proposed solution is music prediction, wherein
musical events are predicted in advance and transmitted
to distributed musicians ahead of the network delay. We
present a context-aware music prediction system focusing
on expressive timing: a Bayesian network that incorporates
stylistic model selection and linear conditional gaussian
distributions on variables representing proportional tempo
change. The system can be trained using rehearsals of dis-
tributed or co-located ensembles.

We evaluate the model by comparing its prediction ac-
curacy to two others: one employing only linear condi-
tional dependencies between expressive timing nodes but
no stylistic clustering, and one using only independent dis-
tributions for timing changes. The three models are tested
on performances of a custom-composed piece that is played
ten times, each in one of two styles. The results are promis-
ing, with the proposed system outperforming the other two.
In predictable parts of the performance, the system with
conditional dependencies and stylistic clustering achieves
errors of 15ms; in more difficult sections, the errors rise
to 100ms; and, in unpredictable sections, the error is too
great for seamless timing emulation. Finally, we discuss
avenues for further research and propose the use of predic-
tive timing cues using our system.

1. INTRODUCTION

Ensemble performance between remote musicians playing
over the Internet is generally made difficult or impossi-
ble by high latencies in data transmission [3] [5]. While
many composers and musicians have chosen to treat la-
tency as a feature of network music, performance of con-
ventional music, such as that of classical repertoire, re-
mains extremely difficult in network scenarios. Audio la-
tency frequently results in progressively decreasing tempo
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and difficulty in synchronizing.
One aspect that has received less attention than the la-

tency is the lack of visual contact when performing over
the internet. Visual cues can be transmitted via video, but
such data is at least as slow as audio, and was previously
found to not be of significant use for transmitting synchro-
nization cues even when the audio had an acceptable la-
tency [6].

Since the start of network music research, several re-
searchers have posited theoretically that music prediction
could be the solution to network latency (see, for example,
Chafe [2]). Ideally, if the music can be predicted ahead of
time with sufficient accuracy, then it can be replicated at
all connected end-points with no apparent latency. Recent
efforts have made limited progress towards this goal. One
example is a system for predicting tabla drumming pat-
terns [12], and recent proposals by Alexandraki [1]. Both
assume that the tempo of the piece will be at least locally
smooth and, in the case Alexandraki’s system, timing al-
terations are always based on one reference recording.

In many styles of music, such as romantic classical mu-
sic, the tempo can vary widely, with musicians interacting
on fine-scale note-to-note timing changes and using visual
cues to synchronize. The tempo cannot be expected to al-
ways evolve in the exact same way as one previous perfor-
mance, rather the musicians significantly improvise timing
deviations to some constraints.

In this paper we propose a system for predicting timing
in network performance in real time, loosely inspired by
Raphael’s approach based on Bayesian networks [11]. We
propose and test a way to incorporate abstract notions of
expressive context within a probabilistic framework, mak-
ing use of time series clustering. Flossman et al. [8] em-
ployed similar ideas when they extended the YQX model
for expressive offline rendering of music by using condi-
tional gaussian distributions to link expressive predictions
over time. Our model contains an extra layer of stylistic
abstraction and is applied to modeling and real-time track-
ing of one performer or ensemble’s expressive choice at
the inter-onset interval level. We also describe how the
method could be used for predicting musical timing in net-
work performance, and discuss ideas for further work.
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2. MOTIVATION

Our goal is to use observable sources of information during
a live performance to predict the timing of future notes so
as to counter the effects of network latency. The sources
of information we can use include the timing of previous
notes and the intensity with which the notes are played.

The core idea is reminiscent of Raphael’s approach to
automatic accompaniment [11], which uses a Bayesian net-
work relating note onset times, tempo and its change over
time. In Raphael’s model, changes in tempo and local
note timing are represented as independent gaussian vari-
ables, with distributions estimated from rehearsals. Dur-
ing a performance, the system generates an accompani-
ment that emulates the rehearsals by applying similar al-
terations of timing and tempo at each note event in the per-
formance. The model has been demonstrated in live per-
formances and proven to be successful, however as long as
the system generates musically plausible expression in the
accompaniment, it is difficult to determine an error value,
as it is simply meant to follow a musician and replicate a
performance style established in rehearsals. An underlying
assumption of this statistical model is that the solo musi-
cian leading the performance tends to perform the piece
with the same expressive style each time.

In an ensemble performance scenario, two-way com-
munication exists between musicians. The requirement for
the system to simply ‘follow’ is no longer enough. As a
step towards tighter ensemble, we set as a goal a stringent
accuracy requirement for our prediction system: to have
errors small enough−no higher than 20-40ms−as to be in-
distinguishable from the normal fluctuations in ensemble
playing. Note that actual playing may have higher errors,
even in ideal conditions, due to occasional mistakes and
fluctuations in motor control.

The same ensemble might also explore a variety of ways
to perform a piece expressively. When expressive possibil-
ities are explored during rehearsals, the practices establish
a common ‘vocabulary’ for possible variations in timing
that the musicians can then anticipate. Another goal of our
system is to account for several distinct ways of applying
expression to the same piece. This is accomplished in two
ways. Like Flossman et al. [8], we deliberately encode the
context of the local expression by introducing dependen-
cies between the expressive tempo changes at each time
step. We additionally propose and test a form of model
selection using discrete variables that represent the chosen
stylistic mode of the expression. For example, given two
samples exhibiting the same tempo change, one may be
part of a longer term tempo increase, while another may
be part of an elastic time-stretching gesture. Knowing the
stylistic context for a tempo change will allow us to better
predict its trajectory.

3. CONTEXTUALIZING TIMING PREDICTION

We combine two techniques to implement ensemble per-
formance prediction. First, we condition the expressive
‘update’ distributions characterizing temporal expression

on those from preceding events, making the timing changes
dependent on both musicians’ previous timing choices, while
also allowing the system to respond to the interplay be-
tween the two musicians. Secondly, we abstract different
ways of performing the piece by summarizing these larger
scale differences in an unsupervised manner in a new dis-
crete node in the network: a stylistic cluster node.

3.1 Linear Gaussian Conditional Timing Prediction

Our goal is to predict the timing of events such as notes,
chords, articulations, and rests. In particular, we wish to
determine the time until the next event given the score in-
formation and a timing model. We collapse all chords into
single events. Assume that the performance evolves ac-
cording to the following equations,

tn+1 = snln + tn, and

sn+1 = sn · δn, (1)

where tn is the onset time of the n-th event, sn is the corre-
sponding inter-beat period, ln is the length of the event in
beats, and δn is a proportional change in beat duration that
is drawn from the gaussian distributions ∆n. For simplic-
ity, there is no distinction between tempo and local timing
in our model, though it could be extended to include this
separation.

Because δn’s reflect proportional change in beat dura-
tion, prediction of future beat durations are done on a log-
arithmic scale:

log2 sn+1 = log2 sn + log2 δn.

log(tempo) = log(1/sn), thus log sn as well, has been
shown in recent research to be a more consistent measure
of tempo variation in expressive performance [4].

The parameters of the ∆n distributions are predicted
during the performance from previous observations, such
as δn−1. Thus, each inter-beat interval, sn, is shaped from
event to event by the random changes, δn. The conditional
dependencies between the random variables are illustrated
in Figure 1. The first and last layers in the network, labeled
P1 and P2 in the diagram, are the observed onset times.
The 3rd layer, labeled ‘Composite’ following Raphael’s
terminology, embodies the time and tempo information at
each event, regardless of which ensemble musician is play-
ing, and it is on this layer that our model focuses. The 2nd
layer, Expression, consists of the variables ∆n.

The ∆n variables are conditioned upon their predeces-
sors, using any number of previous timing changes as in-
put; formally, they are represented by linear conditional
gaussian distributions [9]. Let there be a Bayesian network
node with a normal distribution Y . We can condition Y
on its k continuous parents C = {C1, . . . , Ck} and dis-
crete parents D = {D1, . . . , Dk} by using a linear regres-
sion model to predict the mean and variance of Y given the
values of C and D. The following equation describes the
conditional probability of Y given only continuous parent
nodes:

P (Y |C = c) = N (β0 +
k∑

i=1

βici, σ
2).
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Figure 1: A section of the graphical model. Round nodes
are continuous gaussian variables, and the square node (S)
is a discrete stylistic cluster node.

This is the equation for both continuous and discrete par-
ents:

P (Y |D = d, C = c) = N (βd,0 +
k∑

j=1

βd,jcj , σ
2
d).

Simply speaking, the mean and variance of each lin-
ear conditional gaussian node is calculated from the values
of its continuous and discrete parent nodes. The mean is
derived through linear regression from its continuous par-
ents’ values with one weight matrix per configuration of its
discrete parents.

The use of conditional gaussian distributions means that
rather than having fixed statistics for how the timing should
occur at each point, the parameters for the timing distri-
butions are predicted in real time from previous observa-
tions using linear regression. This simple linear relation-
ship provides a means of predicting the extent of temporal
expression as an ongoing gesture. For example, if the per-
formance is slowing down, the model can capture the rate
of slowdown, or a sharp tempo turnaround if this occurred
during rehearsals.

Our network music approach involves interaction be-
tween two actual musicians rather than a musician and a
computer. Thus, each event observed is a ‘real’ event,
and we update the ∆n probability distributions at each step
during run-time with the present actions of the musicians
themselves. Unlike a system playing in automatic accom-
paniment or an expressive rendering system, our system is
never left to play on its own, and its task is simply to con-
tinue from the musicians’ choices, leaving less opportunity
for errors to accumulate. Additionally, we can correct the
musicians’ intended timing by compensating for latency
post-hoc - this implies that we can make predictions that
emulate what the musicians would have done without the
interference of the latency.

We may also choose the number of previous changes to
consider. Experience shows that adding up to 3 previous
inputs improves the performance moderately, but the per-
formance decreases thereafter with more inputs. For sim-
plicity, we currently use only one previous input, which
provides the most significant step improvement.

In constrast to a similar approach by Flossman et al. [8],
we do not attempt to link score features to the performance;
we only consider the local context of their temporal ex-
pression. Our goal is to capture the essence of one partic-
ular ensemble’s interpretation of a particular piece rather

than attempting to construct a universal model for mapping
score to performance. As a result, the amount of training
data will generally be much smaller as we may only use
the most recent recorded and annotated rehearsals of the
ensemble. The next section describes a clustering method
we use to account for large-scale differences in timing.

3.2 Unsupervised Stylistic Characterization

Although we could add a large number of previous inputs
to each of the ∆n nodes, we cannot tractably condition
these variables’ distributions on potentially hundreds of
previous observations. This would require a large amount
of training data to estimate the parameters in a meaning-
ful way. Instead, we propose to summarize larger-scale
expression using a small number of discrete nodes repre-
senting the stylistic mode. For example, a musician may
play the same section of music in few distinct ways, and
a listener may describe it as ‘static’, ‘swingy’ or ‘loose’.
If these playing styles could be classified in real time, pre-
diction could be improved by considering this stylistic con-
text. Our ultimate goal is to perform this segmentally on a
piece of music, discovering distinct stylistic choices that
occured in the ensemble’s rehearsals. In this paper, we
present the first steps towards this goal: we characterize
the style of the entire performance using a single discrete
stylistic node.

The stylistic node is shown at the top of Figure 1. In our
model this node links to all of the ∆n nodes in the piece, so
that each of the ∆n’s is now linearly dependent on the pre-
vious timing changes with weights that are dependent on
the stylistic node. Assuming that each ∆n node is linked
to one previous one, the parameters of the ∆n distributions
are then predicted at run-time using

P (∆t|S = s,∆t−1 = δ) = N (βs,0 + βs,1δ, σ
2
s),

where S is the style node.
To predict note events, we can simply take the means of

the ∆n distributions, and use Equation 1 to find the onset
time of the next event given the current one.

To use this model, we must first discover the distinct
ways (if any) in which the rehearsing musicians perform
the piece. We apply k-means clustering to the log(δn) time
series obtained from each rehearsal. We find the optimal
number of clusters by using the Bayes Information Crite-
rion (BIC) as described by Pelleg and Moore [10]. Note
that other methods exist for estimating an optimal number
of clusters. To train the Bayesian network, a training set is
generated containing all of the δn values for each rehearsal
as well as the cluster to which each time series is allocated.
We then use the algorithm by Murphy [9] to find all the
parameters of the linear conditional nodes. Note that all of
the nodes are observable and we have training data for the
∆n.

During the performance, the system can update its be-
lief about the stylistic node’s value from the note timings
that have been observed at any point; we do not need to
re-cluster the performance, as the network has learned the
relationships between the ∆n’s and the stylistic node. We
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use the message passing algorithm of Bayesian networks to
infer the most likely state of the node. As the performance
progresses, the belief about the state of the node is gradu-
ally established. Intuitively, the system arrives at a stable
answer after some observations, otherwise the overall style
is ambiguous. The state of the node is then used to place
future predictions into some higher level context. The next
section shows that the prediction performance is improved
by using the stylistic node to select the best regression pa-
rameters to predict the subsequent timing changes, which
can be thought of as a form of model selection.

4. EVALUATION

4.1 Methodology

In this section we present an evaluation of the basic form of
our model. Evaluation of such predictive models remains a
challenge because testing in live performance requires fur-
ther work on performance tracking and optimization, while
offline testing necessitates a large number of annotated per-
formances from the same ensemble. We present initial re-
sults on a small dataset; in our future work we will study
real time performances of more complex pieces.

We evaluate the performance of three models: one uses
linear conditional nodes and a stylistic cluster node; the
second uses only linear conditional nodes; and, the third
has independent gaussian distributions for the ∆ variables.

Our dataset consists of 20 performances by one pianist
of the short custom-composed piece shown in Figure 2.
Notice that we have not added any dynamics or tempo-
related markings - the interpretation is left entirely to the
musicians. While this is not an ensemble piece, the perfor-
mances are sufficient to test the prediction accuracy of our
model in various conditions. In this simple example, we
consider only the composite layer in the model, without
P1 and P2.

Figure 2: Custom-composed piano test piece.

The piece was played on an M-Audio AXIOM MIDI
keyboard in one of two expressive styles decided before-
hand, ten times for each style. We used IRCAM’s An-
tescofo score follower [7] for live tracking of the perfor-
mance in our system, and annotation of the note and chord
events. The log-period plots for every performance in the
dataset are shown in Figure 4a. The changes in log-period
per event are shown in Figure 4b, and we also show the
same changes but for the data in each cluster found, to
demonstrate the difference between the two playing styles.

We evaluated the system using a ‘leave-one-out’ approach,
where out of the 20 performances we always trained on
19 of them and tested on the remaining one. We always
used one previous input to the ∆n nodes, using the actual
observations in the performances rather than our predic-
tions (like the extended YQX), simulating the process of
live performance. We evaluated the prediction accuracy by
measuring timing errors, which we define as the absolute
difference between the true event times and those predicted
by the model (in seconds).

The training performances were clustered correctly in
all cases, dividing the dataset into the two styles, with the
first 10 performances being grouped with cluster 1 and the
second 10 becoming part of cluster 2. Figure 3 shows the
stylistic inference process. In the matrix, performances are
arranged as rows, with events on the x-axis. Recall that we
predict the time between events rather than just notes. So,
we also consider the timing of rests, and chords are com-
bined into single events rather than individual notes. The
colors indicate the inferred value of the style node: grey
for Style 1 and white for Style 2. We see that the system
correctly infers the stylistic cluster of each performance
within the first 19 events. In many cases the classification
assigns the performance to the correct cluster after only
two events.

Inferred Style per Event, per Performance
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Figure 3: Matrix showing most likely style state after each
event’s observed δ. Performances 1-10 are in Style 1, and
11-20 are in Style 2. Classification result: grey = Style 1,
white = Style 2.

Figure 4 shows the tempo information for the dataset.
Figure 4(a) shows the inter-beat period contours of all of
the performances, while Figure 4(b) shows boxplots (indi-
cating the mean and variability) of the period at each mu-
sical event, for the entire dataset and for the two clusters.

4.2 Results

Figure 5a and Figure 5b show the performance of the mod-
els, measured using mean absolute error averaged over events
in each performance, and over performances for each event,
respectively. We also show a detailed ‘zoomed in’ plot of
the errors between events 20-84 to make the different mod-
els’ mean errors clearer in Figure 5c. For network mu-
sic performance, we would want to predict at least as far
forward as needed to counter the network (and other sys-
tem) latency. As some inter-event time differences may be
shorter than the latency, we may occasionally need to pre-
dict more than one event ahead.

The model with stylistic clustering and linear condi-
tional nodes performed best, followed by the one with only
linear conditional nodes, then the model with independent
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(b) Boxplots showing median and variability for the log-period
change at each event. Top: unclustered data, Middle: first cen-
troid, Bottom: second centroid.

Figure 4: Tempo Data

∆n nodes. In all cases the errors were higher for the second
style (the latter 10 performances), which was much looser
than the first. The mean absolute errors for each model,
considering all of the events in all of the performances are
summarized in Table 1.

Observe in Figure 5b that some parts of the performance
were very difficult to predict. For example, we note high
prediction errors in the first 12 events of the piece and one
large spike in the error at the end of the piece. These are
1-bar and 2-bar long chords, for which musicians in an en-
semble would have to use visual gestures or other informa-
tion to synchronize. We would not expect any prediction
system to do better than a musician anticipating the same
timing without any form of extra-musical information. We
discuss potential applications of music prediction for vir-
tual cueing in the next section. The use of clustering and
conditional timing distributions reduced the error rate for
the events which were poorly predicted with independent
timing distributions. For much of the piece the mean error
was as low as 15ms, but even for these predictable parts
of the performance, the models with conditional distribu-
tions and clustering lowered the error, as can be seen from
Figure 5c.

5. CONCLUSIONS AND FUTURE WORK

We have outlined a novel approach to network music pre-
diction using a Bayesian network incorporating contextual
inference and linear gaussian conditional distributions. In
an evaluation comparing the model with stylistic cluster-
ing and linear conditional nodes, one with only linear con-
ditional nodes without clustering, and one with indepen-
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(c) A ‘zoomed-in’ view of the error rates between events 20-84.

Figure 5: Mean absolute error per event.

dent nodes, we have shown that the proposed approach
produces promising results. Specifically, we have shown
evidence that considering a notion of large scale expressive
context, drawn from performance styles of a particular en-
semble, can intuitively increase the accuracy of timing pre-
diction. The model remains to be tested on more data. As
creative musicians are infinitely diverse in their expressive
interpretations, the true test of the model would ultimately
be in live performances.

The end goal of this research is to implement and evalu-
ate network music performance systems based on the pre-
diction model. Whether music prediction can ever be pre-
cise enough to allow seamless network performance re-
mains an open question. Important questions arise in pur-

Model Mean Abs. Error
Independent 69.8ms
Conditional 57.4ms
Clustering and Conditional 48.5ms

Table 1: Overall Timing Errors for Each Model
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suit of this goal: how much should the system lead the
musicians to help them stay in time without making the
performance artificial? Predicting musical timing with suf-
ficient accuracy will open up interesting avenues for net-
work music research, especially when we consider parallel
research into predicting other information such as inten-
sity and even pitch information, but whether any musician
would truly want to let a machine impersonate them ex-
pressively remains to be seen, which is why we propose
that a ‘minimally-invasive’ conductor-like approach to reg-
ulating tempo would be more appropriate than complete
audio prediction.

5.1 The Bayesian Network

It would be straightforward to extend our model by imple-
menting prediction of timing from other forms of expres-
sion that tend to correlate with tempo. For example, using
event loudness in the prediction would simply require the
addition of another layer of variables in the Bayesian net-
work and conditioning the timing variables on these nodes
as well.

5.2 Capturing Style

Much work remains to expand on the characterization of
stylistic mode. As previously mentioned, we plan to ex-
plore segmental stylistic characterization, considering dif-
ferent contextual information for each part of the perfor-
mance. In our current model we use only one stylistic
node. This may be a plausible for a small segment of mu-
sic, but in a longer performance the choice of performance
style may vary over time. If the predicted performance
starts within one style but changes to another, the model is
ill-informed to predict the parameters. In our future work
we would like to extend the model to capture such stylis-
tic tendencies over time. One approach would require pre-
segmentation of the piece based on the choice of expressive
choices during the reharsal stage, and introduction of one
stylistic node per segment. The prediction context would
then be local to each part of the performance. We may
then, for example, have causal conditional dependencies
between the stylistic nodes in each segment of the piece,
which would allow the system to both infer the style within
a part of the performance from what is being played and
from the previous stylistic choices.

In practice, a musician or ensemble’s rehearsals may
not comprise of completely distinct interpretations; how-
ever, capturing expression contextually will likely offer a
larger degree of freedom to the musicians in an internet
performance, who may then explore a greater variety of
temporal and other articulations.

5.3 Virtual Cueing

Virtual cueing forms an additional application of interest.
As mentioned at the start of the paper, visual communi-
cation is generally absent or otherwise delayed in network
music performance. If we could predict with reasonable

accuracy the timing in sections of a piece requiring tem-
poral coordination, then we could help musicians synchro-
nize by providing them with perfectly simultaneous pre-
dicted cues. We regard the use of predictive virtual cues as
less invasive to networked ensembles than complete pre-
dictive sonification. In situations where the audio latency
is low enough for performance to be feasible but video la-
tency is still too high for effective transmission of gestural
cues, predictive sonification may be omitted completely,
and virtual cues could be implemented as a regulating fac-
tor.
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