
AUTOMATIC SET LIST IDENTIFICATION AND SONG SEGMENTATION
FOR FULL-LENGTH CONCERT VIDEOS

Ju-Chiang Wang1,2, Ming-Chi Yen1, Yi-Hsuan Yang1, and Hsin-Min Wang1

1Academia Sinica, Taipei, Taiwan
2University of California, San Diego, CA, USA

asriver.wang@gmail.com; {ymchiqq, yang, whm}@iis.sinica.edu.tw

ABSTRACT

Recently, plenty of full-length concert videos have become
available on video-sharing websites such as YouTube. As
each video generally contains multiple songs, natural ques-
tions that arise include “what is the set list?” and “when
does each song begin and end?” Indeed, many full con-
cert videos on YouTube contain song lists and timecodes
contributed by uploaders and viewers. However, newly
uploaded content and videos of lesser-known artists typ-
ically lack this metadata. Manually labeling such metadata
would be labor-intensive, and thus an automated solution
is desirable. In this paper, we define a novel research prob-
lem, automatic set list segmentation of full concert videos,
which calls for techniques in music information retrieval
(MIR) such as audio fingerprinting, cover song identifica-
tion, musical event detection, music alignment, and struc-
tural segmentation. Moreover, we propose a greedy ap-
proach that sequentially identifies a song from a database
of studio versions and simultaneously estimates its prob-
able boundaries in the concert. We conduct preliminary
evaluations on a collection of 20 full concerts and 1,152
studio tracks. Our result demonstrates the effectiveness of
the proposed greedy algorithm.

1. INTRODUCTION

In recent years, the practice of sharing and watching con-
cert/performance footage on video sharing websites such
as YouTube has grown significantly [12]. In particular,
we have noticed that many concert videos consist of full-
length, unabridged footage, featuring multiple songs. For
example, the query “full concert” on YouTube returns a list
of more than 2 million relevant videos. Before watching a
full concert video, a viewer might like to know if the artist
has performed the viewer’s favorite songs, and when are
those song played in the video. Additionally, after watch-
ing a concert video, a viewer may want to know the song
titles in order to locate the studio version.
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To satisfy such a demand, the uploader or some viewers
often post the “set list” with the timecode for each song, 1

so that other viewers can easily fast-forward to the de-
sired song. This metadata can help viewers to navigate
a long concert. From a technical point of view, it also
helps to extract the live version of a song to enrich a music
database. Such a database could be used to analyze perfor-
mance style, to discover song transition [17], to train clas-
sifiers for visual event detection [28], or to generate multi-
camera mashups and summaries of concert videos [22,27].

However, newly uploaded videos and those performed
by less known artists typically lack this metadata, because
manually identifying songs and song segmentation can be
time consuming even for an expert. One reason for this is
because live performances can differ substantially from the
studio recordings. Another reason is that live performances
often contain covers of songs by other artists. Even if the
annotator can readily identify all songs, it is still necessary
to go through the entire video to locate the precise times
that each song begins and ends. Therefore, an automated
method is desirable to annotate the rapidly growing volume
of full-length concert videos available online.

The aim of this paper is threefold. First, we define a
novel research problem, i.e. automatic set list segmenta-
tion of full concert videos, and discuss its challenges. Sec-
ond, we propose a greedy approach to tackle the problem.
Third, we construct a novel dataset designed for this task
and suggest several evaluation methods.

1.1 Task Definition and Challenges

There are two sub-tasks for this research problem: set list
identification and song segmentation. Given a full concert
video, the former is to identify the sequence of song titles
played in the concert based on a large collection of stu-
dio version tracks, assuming that no prior knowledge on
the live performance of the artist(s) of the concert is avail-
able. The latter task is to estimate the boundaries of each
identified song in the set list. This problem poses some
interesting challenges as follows:
• A live song can be played in many different ways,

e.g., by changing its timbre, tempo, pitch and struc-
ture, comparing to the corresponding studio version.

1 A set list refers to a list of songs that a band/artist has played in a con-
cert, and the timecode corresponds to the starting time of a song. Here is
an example of full concert video with set list and timecodes on YouTube:
https://www.youtube.com/watch?v=qTOjiniIltQ
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Therefore, certain robustness should be considered.
• Live performances often feature transitions between

consecutive songs, or even repeated oscillations be-
tween the sections of different songs, suggesting that
one should identify songs on a small temporal scale.
• Concerts often feature sections with no reference in

the collection of studio versions, such as intros, out-
ros, solos, banter, transitions between songs, big rock
endings, and applause, amongst others. Unexpected
events such as broken instruments, sound system mal-
functions, and interrupted songs can also be found.
An ideal system should identify them or mark them
as unknown songs/events, avoiding including them
in a segmented song when appropriate.
• The artist may play cover songs from other artists

partially or entirely throughout the concert, resulting
in a much larger search space in the music database.
• The audio quality of user-contributed concert videos

can vary significantly due to recording factors such
as acoustic environment, position, device and user
expertise [14]. The quality degradation can amplify
the difficulty of the problem.

To tackle the above challenges, one may consider tech-
niques for several fundamental problems in music informa-
tion retrieval (MIR), such as audio fingerprinting/matching
[3, 7], cover song identification [5, 24], audio quality as-
sessment [14], musical event detection/tracking [32, 33],
and music signal alignment and segmentation [18]. There-
fore, automatic set list segmentation of full concert videos
may present a new opportunity for MIR researchers to link
music/audio technology to real-world applications.

1.2 Technical Contribution

Our technical contribution lies in the development of a
greedy approach that incorporates three components: seg-
mentation, song identification, and alignment (see Section
3). This approach provides a basic view as a baseline to-
wards future advance. Starting from the beginning of the
concert, our approach first identifies the candidate songs
for a “probe excerpt” of the concert based on segmented
music signals. Then, it estimates the most likely song title
and boundaries of the probe excerpt based on dynamic time
warping (DTW) [18]. This sequential process is repeated
until the entire concert video has been processed. To evalu-
ate the proposed algorithm, we collect 20 full concerts and
1,152 studio tracks from 10 artists (see Section 4). More-
over, we suggest three performance metrics for this task
(see Section 5). Finally, we demonstrate the effectiveness
of the proposed approach and observe that cover song iden-
tification works much better than audio fingerprinting for
identifying the songs in a live performance (see Section 5).

2. RELATED WORK

According to a recent user study, YouTube was the second
most preferred online music streaming service by users in
2012, just behind Pandora [12]. These community-contri-
buted concert videos have been extensively studied in the

multimedia community. Most existing works focus on han-
dling the visual content of the concert videos [1,10,22,27,
28]. Relatively little attention, however, has been paid in
the MIR community to study the audio content of this type
of data. Related work mainly focused on low-level audio
signal processing for tasks such as audio fingerprint-based
synchronization and alignment for concert video organiza-
tion [9, 11, 29], and audio quality ranking for online con-
cert videos [14]. More recently, Rafii et al. proposed a
robust audio fingerprinting system to identify a live music
fragment [23], without exploring full-length concert videos
and song segmentation. To gain deeper understanding of
the content and context of live performance, our work rep-
resents an early attempt to use the full concert video data.

We note that our work is also related to PHENICX [6],
an ongoing project which aims at enriching the user experi-
ence of watching classical music concerts via state-of-the-
art multimedia and Internet technologies. With a system
for automatic set list segmentation of full concert videos,
one could index a large amount of online musical content,
extracting information that helps link live performance to
the associated video content.

Aside from potential applications, the technical devel-
opment of our work is highly motivated by several sig-
nal matching-based music retrieval problems, which can
be categorized into audio fingerprinting (AF) [3, 30], au-
dio matching [21], and cover song identification (CSID) [5,
24], according to their specificities and granularity [4, 7].
An AF system retrieves the exact audio piece that is the
source of a query audio fragment. Audio matching is de-
fined as the task of retrieving from a database all the audio
fragments that are musically relevant to a query fragment.
In contrast, CSID aims at identifying different renditions
of a music piece in the track level (instead of fragment-
level). Unlike AF which usually holds robustness to any
noises that may apply on the same rendition of a song, au-
dio matching and CSID should handle the musically moti-
vated variations occurring in different performances or ar-
rangements of a music piece [7].

3. PROPOSED GREEDY APPROACH

The proposed approach is outlined in Algorithm 1. It em-
ploys an intuitive greedy strategy that recursively probes an
excerpt X from the beginning of the unprocessed concert
Z, identifies K song candidates (K = 5) from the studio
database D, selects the most probable song title s?, esti-
mates the boundaries (i, j) of s? in X , and finally removes
s? from D and X(1 : j) from Z. The process stops when
the unprocessed portion of the input concert is shorter than
a pre-defined threshold τ . We make the following assump-
tions while developing Algorithm 1: 1) the performer plays
nearly the entire part of a song rather than a certain small
portion of the song, 2) a song in the studio database is per-
formed at most once in a concert, and 3) the concert con-
tains only songs from the same artist without covers. In
practice, the artist of a concert can be easily known from
the video title. Therefore, we only take the studio tracks of
the artist to construct D. More details are given below.
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Algorithm 1: Set list identification & segmentation
Input: A concert Z; studio track database D; probe

length l; end length τ ; candidate number K;
Output: Song list S; boundary set B;

1 S ← ∅; B ← ∅;
2 while length(Z) > τ do
3 X ← Z(1 : l), if l >length(Z), l = length(Z);
4 {sk}Kk=1 ← identify the K most probable songs

that match X , based on the thumbnails of D;
5 {s?, (i, j)} ← select the best song from {sk}Kk=1

and estimate its boundaries on X , based on the
complete track of D;

6 S ← S + s?; B ← B + (i, j);
7 D ← D − s?; Z ← Z −X(1 : j);
8 end

3.1 Segmentation

In our original design, we adopt music segmentation tech-
niques to pre-process both the concert and every studio
track in the database. This enhances the robustness to vari-
ation of song structure for the music matching and identifi-
cation processes. However, operating on fine-grained seg-
ments of the concert significantly increases the computa-
tional time of the algorithm. Therefore, we make heuristic
modifications to gain more efficiency as follows.

First, we segment a sufficiently long probe excerpt from
the beginning of an unprocessed concert that could include
the first entire song played in the unprocessed concert, with-
out involving any musically motivated segmentation. Ide-
ally, we hope the probe length l is longer than the exact
song s? plus the events prior to s? (e.g., banter, applause).
In the experiment, we will compare different settings of
l = α×µ, where α is the parameter and µ the mean length
of all studio tracks in the database.

Second, each studio track in the database is represented
by its thumbnail for better efficiency in the later song can-
didate identification stage. Similar idea has been intro-
duced by Grosche et al. [8]. We develop a simple method
analogous to [15] based on structural segmentation. Seg-
mentino [2, 16] is utilized to discover the musically homo-
geneous sections marked by structure labels such as ‘A,’
‘B,’ and ‘N’ for each studio track. We compute a weighted
factor γ that jointly considers the repetition count and aver-
age segment length for each label. The longest segment of
the label that has the largest γ is selected as the thumbnail.

3.2 Song Candidate Identification

Song candidate identification uses the probe excerpt as a
query and ranks the studio thumbnails in the database. We
employ two strategies for the identifier: audio fingerprint-
ing (AF) and cover song identification (CSID). For sim-
plicity, we employ existing AF and CSID methods in this
work. For future work, it might be more interesting to inte-
grate the identifier with the subsequent boundary estimator.

For AF, we implement the identifier using the widely-
known landmark-based approach proposed in [31]. It ex-

tracts prominent peaks (a.k.a. landmarks) from the mag-
nitude spectrogram of a reference track (e.g. a studio ver-
sion) and characterizes each pair of landmarks by the fre-
quencies of the landmarks and the time in between them,
which provide indices to a hash table that allows fast re-
trieval of similarity information [30]. For a query (e.g. a
probe excerpt), we see whether there are sufficient num-
ber of matched landmarks between the query and a refer-
ence track by looking up the hash table. If the query track
is a noisy version of the reference track, this approach is
likely to perform fairly well, because the landmarks are
most likely to be preserved in noise and distortion.

For CSID, we implement the identifier mainly based on
the chroma DCT-reduced log pitch (CRP) features [19] and
the cross recurrence quantification (CRQ) approach [25],
which correspond to two major components in a state-of-
the-art CSID system [26]. Specifically, we first extract the
frame-based CRP features for the probe excerpt and each
studio track by the Chroma Toolbox [20]. Then, we deter-
mine the key transposition using the optimal transposition
index (OTI) [25]. To apply CRQ, we follow the standard
procedures [25], including constructing the delay coordi-
nate state space vectors, computing the cross recurrence
plot, deriving the Qmax score, and performing normaliza-
tion on the scores across the database. This CSID system
(cf. CYWW1) has led to performance comparable to the
state-of-the-art systems in the MIREX audio cover song
identification task (e.g., on Sapp’s Mazurka Collection). 2

3.3 Song Selection and Boundary Estimation

The next step is to select the most probable song k? from
the top K studio song candidates, {Yk}Kk=1, and at the
same time estimate its boundaries on the probe excerpt X .
Accordingly, our goal is to find a Yk and the correspond-
ing subsequence X? = X(i? : j?) that results in the best
matching between Yk and X?, where 1 ≤ i? < j? ≤ N .
Such process is based on the DTW alignment between X
and each Yk, as presented in Algorithm 2.

Let X = {x1, . . . , xN} and denote the complete track
of Yk as Y ′ = {y1, . . . , yM}, where xi and yi represent the
frame-based CRP vectors and N > M . We compute the
cost by the negative cosine similarity of CRP between two
frames after the OTI key transposition. One can observe
that Algorithm 2 includes two sub-procedures of one-side
boundary estimation (cf. Algorithm 3). It first executes Al-
gorithm 3 to search for the end boundary j′ on X and then
reverses the search from j′ for the start boundary i′ using
Algorithm 3 with the cost matrix rotated by 180 degrees.
We follow the standard procedure to compute the accumu-
lated cost matrix D in [18]. Then, Algorithm 3 searches
from D(N

2 + 1,M) to D(N,M) for the minimum aver-
age cost of DTW alignments, denoted by δ?k, where the
average cost is defined as the accumulated cost divided by
the length of its optimal warping path (OWP). The frame
index of δ?k is set as the boundary.

After the K candidates are processed, we pick the one

2 http://www.music-ir.org/mirex/wiki/2013:
Audio_Cover_Song_Identification_Results
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Algorithm 2: Boundaries & average cost estimation
Input: Concert excerpt X; a studio track Y ′;
Output: Boundary pair (i′, j′); average cost δ;

1 C ← N -by-M cost matrix between X and Y ′;
2 (j′, ∅)← one-side boundary estimation on C;
3 C ← rotate C(1 : j′, 1 : M) by 180 degrees;
4 (index, δ)← one-side boundary estimation on C;
5 i′ ← j′ − index+ 1;

Algorithm 3: One-side boundary estimation
Input: Cost matrix C;
Output: Boundary β; average cost δ;

1 D ← accumulated cost matrix from C(1, 1);
2 for 1← i to N

2 do
3 p? ← compute the OWP of D(1 : N

2 + i, 1 : M);
4 ∆(i)← D(N

2 + i,M)/length(p?);
5 end
6 (δ, index)← the minimum value and its index of ∆;
7 β ← index+ N

2 ;

with the lowest average cost, k? = arg mink{δk}Kk=1, and
set the boundary pair as (i′k? , j′k?). In other words, we re-
rank the topK candidates according to the results of Algo-
rithm 2, based on the content of the complete studio tracks.

4. DATA COLLECTION

We collect 20 popular full concert videos (from the first
few responses to the query “full concert” to Youtube) and
the associated set lists and timecodes from YouTube. There-
fore, the music genre is dominated by pop/rock. We man-
ually label the start and end boundaries of each song based
on the timecodes, as a timecode typically corresponds to
the start time of a song and may not be always accurate.
There are 10 artists. For each artist, we collect as many
studio tracks as possible including the songs performed in
the collected concerts to form the studio database. On aver-
age, we have 115.2 studio version tracks for each artist, and
each full concert video contains 16.2 live version tracks.
Table 1 summarizes the dataset.

5. EVALUATION

5.1 Pilot Study on Set List Identification

We conduct a pilot study to investigate which strategy (i.e.,
AF or CSID) performs better for set list identification, as-
suming that the song segmentation is perfect. For simplic-
ity, we extract all the songs from the concert videos ac-
cording to the manually labeled boundaries and treat each
entire live song as a query (instead of thumbnail). We use
mean average precision (MAP) and precision@1 with re-
spect to the studio database as the performance metrics.
We also perform random permutation ten times for each
query to generate a lower bound performance, denoted by
‘Random.’ One can observe from Table 2 that CSID per-
forms significantly better than AF in our evaluation, show-

ID Artist Name Concerts Studio Tracks
1 Coldplay 2 96
2 Maroon 5 3 62
3 Linkin’ Park 4 68
4 Muse 2 100
5 Green Day 2 184
6 Guns N’ Roses 2 75
7 Metallica 1 136
8 Bon Jovi 1 205
9 The Cranberries 2 100
10 Placebo 1 126

Table 1. The full concert dataset.

Method MAP Precision@1
AF 0.060 0.048

CSID 0.915 0.904
Random 0.046 0.009

Table 2. Result for live song identification.

ing that the landmark-based AF approach does not work
well for live version identification. This confirms our intu-
ition as live rendition can be thought of as a cover version
of the studio version [5]. In consequence, we use CSID as
the song candidate identifier in the following experiments.

5.2 Performance Metrics

We use the following performance metrics for set list iden-
tification and song segmentation: edit distance (ED), boun-
dary deviation (BD), and frame accuracy (FA). The first
metric ED is originally used to estimate the dissimilarity
of two strings and has been adopted in numerous MIR
tasks [13]. We compute the ED between an output song
sequence (a list of song indices) and the ground truth coun-
terpart via dynamic programming. The weights for inser-
tion, deletion, and substitution are all set to 1. ED can only
evaluate the accuracy of set list identification.

The second metric BD directly measures the absolute
deviation in second between the estimated boundary and
that of the ground truth for only each correctly identified
song, ignoring those wrongly inserted songs in the output
set list, as they are not presented in the ground truth. There-
fore, the average BD of a concert reflects the accuracy of
song segmentation but not set list identification.

The last metric, FA, which has been used in tasks such
as melody extraction, represents the accuracy at the frame-
level (using non-overlapped frame with length 200 ms).
Throughout the concert, we mark the frames between the
start and end boundaries of each song by its song index and
otherwise by ‘x’ (belonging to no song). Then, we calcu-
late the percentage of correct frames (the intersection rate)
by comparing the output frame sequence with the ground
truth counterpart. Therefore, FA can reflect the accuracy
of both set list identification and song segmentation.

5.3 Baseline Approach

To study the effectiveness of the song selection and bound-
ary estimation algorithms (see Section 3.3), we construct a
baseline approach using Algorithm 1 without Algorithms
2 and 3. Specifically, we select the song s? with the largest
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ID A SG SO ED[ sBD[ eBD[ FA
1 7 20 15 17 6.5 89.1 0.317
2 3 17 17 4 3.3 12.3 0.786
3 1 15 15 3 27.2 33.2 0.744
4 8 23 25 14 8.8 66.8 0.441
5 10 19 18 5 11.5 27.8 0.641
6 6 10 11 1 19.1 22.8 0.875
7 2 10 10 6 28.2 39.1 0.428
8 3 22 22 9 28.2 39.6 0.610
9 6 20 21 7 30.7 35.9 0.653
10 9 17 15 4 5.3 9.8 0.758
11 9 22 21 3 6 8.7 0.860
12 4 17 19 7 32.0 21.9 0.681
13 2 9 12 5 110 155 0.509
14 1 17 17 2 20.1 18.4 0.777
15 2 11 11 7 50.9 72.9 0.393
16 3 17 20 9 36.9 24.7 0.544
17 4 13 11 4 48.1 94.3 0.626
18 3 23 22 10 10 34.8 0.636
19 5 7 7 3 42.4 13.6 0.584
20 5 15 13 9 42.4 36.6 0.465
AVG(α=1.5) 16.2 16.1 6.5 23.4 42.9 0.616
AVG(α=1.2) 16.2 18 7.3 25.7 57.3 0.582
AVG(α=1.8) 16.2 14.6 8.4 29.3 45.3 0.526
Baseline 16.2 19.7 8.9 229 241 0.434

Table 3. Result of the greedy approach with α=1.5 for
the 20 full concerts and their average (AVG) performance.
While ‘AVG (α=1.2 or α=1.8)’ only shows the average per-
formance with different l settings. ‘Baseline’ represents
the average performance of the approach in Section 5.3.
Additional abbreviations: A (Artist ID), SG (number of
Songs in the Ground truth set list), SO (number of Songs
in the Output set list), sBD (start BD), and eBD (end BD).
Symbol [ marks the metrics that are the smaller the better.

CSID score on a probe excerpt. The start boundary is the
start point of the probe excerpt, and the end boundary is
the length(s?). Then, we begin the next probe excerpt on a
hop of 0.1×length(s?).

5.4 Result and Discussion

Table 3 shows the quantitative result of each concert, the
average performance (AVG) with different values of l, and
the average performance of Baseline. Figure 1 depicts
the qualitative results of three concerts, including the best,
medium, and the worst cases according to FA in Table 3.

The following observations can be made. First, the AVG
performances of the complete approach are significantly
better than those of Baseline in all metrics, demonstrat-
ing the effectiveness of Algorithms 2 and 3. Second, fur-
ther comparison among AVG performances with different
l settings shows that α=1.5 performs the best, revealing
that live versions are likely longer than studio ones, but
overly large l could yield more deletions, as observed by
the smaller SO of α=1.8. Third, on average our approach
gives similar number of songs of a concert as that of ground
truth (16.1 versus 16.2). Fourth, we find an interesting
linkage between the result and the style of the live perfor-
mance. For example, we find that our approach performed
poorly for ‘Maroon 5’ (A=2) and ‘Metallica’ (A=7). As
can be observed from the last two rows of Figure 1, Ma-

roon 5 tends to introduce several non-song sections such
as jam and banter, which cannot be accurately modeled by
our approach. They also like to make the live renditions
different from their studio versions. On the other hand,
we conjecture that the riffs in the heavy metal music such
as Metallica may be the main reason degrading the per-
formance of matching thumbnails by CSID, because such
riffs lack long-term harmonic progressions. Fifth, the per-
formance for ‘Bon Jovi’ (A=8) is poor, possibly because of
the relatively large quantity of studio tracks in the search
space. Finally, owing to possible big rock endings or repet-
itive chorus in the live performance, our approach rela-
tively cannot estimate accurate end boundary of the songs
in a concert, as reflected by larger eBD than sBD. Our ap-
proach sometimes insert songs that are relatively short in
length, as can be observed in Figure 1. The above two
observations suggest that advanced methods (over Algo-
rithm 3) for boundary estimation and regularizing the song
length might be needed.

In short, while there is still much room for improve-
ment, we find that the result of the proposed greedy ap-
proach is quite satisfactory in some cases (e.g., Concert 6
in Figure 1). The greedy approach is preliminary in nature.
We believe that better result can be obtained by explicitly
addressing the challenges described in Section 1.1.

6. CONCLUSION AND FUTURE DIRECTION

In this paper, we have proposed a novel MIR research prob-
lem with a new dataset and a new greedy approach to ad-
dress the problem. We have also validated the effectiveness
of the proposed approach via both quantitative and quali-
tative results. We are currently expanding the size of the
dataset and conducting more in-depth signal-level analy-
sis of the dataset. Due to the copyright issue on the studio
track collection, however, it is not likely to distribute the
dataset. We will propose this task to MIREX to call for
more advanced approaches to tackle this problem.
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