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ABSTRACT

Automatic recognition of guitar playing techniques is chal-
lenging as it is concerned with subtle nuances of guitar
timbres. In this paper, we investigate this research problem
by a comparative study on the performance of features
extracted from the magnitude spectrum, cepstrum and
phase derivatives such as group-delay function (GDF) and
instantaneous frequency deviation (IFD) for classifying
the playing techniques of electric guitar recordings. We
consider up to 7 distinct playing techniques of electric
guitar and create a new individual-note dataset comprising
of 7 types of guitar tones for each playing technique. The
dataset contains 6,580 clips and 11,928 notes. Our eval-
uation shows that sparse coding is an effective means of
mining useful patterns from the primitive time-frequency
representations and that combining the sparse represen-
tations of logarithm cepstrum, GDF and IFD leads to
the highest average F-score of 71.7%. Moreover, from
analyzing the confusion matrices we find that cepstral and
phase features are particularly important in discriminating
highly similar techniques such as pull-off, hammer-on
and bending. We also report a preliminary study that
demonstrates the potential of the proposed methods in
automatic transcription of real-world electric guitar solos.

1. INTRODUCTION

The use of various instrumental techniques is essential in
music. A practical, interpretable automatic transcription
system should provide information about playing tech-
niques in addition to information about pitch or onset. For
example, various fingering styles of the guitar, such as
pull-off, hammer-on or bending, are all important elements
of a guitar performance. A novice guitar player might
be eager to learn the playing techniques employed in
a musical excerpt of interest. Similar to some popular
online automatic chord recognizer (e.g. Chordify 1 ), a tool
transcribing the note-by-note playing techniques of a guitar
recording enhances the interactivity of music learning

1 http://chordify.net/
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or listening experiences, and thereby offers important
educational, recreational and even cultural values.

While extracting the pitch, onset, chord and instru-
ment information from a musical excerpt has received
great attention in the music information retrieval (MIR)
community [3, 5, 16–18, 24], relatively little effort has
been invested in transcribing the playing technique of
instruments [23]. In addition, due to the use of various
guitar tones (i.e. audio effects such as distortion, reverb,
delay, and chorus effect) in everyday guitar performances,
conventional timbre descriptors extracted from the spec-
trum might not be enough in modeling the electric guitar
playing techniques. For instance, as the chorus effect is
usually implemented by temporal delay [6], information
about the phase spectrum might be important. On the other
hand, for distortions that involve a filtering effect, cepstral
features might be useful to characterize the respective
source and filter components [8].

Motivated by the above observations, we present in
this paper a comparative study evaluating the accuracy
of playing technique classification of electric guitar using
a variety of spectral, cepstral and phase features. The
contribution of the paper is three-fold. First, to investigate
more subtle variation of musical timbre, we compile an
open dataset of 7 playing techniques of electric guitar,
covering a variety of pitches and 7 tones (cf. Section 4).
We have made the full dataset and its detailed information
available online. 2 Second, as feature learning tech-
niques such as dictionary learning and deep learning have
garnered increasing attention in audio signal processing
[12, 18, 22, 25], we evaluate the performance of sparse
representations of audio signals using a dictionary adapted
to the signals of interest (Section 5). Our evaluation shows
that, to better model the playing techniques, it is useful
to combine the sparse representation of different types of
features, such as logarithm cepstrum and phase derivatives
(Section 6). Finally, a preliminary study using a guitar
solo demonstrates the potential of the proposed methods
in automatic guitar transcription (Section 7).

2. RELATED WORK

Designing useful musical timbre descriptors has been a
long-studied topic, and has achieved high performance in
some fundamental problems such as instrument classifica-

2 http://mac.citi.sinica.edu.tw/
GuitarTranscription
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tion of monophonic signals [13]. Nowadays, researchers
turn to more challenging problems like multiple instru-
ment recognition, which deals with a highly complicated
timbre space [10]. Besides the complexity of multiple
instruments, another challenge in timbre classification is
to identify all the styles of timbre that one instrument can
produce, such as to identify the playing techniques of an
instrument. For exmaple, Abeßer et al. and Reboursière
et al. [1, 21] pioneered the problem of automatic guitar
playing technique classification, and used timber descrip-
tors such as spectral flux, weighted phase divergence,
spectral crust factors, brightness, and irregularity, amongst
others. Most of these features are physically related to
the characteristics of a plucked, vibrating string. However,
these studies were not evaluated using a dataset comprising
of various playing techniques and guitar tones.

In addition to larger and more realistic datasets, novel
feature learning techniques might be helpful for modeling
subtle timbre variations. Recently, sparse coding (SC)
as a feature learning technique has been shown effec-
tive for MIR. This approach uses a predefined dictionary
(codebook) to encode the prominent information of a
given low-level feature representation of an input signal.
One can encode any sensible audio representation by SC
to capture different signal characteristics. For instance,
Nam et al. [17] applied SC on short-time mel-spectra
for music auto-tagging; Yu et al. [25] applied SC on
logarithm cepstra and power-scale cepstra for predominant
instrument recognition. Our work goes one step further
and exploits phase information for SC.

3. ELECTRIC GUITAR PLAYING TECHNIQUE

Table 1 lists the 7 playing techniques we consider in
this work. Most guitar solos are constructed with these
techniques. For example, muting is widely used alterna-
tively in place of normal in guitar riffs for rhythmic and
punched phrases in rock and metal music, and bending is
commonly considered to be the most important technique
for expressing emotion.

To gain more insights into the signal-level properties of
the playing techniques, in Fig. 1 we show the spectrograms
(the first row) and the short-time cepstra (the second row)
of the individual-note examples played with the 7 playing
techniques. The first three columns are individual notes
F4 of normal, vibrato and mute, the fourth column the
consecutive notes F4–E4 of pull-off, and the last three
columns the consecutive notes F4–#F4 of hammer-on,
sliding and bending. The length of all samples is 0.6s.
The window size is 46ms and the hop size is 10ms. From
the spectrograms and the short-time cepstra, we see that
muting has a ‘noisier’ attack and a faster decay comparing
to normal. Moreover, hammer-on, sliding and bending
have quite different transition behaviors, although they
have the same note progression. The transition is sharp
for hammer-on; smooth for bending; and there is a two-
stage transition for sliding. Therefore, it seems that both
the spectrogram and the cepstra contain useful information
that can be exploited for automatic classification.

Technique Description # clips
Normal Normal sound 2,009
Muting Sounds muted (by right hand) to

create great attenuation
385

Vibrato Trilled sound produced by twisting
left hand finger on the string

637

Pull-off Sound similar to normal but with the
smoother attack created by pulling
off the string by left hand finger

525

Hammer-
on

Sound similar to normal but with the
smoother attack created by hammer-
ing on the string by left hand finger

581

Sliding Discrete change to the target note
with a smooth attack by left hand
finger sliding through the string

1,162

Bending Continuous change to the target note
without an apparent attack by bend-
ing the string by left hand fingers

1,281

Table 1. Description of the playing techniques considered.

4. DATASET

While there is no publicly available dataset for guitar
playing technique classification across different tones, we
establish our own one with the aforementioned 7 playing
techniques. The dataset is recorded by a professional
guitarist using a recording interface, PreSonus’ AudioBox
USB, with bit depth of 24 bits and frequency response from
14 Hz to 70 kHz. We directly line-in the guitar to recording
interface to catch every nuance of sound and exclude
environmental noise. The guitar for recording is ESP’s MII
with Seymour Duncan’s pickup and Ebony finger board,
which is a high-quality guitar especially for metal and
rock music. To make the quality of the sound recordings
akin to that of real-world performance, we augment the
single clean tone source to different guitar tones, which is
done in the post-production stage using music production
software Cubase. In addition, we assign each audio clips
to 7 different guitar tones, which involve different levels
of distortion, reverb, delay and chorus. Such tones may
represent different genres such as rock, metal, funk, and
country music solos. Moreover, the tones are carefully
tuned to meet the quality for listening.

Because of the different characteristics of the tech-
niques, the clips are recorded in slightly different ways.
All the clips of sliding and bending have 2 notes for each
clip with both whole step (2 semitones) and half step (1
semitone); all the clips of hammer-on and pull-off have
2 notes with only half step; and the clips of vibrato and
muting have only one note for each clip. As for normal, we
record whole steps, one steps, and single notes to cover all
possible cases which might occur in the other 6 techniques.
For sliding and bending, we record the clips only with the
first three strings of the guitar since these techniques are
less frequently applied on the last 3 strings. Similarly, we
record muting clips with only the last 3 strings because it
is commonly used in rhythm guitar with low pitch. Other
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Figure 1. Spectrograms (the first row) and short-time cepstra (the second row) of the seven playing techniques considered
in this study. From left to right: normal, muting, vibrato, pull-off, hammer-on, sliding, bending.

playing techniques are recorded with all the 6 strings. As a
result, we can see from Table 1 that the numbers of clips of
the 7 techniques are different, where normal has the largest
number of 2,009 notes and muting has the smallest number
of 385 notes. In total there are 6,580 clips.

5. METHODS

5.1 Feature representation

Our feature processing procedures have two steps: low-
level feature extraction and sparse coding. In low-level
feature extraction, we select spectrogram (SG), group-
delay function (GDF), instantaneous frequency deviation
(IFD), logarithm cepstrum (CL) and power cepstrum (CP),
all of which are derived quantities from the short-time
Fourier transformation (STFT):

Sh(t, ω) =

∫
x (τ)h (τ − t) e−jωτdτ = Mh (t, ω) ejΦ

h(t,ω) ,

(1)
where x(t) ∈ R is the input signal, Sh (t, ω) ∈ C
stands for the two-dimensional STFT representation on
time-frequency plane, and h (t) refers to the window
function. SG is the magnitude part of the STFT repre-
sentation: SGh(t, ω) = |Sh(t, ω)|. Phase spctrum is the
imaginary part of the logarithm spectrum: Φh (t, ω) =
Im
(
log Sh (t, ω)

)
. IFD and GDF are the derivative of

phase Φ over time and frequency, respectively:

IFDh (t, ω) =
∂Φh

∂t
= Im

(
SDh (t, ω)

Sh (t, ω)

)
, (2)

GDFh (t, ω) = −∂Φh

∂ω
− t = Re

(
−ST h (t, ω)

Sh (t, ω)

)
, (3)

where D and T represent operators on window functions:
Dh (t) = h′ (t) and T h (t) = t · h (t). Detailed derivation
procedures of GDF and IFD can be found in [2]. On the
other hand, CL and CP are calculated as

CLh(t, q) = (Sh)−1
(
log |Sh(t, ω)|

)
, (4)

CPh(t, q) = (Sh)−1
(
|Sh(t, ω)|1/3

)
, (5)

where (Sh)−1(·) denotes the inverse STFT and q denotes
quefrency [19]. Features derived from CL, such as the

Mel-frequency cepstral coefficients (MFCCs), are often
employed in audio signal processing [8, 16].

5.2 Sparse coding and dictionary learning

For any one of the aforementioned low-level features,
denoted as y ∈ Rm, we further convert it to a sparse
representation α ∈ Rk by SC. Specifically, SC involves
the following l1-regularized LASSO problem [7] to encode
y over a given dictionary D ∈ Rm×k.

α̂ = fSC(D,y) = arg min
α

‖y −Dα‖22 + λ‖α‖1 . (6)

The LASSO problem can be efficiently solved by for
example the least angle regression (LARS) algorithm [7].
Moreover, the dictionary D is learned by the online dictio-
nary learning (ODL) [15] implemented by the open-source
package SPAMS (http://spams-devel.gforge.
inria.fr/). The SC result when the input y is CL has
been referred to as the sparse cepstral code [25].

6. EXPERIMENT

6.1 Experimental setup of individual notes

As Fig. 1 illustrates, the playing techniques can be better
identified around the onsets for most cases. Therefore,
our system starts from detecting the onset of each clip
and then extracts features from each segment starting from
the time before the onset by ta second to the time after
the onset by tb second. We use the well-known spectral
flux method [11] for onset detection, and empirically set
ta = 0.1 and tb = 0.2 for all the clips. For STFT, we use
Hanning window of window size 46 ms (1,024 samples)
and hop size of 10 ms (441 samples). Under the sampling
rate of 44.1 kHz, the dimension of all the low level features
is 512 (i.e. considering only positive frequency).

We adopt a five-fold jack-knife cross-validation (CV)
scheme for the evaluation. For all the fold partitions,
the distribution of clips over the playing techniques is
balanced. We learn both the classifier and the ODL
dictionary from the training folds only, without using the
test fold. The number of atoms k of each dictionary is set to
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Figure 2. Average accuracies (in F-scores) of playing
technique classification using various feature combination.
Left part: RAW features; right part: SC features.

512. 3 After obtaining the frame-level sparse codeword α,
a clip-level feature representation is constructed by mean
pooling. Finally, the features, either with or without sparse
coding, are fed into linear support vector machine (SVM)
[9], with the parameter C optimized through an inside CV
on the training data from the range {2−10, 2−9, · · ·, 210}.
The evaluation results on the test set are reported in terms
of F-score, which is the harmonic mean of precision and
recall. All the evaluation is done at the clip-level.

We consider a number of baseline approaches for com-
parison. First, we use the MIRtoolbox (version 1.3.4) [14]
to compute a total number of 41 features covering the tem-
poral, spectral, cepstral and harmonic aspects of music sig-
nals (denoted as ‘TIMB’ in Fig. 2) as an implementation
of a prior art on guitar playing technique classification [1].
Second, the conventional MFCC, ∆MFCC and ∆∆MFCC
are also used for their popularity (denoted as ‘MFCC’).
Third, we try the early fusion of MFCC and TIMB (i.e. by
concatenating the corresponding clip-level representations
to form a longer feature vector). Finally, for the features
learned by SC, we note that the sparse representation of
the mel-spectra (denoted as ‘MEL’) was used in [17],
and the sparse representations of CL and CP were used
in [25]. However, please note that the focus here is to
compare the performance of using different features for
the task, so our implementation does not faithfully follow
the ones described in the prior arts. For example, Nam
et al. uses automatic gain control as a pre-processing and
uses multiple frame representation instead of frame-level
features as input to feature encoding [17]. For simplicity
the feature extraction and classification pipelines have been
kept simple in this study.

We apply SC to all the five low-level features described
in Section 5.1 and consider a number of early fusion of
them. No normalization is performed for SC features.
However, for non-SC features (referred to as ‘RAW’), it is
useful to apply a z-score normalization so that each feature
dimension has zero mean and unit variance.

3 Using an over-complete dictionary (i.e. k � m) usually improves
the performance of SC features [25], but we leave this as a future work.

(a) SC+SG

predicted class
F-score

nor mut vib pul ham sli ben

ac
tu

al
cl

as
s

nor 92.6 3.26 1.07 1.01 0.85 0.90 0.38 55.2
mut 44.0 43.7 6.94 1.13 0.32 0.97 2.90 56.1
vib 31.0 4.93 63.8 0.27 0.00 0.00 0.00 74.1
pul 21.0 1.75 0.00 21.8 16.9 34.2 4.47 29.7
ham 31.4 0.36 0.18 12.6 25.8 25.6 4.14 33.1
sli 11.9 0.94 0.00 7.92 10.9 52.7 15.6 46.1
ben 3.56 0.92 0.11 2.18 1.26 14.5 77.5 75.6

(b) SC+CL

predicted class
F-score

nor mut vib pul ham sli ben

ac
tu

al
cl

as
s

nor 95.6 1.01 0.41 0.82 0.63 1.20 0.30 58.6
mut 38.9 54.4 4.35 0.16 0.00 0.65 1.45 66.3
vib 14.3 6.03 79.7 0.00 0.00 0.00 0.00 86.3
pul 27.2 0.58 0.19 28.2 14.6 25.6 3.69 38.9
ham 31.4 0.00 0.00 9.55 38.2 18.2 2.70 47.2
sli 14.9 1.42 0.00 4.43 7.26 61.8 10.2 56.7
ben 3.79 0.69 0.00 1.84 1.03 10.5 82.2 81.9

(c) SC+{CL,GDF,IFD}

predicted class
F-score

nor mut vib pul ham sli ben

ac
tu

al
cl

as
s

nor 95.6 1.59 0.33 0.55 0.79 0.79 0.36 64.1
mut 35.0 57.9 4.52 0.32 0.16 0.32 1.77 68.7
vib 12.3 6.85 80.8 0.00 0.00 0.00 0.00 86.9
pul 19.6 0.58 0.19 41.2 11.7 22.5 4.27 52.0
ham 24.3 0.18 0.00 10.5 45.8 17.5 1.80 55.2
sli 10.2 1.13 0.19 5.66 6.60 70.4 5.85 65.0
ben 1.38 0.23 0.00 0.23 0.80 5.17 92.2 89.4

Table 2. Confusion matrix (in %) of playing technique
classification of electric guitar individual notes using
different feature combinations.

6.2 Experiment results

From the left hand side of Figure 2, we find that both
RAW+TIMB [1] and RAW+MFCC perform worse than
RAW+SG, RAW+CL and RAW+CP, possibly because the
feature dimension of the latter three is larger. However,
after fusing TIMB and MFCC, the F-score is improved
to 57.4%, which is not significantly worse than the result
of RAW+CL (i.e. 59.0%) under the two-tailed t-test. It
turns out that using sophisticated features such as those
computed by the MIRtoolbox does not offer gain for this
task. Note that the F-score of random guess would be
1/7=14.3%, because each fold is balanced across the 7
techniques. The performance of most RAW features is
greatly better than the chance level.

In contrast, from the right hand side of Figure 2, we
find that SC features usually performs much better than the
non-SC (i.e. RAW) counterparts. For example, SC+SG,
SC+CL and SC+CP are better than RAW+SG, RAW+CL
and RAW+CP, respectively. These improvements are all
significant under the two-tailed t-test (p<0.01, d.f.=8).
Similar observations have been made in existing works that
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apply SC features to MIR tasks (e.g. [17, 25]). We also
find that using SC+CL already leads to significantly better
F-score than RAW+{TIMB,MFCC} (p<0.0001, d.f.=8).
Moreover, from the data of SC features we see that fusing
GDF and IFD generally improves the accuracy, and that
the best F-score 71.7% is obtained by fusing sparse-coded
cepstral and phase features (i.e. SC+{CL,GDF,IFD}).
The F-score of SC+{SG,GDF,IFD} is worse (66.1%) than
SC+{CL,GDF,IFD}, but is still significantly better than
SC+SG. We also note that SC does not improve the per-
formance for MEL, MFCC, TIMB and IFD. This implies
that sophisticated features like TIMB are not suitable for
SC. Although SC+IFD is worse than IFD, its fusion with
other SC features still results in better performance. In a
nutshell, this evaluation shows that it is promising to use
SC for playing technique classification, especially when
we fuse multiple features derived from STFT.

Table 2 displays the confusion matrices for three dif-
ferent feature combinations with sparse coding. Table
2(a) shows the result of SC+SG, from which we see
that normal and bending have relatively high F-scores of
74.1% and 75.6% (see the rightmost column), yet the
other five techniques have F-scores lower. We see that
many playing techniques can be easily misclassified as
normal. We also see ambiguities between for example pull-
off versus sliding and hammer-on versus sliding, showing
that such techniques are difficult to be discriminated from
one another in the logarithm-scale spectrogram.

In contrast, we see from Table 2(b) that SC+CL leads
to consistent improvement in F-score for all the playing
techniques, comparing to SC+SG. The largest performance
gain (+14.1%) is obtained for hammer-on. We also see that
the ambiguity between normal and vibrato is mitigated.

Finally, comparing Tables 2 (b) and (c) we see that
SC+{CL,GDF,IFD} consistently improves the F-score for
all the playing techniques. More interestingly, it seems
that adding phase derivatives effectively alleviate the afore-
mentioned confusions without compromising the discrim-
inability of other classes. The F-scores of all the playing
techniques are now above 50.0%.

7. REAL-WORLD MUSIC

The automatic transcription flow contains frame-level pitch
detection, onset detection, and playing technique classifi-
cation, one after another. We adopt the method proposed
by Peeters [20] and use spectral and cepstral features for
pitch detection. For onset detection, we use again the
spectral flux method [4, 11]. Finally, we apply the playing
technique classifier trained from the individual note dataset
to classify the playing techniques of the guitar solo.

We present a qualitative evaluation of a real-world
electric guitar solo excerpt performed by same professional
guitarist. It is an interpretation of Sonata Artica’s Tallulah
released in 2001, for the fragment 3:59–4:08. We show
in the first two subfigures of Fig. 3 its scoresheet and
spectrogram. In the third subfigure we show the pitch and
onset, using black horizontal bars, gray horizontal bars,
and vertical dashed lines to denote the estimated frame-

level pitches, ground truth pitches, and estimated onsets,
respectively. We see that the estimated pitches and onsets
match the ground truth quite well, except for some cases
such as the mismatch between the onset at 7.70s and the
change of pitch at 7.84s, which probably results from the
ambiguity of the onset of bending.

The last subfigure of Fig. 3 compares the result of
SC+SG and SC+{CL,GDF,IFD} for playing technique
classification. Since our classification is performed with
respect to the detected onsets, the errors in the stage of on-
set detection will fully propagate into the stage of playing
technique classification. Therefore, the techniques which
are not characterized by onset (e.g., a long-sustaining
vibrato) cannot be transcribed. A true positive of onset
is defined as an onset position which is detected within
100ms of the ground truth onset time. A true positive
of playing technique is accordingly defined as a correct
prediction of playing technique at a true positive of onset.
We can see that the performance of playing classification
degrades a lot in comparison to the case of individual notes.
Specifically, we have 7 true positives (4 normal and 3
bending) for SC+{CL,GDF,IFD} and 5 true positives (2
sliding, 2 bending and 1 normal) for SC+SG, while there
are in total 17 targets in the ground truth. The 2 muting at
2.38s and 4.60s and the hammer-on at 9.24 second are not
recalled by both methods. Although SC+{CL,GDF,IFD}
fails to recall sliding, SC+SG recalls 2 sliding. While
SC+{CL,GDF,IFD} has many false positives of vibrato,
SC+SG has many false positives of sliding. In general,
SC+{CL,GDF,IFD} performs better.

The two estimated events at 4.11s and 5.80s are interest-
ing. Although the two events do not present in the ground
truth, the prediction of SC+{CL,GDF,IFD} is musically
correct as the two false alarms of onset indeed occur in a
long-sustaining vibrato. In contrast, SC+SG misclassifies
the two events as pull-off and sliding, respectively.

8. CONCLUSION

In this study, we have reported a comparative study on the
performance of a number of timbre modeling methods for
the relatively unexplored task of guitar playing technique
classification. The evaluation is performed on a large-
scale individual-note dataset comprising of 6,580 clips and
a real-world guitar solo recording. Our evaluation shows
that sparse coding works well in learning features that
are useful for the task, and that using features extracted
from the cepstra and phase derivatives helps resolve the
confusion among similar playing techniques. We also
report a qualitative evaluation on guitar solo transcription.
We are currently collecting more individual notes and
solos to deeply understand the signal-level characteristics
for these playing techniques. Although the present study
might be at best preliminary, we hope it can call for more
attention towards playing technique modeling.
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Figure 3. Result of transcribing a real-world guitar solo excerpt. From top to bottom: scoresheet, guitar tab, spectrogram,
pitch and onset (gray bar: ground truth; black bar: estimated pitch; vertical dashed line: estimated onset), and result
of playing technique classification by using SC+SG and SC+{CL,GDF,IFD}. Abbreviation: N=normal, V=vibrato,
M=muting, P=pull-off, H=hammer-on, S=sliding, B=bending.
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