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ABSTRACT 

An auditory-perception inspired singing voice separation 
algorithm for monaural music recordings is proposed in 
this paper. Under the framework of computational audito-
ry scene analysis (CASA), the music recordings are first 
transformed into auditory spectrograms. After extracting 
the spectral-temporal modulation contents of the time-
frequency (T-F) units through a two-stage auditory model, 
we define modulation features pertaining to three catego-
ries in music audio signals: vocal, harmonic, and percus-
sive. The T-F units are then clustered into three categories 
and the singing voice is synthesized from T-F units in the 
vocal category via time-frequency masking. The algo-
rithm was tested using the MIR-1K dataset and demon-
strated comparable results to other unsupervised masking 
approaches. Meanwhile, the set of novel features gives a 
possible explanation on how the auditory cortex analyzes 
and identifies singing voice in music audio mixtures.  

1. INTRODUCTION 

Over the past decade, the task of singing voice separation 
has gained much attention due to improvements in digital 
audio technologies. In the research field of music infor-
mation retrieval (MIR), separated vocal signals or ac-
companying music signals can be of great use in many 
applications, such as singer identification, pitch extrac-
tion, and music genre classification. During the past few 
years, many algorithms have been proposed for this chal-
lenging task. These algorithms can be categorized into 
unsupervised and supervised approaches. 

The unsupervised approaches do not contain any 
training mechanism in the algorithms. For instance, 
Durrieu et al. used a source/filter signal model with non-
negative matrix factorization (NMF) to perform source 
separation [5] and Fitzgerald et al. used median filtering 
and factorization techniques to separate harmonic and 
percussive components in audio signals [7]. Some other 
unsupervised methods considered structural characteris-
tics of vocals and music accompaniments in several do-
mains for separation. For example, Pardo and Rafii pro-
posed REPET which views the accompaniments as re-
peating background signals and vocals as the varying in-
formation lying on top of them [16]. Tachibana et al. pro-

posed the separation technique, HPSS, to remove the 
harmonic and percussive instruments sequentially in a 
two-stage framework by considering the nature of fluctu-
ations of audio signals [19]. Huang et al. used RPCA to 
present accompaniments in low-rank subspace and vocal 
in sparse representation [8]. In addition, some unsuper-
vised CASA-based systems were proposed for singing 
voice separation by finding singing dominant regions on 
the spectrograms using pitch and harmonic information. 
For instance, Li and Wang proposed a CASA system ob-
taining binary masks using pitch-based inference [13]. 
Hsu and Jang extended the work and proposed a system 
for separating both voiced and unvoiced singing segments 
from the music mixtures [9]. Although training mecha-
nisms were seen in these two systems, they were only for 
detecting voiced and unvoiced segments, but not for sepa-
ration. 

In contrast, there were approaches based on super-
vised learning techniques. For example, Vembu et al. 
used vocal/non-vocal SVM and neural-network (NN) 
classifiers for vocal-nonvocal segmentation [20]. Ozerov 
et al. used a vocal/non-vocal classifier based on Bayesian 
modeling [15]. Another group of methods combined 
RPCA with training mechanisms. For instance, Yang’s 
low-rank representation method decomposed vocals and 
accompaniments using pre-trained low-rank matrices [22] 
and Sprechmann et al. proposed a real-time method using 
low-rank modeling with neural networks [17]. Although 
these supervised learning methods demonstrated very 
high performance, they usually offer a weaker conception 
of generality.  

Music instruments produce signals with various kinds 
of fluctuations such that they can be briefly categorized 
into two groups, percussive and harmonic. Signals pro-
duced by percussive instruments are more consistent 
along the spectral axis and by harmonic instruments are 
more consistent along the temporal axis with little or no 
fluctuations. These two categories occupy a large propor-
tion of a spectrogram with mainly vertical and horizontal 
lines. To extend this sense into a more general form, the 
fluctuations can be viewed as a sum of sinusoid modula-
tions along the spectral axis and the temporal axis. If a 
signal has nearly zero modulation along one of the two 
axes, its energy is smoothly distributed along that axis. 
Conversely, if a signal has a high frequency of modula-
tion along one axis, then its energy becomes scattered 
along that axis. Therefore, if one can decipher the modu-
lation status of a signal, one may be able to identify the 
instrument type of the signal. An algorithm utilizing mo- 
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Figure 1. Stages of the cochlear module, adopted from 
[2]. 
 
dulation information can be seen in [1], where Barker et 
al. combined the modulation spectrogram (MS) with non-
negative tensor factorization (NTF) to perform speech 
separation from mixtures of speech and music. 

Although the above mentioned engineering approach-
es produce promising results, human’s tremendous ability 
in sound streams separation makes a biomimetic ap-
proach interesting to investigate. Based on neuro-
physiological evidences, it is suggested that neurons of 
the auditory cortex (A1) respond to both spectral modula-
tions and temporal modulations of the input sounds. Ac-
cordingly, a computational auditory model was proposed 
to model A1 neurons as spectro-temporal modulation fil-
ters [2]. This concept of spectro-temporal modulation de-
composition has inspired many approaches in various en-
gineering topics, such as using spectro-temporal modula-
tion features for speaker recognition [12], robust speech 
recognition [18], voice activity detection [10], and sound 
segregation [6].  

Since modulations are important for music signal cat-
egorization, this modulation-decomposition auditory 
model is used as a pre-processing stage for singing voice 
separation in this paper. Our proposed unsupervised algo-
rithm adapts this two-stage auditory model, which de-
codes the spectro-temporal modulations of a T-F unit, to 
extract modulation based features and performs singing 
voice separation under the CASA framework. This paper 
is organized as follows. A brief review of the auditory 
model is presented in Section 2. Section 3 describes the 
proposed method. Section 4 shows evaluation and results. 
Lastly, Section 5 draws the conclusion. 

2. SPECTRO-TEMPORAL AUDITORY MODEL 

A neuro-physiological auditory model is used to extract 
the modulation features. The model consists of an early 
cochlear (ear) module and a central auditory cortex (A1) 
module. 

2.1 Cochlear Module 

As shown in Figure 1, the input sound goes through 128 
overlapping asymmetric constant-Q band-pass filters 
(Q��� ≫ 4 ) whose center frequencies are uniformly dist- 

ributed over 5.3 octaves with the 24 filters/octave fre-
quency resolution. These constant-Q filters mimic the 
frequency selectivity of the cochlea. Outputs of these fil-
ters are then transformed through a non-linear compres-
sion stage, a lateral inhibitory network (LIN), and a half-
wave rectifier cascaded with a low-pass filter. The non-
linear compression stage models the saturation caused by 
inner hair cells, the LIN models the spectral masking ef-
fect, and the following stage serves as an envelope ex-
tractor to model the temporal dynamic reduction along 
the auditory pathway to the midbrain. Outputs of the 
module from different stages are formulated below: 

 
																			y	
t, ω� = �
�� ∗� ℎ
�; ��                      (1) 
 
																			y�
t, ω� = g�∂�y	
t, ω�� ∗� ℓ
t�             (2) 
                                                                      

																										y�
t, ω� = max	
∂!y�
t, ω�, 0�		            (3) 
 
																										y#
t, ω� = y�
t, ω� ∗� μ
t; τ�		                 (4) 
 
where  s
t� is the input signal; 	ℎ
�; �� is the impulse re-
sponse of the cochlear filter with center frequency  �	; 	∗� 
denotes convolution in time; 	g
．� is the nonlinear com-
pression function; 	∂� is the partial derivative of  t ;  ℓ
t� 
is the membrane leakage low-pass filter; μ
t; τ� = 	 e(�/* ∙
u
t� is the integration window with the time constant  τ 
to model current leakage of the midbrain; u
t� is the step 
function. Detailed descriptions of the cochlear module 
can be found in [2].  

The output y#
t, ω�  of the module is the auditory 
spectrogram, which represents the neuron activities along 
time and log-frequency axis. In this work, we bypass the                                      
non-linear compression stage by assuming input sounds 
are properly normalized without triggering the high-
volume saturation effect of the inner hair cells. 

2.2 Cortical Module 

The second module simulates the neural responses of the 
auditory cortex (A1). The auditory spectrogram 	y#
t, ω� 
is analyzed by cortical neurons which are modeled by 
two-dimensional filters tuned to different spectro-
temporal modulations. The rate parameter (in Hz) char-
acterizes the velocity of local spectro-temporal envelope  

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

618



  
 

 

Figure 2. Rate-scale outputs of the cortical module to 
two T-F units of the auditory spectrogram of the 
'Ani_2_03.wav' vocal track in MIR-1K [9]. 

variation along the temporal axis. The scale parameter 
(in cycle/octave) characterizes the density of the local 
spectro-temporal envelope variation along the log-
frequency axis. Furthermore, the cortical neurons are 
found sensitive to the direction of the spectro-temporal 
envelope. It is characterized by the sign of the rate para- 
meter in this model, with negative for the upward direc-
tion and positive for the downward direction.   

From functional point of view, this module performs 
a spectro-temporal multi-resolution analysis on the input 
auditory spectrogram in various rate-scale combinations. 
Outputs of various cortical neurons to a single T-F unit of 
the spectrogram demonstrate the local spectro-temporal 
modulation contents of the unit in terms of the rate, scale 
and directionality parameters. 

Figure 2 shows rate-scale outputs of two T-F units in 
an auditory spectrogram of a vocal clip. The rate-scale 
output is referred to as the rate-scale plot in this paper. 
The rate and scale indices are ±2(�~±20	and	2−2~23, re-
spectively. The strong responses of the plots correspond to 
the variations of singing pitch envelopes resolved by the 
rate and scale parameters and the moving direction of the 
pitch. Detailed description of the cortical module is avail-
able in [3]. 

3. PROPOSED METHOD 

A schematic diagram of the proposed algorithm is shown 
in Figure 3. The following sections will discuss each part 
in details. 

3.1 Feature Extraction 

According to the spectral and temporal behaviors ob-
served on the auditory spectrogram, components of a 
musical piece are characterized into three categories,  

 

Figure 3. Block diagram of the proposed algorithm. 

harmonic, percussive and vocal. Harmonic components 
have steady energy distributions over time and have clear 
formant structures over frequency. Each percussive com-
ponent has impulsive energy concentrated in a short pe-
riod of time and has no obvious harmonic structure. Vo-
cal components possess harmonic structure and their en-
ergy is distributed along various time periods. Interpret-
ing the above statements from the rate-scale perspective, 
several general properties can be drawn. Harmonic com-
ponents can be usually regarded as having low rate and 
high scale modulations. It means that they have relative-
ly slow energy change along time and rapid energy 
change along the log-frequency axis due to the harmonic 
structures. In contrast, percussive components typically 
show quick energy change along time and energy spread-
ing along the whole log-frequency axis, such that they 
possess high rate and low scale modulations. Vocal 
components are often recognized as a mix version of the 
harmonic and percussive components with characteris-
tics sometimes considered more similar to harmonics. 
Different types of singing or vocal expression can result 
in various values of rate and scale. Figure 4 shows some 
examples of rate-scale plots of components from the 
three categories. 

Given an auditory spectrogram y4 ∈ ℛ5×7  trans-
formed from an input music signal	s
t� , the rate-scale 
plots of the T-F units are generated. As a pre-process, in 
order to prevent extracting trivial data from nearly inau-
dible T-F units of the auditory spectrogram, we leave out 
the T-F units that have energy less than 1% of the maxi-
mum energy of the whole auditory spectrogram. With the 
rest of the T-F units, we obtain the rate-scale plot of each 
unit and proceed to the feature extraction stage.  

For each rate-scale plot, the total energies of the nega-
tive and positive rate side are compared. The side with 
greater energy is determined as the dominant plot. From 
the dominant plot, we extract 11 features as shown in Ta-
ble 1. The features are selected by observing the rate-
scale plots with some intuitive assumptions of the physic-
al properties which distinguish between harmonic, per-
cussive and vocal. The first 10 features are obtained by 
computing the energy ratio of two different areas on the 
rate-scale plot. For example, as shown in Table 1, the first 
feature is the ratio of the total modulation energy of scale 
= 1 to the total modulation energy of scale = 0.25. The 
low scales, such as 0.25 and 0.5, capture the degree of the  
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Figure 4. (a) Rate-scale plot from the vocal track of 
‘Ani_4_07’ in MIR-1K. The modulation energy is mostly 
concentrated in the middle and high scales for a unit with 
a clear harmonic structure. (b) Rate-scale plots from the 
accompanying music track of ‘Ani_4_07’. The upper plot 
shows energy concentrating at low rates for a sustained 
unit. The lower plot shows energy concentrating at high 
rates for a transient unit.  
 
flatness of the formant structure while the high scales, 
such as 1, 2, 4 and 8, capture the harmonicity with differ-
ent frequency spacing between harmonics. Therefore, the 
first four features can be thought as descriptors which dis-
tinguish harmonic from percussive using spectral infor-
mation. The fifth to the seventh features capture temporal 
information which can distinguish sustained units from 
transient units. 

The feature values are saved as feature vectors and 
then grouped as a feature matrix F	 ∈ 	ℛ9	×:	for clustering, 
where 9 is the number of features and :	is the number of 
total valid units in the auditory spectrogram. 

3.2 Unsupervised Clustering 

In the unsupervised clustering stage, a spectrogram is di-
vided into three parts and clustering is performed for each 
part. Based on hearing perception, the frequency resolu-
tion is higher at lower frequencies while the temporal 
resolution is higher at higher frequencies [14]. Due to the 
frequency resolution of the constant-Q cochlear fil-
ters/channels in the auditory model, the auditory spectro-
gram can only resolve about ten harmonics [11]. To han-
dle different resolutions, the spectrogram is separated into 
three sub-spectrograms with overlapped frequency ranges. 
The three sub-spectrograms consist of channel 1 to chan-
nel 60, channel 46 to channel 75, and channel 61 to chan-
nel 128, respectively, with overlaps of 15 channels. 

Table 1. Eleven extracted modulation energy features 

The clustering step is performed using the EM algo-
rithm to group data into three unlabelled clusters. The 
EM algorithm assigns a probability set to each T-F unit 
showing its likelihood of belonging to each cluster. Note 
that in spectrogram representations, the sound sources are 
superimposed on top of each other. It implies that one T-
F unit may contain energy from more than one source. 
Therefore, in this work, if one T-F unit has a probability 
set in which the second highest probability is higher than 
5%, that particular T-F unit will also be labelled to the 
second high probability cluster. It means one unit may 
eventually appear in more than one cluster. The parame-
ter 5% was empirically determined. Each of the three 
sub-spectrograms is clustered into three groups. Total of 
nine groups are generated and merged back into three 
whole spectrograms by comparing the correlations of the 
overlapped channels between different groups. Each of 
the three whole spectrograms represents the extracted 
harmonic, percussive, and vocal part of the music mixture. 
With no prior information about the labels of the three 
whole spectrograms, the effective mean rate-scale plot of 
each spectrogram is examined. The effective mean rate-
scale plot is the mean of rate-scale plots of the T-F units 
with energy higher than 20% of the maximum energy in 
that spectrogram. The total modulation energy of rate = 1, 
2 Hz and scale = 0.25, 2, 4 cycle/octave is calculated 
from the effective mean rate-scale plot and referred to as 
Ev, which is used as the criterion to select the vocal spec-
trogram. The one with the maximum Ev value is picked 
as the vocal spectrogram since Ev catches modulations 
related to the formant structure (scale = 0.25), the har-
monic structure (scale = 2 and 4) and the singing rate 
(rate = 1 and 2) of singing voices. 

The vocal spectrogram is then synthesized to an esti-
mated signal using the auditory model toolbox [24]. The 
nonlinear operation of the envelope extractor in the coch-
lear module makes perfect synthesis impossible, thus 
causing a general result of loss of higher frequencies of 
the signal. Detailed computations are shown in [2]. 

4. EVALUATION RESULTS 

The MIR-1K [9] is used as the evaluation dataset. It cont- 

Scale Rate 
1 : 0.25 all 
2 : 0.25 all 
4 : 0.25 all 
8 : 0.25 all 
(0.25, 2, 4) (1, 2) : (0.25, 0.5, 1, 2, 16, 32) 
(0.25, 2, 4) (0.25, 0.5) : (0.25, 0.5, 1, 2, 16, 32) 
(0.25, 2, 4) (16, 32) : (0.25, 0.5, 1, 2, 16, 32) 
(0.25, 0.5) : all all 
(1, 2) : all all 
(4, 8) : all all 
(0.25) all 
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Figure 5. GNSDR comparison at voice-to-music ratio of 
-5, 0, and 5 dB with existing methods.  

ains 1000 WAV files of karaoke clips sung by amateur 
singers. The length of each clip is around 4~13 seconds. 
The vocal and music accompaniment parts were recorded 
in the right and the left channels separately. In this exper-
iment, we mixed two channels in -5, 0, 5 dB SNR (signal 
to noise ratio, i.e., vocal to music accompaniment ratio) 
for test. To assess the quality of separation, the source-to- 
distortion ratio (SDR) [21] is used as the objective meas-
ure. The ratios are computed by the BSS Eval toolbox 
v3.0 [23]. Following [9], we compute the normalized 
SDR (NSDR) and the weighted average of NSDR, the 
global NSDR (GNSDR), with the weighting proportional 
to the length of each file. To have a fair comparison, we 
compare our method with other unsupervised methods, 
which extract vocal clips only through one major stage. 
The compared algorithms are listed below: 

I. Hsu: the approach proposed in [9] that performs 
unvoiced sound separation combined with the 
pitch-based inference method in [13]. 

II. R (REPET with soft masking): the approach pro-
posed in [16] that computes a repeating background 
structure and extract vocal with soft time-frequency 
masking. 

III.  RPCA: a matrix decomposition method applying 
robust principal component analysis proposed by 
Huang et al. [8].  

From Figure 5, we can observe that the proposed 
method has the highest performance tied with RPCA in 
the -5 dB SNR condition. In 0 and 5 dB SNR conditions, 
the performance of the proposed method is comparable to 
the performance of REPET.  

5. CONCLUSION 

In this paper, we propose a singing voice separation 
method utilizing the spectral-temporal modulations as 
clustering features. Based on the energy distributions on 
the rate-scale plots of T-F units, the vocal signal is ex-
tracted from the auditory spectrogram and the separation 
performance is evaluated using the MIR-1K dataset. Our 
proposed CASA-based masking method outperforms the 
CASA-based system in [9] and has comparable perfor-

mance to the masking-based REPET in all SNR condi-
tions. When compared with the subspace RPCA method, 
our proposed method has comparable performance only 
in the -5 dB SNR condition. These results demonstrate 
the effectiveness of the spectral-temporal modulation fea-
tures for analyzing music mixtures. As this proposed 
method only applies a simple EM algorithm for clustering, 
harmonic mismatches and artificial noises are yet to be 
discussed. 

The future work will be focused on applying more 
advanced classifiers for more accurate separations and 
adopting a two-stage mechanism like HPSS to discard 
percussive and harmonic components sequentially. The 
other potential work is to implement the proposed 
spectro-temporal modulation based method in the Fourier 
spectrogram domain [4] to mitigate synthesis errors in-
jected by the projection-based reconstruction process of 
the auditory model. 
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