15th International Society for Music Information Retrieval Conference (ISMIR 2014)

DEVELOPING TONAL PERCEPTION THROUGH UNSUPERVISED
LEARNING

Carlos Eduardo Cancino Chacén, Stefan Lattner, Maarten Grachten
Austrian Research Institute for Artificial Intelligence
{carlos.cancino,stefan.lattner,maarten.grachten}@ofai.at

ABSTRACT

The perception of tonal structure in music seems to be
rooted both in low-level perceptual mechanisms and in en-
culturation, the latter accounting for cross-cultural differ-
ences in perceived tonal structure. Unsupervised machine
learning methods are a powerful tool for studying how mu-
sical concepts may emerge from exposure to music. In
this paper, we investigate to what degree tonal structure
can be learned from musical data by unsupervised training
of a Restricted Boltzmann Machine, a generative stochas-
tic neural network. We show that even based on a lim-
ited set of musical data, the model learns several aspects
of tonal structure. Firstly, the model learns an organiza-
tion of musical material from different keys that conveys
the topology of the circle of fifths (CoF). Although such a
topology can be learned using principal component analy-
sis (PCA) when using pitch-only representations, we found
that using a pitch-duration representation impedes the ex-
traction of the CoF topology much more for PCA than
for the RBM. Furthermore, we replicate probe-tone exper-
iments by Krumhansl and Shepard, measuring the organi-
zation of tones within a key in human perception. We find
that the responses of the RBM share qualitative character-
istics with those of both trained and untrained listeners.

1. INTRODUCTION

Modern approaches in music theory recognize that tonal-
ity can be broadly described as the organization of pitch
classes into a hierarchical structure of tensions-relaxations
around a tonal axis [10, 15, 16]. This conception of tonality
is not limited to western tonal classical music, but can also
be applied to modal music, popular music (e.g. jazz, rock)
and non-western folk music [3]. This notion of tonality is
not only a music theoretic construct: perceptual processing
of musical stimuli in human listeners has been found to ex-
hibit this type of organization as well [10]. Specific types
of hierarchical organization of pitch classes are partly ex-
plained by acoustic attributes of pitch, especially the con-
sonance between pairs of pitches [10], suggesting that low-
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level processing of acoustic stimuli may be relevant for the
perception of tonal structure.

However, tonal structure is not only reflected in the phys-
ical attributes of pitch, it is also manifest in the statistical
properties of music, such as the duration and frequency of
occurrence of pitches [17], as illustrated in Figure 1. As
Saffran et al. have shown [14], human listeners (including
infants) are sensitive to such statistical regularities, and this
leads to the view that tonal perception may be shaped by
(long time) exposure to music exhibiting statistical regular-
ities regarding frequency of occurrence of pitches, rhyth-
mic emphasis, the position of occurrence within musical
phrases, and possibly other aspects [9].

It is this process, the formation of tonal structure through
exposure to musical stimuli, that we focus on in this paper.
We choose a particularly straightforward approach, using
a Restricted Boltzmann Machine (RBM) [6] to learn the
probability distribution of melodic sequences, represented
as n-grams of notes. In a first explorative experiment, we
examine to what degree the feature space learned by the
RBM is musically meaningful. Using the resemblance of
the feature space to the circle of fifths as a quantitative cri-
terion, we investigate the impact of the n-gram length, and
compare pitch-only input representations to input repre-
sentations that include both pitch and duration. In a second
experiment, we use the RBM to simulate listener ratings in
a probe tone test, and compare the results to ratings from
human listeners of different skill levels.

The structure of the paper is as follows: In Section 2, we
discuss prior work on the induction of tonal structure us-
ing computational models. Section 3 relates the different
aspects of the unsupervised learning task to various per-
ceptual mechanisms that are assumed to be at play in the
perception of tonal structure. Section 4 briefly describes
the RBM model, the data used for training the model, and
representation of the data. The experiments on tonal or-
ganization and the organization of pitches are described in
Sections 5 and 6, respectively. Conclusions and future di-
rections are presented in Section 7.

2. RELATED WORK

The idea of studying the perception of tonal structure by
using computational models to simulate the enculturation
process is not new. For example, Tillmann et al. [18] use
a hierarchical self-organizing map (SOM) [8] to learn rep-
resentations of tonal structure from pitch-class representa-
tions of chord sequences. They find that their model is able
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to develop an organization comparable to that of empirical
data gathered from various studies on human perception
of tonality. Leman [12] presents an alternative approach
to modeling the perception of tonality. He employs a psy-
choacoustic model in combination with a SOM to learn
tonal representations starting from acoustic data. Further-
more, Toiviainen & Krumhansl examined the perception
of musical scales by projecting human ratings to the fea-
ture space of a SOM, which was trained on scale profiles
of Krumhansl [19].

A commonality among the mentioned works is the choice
of the self-organizing map as a model for accommodating
the learning process. The reason for this preference may
be that both the spatial mapping of the data, and the com-
petitive learning algorithm employed by the SOM, are bi-
ologically plausible characteristics of the human sensory
cortex [7]. The RBM model used in the work presented
here, is not explicitly presented as (nor was it designed to
be) a biologically plausible model of learning in the brain.
Nevertheless RBMs and deep belief nets based on RBMs,
in combination with sparseness constraints on the activa-
tion of hidden units, are able to learn features from vi-
sual data that strongly resemble receptive fields of neurons
in the visual cortex [11]. As such, RBMs prove to be a
valid computational modeling approach for learning bio-
logically plausible representations from musical data.

A fundamental difference between SOMs and RBMs
is that in the former, the hidden units represent points in
an explicitly defined low-dimensional feature space. In
RBMs, the feature space is defined by the set of all possi-
ble combinations of hidden unit activations, such that each
hidden unit represents a dimension of the feature space.
This allows for representations of data instances as a (non-
linear) combination of features. The topology of this high-
dimensional feature space can be visualized in a 2-D space
using PCA.

3. PERCEPTUAL MECHANISMS

As argued by Smith and Schmuckler [17], perceptual pro-
cesses like discrimination, differentiation and organization
play an important role in the perception of musical tonality.
In this Section, we will briefly describe these processes,
and show how they can be related to formal aspects of the
computational modeling methods, such as the choice of
input data representation, and the topology of the feature
space being learned.

Perceptual discrimination refers to the sensitivity of a
system to differences along some perceivable stimulus di-
mension. In computational learning models, this relates
to the form of input data representation. In general, the
type of relevant input features depends heavily on the re-
spective learning task [1]. Musical data comprises much
context-dependent information that can not be trivially in-
ferred from low-level representations. To decide on an ap-
propriate representation is thus not always an easy task.
For instance, pitch content can be represented in several
ways, such as frequency spectra, MIDI note numbers, or
pitch classes. In our current experiments, we use MIDI
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note numbers as well as pitch class representations. Dura-
tion is encoded separately from pitch. An advantage of this
over combined pitch-duration representations (e.g. piano-
roll notation) is that the n-gram size is specified in the num-
ber of notes, rather than an absolute time interval. This al-
lows for comparing pitch-only to pitch-duration represen-
tations. The input data will be referred to as Input Space
(IS), and will be described in more detail in Section 4.3.

Differentiation is a higher order ability that refers to the
segregation of the perceived stimuli into elements on the
basis of its discriminable differences [17]. In an unsuper-
vised model we can identify this ability as the capacity of
the system to segregate the data in the IS into clusters in the
Feature Space (FS). In the context of tonality, an example
of differentiation would be the capacity of an unsupervised
model to cluster the data in the FS in such a way that each
cluster represents a musical key. A measure of quality of
this clustering would then be the variance of each cluster,
as smaller variances imply a better differentiation of the
data with respect to each class.

Organization builds on the concept of differentiation, as
it establishes relations between the differentiated elements,
as well as the nature of the relations themselves. In an
unsupervised model, this can be understood as the topol-
ogy of the FS. In this way, geometric features such as the
distance between clusters, as well as the relative position
between them can express similarity.

Bharucha [10, cited by Krumhansl] recognizes two types
of hierarchies regarding musical tonality. Event hierar-
chies refer to the functional significance of single note events
in a specific musical context, while tonal hierarchies ac-
count for the abstract musical structure in a particular cul-
ture or genre, e.g. the functional significance of all ele-
ments of a pitch class relative to all other pitch classes.

In our case, we compare the organization of the data in
the FS to the circle of fifths, a well known music theoretical
construct that explains the relations and the neighborhood
of keys [15]. As a measure of quality we use the Procrustes
Distance (PD) [4] of the centroids of the clustered data in
the feature space with respect to the CoF.

4. METHODS
4.1 Restricted Boltzmann Machine

A Restricted Boltzmann Machine is a stochastic Neural
Network (NN) with two layers, a visible layer with units
v € {0,1}" and a hidden layer with units h € {0,1}¢
[6]. The units of both layers are fully interconnected with
weights W € R"*4, while there are no connections be-
tween the units within a layer. Given a visible vector v,
the free energy of the model can be calculated as:

F(v)=-aTv— Zlog (1 + e(bi+wiv)) , (D

where a € R" and b € R? are bias vectors, and W, is the
i-th row of the weight matrix.

Given v, a sample of h can be obtained from its condi-
tional activation probability, given by:
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Figure 1. Occurrence and duration distributions of the
fugues from Bach’s Well Tempered Clavier.
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where o(x) = 1/(14e%) is the logistic sigmoid function.

In experiment 1, we consider the conditional activation
probability of vector h as the result of the projection of
v into the FS. In the second experiment, we calculate the
energy using Eq. (1).

4.1.1 Training

We train the model with 200 hidden units for 1000 epochs
with Contrastive Divergence (CD) [6], using 3 Gibbs sam-
pling steps and a mini-batch size of 500 for the weight up-
dates. The learning rate is set to 0.01 and the momentum
to 0.3. These parameters were empirically selected accord-
ing to the rules of thumb suggested by Hinton in [5]. In
addition, we use the well-known L2 weight-decay regular-
ization which penalizes large weight coefficients.

Based on properties of neural coding, sparsity and se-
lectivity can be used as constraints for the optimization of
the training algorithm [2]. Sparsity encourages competi-
tion between hidden units, and selectivity prevents over-
dominance by any individual unit. These constraints are
used in our training, with a linear falloff of its influence
over the first 200 epochs from 50% to 30%.

4.2 Training Corpus

J. S. Bach’s Well Tempered Clavier (WTC), composed be-
tween 1722 and 1742, is widely recognized as one of the
most influential works in music history [15]. It is also
one of the most important works that systematically spans
the whole range of major and minor keys, and is therefore
well-suited for experiments on tonality. In this paper, we
use MIDI versions of the 48 fugues of the WTC as corpus,
encoded by David Huron and taken from the KernScores
website (http://kern.ccarh.org). Each fugue is decomposed
into its voices (two to five), and we consider each voice
as a single monophonic melody in its respective key. In
Figure 1, the distributions of the occurrence and duration
of the notes of the WTC are shown. These distributions are
similar to the key profiles by Krumhansl & Kessler [19].
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Figure 2. Twelve random pitch-duration training instances
of the WTC corpus as 20-grams before linearization. Notes
are ordered horizontally, the vertical dimension accounts
for pitch and duration values, respectively. The left part
of each instance shows the one-out-of-m pitch representa-
tion of 20 consecutive notes, the right part shows the cor-
responding duration representation.
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Figure 3. The RBM architecture used. An input vector v
is constituted by a linearized n-gram, where s; is a binary
representation of note j.

4.3 Input Representation

From the monophonic melodies, we construct a set of n-
grams by using a sliding window of size n and a step size
of 1. Depending on the experiment, we either use only
pitch information, or we use both the pitch and duration of
the notes. In the first case, an n-gram is a concatenation
of n bit vectors of size m, where the ¢-th bit vector is a
one-out-of-m representation of the pitch of note <.

In the second case, n additional vectors are added to
the n-gram, where the i-th vector now represents the du-
ration of the i-th note (see the right half of the instances
shown in Figure 2). Such a duration vector is constructed
by quantizing all durations of a melody into 12 bins and
by relating each of those to one of 12 units. A duration
that falls into bin k is represented by activating units 1 to
k. After linearization, the resulting n-gram constitutes the
visible vector v, as illustrated in Figure 3.

5. TONAL ORGANIZATION

In this experiment, we examine the ability of an RBM to
learn tonal relationships between n-grams. To that end, we
project the FS learned by the RBM into a two-dimensional
space using Randomized Principal Component Analysis
(rPCA) [13]. As the CoF is the underlying music the-
oretical construct for the relationships between keys, we
are interested to what degree we can approximate the CoF
topology. As a baseline, we compare this projection to a
direct projection of the IS, again using rPCA.

5.1 Training

We encode the WTC corpus as described in 4.3. As keys
are characterized by distributions of pitch classes, the pitch
range is set to m = 12. In order to examine the organiza-
tion ability of the RBM under different settings, we use
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n-grams of various lengths, and also compare pifch and
pitch-duration representations.

5.2 Evaluation

We use rPCA to project all n-grams in both the IS and the
FS into a two-dimensional space. In this space, for each
key we determine the mean of all n-grams created from
pieces in that key. The organization of those centroids is
then compared to the organization of keys in the CoF by
computing the PD of both shapes, separately for major and
minor keys. To make different expansions of data points in
space comparable, the PD is finally divided by the perime-
ter of the target CoF.

5.3 Results and Discussion

Figure 4 shows the organization of n-grams in the FS. Clus-
ter centers are organized similarly to how keys are orga-
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nized in the CoF, which is consistent with the representa-
tions of the probe tone ratings obtained by Krumhansl and
Kessler [9, 10]. Note that relative minors tend to be shifted
counterclockwise with respect to their major counterparts.
This occurs in Krumhansl’s results as well [ 10, pp. 43], and
can be explained by two factors, namely the alteration of
the sixth degree in the melodic minor scale, which is iden-
tical to the seventh degree of the dominant of the relative
major counterpart (e.g. the melodic Am scale shares the F#
with the G major scale, the dominant of C major), and due
to the tonal modulations concerning the form of the piece
(e.g. fugues in minor keys tend to have certain passages in
the relative major, while fugues in major keys tend to have
passages in both the relative minor and the dominant).

Figure 5 shows, that the Procrustes Distance to the CoF
tends to stabilize at a minimum with an n-gram length of
about nine. This can be explained by the fact that n-grams
of that length contain enough information to obtain the re-
spective distribution of a key well enough. Adding dura-
tion information clearly impedes the organization of clus-
ters in a CoF topology. As the occurrence of notes in the
WTC is strongly correlated to their absolute duration (see
Figure 1), and rhythmic information is not directly linked
to the CoF organization, this is not unexpected. Interest-
ingly, for larger n-gram sizes the FS of the RBM is not dis-
rupted as much by the inclusion of distractive information
as the rPCA on the IS.

6. ORGANIZATION OF PITCHES

A probe-tone test, proposed by Krumhansl et al. [9, 10],
consists of a set of musical stimuli (such as scales, chord
cadences, or musical pieces) that unambiguously instanti-
ate a specific key, and a set of probe tones, typically the set
of 12 pitch classes. Listeners are then required to rate on
a numerical scale, from 1 (“very bad”) to 7 (“very good”),
how well the probe tones fit the musical stimulus. In order
to explore the hierarchical event organization of pitches in-
duced by the RBM, we compare our model with a partic-
ular probe tone test conducted by Krumhansl and Shep-
ard [10, cited by Krumhansl]. In this specific experiment,
the musical stimulus consisted of an incomplete C major
scale (in both ascending and descending contexts), and lis-
teners were asked to give a numerical rating of the degree
to which each probe tone fits the scale. The stimuli of this
particular setup are illustrated in part Figure 6 a), while the
probe tones are shown in Figure 6 c¢). The participants of
the experiment were divided in three groups according to
their number of years of formal musical training.

6.1 Training

As we are only interested in the ability of the model to
learn tonal hierarchies in major and minor mode, we trans-
pose all melodies to C major and C minor, respectively. In
order to remain consistent with the aforementioned exper-
iment of Krumhansl & Shepard, rather than using pitch-
classes, we allow the training data to be in a range of three
octaves, ranging from MIDI pitch numbers 48 to 74 (such
that both the stimuli and the probe tones can be represented
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Figure 6. Stimuli/probe tones used in the probe-tone test.

without wrapping). Most of the n-grams of the transposed
WTC data fall in that range, or can be transposed octave-
wise to fall in that range. N-grams for which this is not
possible are ignored.

Since the fugues from the WTC contain certain tonal
modulations, in order to train the RBM with prototypi-
cal examples of major and minor scales, all n-grams are
classified using the Krumhansl & Kessler key-finding algo-
rithm [10, cited by Krumhansl] and those whose annotated
key is not the same as that identified by the classifier (ca.
53% of the corpus) are removed. The training is executed
as described in 4.1.1.

6.2 Evaluation

Two different probe tone tests are conducted. The first test
aims to reproduce the setup by Krumhansl and Shepard,
and thus, the stimuli consist of the major ascending (start-
ing from C3) and descending scales (starting from C5)
shown in Figure 6 a). For the second experiment, the stim-
uli consist of ascending and descending major and melodic
minor scales, but this time both are generated in the middle
C octave, as shown in Figure 6 b). For both tests, the set
of probe tones consist of all notes of the chromatic scale
(starting from C4) as shown in Figure 6 c). We construct
n-grams of length 8, consisting of the 7 notes of the target
stimulus and a probe tone as the last note. This results in
visible vectors v,,; of length 36 x 8. The free energy corre-
sponding to each combination of stimulus and probe tone
is calculated using Eq. (1). In order to compare our results
to those of human listeners, these energies are scaled using
an affine transformation as follows:

Judgment(v,;) = aF(vp) — B, 3)

where the constants «, 3 are selected such that the mean
and the variance of the scaled energy are equal to those of
the judgments reported in [10].

6.3 Results and Discussion

Figure 7 shows the results of the probe tone test, and in
Table 1 the correlations of the RBM judgments with re-
spect to those of expert and untrained listeners are pre-
sented. These results suggest that the model can learn
some event hierarchy structures, such as the prevalence of
diatonic over chromatic notes, similar to the judgment of
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Group r p-value
Expert ascending 0.7213  0.0054
Untrained ascending  0.7942  0.0012
Expert descending 0.7985 0.0011
Untrained descending  0.8344  0.0004

Table 1. Pearson correlations and p-values for the judg-
ments of the probe tone tests.

trained listeners. In addition, the model develops a sense
for melodic direction, preferring probe tones close to the
final notes of the stimulus, which is consistent with the
ratings of untrained listeners. Stimulated in the middle
octave, the model is able to distinguish major and minor
modes, especially the major and minor thirds reflect the
characteristics of the respective diatonic triads. The model
responses do not show explicit octave equivalence, since C
and C’ are not equally emphasized. Still it is interesting to
note that a stimulus in the lower octave has implications on
the pitch expectations in the middle octave, and that these
implications are in correspondence with the tonal hierar-
chy of the key implied by the stimulus.

7. CONCLUSION

In this paper we show that tonal structure can be learned
from musical data with an RBM using unsupervised train-
ing with a limited set of monophonic melodies. The model
is able to reproduce the topology of the CoF using pitch n-
gram representations of the input data. We found that for
successful inference of the CoF, a minimal n-gram length
of nine notes is needed, and that longer n-grams do not lead
to better representations. Furthermore, although duration
information profoundly disturbs the learning of tonal struc-
ture through the baseline rPCA method, the RBM model is
less affected by distracting duration information.

By way of a probe tone test, we explored the organiza-
tion of pitches in the context of major and minor modes.
Our results show the model was able to learn several as-
pects of tonal structure, in particular the hierarchical preva-
lence of diatonic over chromatic tones. Comparing results
with Krumhansl’s probe tone experiments on human sub-
jects with different levels of musical training do not yield a
conclusive classification of the model: the model displays
aspects of both untrained and trained subjects.

An important feature of tonal perception in trained sub-
jects is octave equivalence. This feature was not well-
reproduced by the model. It is possible that a pre-condition
for octave-equivalence is the harmonic overlap of octaves.
In our current setup, the overtone structure of tones is not
represented. To test this hypothesis, we intend to investi-
gate whether using harmonic tone representations leads to
stronger octave-equivalence in the the model.

Furthermore we wish to investigate which factors in-
duce more expert-like perception of tonal structure. Pos-
sible factors include the size of the training data, and the
depth of the model (in terms of hidden layers).
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