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ABSTRACT 

Playing a music instrument relies on the harmonious 

body movements. Motor sequences are trained to achieve 

the perfect performances in musicians. Thus, the infor-

mation from audio signal is not enough to understand the 

sensorimotor programming in players. Recently, the in-

vestigation of muscular activities of players during per-

formance has attracted our interests. In this work, we 

propose a multi-channel system that records the audio 

sounds and electromyography (EMG) signal simultane-

ously and also develop algorithms to analyze the music 

performance and discover its relation to player’s motor 

sequences. The movement segment was first identified by 

the information of audio sounds, and the direction of vio-

lin bowing was detected by the EMG signal. Six features 

were introduced to reveal the variations of muscular ac-

tivities during violin playing. With the additional infor-

mation of the audio signal, the proposed work could effi-

ciently extract the period and detect the direction of mo-

tor changes in violin bowing. Therefore, the proposed 

work could provide a better understanding of how players 

activate the muscles to organize the multi-joint movement 

during violin performance. 

1. INTRODUCTION 

For musicians, their motor skills must be honed by many 

hours of daily practice to maintain the performing quality. 

Motor sequences are trained to achieve the perfect per-

formances. Playing a musical instrument relies on the 

harmonious coordination of body movements, arm and 

fingers. This is fundamental to understanding the neuro-

physiological mechanisms that underpin learning. It 

therefore becomes important to understand the sen-

sorimotor programming in players. In the late 20th centu-

ry, Harding et al. [1] directly measured the force between 

player’s fingers and piano keys with different skill levels. 

Engel et al. [2] found there is an anticipatory change of 

sequential hand movements in pianists. Parlitz et al. [3] 

explored the dynamic pressures to analyze how pianists 

depressed the piano keys and hold them down during 

playing. The pressure measurement advances the evalua-

tion of the keystroke in piano playing [4-5]. The use of 

muscle activity via electromyography (EMG) signals al-

lows further investigation into the motor control sequenc-

es that produce the music. EMG is a technique which 

evaluates the electrical activity of the muscle by rec-

ording the electrical potentials when muscles generate an 

electrical voltage during activation, which results in a 

movement or coordinated action. 

EMG is generally recorded in two protocols; invasive 

electromyography (IEMG) and surface electromyography 

(SEMG). IEMG is used to measure deep muscles and 

discrete positions using a fine-wire needle; however, it is 

not a preferable model for subjects due to the invasive-

ness and being less repetitive. Compared to IEMG, 

SEMG has the following characteristics: (1) it is non-

invasive; (2) it provides global information; (3) it is com-

paratively simple and inexpensive; (4) it is applicable by 

non-medical personnel; and (5) it can be used over a 

longer time during work and sport activities [6]. There-

fore, the SEMG is suitable for use within biomechanics 

and movement analysis, and was used in this paper. 

For the analysis of musical performance, EMG has 

been used to evaluate behavioral changes of the fingers 

[7-8], upper limbs [9-10] shoulder [11-12] and wrist [13] 

in piano, violin, cello and drum players. The EMG meth-

od allows for differentiating the variations and reproduci-

bility of muscular activities in individual players. Com-

paring the EMG activity between expert pianists and nov-

ice players [7-14] has also been studied. 

There have been many approaches developed for seg-

mentation of EMG signals [15]. Prior EMG segmentation 

techniques were mainly used to detect the time period for 

a certain muscle contraction, but we found that the poten-

tial variations from various muscles maybe different dur-

ing a movement. It causes the conventional EMG seg-

mentation to fail to extract the accurate timing of move-

ment in instrument playing.  

In this paper, the timing activation of the muscle group 

is assessed, and the changes in motor control of players 

during performance are investigated.  We propose a sys-

tem with the function of concurrently recording the audio 

signal and behavioral changes (EMG) while playing an 

instrument. This work is particularly focused on violin 

playing, which is considered difficult to segment with the 
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soft onsets of the notes. The segment with body move-

ments was first identified by the information of audio 

sounds. It is believed that if there is an audio signal, then 

there is a corresponding movement. Six features were 

then introduced to EMG signals to discover the variation 

of movements. This work identifies the individual 

movement segments, i.e. up-bowing and down-bowing, 

during violin playing. Thus, how motor systems operated 

in musicians and affected during performance could be 

explored using this methodology. 

This paper is organized as follows. The multi-channel 

signal recording system and its experimental protocol are 

shown in section 2. In section 3, we introduce the pro-

posed algorithms for segmenting the EMG signal with 

additional audio information. The experimental results 

are shown in section 4 and the conclusion and future 

work are given in section 5. 

2. AUDIO SOUNDS AND BIOSIGNAL 

RECORDING SYSTEM 

This work proposed a multi-channel signal recording 

system capable of recording audio and EMG signals 

concurrently. The system is illustrated in Figure 1 and 

comprises: (a) a signal pre-amplifier acquisition board, 

(b) an analog to digital signal processing unit, and (c) a 

host-system. 

Figure 1. The proposed multi-channel recording system 

for recording audio signal and EMG concurrently. 

 

The violin signal was recorded in a chamber and the 

microphone was placed 30cm from the player with a 

sampling rate of 44100Hz. With this real violin recording, 

the sound is supposedly embedded with the noise and the 

artifacts.  

Furthermore, there is three subjects in the experiment 

database. The violinist play music and be recorded. Each 

participant was requested to press one string during play-

ing. This experiment included two tasks for performance 

evaluation, and each task contained 10 movements. The 

movements for task#1 and task#2 are defined as follows. 

Movements for task#1:  
(1) Player presses the 2nd string then is idle for 2s 

(begin the bow at the frog).   
(2) Pulls the bow from the frog to the tip for 4s 

(whole bow down). 
(3) Pulls the whole bow up for 4s. 

 

Movements for task#2: 
(1) Player presses the 3rd string then is idle for 2s 

(begin the bow at the tip).   
(2) Pulls the whole bow up for 4s. 
(3) Pulls the whole bow down for 4s. 

Two seconds resting time was given between the two 

consecutive movements. 

The EMG sampling rate was 1000Hz. The electrodes 

attached on the surface of the player’s skin as shown Fig-

ure 2. In this study, the direction of violin bowing, i.e. up-

bowing and down-bowing, is detected by the correspond-

ing muscle activity (EMG signal). The total of 8 muscles 

in the upper limb and body is measured in our system. 

Figure 3 shows the 8-channel EMG signals of up-bowing 

movement, and potential variations were shown in all 

channels when bowing. Three types of variations were 

observed and grouped: 

 
(1) Channel#1 to Channel#6: it is seen that the trend of 

six channels is similar; additionally, the average 
noise floor between channel#3 and channel#6 are 
lower than others; finally, we choose channel#6 be-
cause the position is convenient to place the elec-
trode. 

(2) Channel#7: the channel involving the most noise. 
(3) Channel#8: although it has more noise than Chan-

nel#1 to Channel#6, it is the important part when we 
have a whole-bowing movement. 

 

Figure 2. The placement of the electrodes attached on 

the player’s skin [16, 17]. 

 

Figure 3. The 8-channel EMG signals of up-down bow-

ing movements. 
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To reduce the computation and retain the variety of 

features, only channel#6 and channel#8 were thereafter 

used for further analysis. Figure 4 shows the EMG sig-

nals of channel#6 and channel#8 while during down-

bowing. 

 

Figure 4. The EMG signals of triceps (channel#6) and 

pectoralis (channel#8) during down-bowing movements. 

3. METHOD 

The following section will introduce the proposed algo-

rithm for detecting the bowing states during violin play-

ing. The proposed system is capable of recording audio 

and EMG signals concurrently, and in this study a bow-

ing state detection algorithm was developed, which was 

implemented the embedded system. The flowchart of the 

proposed method is shown in Figure 5. 

 

 
Figure 5. Flowchart of the proposed system. 

 

The EMG signals were segmented according to the vi-

olin sounds. Then, six features were identified to detect 

the direction of bowing movements. For analyzing the 

audio signal, the window size of a frame is 2048 samples 

and the hop size 256 samples. 

3.1 Onset/Transition/Offset detection 

This section elaborates on the state detection of audio 

sounds. The states of audio sounds are defined as Onset, 

Transition and Offset in this study. The Onset is the be-

ginning of bowing; the Transition is the timing when the 

next bowing movement occurred; the Offset is the end of 

the bowing; the Sustain is the duration of the note seg-

ment. Both frequency and spatial features were calculated 

and used as the inputs to our developed finite state ma-

chine (FSM). The diagram of our proposed FSM is illus-

trated in Figure 6. The output of FSM identifies the result 

of note detection and further used for EMG segmentation. 

 
Figure 6. The state diagram of audio sounds. 

 

The violin signal was analyzed both in frequency and 

time domains. For frequency analysis, the violin signal 

was first transformed by short time Fourier transform. 

The inverse correlation (IC) was then applied to calculate 

the possible note onset period. The inverse correlation (IC) 

coefficients are computed from the correlation coeffi-

cients of two consecutive discrete Fourier transform spec-

tra [18]. A support vector machine (SVM), denoted as 

SVMic (1), was applied for detecting the accurate timing 

of onset. SVM is a popular methodology, with high speed 

and simple implementation, for classification and regres-

sion analysis [19].  

𝑆𝑉𝑀𝑖𝑐 = {
0 , 𝑛𝑜𝑛 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛
1 , 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

      (1) 

For spatial analysis, the amplitude envelop (AE) was 

used to detect the segment of the sound data. AE is eval-

uated as the maximum value of a frame. There are two 

similar classifiers, called SVMae1 (2) and SVMae2 (3). 

SVMae1 is used to identify the possible onsets and SVMae2 

is used to identify the possible offsets. 

𝑆𝑉𝑀𝑎𝑒1 = {
0 , 𝑛𝑜𝑛 − 𝑜𝑛𝑠𝑒𝑡
1 , 𝑜𝑛𝑠𝑒𝑡

           (2) 

 

𝑆𝑉𝑀𝑎𝑒2 = {
0 , 𝑛𝑜𝑛 − 𝑜𝑓𝑓𝑠𝑒𝑡
1 , 𝑜𝑓𝑓𝑠𝑒𝑡

           (3) 

 

Figure 7 shows (a) a segment of audio sounds with one 

sequence of down-bowing and up-bowing, while Figure 

7(b) and (c) display the results of IC and AE, respectively. 

During the bowing state, the IC value is extremely 

small when compared to the results of the non-bowing 

state. IC seems to be a good index to identify the state of 

whether the violin is being played, or not. However, it 

can be seen that a time deviation is introduced if the sys-

tem simply applies a hard threshold, e.g. 0.3. Alternative-

ly, the AE value becomes larger at the playing state. But 

the issue of time deviation is also present in this feature, 

if a hard threshold is applied.  

After calculating the IC and AE values, their variation 

is considered as one set of input data for SVM. The time 

period of each data is 100ms. Therefore, SVMic, SVMae1 

and SVMae2 are designed to detect the most plausible tim-

ing of onset, transition and offset. 
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Figure 7. (a) The audio sounds of down-bowing and up-

bowing; (b) the results of IC; (c) the results of AE 

3.2 Detection of bowing direction 

In each movement, there are one onset, one offset, and 

several transitions. However, the total number of transi-

tions will differ from the number of notes. After detection 

of the bowing state is completed, the duration between 

onset and offset is applied for segmenting the EMG sig-

nal of triceps (channel#6) and pectroalis (channel#8). For 

each note duration, there are three cases:  

(1)The duration from the onset to the first transition. 

(2)The duration from the current transition to the next 

transition. 

(3)The duration from the last transition of the offset.  

This note duration extracted from the audio sound is 

called an active frame and the active frames are variant 

lengths from each other. The segment extracted by the 

audio sounds is called an active frame and the active 

frames are variant lengths from each other. 

For each active frame, six features in [20] were applied 

to calculate the variations of EMG signal while bowing. 

The features are:  

 Mean absolute value (MAV) 

 Mean absolute value slope (MAVS) 

 Zero crossings (ZC) 

 Slope sign changes (SSC) 

 Waveform length (WL) 

 Correlation variation (CV) 

Here, the active frame is experimentally divided into 

20 segments for calculating MAV and WL, thus each ac-

tive frame has 20 values of MAV and WL. For CV, we 

calculate the auto-correlation and cross-correlation of 

channel#6 and channel#8, and therefore there are 3 values 

of CV for each active frame. Table 1 lists the number of 

each feature for each channel. 

Table 1. The number of each feature per channel 

Feature MAV MAVS ZC SSC WL 

Number 20 19 1 1 20 

A more detailed description of those applied features 

could be found in [20]. Figure 8 displays the triceps EMG 

signal of one active frame (8s ~ 16s) and the results cal-

culated by MAV, MAVS, ZC, SSC and WL.  It can be 

seen that variations are exhibited for 6 features in violin 

playing with a down-up bowing movement. 

The detection of bowing direction is also determined 

by a SVM classifier which is denoted as SVMdir (3). For 

SVMdir, a total of 125 inputs are used (61 inputs for chan-

nel#6 and channel#8 each, plus 3 values of CV) and it 

identifies whether the active EMG frame is in the up-

bowing or down-bowing state. 

𝑆𝑉𝑀𝑑𝑖𝑟 = {
0 , 𝑈𝑝 − 𝑏𝑜𝑤𝑖𝑛𝑔
1 , 𝐷𝑜𝑤𝑛 − 𝑏𝑜𝑤𝑖𝑛𝑔

               (3) 

 

Figure 8. One down-up bowing movement and its six 

features:  (a) the down-bowing movement, (b) the up-

bowing movement. 

3.3 Performance evaluation 

In our experiment, 10-fold cross-validation is used for 

SVMic, SVMae and SVMdir, and the performance evalua-

tion calculates the accuracy (4), precision (5), recall (6) 

and F-score (7) of each detecting function.  

Accuracy =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑻𝒓𝒖𝒆 𝑁𝑒𝑔𝑎𝒕𝒊𝒗𝒆

𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
;           (4) 

 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑧𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
;           (5) 

 

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁e𝑔𝑎𝑡𝑖𝑣𝑒
;           (6) 

 

F-score =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
;            (7) 

 

The true positive means it correctly detected the 

movement; the false positive is a falsely detected move-

ment; and the false negative is a missed detection. 
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4. EXPERIMENTAL RESULTS 

In this section, the efficiency of the proposed SVMs is 

observed. An example of the proposed EMG segmenta-

tion is then compared to the prior work [15]. Finally, the 

averaged and overall simulation results are given. 

4.1 The performance of SVM classifications 

To illustrate both the proposed IC and AE effectively 

identify the sound states of onset and offset, respectively, 

Figure 9 shows the trend of IC and AE values in one 

down-up bowing movement by using the classification 

results for SVMic and SVMae1 and SVMae2. Table 2 shows 

that, with the given FSM, the detection rate of onsets, 

transitions and offsets are 90%, 100%, 100%, respective-

ly.  

 

Figure 9. The results of 3 classifiers: (a) onsets, (b) tran-

sitions, (c) offsets. 

Table 2. The detection results of the bowing states with 

the given FSM. 

 Onset Transition Offset 

Accuracy 90.00% 100% 100% 

Precision 90.00% 100% 100% 

Recall 90.00% 100% 100% 

F-score 90.00% 100% 100% 

Figure 10 shows the distribution of active EMG frames 

during up-bowing and down-bowing states, and it dis-

plays the distribution of MAV, MAVS and WL. The 

SVMdir classifies the data with 85% accuracy. 

 
Figure 10. (a) The original distribution of up-bowing and 

down-bowing EMG frames; (b) the results of SVMdir 

classification. 

4.2 EMG segmentation 

The results of EMG segmentation and its comparison to 

[15] are both illustrated in Figure 11. Figure 11 shows the 

violin signal of task#1 with three movements. Figure 11 

(b) and (c) are the EMG segmentations of our proposed 

method and [15], respectively. Channel#6 is used in this 

example to illustrate a sample output. It is believed that if 

there is an audio signal, then there is a corresponding 

movement. It can be seen that the results segmented by 

[15], without the additional information of the audio sig-

nal, could not precisely identify the segment of move-

ments during bowing. However, the proposed method is 

based on the information from audio signals and clearly 

identifies the segment of behavioral changes during violin 

playing. 

 
Figure 11. (a) The violin signal; (b) the proposed EMG 

segmentations; (c) the EMG segmentations of [15].  

4.3 The simulation results 

The detection result of violin bowing direction was given 

in Table 3 where accuracy, precision, recall and F-score 

are presented. 

 

Table 3. The detection results of the bowing direction: (1) 

the detection results of ground truths of active frames; (2) 

the detection results of extracted active frames. 

 (1) (2) 

Accuracy 85% 87.5% 

Precision 76.92% 82.61% 

Recall 100% 95% 

F-score 86.96% 88.37% 

The average detection results were shown to have excel-

lent performance with an accuracy of 85%~87.5%. The 

results show that the proposed method efficiently identi-

fies the bowing direction in violin playing. 

5. CONCLUSION AND FUTURE WORK 

The proposed biomechanical system for recording the au-

dio sounds and EMG signals during playing an instru-

ment was developed. The proposed method not only ex-

tracts the segment during movement and detects the mov-

ing direction of bowing, but with the additional infor-

mation of violin sounds, changes in muscle activity as an 

element of motor control, could be efficiently detected 

when compared to the prior EMG segmentation (without 

any sound information). To the authors’ knowledge, this 

is the first study which proposes such concept. 
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Future work will improve the detection rate of onset, 

transition and offset to extract the period of an active 

frame more precisely. The detection of the bowing direc-

tion will be also improved. Furthermore, the relationship 

between the musical sounds and the muscular activities of 

players in musical performance will be observed and ana-

lyzed. By measuring the music and the player’s muscular 

activity, better insights can be made into the neurophysio-

logical control during musical performances and may 

even prevent players from the injuries as greater insights 

into these mechanisms are made.  
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