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ABSTRACT

In this paper, we approach the tasks of beat tracking, down-
beat recognition and rhythmic style classification in non-
Western music. Our approach is based on a Bayesian
model, which infers tempo, downbeats and rhythmic style,
from an audio signal. The model can be automatically
adapted to rhythmic styles and time signatures. For evalua-
tion, we compiled and annotated a music corpus consisting
of eight rhythmic styles from three cultures, containing a
variety of meter types. We demonstrate that by adapting
the model to specific styles, we can track beats and down-
beats in odd meter types like 9/8 or 7/8 with an accuracy
significantly improved over the state of the art. Even if the
rhythmic style is not known in advance, a unified model is
able to recognize the meter and track the beat with com-
parable results, providing a novel method for inferring the
metrical structure in culturally diverse datasets.

1. INTRODUCTION

Musical rhythm subordinated to a meter is a common fea-
ture in many music cultures around the world. Meter pro-
vides a hierarchical time structure for the rendition and rep-
etition of rhythmic patterns. Though these metrical struc-
tures vary considerably across cultures, metrical hierar-
chies can often be stratified into levels of differing time
spans. Two of these levels are, in terminology of Euroge-
netic music, referred to as beats, and measures. The beats
are the pulsation at the perceptually most salient metrical
level, and are further grouped into measures. The first beat
of each measure is called the downbeat. Determining the
type of the underlying meter, and the alignment between
the pulsations at the levels of its hierarchy with music per-
formance recordings – a process we refer to as meter in-
ference – is fundamental to computational rhythm analysis
and supports many further tasks, such as music transcrip-
tion, structural analysis, or similarity estimation.

The automatic annotation of music with different as-
pects of rhythm is at the focus of numerous studies in Mu-
sic Information Retrieval (MIR). Müller et al [5] discussed
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the estimation of the beat (called beat tracking), and the
estimation of higher-level metrical structures such as the
measure length. Approaches such as the one presented by
Klapuri et al [3] aim at estimating structures at several met-
rical levels, while being able to differentiate between cer-
tain time signatures. In [7] beats and downbeats are esti-
mated simultaneously, given information about the tempo
and the meter of a piece. Most of these approaches assume
the presence of a regular metrical grid, and work reason-
ably well for Eurogenetic popular music. However, their
adaptation to different rhythmic styles and metrical struc-
tures is not straight-forward.

Recently, a Bayesian approach referred to as bar pointer
model has been presented [11]. It aims at the joint estima-
tion of rhythmic pattern, the tempo, and the exact position
in a metrical cycle, by expressing them as hidden variables
in a Hidden Markov Model (HMM) [8]. Krebs et al. [4]
applied the model to music signals and showed that ex-
plicitely modelling rhythmic patterns is useful for meter
inference for a dataset of Ballroom dance music.

In this paper, we adapt the observation model of the ap-
proach presented in [4] to a collection of music from dif-
ferent cultures: Makam music from Turkey, Cretan music
from Greece, and Carnatic music from the south of In-
dia. The adaption of observation models was shown to
be of advantage in [4, 6], however restricted to the con-
text of Ballroom dance music. Here, we extract rhythmic
patterns from culturally more diverse data, and investigate
if their inclusion into the model improves the performance
of meter inference. Furthermore, we investigate if a uni-
fied model can be derived that covers all rhythmic styles
and time signatures that are present in the training data.

2. MOTIVATION

The music cultures considered in this paper are based on
traditions that can be traced back for centuries until the
present, and were documented by research in ethnomusi-
cology for decades. Rhythm in two of these cultures, Car-
natic and Turkish Makam music, is organized based on po-
tentially long metrical cycles. All three make use of rhyth-
mic styles that deviate audibly from the stylistic paradigms
of Eurogenetic popular music. Previous studies on music
collections of these styles have shown that the current state
of the art performs poorly in beat tracking [2, 9] and the
recognition of rhythm class [9]. As suggested in [9], we
explore a unified approach for meter inference that can rec-
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ognize the rhythmic style of the piece and track the meter
at the same time.

The bar pointer model, as described in Section 4, can be
adapted to rhythmic styles by extracting possible patterns
using small representative downbeat annotated datasets.
This way, we can obtain an adapted system for a specific
style without recoding and parameter tweaking. We be-
lieve that this is an important characteristic for algorithms
applied in music discovery and distribution systems for a
large and global audience. Through this study, we aim to
answer crucial questions: Do we need to differentiate be-
tween rhythmic styles in order to track the meter, or is a
universal approach sufficient? For instance, can we track a
rhythmic style in Indian music using rhythmic patterns de-
rived from Turkish music? Do we need to learn patterns
at all? If a particular style description for each style is
needed, this has some serious consequences for the scala-
bility of rhythmic similarity and meter inference methods;
while we should ideally aim at music discovery systems
without an ethnocentric bias, the needed universal analysis
methods might come at a high cost given the high diversity
in the musics of the world.

3. MUSIC CORPORA

In this paper we use a collection of three music corpora
which are described in the following.

The corpus of Cretan music consists of 42 full length
pieces of Cretan leaping dances. While there are several
dances that differ in terms of their steps, the differences in
the sound are most noticeable in the melodic content, and
we consider all pieces to belong to one rhythmic style. All
these dances are usually notated using a 2/4 time signa-
ture, and the accompanying rhythmical patterns are usually
played on a Cretan lute. While a variety of rhythmic pat-
terns exist, they do not relate to a specific dance and can be
assumed to occur in all of the 42 songs in this corpus.

The Turkish corpus is an extended version of the anno-
tated data used in [9]. It includes 82 excerpts of one minute
length each, and each piece belongs to one of three rhythm
classes that are referred to as usul in Turkish Art music. 32
pieces are in the 9/8-usul Aksak, 20 pieces in the 10/8-usul
Curcuna, and 30 samples in the 8/8-usul Düyek.

The Carnatic music corpus is a subset of the annotated
dataset used in [10]. It includes 118 two minute long ex-
cerpts spanning four tālas (the rhythmic framework of Car-
natic music, consisting of time cycles). There are 30 ex-
amples in each of ādi tāla (8 beats/cycle), rūpaka tāla (3
beats/cycle) and mishra chāpu tāla (7 beats/cycle), and 28
examples in khanda chāpu tāla (5 beats/cycle).

All excerpts described above were manually annotated
with beats and downbeats. Note that for both Indian and
Turkish music the cultural definition of the rhythms con-
tain irregular beats. Since the irregular beat sequence is a
subset of the (annotated) equidistant pulses, it can be de-
rived easily from the result of a correct meter inference.
For further details on meter in Carnatic and Turkish makam
music, please refer to [9].

4. METER INFERENCE METHOD

4.1 Model description

To infer the metrical structure from an audio signal we use
the bar pointer model, originally proposed in [11] and re-
fined in [4]. In this model we assume that a bar pointer
traverses a bar and describe the state of this bar pointer
at each audio frame k by three (hidden) variables: tempo,
rhythmic pattern, and position inside a bar. These hidden
variables can be inferred from an (observed) audio signal
by using an HMM. An HMM is defined by three quan-
tities: A transition model which describes the transitions
between the hidden variables, an observation model which
describes the relation between the hidden states and the
observations (i.e., the audio signal), and an initial distribu-
tion which represents our prior knowledge about the hid-
den states.

4.1.1 Hidden states

The three hidden variables of the bar pointer model are:
• Rhythm pattern index rk ∈ {r1, r2, ..., rR}, where R is

the number of different rhythmic patterns that we con-
sider to be present in our data. Further, we denote the
time signature of each rhythmic pattern by θ(rk) (e.g.,
9/8 for Aksak patterns). In this paper, we assume that
each rhythmic pattern belongs to a rhythmic class, and
a rhythm class (e.g., Aksak, Duyek) can hold several
rhythmic patterns. We investigate the optimal number
of rhythmic patterns per rhythm class in Section 5.

• Position within a bar mk ∈ {1, 2, ...,M(rk)}:
We subdivide a whole note duration into 1600 discrete,
equidistant bar positions and compute the number of po-
sitions within a bar with rhythm rk by M(rk) = 1600 ·
θ(rk) (e.g., a bar with 9/8 meter has 1600 · 9/8 = 1800
bar positions).

• Tempo nk ∈ {nmin(rk), ..., nmax(rk)}: The tempo can
take on positive integer values, and quantifies the num-
ber of bar positions per audio frame. Since we use an au-
dio frame length of 0.02s, this translates to a tempo res-
olution of 7.5 (= 60s

1/4·1600·0.02s ) beats per minute (BPM)
at the quarter note level. We set the minimum tempo
nmin(rk) and the maximum tempo nmax(rk) according
to the rhythmic pattern rk.

4.1.2 Transition model

We use the transition model proposed in [4, 11] with the
difference that we allow transitions between rhythmic pat-
tern states within a song as shown in Equation 3. In the
following we list the transition probabilities for each of the
three variables:

• P (mk|mk−1, nk−1, rk−1) : At time frame k the bar
pointer moves from position mk−1 to mk as defined by

mk = [(mk−1 + nk−1 − 1)mod(M(rk−1))] + 1. (1)

Whenever the bar pointer crosses a bar border it is reset
to 1 (as modeled by the modulo operator).

• P (nk|nk−1, rk−1) : If the tempo nk−1 is inside the
allowed tempo range {nmin(rk−1), ..., nmax(rk−1)},
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there are three possible transitions: the bar pointer re-
mains at the same tempo, accelerates, or decelerates:

P (nk|nk−1) =


1− pn, nk = nk−1
pn

2 , nk = nk−1 + 1
pn

2 , nk = nk−1 − 1
(2)

Transitions to tempi outside the allowed range are as-
signed a zero probability. pn is the probability of a
change in tempo per audio frame, and was set to pn =
0.02, the tempo ranges (nmin(r), nmax(r)) for each
rhythmic pattern are learned from the data (Section 4.2).

• P (rk|rk−1) : Finally, the rhythmic pattern state is as-
sumed to change only at bar boundaries:

P (rk|rk−1,mk < mk−1) = pr(rk−1, rk) (3)

pr(rk−1, rk) denotes the probability of a transition from
pattern rk−1 to pattern rk and will be learned from the
training data as described in Section 4.2. In this paper
we allow transitions only between patterns of the same
rhythm class, which will force the system to assign a
piece of music to one of the learned rhythm classes.

4.1.3 Observation model

In this paper, we use the observation model proposed
in [4]. As summarized in Figure 1, a Spectral Flux-like
onset feature, y, is extracted from the audio signal (sam-
pled with 44100 Hz) using the same parameters as in [4]. It
summarizes the energy changes that are likely to be related
to instrument onsets in two dimensions related to two fre-
quency bands, above and below 250 Hz. In contrast to [4]
we removed the normalizing step at the end of the feature
computations, which we observed not to influence the re-
sults.

Audio signal

STFT

Filterbank (82 bands)

Logarithm

Difference

Sum over frequency
bands (0..250Hz)

Sum over frequency
bands (250..22500Hz)

Subtract mvavg

Onset feature y

Figure 1: Computing the onset feature y from the audio
signal

As described in [4], the observation probabilities
P (yk|mk, nk, rk) are modeled by a set of Mixture of
Gaussian distributions (GMM). As it is infeasible to spec-
ify a GMM for each state (this would result in N ×M ×R
GMMs), we make two assumptions: First, we assume
that the observation probabilities are independent of the
tempo and second, we assume that the observation prob-
abilities only change each 64th note (which corresponds to
1600/64=25 bar positions). Hence, for each rhythmic pat-
tern, we have to specify 64× θ(r) GMMs.

4.1.4 Initial distribution

For each rhythmic pattern, we assume a uniform state dis-
tribution within the tempo limits and over all bar positions.

4.2 Learning parameters

The parameters of the observation GMMs, the transition
probabilities of the rhythm pattern states, and the tempo
ranges for each rhythmic style are learned from the data
described in Section 3. In our experiments we perform a
two-fold cross-validation, excluding those files from the
evaluation that were used for parameter learning.

4.2.1 Observation model

The parameters of the observation model consist of
the mean values, covariance matrix and the component
weights of the GMM for each 64th note of a rhythmic pat-
tern. We determine these as follows:
1. The two-dimensional onset feature y (see Section 4.1.3)

is computed from the training data.
2. The features are grouped by bar and bar position within

the 64th note grid. If there are several feature values for
the same bar and 64th note grid point, we compute the
average, if there is no feature we interpolate between
neighbors. E.g., for a rhythm class which spans a whole
note (e.g., Düyek (8/8 meter)) this yields a matrix of size
B × 128, where B is the number of bars with Düyek
rhythm class in the dataset.

3. Each dimension of the features is normalized to zero
mean and unit variance.

4. For each of the eight rhythm classes in the corpus de-
scribed in Section 3, a k-means clustering algorithm as-
signs each bar of the dataset (represented by a point in
a 128-dimensional space) to one rhythmic pattern. The
influence of the number of clusters k on the accuracy
of the metrical inference will be evaluated in the exper-
iments.

5. For each rhythmic pattern, at all 64th grid points, we
compute the parameters of the GMM by maximum like-
lihood estimation.

4.2.2 Tempo ranges and transition probabilities

For each rhythmic pattern, we compute the minimum and
maximum tempo of all bars of the training fold that were
assigned to this pattern by the procedure described in Sec-
tion 4.2.1. In the same way, we determine the transition
probabilities pr between rhythmic patterns.

4.3 Inference

In order to obtain beat-, downbeat-, and rhythmic class es-
timations, we compute the optimal state sequence {m∗

1:K ,
n∗1:K , r

∗
1:K} that maximizes the posterior probability of the

hidden states given the observations y1:K and hence fits
best to our model and the observations. This is done using
the well-known Viterbi algorithm [8].
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5. EXPERIMENTS

5.1 Evaluation metrics

A variety of measures for evaluating beat and downbeat
tracking performance are available (see [1] for a detailed
overview and descriptions of the metrics listed below) 1 .
We chose five metrics that are characterized by a set of di-
verse properties and are widely used in beat tracking eval-
uation.

Fmeas (F-measure): The F-measure is computed from
correctly detected beats within a window of ±70 ms by

F-measure =
2pr

p+ r
(4)

where p (precision) denotes the ratio between correctly de-
tected beats and all detected beats, and r (recall) denotes
the ratio between correctly detected beats and the total
number of annotated beats. The range of this measure is
from 0% to 100%.

AMLt (Allowed Metrical Levels with no continuity re-
quired): In this method an estimated beat is counted as
correct, if it lies within a small tolerance window around an
annotated pulse, and the previous estimated beat lies within
the tolerance window around the previous annotated beat.
The value of this measure is then the ratio between the
number of correctly estimated beats divided by the number
of annotated beats (as percentage between 0% and 100%).
Beat sequences are also considered as correct if the beats
occur on the off-beat, or are double or half of the annotated
tempo.

CMLt (Correct Metrical Level with no continuity re-
quired): The same as AMLt, without the tolerance for off-
beat, or doubling/halving errors.

infGain (Information Gain): Timing errors are calcu-
lated between an annotation and all beat estimations within
a one-beat length window around the annotation. Then, a
beat error histogram is formed from the resulting timing
error sequence. A numerical score is derived by measuring
the K-L divergence between the observed error histogram
and the uniform case. This method gives a measure of how
much information the beats provide about the annotations.
The range of values for the Information Gain is 0 bits to
approximately 5.3 bits in the applied default settings.

Db-Fmeas (Downbeat F-measure): For measuring the
downbeat tracking performance, we use the same F-
measure as defined for beat tracking (using a ±70 ms tol-
erance window).

5.2 Results

In Experiment 1, we learned the observation model de-
scribed in Section 4.2 for various numbers of clusters,
separately for each of the eight rhythm classes. Then,
we inferred the meter using the HMM described in Sec-
tion 4.1, again separately for each rhythm class. The re-
sults of this experiment indicate how many rhythmic pat-
terns are needed for each class in order to achieve an opti-
mal beat and downbeat tracking with the proposed model.

1 We used the MATLAB code available at http://code.
soundsoftware.ac.uk/projects/beat-evaluation/ with
standard settings.

Tables (1a) to (1h) show the performance with all the eval-
uation measures for each of the eight styles separately. For
Experiment 1 (Ex-1), all significant increases compared
to the previous row are emphasized using bold numbers
(according to paired-sample t-tests with 5% significance
level). In our experiments, increasing the number R of
considered patterns from one to two leads to a statistically
significant increase in most cases. Therefore, we can con-
clude that for tracking these individual styles, more than
one pattern is always needed. Further increase to three
patterns leads to significant improvement only in the ex-
ceptional case of Ādi tāla, where measure cycles with long
durations and rich rhythmic improvisation apparently de-
mand higher number of patterns and cause the system to
perform worse than for other classes. Higher numbers than
R = 3 patterns never increased any of the metrics signifi-
cantly. It is important to point out again that a test song was
never used to train the rhythmic patterns in the observation
model in Experiment 1.

The interesting question we address in Experiment 2 is
if the rhythm class of a test song is a necessary informa-
tion for an accurate meter inference. To this end, we per-
formed meter inference for a test song combining all the
determined rhythmic patterns for all classes in one large
HMM. This means that in this experiment the HMM can be
used to determine the rhythm class of a song, as well as for
the tracking of beats and downbeats. We use two patterns
from each rhythm class (except ādi tāla), the optimally per-
forming number of patterns in Experiment 1, to construct
the HMM. For ādi tāla, we use three patterns since using
3 patterns improved performance in Experiment 1, to give
a total of R = 17 different patterns for the large HMM.
The results of Experiment 2 are depicted in the rows la-
beled Ex-2 in Tables (1a) to (1h), significant change over
the optimal setting in Experiment 1 are emphasized using
bold numbers. The general conclusion is that the system is
capable of a combined task of classification into a rhythm
class and the inference of the metrical structure of the sig-
nal. The largest and, with the exception of ādi tāla, only
significant decrease between the Experiment 1 and Experi-
ment 2 can be observed for the downbeat recognition (Db-
Fmeas). The reason for this is that a confusion of a test
song into a wrong class may still lead to a proper track-
ing of the beat level, but the tracking of the higher metrical
level of the downbeat will suffer severely from assigning a
piece to a class with a different length of the meter than the
test piece.

As described in Section 4.1, we do not allow transi-
tions between different rhythm classes. Therefore, we can
classify a piece of music into a rhythm class by evaluat-
ing to which rhythmic pattern states rk the piece was as-
signed. The confusion matrix is depicted in Table 2, and
it shows that the highest confusion can be observed within
certain classes of Carnatic music, while the Cretan leaping
dances and the Turkish classes are generally recognized
with higher recall rate. The accent patterns in mishra chāpu
and khanda chāpu can be indefinite, non-characteristic and
non-indicative in some songs, and hence there is a possi-
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R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1
1 65.9 45.0 57.6 0.89 46.6
2 91.0 76.6 90.0 1.62 88.6
3 90.6 77.2 91.1 1.59 86.5

Ex-2 17 85.7 68.7 89.3 1.57 65.1
KL 69.38 41.24 64.60 1.46 -

(a) Turkish Music: Aksak (9/8)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1
1 71.4 47.8 50.3 0.68 38.9
2 89.1 75.6 75.6 1.04 48.6
3 87.7 73.0 73.0 0.99 54.4

Ex-2 17 89.3 74.8 77.5 1.16 41.1
KL 52.77 5.90 59.04 0.77 -

(b) Turkish Music: Curcuna (10/8)
R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1
1 57.2 33.5 42.2 0.68 37.3
2 85.2 70.1 82.7 1.51 75.4
3 83.4 63.3 81.9 1.45 73.7

Ex-2 17 86.6 75.8 87.2 1.64 72.6
KL 70.25 49.52 71.79 1.53 -

(c) Turkish Music: Düyek (8/8)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1
1 68.1 60.7 60.8 1.33 59.1
2 93.0 91.3 91.3 2.25 86.2
3 92.9 91.0 91.0 2.25 85.8

Ex-2 17 88.8 74.3 92.5 2.24 72.2
KL 35.87 34.42 72.07 1.57 -

(d) Cretan leaping dances (2/4)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1
1 49.6 38.9 47.0 0.93 16.5
2 56.7 44.0 59.5 1.21 32.5
3 61.6 49.5 65.9 1.40 32.8

Ex-2 17 62.4 40.6 76.7 1.73 21.4
KL 59.42 45.90 64.91 1.53 -

(e) Carnatic music: Ādi (8/8)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1
1 68.2 65.8 71.4 2.04 60.8
2 82.8 82.5 90.2 2.77 81.9
3 83.0 82.9 89.5 2.73 80.5

Ex-2 17 77.2 60.6 88.9 2.39 62.0
KL 53.42 29.17 60.37 1.30 -

(f) Carnatic music: Rūpaka (3/4)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1
1 84.1 79.0 79.0 1.54 71.0
2 93.7 92.2 92.2 2.00 86.4
3 93.4 91.6 91.6 1.99 89.9

Ex-2 17 90.0 81.6 86.3 1.83 55.0
KL 74.61 44.99 68.71 1.25 -

(g) Carnatic music: Mishra chāpu (7/8)

R Fmeas CMLt AMLt infGain Db-Fmeas

Ex-1
1 58.9 38.0 41.5 0.70 27.7
2 94.3 88.9 94.9 2.00 77.3
3 93.7 88.1 94.3 1.95 78.2

Ex-2 17 90.3 76.0 93.2 2.01 70.6
KL 76.16 57.76 66.34 1.18 -

(h) Carnatic music: Khanda chāpu (5/8)

Table 1: Evaluation results for each rhythm class, for Experiment 1 (separate evaluation per style, shown as Ex-1), and
Experiment 2 (combined evaluation using one large HMM, shown as Ex-2). The last row in each Table, with row header as
KL, shows the beat tracking performance using Klapuri beat tracker. For Ex-1, bold numbers indicate significant change
compared to the row above, for Ex-2, bold numbers indicate significant change over the best parameter setting in Ex-1
(bold R parameter), and for KL the only differences to Ex-2 that are not statistically significant are underlined.

bility of confusion between the two styles. Confusion be-
tween the three cultures, especially between Turkish and
Carnatic is extremely rare, which makes sense due to dif-
ferences in meter types, performance styles, instrumental
timbres, and other aspects which influence the observation
model. The recall rates of the rhythm class averaged for
each culture are 69.6% for Turkish music, 69.1% for the
Cretan music, and 61.02% for Carnatic music. While the
datasets are not exactly the same, these numbers represent
a clear improvement over the cycle length recognition re-
sults depicted in [9] for Carnatic and Turkish music.

Finally, we would like to put the beat tracking accura-
cies achieved with our model into relation with results ob-
tained with state of the art approaches that do not include
an adaption to the rhythm classes. In Table 1, results of the
algorithm proposed in [3], which performed generally best
among several other approaches, are depicted in the last
rows (KL) of each subtable. We underline those results that
do not differ significantly from those obtained in Experi-
ment 2. In all other cases the proposed bar pointer model

performs significantly better. The only rhythm class, for
which our approach does not achieve an improvement in
most metrics is the ādi tāla. As mentioned earlier, this can
be attributed to the large variety of patterns and the long
cycle durations in ādi tāla.

6. CONCLUSIONS

In this paper we adapted the observation model of a
Bayesian approach for the inference of meter in music of
cultures in Greece, India, and Turkey. It combines the task
of determining the type of meter with the alignment of the
downbeats and beats to the audio signal. The model is ca-
pable of performing the meter recognition with an accu-
racy that improves over the state of the art, and is at the
same time able to achieve for the first time high beat and
downbeat tracking accuracies in additive meters like the
Turkish Aksak and Carnatic mishra chāpu.
Our results show that increasing the diversity of a corpus
means increasing the number of the patterns, i.e. a larger
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Turkish Greek Carnatic
Aksak Düyek Curcuna Cretan Ādi Rūpaka M.chāpu K.chāpu Recall

Aksak 21 7 2 2 66
Düyek 23 2 5 77
Curcuna 1 3 13 2 1 65
Cretan 3 5 29 3 2 69
Ādi 14 8 1 7 47
Rūpaka 3 19 1 7 63
M.chāpu 2 1 16 11 53
K.chāpu 4 1 23 82
Precision 84 61 76 76 64 56 84 47

Table 2: Confusion matrix of the style classification of the large HMM (Ex-2). The rows refer to the true style and the
columns to the predicted style. The empty blocks are zeros (omitted for clarity of presentation).

amount of model parameters. In the context of the HMM
inference scheme applied in this paper this implies an in-
creasingly large hidden-parameter state-space. However,
we believe that this large parameter space can be handled
by using more efficient inference schemes such as Monte
Carlo methods.

Finally, we believe that the adaptability of a music pro-
cessing system to new, unseen material is an important de-
sign aspect. Our results imply that in order to extend meter
inference to new styles, at least some amount of human
annotation is needed. If there exist music styles where
adaptation can be achieved without human input remains
an important point for future discussions.
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