

VEROVIO: A LIBRARY FOR ENGRAVING
MEI MUSIC NOTATION INTO SVG

Laurent Pugin Rodolfo Zitellini Perry Roland
Swiss RISM Office

laurent.pugin@rism-ch.org
Swiss RISM Office

rodolfo.zitellini@rism-ch.org
University of Virginia
pdr4h@virginia.edu

ABSTRACT

Rendering symbolic music notation is a common compo-
nent of many MIR applications, and many tools are avail-
able for this task. There is, however, a need for a tool that
can natively render the Music Encoding Initiative (MEI)
notation encodings that are increasingly used in music
research projects. In this paper, we present Verovio, a li-
brary and toolkit for rendering MEI. A significant ad-
vantage of Verovio is that it implements MEI’s structure
internally, making it the best suited solution for rendering
features that make MEI unique. Verovio is designed as a
fast, portable, lightweight tool written in pure standard
C++ with no dependencies on third-party frameworks or
libraries. It can be used as a command-line rendering tool,
as a library, or it can be compiled to JavaScript using the
Emscripten LLVM-to-JavaScript compiler. This last op-
tion is particularly interesting because it provides a com-
plete in-browser music MEI typesetter. The SVG output
from Verovio is organized in such a way that the MEI
structure is preserved as much as possible. Since every
graphic in SVG is an XML element that is easily address-
able, Verovio is particularly well-suited for interactive
applications, especially in web browsers. Verovio is
available under the GPL open-source license.

1. INTRODUCTION

A few decades ago, rendering music notation by comput-
er almost exclusively targeting printed output, most often
in Postscript of PDF formats. Today, partly in response to
the development of MIR applications, rendering of music
notation can be necessary in a wide range of contexts, for
example within standalone desktop applications, in serv-
er-side web application scenarios, or directly in a web
browser. For example, music notation might need to be
rendered for displaying search results or for visualizing
analysis outputs. Another example is score-following ap-
plications, where the passage currently played needs to be
displayed and possibly highlighted. Rendering music no-
tation by computer, however, is a complex task. Powerful
music notation rendering engines exist in commercial and

open-source notation editors, but these are usually not
very modular and cannot easily be integrated within other
applications. Other rendering engines, such as LilyPond
[13] or Mup [1], can be used; however, they usually re-
quire the encoding to be converted to a particular typeset-
ting input syntax. Their architectures and dependencies
also often limit the contexts in which their use is possible.

In recent years, the Music Encoding Initiative (MEI)
has been increasingly adopted for music research projects
[6]. Its large scope (MEI can be used to encode a wide
range of music notations, from medieval neumes to
common Western music notation), modularity, rich
metadata header and numerous other features, including
alignment with audio files or performance annotations,
make it appropriate for a wide range of MIR applications.
Unfortunately, most of the solutions currently available
for rendering MEI involve a conversion to another for-
mat, either explicitly or internally in the software applica-
tion used for rendering.

In this paper, we present the Verovio project, a library
and toolkit for rendering MEI natively in SVG. Its pur-
pose is to provide a self-contained typesetting engine that
is capable of creating high-quality graphical output and
that can also be used in different application contexts. In
the following section, we describe previous work and ex-
isting solutions for rendering MEI and the use of SVG for
music notation. We then introduce Verovio, describe the
MEI structure on which it is built, outline its program-
ming architecture, and highlight features currently availa-
ble. We then present possible uses and output examples
and conclude the paper with the future work that is
planned for Verovio.

2. PREVIOUS WORK

One currently available option for rendering MEI is con-
version to another format in order to use existing tools
that do not support MEI. For software applications or
rendering engines that support the import of the Mu-
sicXML interchange format, MEI can be converted with
the mei2musicxml XSL stylesheet [9]. Another option is
to convert MEI directly to a typesetting format, such as
Mup. Mup is a C rendering engine that was made open-
source in 2012. It uses its own typesetting syntax and
produces high quality Postscript output. The conversion
of MEI to Mup can be achieved in one step using the
mei2mup XSL stylesheet [8]. A similar approach is pos-

 © Laurent Pugin, Rodolfo Zitellini, Perry Roland.
Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Laurent Pugin, Rodolfo Zitellini,
Perry Roland. “Verovio: A Library for Engraving MEI Music Notation
into SVG”, 15th International Society for Music Information Retrieval
Conference, 2014.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

107

sible for rendering MEI in a web browser, using a con-
version to the ABC format. ABC is an encoding format
primarily targeting material with fairly limited notational
features, such as folk and traditional melodies. It can be
rendered in a web browser with the abcjs renderer [15],
and the conversion from MEI to ABC can be achieved
with the mei2abc converter [5]. There is also a new Ja-
vaScript library, MEItoVexflow [18], that makes it possi-
ble to render MEI directly in web browsers using the
Vexflow API [12]. Another tool for rendition of MEI
online is Neon.js [3]. The tool not only renders, but also
acts as a full online editor for neumatic medieval nota-
tion.

SVG for music notation has been used in several pro-
jects. One early attempt was made in 2003 for converting
MusicXML to SVG using XSLT [14]. A framework with
an editor was also developed for outputting SVG from
GuidoXML notation as part of a dissertation thesis [2].
With MEI, SVG rendering was used for the first time in
the DiMusEd project, a critical edition of songs of Hilde-
gard von Bingen (1098-1179) [11]. In this web-based edi-
tion of neumatic notation, MEI rendering is performed on
the server side with a custom rendering engine. There are
also attempts to use XSLT to transform MEI to SVG di-
rectly in the browser. This approach is used in mono:di,
the transcription software of the Corpus Monodicum edi-
torial project sponsored by the Akademie der Wissen-
schaften und der Literatur in Mainz, also focused on me-
dieval notation [4]. Finally, SVG is a possible back-end
for the aforementioned Vexflow API in conjunction with
the Raphael JavaScript library.

These solutions all have strengths and drawbacks in
terms of compatibility, usability, speed, output quality,
and music notation features available. Many of them,
however, have limitations when the format to which MEI
is converted for rendering does not support some features
encoded in the MEI source or has a different structure,
with the consequence that part of the encoding will be
lost in conversion, or not rendered appropriately.

3. VEROVIO

3.1 MEI structure

The MEI schema provides multiple options for structur-
ing the musical content. The most widely-used option is
the score-based structure, where all the parts of a musical
score are encoded together in the same XML sub-tree.
The MEI schema also includes a part-based option, where
each part is stored in a separate XML sub-tree. The
choice between these options can depend not only on the
type of document being encoded but also on the type of
application. The Verovio library was designed as a direct
implementation of the MEI structure. However, since it is
rendering-focused, it is built around another content or-
ganization of MEI, a page-based customization more ap-
propriate for graphical display. In a rendering task, the

page (or more generically, the rendering surface) is a re-
quired high-level entity on which elements can be laid out
by the rendering process. The page-based customization
is a more fitting alternative data organization that pro-
vides a page top-level entity. It prioritizes the hierarchy
that is treated as secondary when encoded with milestone
elements <pb> in other MEI representations.

In the page-based customization, the content of the
music is encoded in <page> elements that are themselves
contained in a <pages> element within <mdiv> as
shown in Figure 1. A <page> element contains <sys-
tem> elements. From then on, the encoding is identical to
standard MEI. That is, a <system> element will contain
<measure> elements or <staff> elements that are both
un-customized, depending on whether or not the music is
measured or un-measured, respectively. Since the modifi-
cations introduced by the customization are very limited,
the Verovio library can be used to render un-customized
MEI files. When loading un-customized MEI documents,
some MEI elements are loaded by Verovio and converted
to a page-based representation. Typically, <pb> mile-
stone elements are converted to <page> container ele-
ments. Conversely, <section> container elements are
converted to <secb> milestone elements.

Figure 1. The page-based MEI structure used by Vero-
vio. The <mdiv> element contains <pages>, <page>
and <system> elements.

3.1.1 Layout and positioning

In addition to making rendering simpler and faster, the
idea of the page-based customization is also to make it
possible to encode the positioning of elements directly in
the content tree without having to refer to the facsimile
sub-tree. The latter traditional approach remains available
with the page-based customization for more detailed and
more complex referencing to facsimile images. However,
the page-based customization introduces a lightweight
positioning and referencing system that can be useful
when the encoding represents a single source with one

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

108

image per page. This is typically the case with optical
music recognition applications for which the encoding of
the position of each encoded element is necessary. An-
other possible use is the creation of overlay images to be
displayed on top of facsimile images where the position
of each symbol also needs to be encoded. Verovio sup-
ports both positioned elements and automatic layout. Au-
tomatic layout will be executed when un-customized MEI
files are rendered.

3.1.2 Additional supported formats

In addition to MEI, Verovio can render Plain and Easy
(PAE) code [7] and DARMS code [16]. PAE and
DARMS encodings are widely used for encoding incipits,
including those for the Répertoire International des
Sources Musicales (RISM) project. In Verovio, these
formats are converted to MEI internally, which means
that the toolkit can also be used to convert them to MEI
for purposes other than rendering.

3.2 SVG output

One significant advantage of SVG rendering over other
formats (e.g., Postscript or PDF) is that it is rendered na-
tively in most modern web browsers with no plug-in re-
quired. Because SVG is XML, it has an advantage over
raster image formats that every graphical element is ad-
dressable, making it well-suited for interactive applica-
tions. In a web environment, this makes it easy to high-
light notes or symbols, for example. In addition, since
SVG is a vector format, the output can also be used for
high-quality printing.

Figure 2. The output of Vervovio for two bars. The
built-in layout engine of Verovio avoids symbol colli-
sions as much as possible.

One interesting feature of Verovio is that the SVG is

organized in such a way that the MEI structure is pre-
served as much as possible. For example, a <note> ele-
ment with an @xml:id attribute in the MEI file will have
a corresponding <g> element in the SVG with an @class
attribute equal to "note" and an @id attribute corre-
sponding to the @xml:id of the MEI note. This makes
interaction with the SVG very easy. The hierarchy of the
elements is also preserved. For example, in MEI, a
<beam> can be the child element of a <tuplet>, but the
opposite is also possible. The hierarchy is fully preserved
in the SVG as shown in Figure 3.

Figure 3. Comparison of MEI and SVG file structures.
The hierarchy of the MEI is preserved in the SVG.

3.3 Programming architecture

Verovio is designed as a fast, portable, lightweight tool
usable as a one-step conversion program. It is written in
pure standard C++ with no dependencies on third-party
frameworks and libraries. This ensures maximum porta-
bility of the codebase. Verovio implements its own ren-
dering engine, which can produce SVG with all the musi-
cal symbols embedded in it. The musical glyphs are
themselves SVG graphics that are included in the Vero-
vio output. This means that no external font needs to be
included in the SVG generated from Verovio, limiting
dependencies and reducing as far as possible any poten-
tial compatibility issues between SVG rendering engines.

The Verovio rendering engine itself is defined as an
abstract class, and the SVG output is the default concrete
class. This makes it relatively easy to implement a ren-
dering back-end different from SVG (e.g., PDF, or
HTML Canvas), if necessary.

The Verovio toolkit has several options for controlling
the output. These include options for defining the page
size (i.e., the surface, or <svg> element size), for setting
the amount of zoom, and for choosing whether layout in-
formation contained in the MEI file must be taken into
account. When there is no layout information provided in
the MEI file (no system or page breaks, for example), or
when the option for ignoring them is selected, Verovio
will extrapolate the necessary layout information.

3.4 Features

Verovio currently supports the basic features of simple
common Western music notation and mensural notation.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

109

Table 1 shows a list of music notation snippets rendered
with Verovio. Figure 4 illustrates how the SVG output of
Verovio can be used as facsimile overlay when the posi-
tioning feature of the MEI page-based customization is
used. The example also illustrates mensural music nota-
tion support.

Beams and tuplets

Measure rests and key and time signature changes

Clef changes

Trills and fermata

Ties

Grace notes (accaciature)

Grace notes (appogiature)

Table 1. A list of music notation snippets rendered with
the Verovio toolkit. The basic features of simple common
Western music notation are accounted for.

Figure 4. An example of the output of Verovio placed
back on top of a facsimile image and acting as transcrip-
tion overlay. In this case, positioning information was
available in the page-based MEI encoding.

4. USE OF VEROVIO

4.1 C++ tools and library

Several use cases can be imagined for the Verovio toolkit.
First of all, it can be built and used as a standalone com-
mand-line tool. This option is well-suited to scripting en-
vironments and applications. The command-line tool can
be used to render music notation files (in MEI, PAE or
DARMS) into SVG. It can also be used to convert
DARMS or PAE to MEI. Another option is to use Vero-
vio as a music notation rendering library that can be stati-
cally or dynamically linked to full applications. In such
cases, it is also relatively easy to implement another
drawing back-end for the corresponding C++ graphic en-
vironment for the music to be rendered directly on the
screen. This is the case with the Aruspix optical music
recognition software application where Verovio provides
a screen rendering using a wxWidgets back-end instead
of the standard SVG one. This approach is conceivable
for any C++ graphical environments, be they cross-
platform, like the Qt or JUCE toolkits, or platform specif-
ic.

4.2 JavaScript toolkit

The Verovio toolkit can also be compiled to JavaScript
using the Emscripten LLVM-to-JavaScript compiler [19].
In this case, it behaves similarly to the command-line tool
but in the web browser context. This approach is particu-
larly interesting because it provides a complete in-
browser music MEI typesetter that can be easily integrat-
ed into web-based applications.

Emscripten does not directly translate C++ into JavaS-
cript. Instead it takes the LLVM (Low Level Virtual Ma-
chine) byte code generated by the Clang compiler from
the C++ code as a base for the conversion to JavaScript.
This has several advantages. Most importantly, the level
of completeness in terms of C++ language feature support
is extremely high since the idiomatic features of C++ did
not have to be explicitly translated into JavaScript in the
Emscripten compiler (only the translation from LLVM
was necessary). In fact, for the Verovio toolkit, the Em-
scripten compiler is applied on exactly the same codebase
as the C++ compiler, and no change to the code had to be
done for this to work. Only the compilation makefile is
different.

Another advantage of this approach is that the JavaS-
cript produced is very fast because it benefits from all the
code optimization performed by the Clang compiler when
generating the LLVM byte code. Furthermore, in addition
to standard JavaScript, Emscripten can also generate
asm.js code, a subset of JavaScript that has the advantage
of being highly optimizable. On web browsers that sup-
port asm.js (currently Firefox, Chrome and Opera), the
execution speed is only up to about 1.6 times slower than
with the native C++ executable. Table 2 shows the sys-
tem time required to load an MEI file of 120 pages of

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

110

music (7 MB) and for displaying the first page with the
native executable and with three web browsers. The fig-
ures are the median value of the operation repeated 100
times.

 Native Firefox Chrome Safari
System time

in sec. 0.657 1.054 1.364 1.811

Comparison
to native - 1.6 2.1 2.8

Table 2. The system time in seconds for loading an MEI
files (120 pages, 7 MB) and for displaying the first page.
The second line gives the ratio with the native executable
time for the three web browsers used for comparison.

The JavaScript version of the Verovio toolkit is easy to
use in web environments. It is packed in one single file
which size is only about 1.2 MB. It is available as a Ja-
vaScript class, and all the options of the command-line
version are supported in the toolkit. The options can be
passed to the toolkit in JSON format, and the SVG output
can be directly fed to HTML objects for display. The
Figure 5 shows a HTML and Javascript code snippet for
loading an MEI file using a jQuery HTTP GET request.

Figure 5. A JavaScript example for loading an MEI file.
The toolkit parameters can be set using JSON.

The layout of the MEI data is performed on loading.

Once the file is loaded into memory, it remains accessible
in the toolkit instance. The class provides methods for
getting the number of pages or for navigating through
them, making it convenient to integrate the toolkit in a
JavaScript application.

The Figure 6 shows a screenshot of a web application
where the toolkit was turned into an online MEI file
viewer. The application works on desktop computers but
also on tablets and mobile devices. The JavaScript toolkit
has been tested with recent versions of the most widely
used web-browsers. Internet Explorer requires at least
version 10.

Figure 6. An example of a web-based MEI viewer built
with the Verovio toolkit. Large MEI files can be loaded
and displayed in the web browser in a very convenient
way.

5. CONCLUSION AND FUTURE WORK

Verovio is a toolkit for rendering MEI in SVG that can be
used in different application environments, including
online. It is designed with MEI in mind, making it the
right basis for implementing encoding features that are
specific to MEI. It will avoid problematic situations that
occur when using rendering engines based on other for-
mats and that implement a different data structure. Even
if at this stage, the supported features can be in some cas-
es more limited than with other rendering options, Vero-
vio already implements many important features for ren-
dering both common Western music notation and mensu-
ral notation.

Current work on Verovio includes the adoption of the
Standard Music Font Layout (SMuFL) [17] for support-
ing other fonts converted to SVG glyphs, the improve-
ment of the SVG structure and adding support for addi-
tional MEI elements and attributes. The priority is given
to features specific to MEI. The future work will include
the development of a prototype for making Verovio a
possible basis for an online MEI editor. It will also in-
clude the creation of an MEI application profile for Vero-
vio using the TEI One Document Does-it-all (ODD) ap-
proach. The corresponding XSL stylesheets for convert-
ing to it other MEI profiles will also be provided. Adding
the import of other encoding formats is also envisaged in
the future.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

111

6. AVAILABILITY

Verovio can be downloaded from http://www.verovio.org
and is available under the GPLv3 open-source license.
The website also includes documentation on currently
available features.

7. REFERENCES

[1] Arkkra Enterprises, Mup. <http://www.arkkra.com>

[2] G. A. Bays: ScoreSVG: A New Software Framework
for Capturing the Semantic Meaning and Graphical
Representation of Musical Scores Using Java2D,
XML, and SVG. Diss. Georgia State Univ., 2005.

[3] G. Burlet, A. Porter, A. Hankinson, and I. Fujinaga:
“Neon.js: Neume Editor Online,” Proceedings of the
13th International Society on Music Information
Retrieval Conference, pp. 121–6, 2012.

[4] Corpus Monodicum, mono:di.
<http://monodi.corpus-monodicum.de>

[5] Edirom, mei2abc. <https://github.com/edirom/
mei2abc>

[6] A. Hankinson, P. Roland, and I. Fujinaga: “The
Music Encoding Initiative as a document-encoding
framework,” Proceedings of the 12th International
Society on Music Information Retrieval Conference,
pp. 293–8, 2011.

[7] J. Howard: “Plaine and Easie code: A code for
music bibliography,” in Selfridge-Field, E. (Ed.),
Beyond MIDI: The Handbook of Musical Codes.
The MIT Press, Cambridge, pp. 362–72, 1997.

[8] MEI, mei2mup. <http://code.google.com/p/music-
encoding/source/browse/trunk/tools/mei2mup>

[9] MEI, mei2musicxml. <https://code.google.com/p/
music-encoding/source/browse/trunk/tools/
mei2musicxml>

[10] MEI-incubator, page-based customization,
<https://code.google.com/p/mei-incubator/source/
browse/page-based>

[11] S. Morent: “Digitale Edition älterer Musik am
Beispiel des Projekts TüBingen,” in Digitale Edition
zwischen Experiment und Standardisierung. Musik –
Text – Codierung, pp. 89–109, 2009.

[12] M. Muthanna, VexFlow. <https://github.com/0xfe/
vexflow>

[13] H. W. Nienhuys and J. Nieuwenhuizen: “LilyPond, a
system for automated music engraving,”
Proceedings of the XIV Colloquium on Musical
Informatics (XIV CIM 2003), pp. 167–72, 2003.

[14] L. O’Shea: “Stirring XML: Visualizations in SVG:
MusicML2SVG,” Proceedings of the SVGOpen2003
Conference, pp. 2–6, 2003.

[15] P. Rosen, abcjs. <http://github.com/paulrosen/abcjs>

[16] E. Selfridge-Field: “DARMS, its dialects, its uses,”
in Selfridge-Field, E. (Ed.), Beyond MIDI: The
Handbook of Musical Codes. The MIT Press,
Cambridge, pp. 163–74, 1997.

[17] Steinberg, Standard Music Font Layout.
<http://www.smufl.org>

[18] TEI Music SIG, MEItoVexFlow. <http://github.com/
tei-music-sig/meitovexflow>

[19] A. Zakai: “Emscripten: an LLVM-to-JavaScript
compiler,” Companion to the 26th Annual ACM
OOPSLA Conference, pp. 301–12, 2011.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

112

