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ABSTRACT

This paper discusses a piano fingering model for both hands
and its applications. One of our motivations behind the
study is automating piano reduction from ensemble scores.
For this, quantifying the difficulty of piano performance is
important where a fingering model of both hands should
be relevant. Such a fingering model is proposed that is
based on merged-output hidden Markov model and can be
applied to scores in which the voice part for each hand is
not indicated. The model is applied for decision of finger-
ing for both hands and voice-part separation, automation of
which is itself of great use and were previously difficult. A
measure of difficulty of performance based on the finger-
ing model is also proposed and yields reasonable results.

1. INTRODUCTION

Music arrangement is one of the most important musical
activities, and its automation certainly has attractive appli-
cations. One common form is piano arrangement of en-
semble scores, whose purposes are, among others, to en-
able pianists to enjoy a wider variety of pieces and to ac-
company other instruments by substituting the role of or-
chestra. While certain piano reductions have high techni-
cality and musicality as in the examples by Liszt [8], those
for vocal scores of operas and reduction scores of orchestra
accompaniments are often faithful to the original scores in
most parts. The most faithful reduction score is obtained
by gathering every note in the original score, but the result
can be too difficult to perform, and arrangement such as
deleting notes is often in order.

In general, the difficulty of a reduction score can be re-
duced by arrangement, but then the fidelity also decreases.
If one can quantify the performance difficulty and the fi-
delity to the original score, the problem of “minimal” pi-
ano reduction can be considered as an optimization prob-
lem of the fidelity given constraints on the performance
difficulty. A method for guitar arrangement based on prob-
abilistic model with a similar formalization is proposed in
Ref. [5]. This paper is a step toward a realization of piano
reduction algorithm based on the formalization.
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The playability of piano passages is discussed in Refs. [3,
2] in connection with automatic piano arrangement. There,
constraints such as the maximal number of notes in each
hand, the maximal interval being played, say, 10th, and
the minimal time interval of a repeated note are consid-
ered. Although these constraints are simple and effective
to some extent, the actual situation is more complicated as
manifested in the fact that, for example, the playability can
change with tempos and players can arpeggiate chords that
cannot be played simultaneously. In addition, the playabil-
ity can depend on the technical level of players [3]. Given
these problems, it seems appropriate to consider perfor-
mance difficulty that takes values in a range.

There are various measures and causes of performance
difficulty including player’s movements and notational com-
plexity of the score [12, 1, 15]. Here we focus on the diffi-
culty of player’s movements, particularly piano fingering,
which is presumably one of the most important factors.
The difficulty of fingering is closely related to the decision
of fingering [4, 7, 13, 16]. Given the current situation that a
method of determining the fingering costs from first princi-
ples is not established, however, it is also effective to take a
statistical approach, and consider the naturalness of finger-
ing in terms of probability obtained from actual fingering
data. With a statistical model of fingering, the most natural
fingering can be determined, and one can quantify the dif-
ficulty of fingering in terms of naturalness. This will be ex-
plained in Secs. 2 and 3. The practical importance of piano
fingering and its applications are discussed in Ref. [17].

Since voice parts played by both hands are not a priori
separated or indicated in the original ensemble score, a fin-
gering model must be applicable in such a situation. Thus,
a fingering model for both hands and an algorithm to sep-
arate voice parts are necessary. We propose such a model
and an algorithm based on merged-output hidden Markov
model (HMM), which is suited for modeling multi-voice-
part structured phenomena [10, 11]. Since multi-voice-part
structure of music is common and voice-part separation
can be applied for a wide range of information processing,
the results are itself of great importance.

2. MODEL FOR PIANO FINGERING FOR BOTH
HANDS

2.1 Model for one hand

Before discussing the piano fingering model for both hands,
let us discuss the fingering model for one hand. Piano
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fingering models and algorithms for decision of fingering
have been studied in Refs. [13, 16, 4, 18, 19, 20, 7]. Here
we extend the model in Ref. [19] to including chords.

Piano fingering for one hand, say, the right hand, is indi-
cated by associating a finger number fn = 1, · · · , 5 (1 =
thumb, 2 = the index finger, · · · , 5 = the little finger)
to each note pn in a score 1 , where n = 1, · · · , N in-
dexes notes in the score and N is the number of notes. We
consider the probability of a fingering sequence f1:N =
(fn)Nn=1 given a score, or a pitch sequence, p1:N = (pn)Nn=1,
which is written as P (f1:N |p1:N ). As explained in detail
in Sec. 3.1, an algorithm for fingering decision can be ob-
tained by estimating the most probable candidate f̂1:N =
argmax
f1:N

P (f1:N |p1:N ). The fingering of a particular note

is more influenced by neighboring notes than notes that are
far away in score position. Dependence on neighboring
notes is most simply described by that on adjacent notes,
and it can be incorporated with a Markov model. It also
has advantages in efficiency in maximizing probability and
setting model parameters. Although the probability of fin-
gering may depend on inter-onset intervals between notes,
the dependence is not considered here for simplicity.

As proposed in Ref. [18, 19], the fingering model can be
constructed with an HMM. Supposing that notes in score
are generated by finger movements and the resulting per-
formed pitches, their probability is represented with the
probability that a finger would be used after another finger
P (fn|fn−1), and the probability that a pitch would result
from succeeding two used fingers. The former is called the
transition probability, and the latter output probability. The
output probability of pitch depends on the previous pitch
in addition to the corresponding used fingers, and it is de-
scribed with a conditional probabilityP (pn|pn−1, fn−1, fn).
In terms of these probabilities, the probability of notes and
fingerings is given as

P (p1:N , f1:N ) =
N∏
n=1

P (pn|pn−1, fn−1, fn)P (fn|fn−1),

(1)

where the initial probabilities are written as P (f1|f0) ≡
P (f1) and P (p1|p0, f0, f1) ≡ P (p1|f1). The probability
P (f1:N |p1:N ) can also be given accordingly.

To train the model efficiently, we assume some reason-
able constraints on the parameters. First we assume that
the probability depends on pitches only through their ge-
ometrical positions on the keyboard which is represented
as a two-dimensional lattice (Fig. 1). We also assume the
translational symmetry in the x-direction and the time in-
version symmetry for the output probability. If the coordi-
nate on the keyboard is written as `(p) = (`x(p), `y(p)),
the assumptions mean that the output probability has a form
P (p′|p, f, f ′) = F (`x(p′) − `x(p), `y(p′) − `y(p); f, f ′),
and it satisfies F (`x(p′) − `x(p), `y(p′) − `y(p); f, f ′) =
F (`x(p)− `x(p′), `y(p)− `y(p′); f ′, f). A model for each
hand can be obtained in this way, and it is written as
Fη(`x(p′) − `x(p), `y(p′) − `y(p); f, f ′) with η = L,R.

1 We do not consider the so-called finger substitution in this paper.

Figure 1. Keyboard lattice. Each key on a keyboard is
represented by a point of a two-dimensional lattice.

It is further assumed that these probabilities are related
by reflection in the x-direction, which yields FL(`x(p′) −
`x(p), `y(p′)−`y(p); f, f ′) = FR(`x(p′)−`x(p), `y(p′)−
`y(p); f, f ′).

The above model can be extended to be applied for pas-
sages with chords, by converting a polyphonic passage to
a monophonic passage by virtually arpeggiating the chords
[7]. Here, notes in a chord are ordered from low pitch to
high pitch. The parameter values can be obtained from fin-
gering data.

2.2 Model for both hands

Now let us consider the fingering of both hands in the sit-
uation that it is unknown a priori which of the notes are
to be played by the left or right hand. The problem can be
stated as associating the fingering information (ηn, fn)Nn=1

for the pitch sequence p1:N , where ηn = L,R indicates the
hand with which the n-th note is played.

One might think to build a model of both hands by sim-
ply extending the one-hand model and using (ηn, fn) as
a latent variable. However, this is not an effective model
as far as it is a first-order Markov model since, for exam-
ple, probabilistic constraints between two successive notes
by the right hand cannot be directly incorporated when
they are interrupted by other notes of the left hand. Us-
ing higher-order Markov models leads to the problem of
increasing number of parameters that is hard to train as
well as the increasing computational cost. The underly-
ing problem is that the model cannot capture the structure
of dependencies that is stronger among notes in each hand
than those across hands.

Recently an HMM, called merged-output HMM, is pro-
posed that is suited for describing such voice-part-structured
phenomena [10, 11]. The basic idea is to construct a model
for both hands by starting with two parallel HMMs, called
part HMMs, each of which corresponds to the HMM for
fingering of each hand, and then merging the outputs of
the part HMMs. Assuming that only one of the part HMMs
transits and outputs an observed symbol at each time, the
state space of the merged-output HMM is given as a triplet
k = (η, fL, fR) of the hand information η = L,R and
fingerings of both hands: η indicate which of the HMMs
transits, and fL and fR indicate the current states of the
part HMMs. Let the transition and output probabilities
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of the part HMMs be aηff ′ = Pη(f ′|f) and bηff ′(`) =
Fη(`; f, f ′) (η = L,R). Then the transition and output
probabilities of the merged-output HMM are given as

akk′ =

{
αLa

L
fLf ′L

δfRf ′R , η′ = L;

αRa
R
fRf ′R

δfLf ′L , η′ = R,
(2)

bkk′(`) =

{
bLfLf ′L

(`), η′ = L;

bRfRf ′R
(`), η′ = R,

(3)

where δ denotes Kronecker’s delta. Here, αL,R represent
the probability of choosing which of the hands to play the
note, and practically, they satisfy αL ∼ αR ∼ 1/2. As
shown in Ref. [11], certain interaction factors can be intro-
duced to Eqs. (2) and (3). Although such interactions may
be important in the future [14], we confine ourselves to the
case of no interactions in this paper for simplicity.

By estimating the most probable sequence k̂1:N , both
the optimal configuration of hands η̂1:N , which yields a
voice-part separation, and that of fingers (f̂L, f̂R)1:N are
obtained. For details of inference algorithms and other as-
pects of merged-output HMM, see Ref. [11].

2.3 Model for voice-part separation

The model explained in the previous section involves both
hands and the used hand and fingers are modeled simulta-
neously. We can alternatively consider the problem of as-
sociating fingerings of both hands as first separating voice
parts for both hands, and then associating fingerings for
notes in each voice part. In this subsection, a simple model
that can be used for voice-part separation is given. The
model is also based on a simpler merged-output HMM, and
it yields more efficient algorithm for voice-part separation.

We consider a merged-output HMM with a hidden state
x = (η, pL, pR), where η = L,R indicates the voice part,
and pL,R describes the pitch played in each voice part. If
the pitch sequence in the score is denoted by (yn)n, the
transition and output probabilities are written as

axx′ =

{
αLa

L
pLp′L

δpRp′R , η′ = L;

αRa
R
pRp′R

δpLp′L , η′ = R,
(4)

bx(y) = δy,pη . (5)

Here the transition probability aL,Rpp′ describes the pitch se-
quence in each voice part directly, without any information
on fingerings. The corresponding distributions can be ob-
tained from actual data of piano pieces, as shown in Fig. 2.

So far we have considered a model of pitches and hor-
izontal intervals for voice-part separation. The voice-part-
separation algorithm can be derived by applying the Viterbi
algorithm to the above model. In fact, a voice part in the
score played by one hand is also constrained by vertical
intervals since it is physically difficult to play a chord con-
taining an interval far wider than a octave by one hand. The
constraint on the vertical intervals can also be introduced
in terms of probability.

 0
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Figure 2. Histograms of pitch transitions in piano scores
for each hand.

3. APPLICATIONS OF THE FINGERING MODEL

3.1 Algorithm for decision of fingering

A direct application of the model explained in Secs. 2.1
and 2.2 is the decision of fingering. The algorithm can be
derived by applying the Viterbi algorithm. For one hand,
the derived algorithm is similar as the one in Ref. [19], but
we reevaluated the accuracy since the present model can
be applied for polyphonic passages and the details of the
models are different.

For evaluation, we prepared manually labeled finger-
ings of classical piano pieces and compared them to the
one estimated with the algorithm. The test pieces were
Nos. 1, 2, 3, and 8 of Bach’s two-voice inventions, and
the introduction and exposition parts from Beethoven’s 8th
piano sonata in C minor. The training and test of the al-
gorithm was done with the leave-one-out cross validation
method for each piece. To avoid zero frequencies in the
training, we added a uniform count of 0.1 for every bin.

The averaged accuracy was 56.0% (resp. 55.4%) for the
right (resp. left) hand where the number of notes was 5202
(resp. 5539). Since the training data was not big, and we
had much higher rate of more than 70% for closed test,
the accuracy may improve if a larger set of training data is
given. The results were better than the reported values in
Ref. [19]. The reason would be that the constraints of the
model in the reference was too strong, which is relaxed in
the present model. For detailed analysis of the estimation
errors, see Ref. [19].

3.2 Voice-part separation

Voice-part separation between two hands can be done with
the model described in Sec. 2.3, and the algorithm can be
obtained by the Viterbi algorithm. In fact, we can derive
a more efficient estimation algorithm which is effectively
equivalent since the model has noiseless observations as in
Eq. (5).

It is obtained by minimizing the following potential with
respect to the variables {(ηn, hn)}, hn = 0, 1, · · · , Nh for
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Table 1. Error rates of the voice-part-separation algorithms.The 0-HMM (resp. 1-HMM, 2-HMM) indicates the algorithm
with the zeroth-order (resp. first-order, second-order) HMM.

Pieces # Notes 0-HMM [%] 1-HMM [%] 2-HMM [%] Merged-output HMM [%]
Bach (15 pcs) 9638 5.1 5.3 6.1 1.9
Beethoven (2 pcs) 18144 13.0 11.1 11.5 9.28
Chopin (5 pcs) 8508 5.7 4.0 4.29 3.8
Debussy (3 pcs) 3360 17.8 14.8 14.8 18.7
Total 39650 9.9 8.5 8.9 7.1

each note:

V (η,h) = −
∑
n

lnQ(ηn−1, hn−1; ηn, hn), (6)

Q(ηn−1, hn−1; ηn, hn)

=

{
αηna

(ηn)
yn−1,ynδhn,hn−1+1, ηn = ηn−1;

αηna
(ηn)
yn−2−hn−1

,ynδhn,0, ηn 6= ηn−1.
(7)

Here hn is necessary to memorize the current state of the
voice part opposite of ηn. The minimization of the poten-
tial can be done with dynamic programming incrementally
for each n. The estimation result is the same as the one
with the Viterbi algorithm applied to the model when Nh
is sufficiently large, and we confirmed that Nh = 50 is
sufficient to provide a good approximation.

The algorithm was evaluated by applying it to several
classical piano pieces. The used pieces were all pieces of
Bach’s two-voice inventions, the first two piano sonatas by
Beethoven, Chopin’s Etude Op. 10 Nos. 1–5, and the first
three pieces in the first book of Debussy’s Préludes. For
comparison, we also evaluated algorithms based on lower-
order HMMs. The zeroth-order model with transition and
output probabilities P (η) and P (p|η) is almost equivalent
to the keyboard splitting method, the first-order model with
P (η′|η) and P (δp|η, η′) and the second-order model are
simple applications of HMMs whose latent variables are
hand informations η = L,R.

The results are shown in Table 1. In total, the merged-
output HMM yielded the lowest error rate, with which rel-
atively accurate voice part separation can be done. On
the other hand, there were less changes in results for the
lower-order HMMs, showing that the effectiveness of the
merged-output HMM. In Debussy’s pieces, the error rates
were relatively high since the pieces necessitate complex
fingerings with wide movements of the hands. An exam-
ple of the voice-part separation result is shown in Fig. 3.

3.3 Quantitative measure of difficulty of performance

A measure of performance difficulty based on the natural-
ness of the fingerings can be obtained by the probabilistic
fingering model. Although global structures in scores may
influence the difficulty, we concentrate on the effect of lo-
cal structures. It is supposed that the difficulty is additive
with regard to performed notes and an increasing function
of tempo. A quantity satisfying these conditions is the time
rate of probabilistic cost. Let p(t) denote the sequence of

&
&
44

44
œ œ# œ œ œ œ œn œ

œ œb œ œ œ œ œ œ œ œ œ œ œ œ œ œ

œ œ# œ# œ œ œ œ

œ œ œ œ œ œ œ œ œ œ œ œ œ# œ œ œ
(a) Passage in Bach’s two-voice invention No. 1.

C4

C5

(b) Piano role representation of the voice-part separation result. Two voice
parts are colored red and blue.

Figure 3. Example of a voice-part separation result.

notes in the time range of [t −∆t/2, t + ∆t/2], and f(t)
be the corresponding fingerings, where ∆t is a width of the
time range to define the time rate. Then it is given as

D(t) = − lnP (p(t),f(t))/∆t. (8)

Since the minimal time interval of successive notes are
about a few 10 milli seconds and it is hard to imagine that
difficulty is strongly influenced by notes that are separated
more than 10 seconds, it is natural to set ∆t within these
extremes. The right-hand side is given by Eq. (1). It is pos-
sible to calculate D(t) for a score without indicated finger-
ings by replacing f(t) with the estimated fingerings f̂(t)
with the model in Sec. 2. In addition to the difficulty for
both hands, that for each hand DL,R(t) can also be defined
similarly.

Fig. 4 shows some examples of DL,R(t) calculated for
several piano pieces. Here ∆t was set to 1 sec. Although
it is not easy to evaluate the quantity in a strict way, the
results seems reasonable and reflects generic intuition of
difficulty. The invention by Bach that can be played by
beginners yields DL,R that are less than about 10, the ex-
ample of Beethoven’s sonata which requires middle-level
technicality has DL,R around 20 to 30, and Chopin’s Fan-
tasie Impromptu which involves fast passages and difficult
fingerings has DL,R up to about 40. It is also worthy of not-
ing that relatively difficult passages such as the fast chro-
matique passage of the right hand in the introduction of
Beethoven’s sonata and ornaments in the right hand of the
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(a) Difficulty for right hand DR (b) Difficulty for left hand DL

Figure 4. Examples of DR and DL. The red (resp. green, blue) line is for Bach’s two-voice invention No.=1, (resp. Intro-
duction and exposition parts of the first movement of Beethoven’s eighth piano sonata, Chopin’s Fantasie Impromptu).

slow part of the Fantasie Impromptu are also captured in
terms of DR.

4. CONCLUSIONS

In this paper, we considered a piano fingering model of
both hands and its applications especially toward a piano
reduction algorithm. First we reviewed a piano fingering
model for one hand based on HMM, and then constructed
a model for both hands based on merged-output HMM.
Next we applied the model for constructing an algorithm
for fingering decision and voice-part-separation algorithm
and obtained a measure of performance difficulty. The al-
gorithm for fingering decision yielded better results than
the previously proposed one by a modification in details
of the model. The results of voice-part separation is quite
good and encouraging. The proposed measure of perfor-
mance difficulty successfully captures the dependence on
tempos and complexity of pitches and finger movements.

The next step to construct a piano reduction algorithm
according to the formalization mentioned in the Introduc-
tion is to quantify the fidelity of the arranged score to the
original score and to integrate it with the constraints of
performance difficulty. The fidelity can be described with
edit probability, similarly as in Ref. [5], and an arrange-
ment model can be obtained by integrating the fingering
model with the edit probability. We are currently working
on these issues and the results will be reported elsewhere.
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